
1

A secure and quality-aware prototypical
architecture for the Internet of Things

Sabrina Sicari∗‡, Alessandra Rizzardi∗, Daniele Miorandi§, Cinzia Cappiello†, Alberto Coen-Porisini∗
∗Dipartimento di Scienze Teoriche e Applicate, Università degli Studi dell’Insubria,

via Mazzini 5 - 21100 Varese (Italy)
§U-Hopper, via A. da Trento 8/2, 38122 Trento, Italy

†Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
‡Corresponding author

Email: {sabrina.sicari; alessandra.rizzardi; alberto.coenporisini}@uninsubria.it,
daniele.miorandi@u-hopper.com, cinzia.cappiello@polimi.it

Abstract—The increasing diffusion of services enabled
by Internet of Things (IoT) technologies raises several
risks associated to security and data quality. Together with
the high number of heterogeneous interconnected devices,
this creates scalability issues, thereby calling for a flexible
middleware platform able to deal with both security threats
and data quality issues in a dynamic IoT environment. In
this paper a lightweight and cross-domain prototype of
a distributed architecture for IoT is presented, providing
minimum data caching functionality and in-memory data
processing. A number of supporting algorithms for the
assessment of data quality and security are presented
and discussed. In the presented system, users can request
services on the basis of a publish/subscribe mechanism,
data from IoT devices being filtered according to users re-
quirements in terms of security and quality. The prototype
is validated in an experimental setting characterized by
the usage of real-time open data feeds presenting different
levels of reliability, quality and security.

I. INTRODUCTION

The Internet of Things (IoT) revolution is turning
everyday objects into smart ones. Such smart things
are able to interact among themselves and with the
environment they are in in order to fulfill a given
goal [1]. As a result, a global network infrastructure is
being created, supporting the provisioning of innovative
and customized services to individuals and businesses
in different application domains. The resulting system
may include an extremely large number of heterogeneous
devices, raising integration and scalability challenges to
be addressed.

Security & privacy are widely acknowledged to rep-
resent critical issues in such a context [2]. On the
one hand, the confidentiality and the integrity of the
transmitted and stored information has to be guaranteed,
and authentication and authorization mechanisms have to
be provided to prevent unauthorized users or devices to
improperly access the system. On the other hand, privacy

of users, understood as ability to support data protection
and users anonymity has to be ensured, a critical aspect
in particular in the presence of personal and/or sensitive
information [3]. Beyond security, also data quality rep-
resents an essential requirement for the adoption at scale
of IoT services. The provided information should be
accurate, timely and complete, since, in some scenarios,
errors or missing values might have critical impact on
actions or decisions of the IoT system itself [4]. Indeed,
as in IoT-enabled services and applications may make
use of different data sources, the user (or the application
itself) has to be aware of the security and quality level
of the data being accessed, in order to take informed
decisions about their usage.

As a result, what emerges is the need of a system able
to deal with heterogeneous data sources and to evaluate
the security and the quality of the information being
collected, processed and transmitted, possibly in real-
time and in an automatic manner. Furthermore, such a
system shall be able to work in the absence of a priori
complete knowledge of the sources themselves, since IoT
environments are highly dynamic and different kinds of
attack may occur. In fact, in such a scenario, data may be
compromised by rogue devices, hindering the correctness
and confidentiality of the information (e.g., data integrity
violation, man-in-the-middle attacks, packet sniffing).
Source authentication issues (e.g., compromised keys,
session violation) shall also be accounted for. In order to
deal with such issues, a mechanism for the assessment
of data quality and security is proposed in this paper,
supported by a number of novel algorithms aimed at an-
alyzing the data sources as well as the data they generate
over time. As far as security assessment is concerned,
the presented algorithm is new and, according to the
authors’ knowledge, the first of its kind. Its aim is to
assign a level of robustness to each data source according
the following security features: integrity, confidentiality,

authentication system, privacy. Therefore, the proposed
solution does not tackle the security attacks directly, but
aims at minimizing the associated risks by letting users
and applications be aware of the security and data quality
level.

The proposed solution is integrated in an existing
IoT middleware, named NetwOrked Smart objects (NOS)
[5]. NOS are conceived as computationally powerful
devices connected to create a distributed processing and
storage layer able to process the data acquired from
large-scale IoT deployments close to the actual data
sources. NOSs collect the data generated by nearby IoT
devices, process them and finally transmit the processed
data on a publish/subscribe broker. Such a middle-
ware includes provisionings for users and applications
to dynamically specify the level of security and data
quality suitable for their own purpose. The distributed
architecture automates the deployment of adequate filters
for ensuring that only qualified data is being used by the
actual service. This represents a clear innovation over
conventional one-size-fits-all approaches, which provide
the same information to all consumers, often without
considering his/her requirements in terms pf security,
privacy and data quality.

The algorithms integrated within the prototype are
validated in an experimental setup characterised by the
usage of real-time open data feeds and, contextually,
assessing the resulting security and quality level. With
respect to the original highly modular and lightweight
prototype presented in [5], NOS functionalities are sig-
nificantly improved in this work, enhancements includ-
ing: (i) a set of methods for the distributed and au-
tonomic management and run-time optimization of the
middleware platform; (ii) a set of secure and privacy-
aware mechanisms and their integration in the proposed
platform; (iii) a set of data quality assessment methods
that can be used for different types of data and in
different scenarios; (iv) standardized interfaces and data
models for applications/services to access qualified IoT
information following a publish/subscribe architecture,
where raw data are enriched with metadata specifying
their security and quality levels.

The paper is organized as follows. Section II reviews
the relevant literature and state of the art. Section III
presents the system architecture and explains the storage
and the data management aspects, as well as all the
operating modules and their functions. Section IV and
V present the prototype and its validation scenario, in
order to demonstrate its effectiveness in a real-world
IoT context. Section VI concludes the paper providing
directions for future research.

II. RELATED WORK

One of the main factors limiting the growth and take-
up of IoT is the lack of a set of standardised tools,
platforms and interfaces able to provide interoperabil-
ity across different vendors of hardware and software
solutions as well as across diverse vertical domains.

In the last few years, many initiatives tried to bridge
this gap, reusing concepts, techniques and protocols from
the Internet domain. For example, in recent years, the
widespread adoption of web services has provided a
standard framework to enable systems’ interoperability
according to the principles of Service Oriented Architec-
tures (SOA). Service-oriented Communications (SOC)
technologies manage web services by creating a virtual
network and adapting applications to the specific needs
of users rather than users being forced to adapt to the
available functionality of applications [6],[7]. Although
the trend towards the adoption of SOA architectural
principles in the IoT domain is shared by the majority
of the scientific community, at the moment the state of
the art in this area is still somehow limited [8],[9].

Due to the very large number of heterogeneous tech-
nologies being used in IoT systems, several middleware
layers have been proposed to enforce the integration
and the security of devices and data within the same
information network. Typically, they enforce data to be
exchanged according to strict protection constraints. Het-
erogeneity of devices and communication technologies
in IoT has to be accounted in the design of such middle-
ware architecture. Indeed, while many smart devices can
natively support IPv6 communications [10] [11], existing
deployments might not support the IP protocol within
the local area scope, thus requiring ad hoc gateways and
middlewares [12]. Recent works on IoT middlewares in-
clude: VIRTUS [13], which relies on the open eXtensible
Messaging and Presence Protocol (XMPP) to provide
secure event-driven communications; Otsopack [14] and
Naming, Addressing and Profile Server (NAPS) [15],
which are data-centric frameworks based on the usage
of HTTP and REpresentational State Transfer (REST)
interfaces.

An attempt to provide a lightweight and flexible
middleware for IoT applications is at the heart of the
work reported in [5] where, starting from a general
UML conceptual model and a high level design of IoT
architectures [4], [16], a prototypical implementation of
an IoT middleware is presented. Note that the solution
proposed in [5] tries not only to manage information
provided by heterogeneous sources, but also to evaluate
the data provided by the IoT system both in terms of
security and quality.

What emerges from the analysis of the relevant litera-
ture and state of the art, presented in this section, is that
no available middleware approach is actually able to ad-

dress comprehensively security, privacy and data quality
issues in a IoT context. The approach proposed in [5]
represents a first attempt in this direction, yet limited to
a deterministic assessment of the security level. Instead,
in this paper, an automatic reasoning mechanism for the
assessment of the security and quality of data is added to
the existing prototypical implementation, thus improving
the actual solution with an innovative and, to the best of
authors’ knowledge, new algorithm suitable for the IoT
context.

Besides the scientific literature, it is worth in this
context to mention some relevant EU projects, such as
FP7 COMPOSE [17], iCORE [18], IoT.EST [19], Ebbits
[20], uTRUSTit [21] and Butler [22]. Only the last two
focus on security aspects.

The FP7 COMPOSE (Collaborative Open Market to
Place Objects at your Service) project [17] aims to
design and develop an open marketplace for IoT data
and services. The basic concept underpinning such an
approach is to treat smart objects as services, which can
be managed using standard service-oriented computing
approaches and can be dynamically composed to provide
value-added applications to end users.

The iCORE project (iCORE) [18] aims to empower
the IoT with cognitive technologies and is focused
around the concept of virtual objects (VOs). VOs are se-
mantically enriched virtual representation of the capabil-
ities/resources provided by real-world objects. Through
the inception of VOs it becomes possible to easily re-use
Internet-connected objects through different application-
s/services, also supporting their aggregation into more
complex artifacts (composite virtual objects - CVOs).
VOs provide a unified representation for smart objects,
hiding from the application/service developers low-level
technological details as well as any underlying techno-
logical heterogeneity. VOs also provide a standardised
way to access objects features and resources. One key
element in the iCORE project is the use of advanced cog-
nitive techniques for the management and composition
of VOs in order to improve IoT applications and better
match user/stakeholder requirements. Application sce-
narios considered include ambient assisted living, smart
office, transportation and supply chain management.

A dynamic architecture for services orchestration and
self–adaptation has been proposed in IoT.EST (Internet
of Things Environment for Service Creation and Testing)
[19]. The project defines a dynamic service creation
environment that gathers and exploits data from sensors
and actuators making use of different communication
technologies and formats. Such an architecture deals
with issues such as the composition of business services
based on re-usable IoT service components, the auto-
mated configuration and testing of services for “things”
and the abstraction of the heterogeneity of underlying

technologies to ensure interoperability.

The Ebbits project [20] designed a SOA platform
based on open protocols and middleware, effectively
transforming IoT subsystems or devices into web ser-
vices with semantic resolution. The goal was to allow
businesses to integrate IoT into mainstream enterprise
systems and to support interoperable end-to-end business
applications.

Finally, dealing with security, privacy and trust issue
there are the uTRUSTit [21] and Butler [22] projects.
The approach pursued in the former one is to inte-
grate the user directly in the trust chain, guaranteeing
transparency in the underlying IoT security and relia-
bility properties. If successful, uTRUSTit approach shall
enable system manufacturers and system integrators to
express the underlying security concepts to users in a
comprehensible way, allowing them to reason on the
trustworthiness of such systems. Butler aims to allow
users to manage their distributed profile by allowing
data duplication and identity control over different ap-
plications. The final purpose is to deliver a framework
able to dynamically integrate user data (e.g., location,
behaviour) in privacy and security protocols.

As far as data quality is concerned, several literature
contributions recognize it as one instrumental issue in
IoT research. In [23], authors claim the need of control
over data sources to ensure their validity, information
accuracy and credibility. Data accuracy is also addressed
in [24]; the authors observe that the presence of many
data sources raises the need to understand the quality of
such data. In particular, they state that the data quality
dimensions to consider are accuracy, timeliness and the
trustworthiness of the data provider. Anomaly detection
techniques are widely employed in various scenarios to
remove noise and inaccurate data in order to improve
data quality. The huge number of data sources in IoT
is considered a positive aspect for data fusion and for
the extraction and provisioning of advanced services.
Besides temporal aspects (i.e., currency) and data va-
lidity, a related work adds another important dimension
such as availability [25]. The authors of such work define
new metrics for the aforementioned quality dimensions
in the IoT context and evaluate the quality of the real-
world data available on the open IoT platform Cosm.
In particular, they show that data quality problems are
frequent and they should be adequately tackled or, at
least, users should be aware of the poor quality of the
used data sources. In fact, IoT systems will be part
of everyday life in the same way mobile phones have
become an integrated part of our life. Trustworthiness,
security and privacy implications of IoT are vast, and
must be made accessible to users.

III. ARCHITECTURE

Two main entities can be identified in an IoT context:
(i) the nodes, intended as data sources and represented by
heterogeneous devices (e.g., wireless sensor networks,
RFID, NFC, actuators, social networks); (ii) the users,
who access services making use of IoT data through
Internet-connected mobile devices (e.g., smartphone,
tablet). In our architecture [16], represented in Fig. 1, we
also have a layer (the NOS layer) in charge of processing
and managing the data generated by the nodes. NOSs are
networked smart nodes deployed in a distributed manner
and do not present strict constraints in terms of resources
and computational capabilities. They are able to interface
with nearby IoT devices and to process the acquired
data closer to the sources than a centralized platform.
In the next sections, through a bottom-up analysis, the
components of a NOS are detailed. The description
includes (i) the southbound interfaces (i.e., the ones used
to interact with the data sources); (ii) the processing
units (in charge of security and data quality evaluation);
(iii) the northbound interfaces (i.e., the publish/subscribe
mechanism used for the sharing of the information with
other services).

A. NOS southbound interfaces
NOSs collect data transmitted by different kinds of

sources (i.e., nodes). The system has been designed to
support both registered sources as well as anonymous
ones, each characterized by different communication
technologies and providing diverse quality levels for
their data. As regards the registered nodes, NOSs provide
a service for source registration by means of HTTP pro-
tocol; the related information are stored in the Sources
data structure. Registered sources are associated with an
identifier, and, optionally, with a geographical position
and/or an encryption scheme, including the proper keys
for interactions with NOSs. For each incoming data
NOSs extract the following information: (i) the data
source, which describes the type of node (the identifier
in case of a registered source); (ii) the communication
mode, which is the way in which the data is transmitted
(e.g., discrete or streaming communication); (iii) the data
schema, which represents the type (e.g., number, text)
and the format of the transmitted data; (iv) metadata
describing the data content; (v) a timestamp describing
when the data was received by the NOS. The HTTP
communication protocol is also used among NOS and
the data sources for the data transmission. Since received
data is highly heterogeneous, NOSs initially stores them
in the Raw Data collection, and, periodically, elaborates
them according to the two-phase process shown in Fig.
1 (including Data Normalization and Analyzers) in order
to obtain an uniform representation and, as specified in
the next section, enriching it with relevant metadata.

First, the data stored in Raw Data are put in the format
specified in Fig. 2 by the Data Normalization module,
which stores them in the Normalized Data collection.
This represents a sort of pre-processing phase in which
the unnecessary information is removed so to enable later
processing stages to access the information in a unified
way. Then, a second module, consisting of a set of
Analyzers, periodically extracts the normalized data from
the storage unit Normalized Data and elaborates them,
computing relevant security and data quality indicators
(see Sections III-B and III-C). Within such a step, as
shown in Fig. 2, data is annotated with a set of metadata
in the form of a score for each security and data quality
property: data confidentiality, data integrity, source pri-
vacy and source authentication (security); data accuracy,
data precision, information timeliness and completeness
(data quality). The processed data is used for providing
services to the target users (see Section III-D). Note that
most of the existing approaches already address the issue
of extracting data from heterogeneous sources, but very
few focus on the analysis of security, privacy and data
quality, as we do in this work.

As regards security and quality assessment, NOS
provides two analyzers: Security Analyzer and Quality
Analyzer, discussed in the following sections.

B. Data quality evaluation

For the data quality analysis, a score in the range [0, 1]
is assigned to timeliness, completeness, accuracy and
precision levels [26],[27] by the Quality Analyzer (see
Figure 1). Timeliness is defined as the temporal validity
of data and is calculated on the basis of the freshness of
data and on the frequency of data updates; it is usually
measured as a function of two variables: currency and
volatility:

Timeliness = max

(
1− Currency

V olatility
, 0

)
, (1)

where Currency is defined as the interval from the time
when the value was sampled to the time instant at which
data are received by the NOS. V olatility is a static
information which indicates the amount of time units
(e.g., seconds) during which data remains valid; it is
usually associated with the type of phenomena that the
system has to monitor and depends on the timescale of
its dynamics.
Completeness is calculated as the amount of collected
values over a given time interval divided by the amount
of expected values:

Completeness =
collectedV alues

expectedV alues
. (2)

Note that missing values can be caused by sensors
inefficiencies or communication issues.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��������

�
����
 ����

�
�
��

�� ���������

������������

����

����

�����
�� ����

�����������

�����
�

��
�������

	
���
�
�

����
�������
�
�

�
�
�����
���
�����

�����

��������

�����

���������
�
������ ����

�������!"���

�����

����	��

��
�
��������

������

�����������
������

"�
�������
������

Fig. 1: System Architecture

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��������	
�������	

�

�

�

�

�

�

�

�

�

������	
�������	

Fig. 2: NOS data format

Accuracy is usually defined as the degree of similarity
of a measured quantity to its true value; it is also
related to precision, which is the degree to which further
measurement or calculations return the same or similar
results. Ideally, a sensor shall be both accurate and
precise, with all the measurements close to a reference
value representing the true figure. In continuous value
monitoring, accuracy and precision can be used as the
features able to reveal errors or changes in the monitored
process. Moreover, precision is often specified in terms
of the standard deviation of the measured values: the

smaller the standard deviation, the higher the precision.
Formally, the accuracy of a value can be retrieved
by calculating the error resulting from the difference
between the sensed value vn and a reference value vref .
The acceptable measurement error can be defined as εacc
and the measure is considered accurate if:

|vn − vref | < εacc (3)

Considering such constraint, each value is associated
with a boolean metadata: the value 1 is assigned to ac-
curate values while the value 0 is assigned to inaccurate
values. In this way, considering the streaming of values,
the accuracy of the received values can be calculated
as the ratio of the number of inaccurate values over the
number of collected values:

Accuracy = 1− wrongV alues

collectedV alues
. (4)

The precision can be defined as the inverse of vari-
ance. A measure is considered precise if:

1/n ·
N∑
n=1

(vn − µ)2 < εprec (5)

where µ is the average of the sequence vn, while N is
the maximum number of measurements considered in a
specific time interval. Accordingly, an aggregate measure
of precision can be computed as:

Precision = 1− NotPreciseV alues

collectedV alues
. (6)

Precision is a value that is mainly used to better under-
stand the accuracy measure. Indeed, situations in which
values are incorrect but precise should be thorough
analyzed since inaccuracy can be caused by changes in
the monitored phenomenon or by faulty sensors [26] .

Quality assessment is performed periodically on the
basis of a window-based approach.

C. Security evaluation

For security purposes data sources are allowed to reg-
ister to NOS; the registration gives various advantages,
since it allows NOS to have a complete knowledge of
the source itself and to establish an encryption scheme
along with the proper keys and identifiers to be used.
Some registered sources may use neither authentication
credentials nor encryption. NOS accepts data also from
anonymous sources; also in this case a security evalua-
tion has to be performed. The Security Analyzer must be
able to access to the Sources storage unit since, in order
to analyze the received data, it may need information
regarding the sources registered to NOS. To this purpose,
NOS exploits an algorithm valid for both registered and
anonymous sources, which aims to associate a score in
the range [0, 1] for the security metrics (i.e., confiden-
tiality, integrity, privacy, authentication). As in the IoT
context NOS may have to manage sensitive data, such se-
curity scores are intended as levels of confidentiality and
integrity of the information transmitted to NOS, privacy
of the transmitting source and authentication (i.e., the
robustness of the source authentication towards NOS).
Note that malicious devices may be represented by non-
registered sources, which send violated data to NOS or
execute malicious actions towards those transmitted by
non-malicious ones (e.g., spoofing, sniffing).

In this paper, the security assessment algorithm takes
into account two sets of parameters: a set of threats/at-
tacks an and a set of security countermeasures cm. The
first one includes the attacks that may be carried out
towards the sources or the data transmitted to NOS (e.g.,
data violation, unauthorized access, masking, imperson-
ation). The second one regards the countermeasures
made available by NOS in order to face the attacks

included in an (i.e., encryption, authentication, key pre-
distribution). The security model considered by the al-
gorithm links the attacks of an with the corresponding
countermeasures in cm. The taxonomy of the security
attacks and the related countermeasures is retrieved from
[28]. This work is suitable for our needs to identify
a set of attacks and countermeasures for the IoT en-
vironment, since it is not closely related to computers
and networks threats, as most of the existing works on
taxonomies, but focuses on embedded devices, which
are strictly related to the IoT technologies. It refers to:
(i) data confidentiality, authentication and integrity; (ii)
data freshness and availability; (iii) key management
protocols; (iv) reputation schemes. In detail it considers
each countermeasure to present a degree of resistance
to a violation or to an attack attempt. The relationship
among attacks and countermeasures is many-to-many,
because an attack can be tackled through a plurality of
countermeasures and a countermeasure can face more
than one attack. Each relationship is associated with a
weight wai,ci in the range [0 : 1], which represents the
level of robustness of the countermeasure ci with respect
to the attack ai (see Figure 3).

Fig. 3: Weighed relationships among attacks and coun-
termeasures

The identified relationships are clustered into four
groups, one for each security metric to be analysed
(i.e., confidentiality, integrity, privacy, authentication).
The assignment of each attack-countermeasure pair to
a group is made by the NOSs administrators in an early
phase of system configuration, but it can be updated at
runtime. Hence, at this initial stage, there are four groups
of sets of attacks-countermeasures, which are named as
follows: (i) gconf for attacks-countermeasures related to
the data confidentiality; (ii) gint for the pairs related to
to data integrity; (iii) gpri for privacy issues; (iv) gauth
for the pairs concerning sources authentication. Note that
such groups are not necessarily disjoint, since a pair may
belong to one or more groups, as shown in Figure 4. The
information related to the groups are stored in the storage
unit named Config, which will be described in detail in
the following.

�

����

�

�

���

�

�

���

�

�

	
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 4: Attacks-countermeasures groups

TABLE I: pairs attack-countermeasure

Attack Countermeasure Group
1) Packet sniffing Data content encryption gconf

2) Password attack Complex password generation gconf , gauth
3) Man-in-the-middle attack Data content encryption gint

4) Session hijacking attack Secure session establishment gint, gauth
5) Identity spoofing Identity encryption gpri
6) Key impairment Secure key distribution scheme gconf , gauth

Table I shows some examples of attack-
countermeasure pairs derived from the used taxonomy
and classified in the groups described above. Note
that in Table I the countermeasures are presented in
a generic way, since, as regards, for example, data
encryption, a source can adopt different encryption
schemes (e.g., RSA, AES), and, as a consequence, the
corresponding robustness level varies over the time.
More in detail, there is a weight for each relationship
among, for example, the man-in-the-middle attack and
the different encryption schemes which can be adopted
(e.g., man-in-the-middle attack and RSA, and attack
man-in-the-middle and AES). The same considerations
apply to password generation and secure session
establishment techniques.

Once the groups are defined, NOSs can update the
weight corresponding to the relationships among at-
tacks and countermeasures depending on the sources
behaviour and, consequently, on the basis of the received
data. In this way, the system is able to evaluate the
robustness of the countermeasures to particular kinds
of attack during the normal IoT system operations,
since NOS recognizes the possible malicious activities
which can occur within the IoT system. When the NOS
platform is deployed in an IoT context, the initial weights
are conservatively all set to 1. During operations, a
NOS is able to detect the following events: (i) data
confidentiality and/or integrity violations; for example, a
source may share some proper keys with NOS in order to
encrypt its data; then, NOS may verify the integrity of
a received data (if the data is recognized as violated,
then an integrity attack to the encryption technique
adopted by the source has been successful); (ii) sources
privacy violations; (iii) unauthorized access to the system
(e.g., password violation, so an unauthorized device has

accessed the system); (iv) robustness of key management
protocols in relation to key length (bits), deterministic
or probabilistic generation of keys, encryption scheme
adopted; (v) replay or routing attacks which can hinder
the freshness and the availability of the data received
from the different sources.

Weights can vary over time in a dynamic way; such
variations depend on the events described above or on
context changes such as a source changing the length
of its keys or the encryption scheme adopted. Such a
process of automatic adjustment is performed by means
of a well-known learning approach, namely difference
temporal learning [29]. It is suitable for the learning in
dynamic environments and is able to make predictions
about specific features on the basis of temporal differ-
ences observed during system activity. In this way, the
weights may decrease over time with the observations of
system or data violations, but they may also increase if
a certain countermeasure turns out to be more resilient
or if an attack is no longer performed. The following
equation regulates the update of weights:

∆wt = α ·
∑
k=1,t

5w · wt (7)

where the weight variation ∆wt at time t depends
on: (i) the learning rate constant α, which is a linear
decreasing function of time; (ii) the sum (

∑
k=1,t5w ·

wt), which is the sum of the gradients taking into
account all the previous predictions until the time t.
After the update, performed at time t on the i-th pair
attack/countermeasure, the corresponding weight wti,ci
is updated according to Eq. 8 (note that w corresponds
to a weight wti,ci). ∆wt could assume negative values,
but the resulting weights must be a value in the range
[0 : 1].

wt+1 = wt + ∆wt (8)

Once the attacks/countermeasures model is defined,
the algorithm computes for each incoming data the
related security scores on the basis of the actual weights
and of the data source src. Equations 9, 10, 11 and 12
show how the score corresponding to the level of con-
fidentiality (secconf), integrity (secint), privacy (secpri)
and authentication (secauth), respectively, is determined.

secconf =
aconf,src
agconf

·

∑
iεaconf,src,jεcconf,src

wi,j

cconf,src
(9)

where: aconf,src is the number of confidentiality at-
tacks which the source src could suffer; agconf

is the
total number of attacks included in the model in the
group gconf for any kind of sources (not only those re-
lated to src); cconf,src is the number of countermeasures

adopted by src related to the attacks to confidentiality
included in aconf,src. The sum of the weights considers
only the weights between the attacks in aconf,src and
the countermeasures in cconf,src. For example, suppose
that the source src adopts AES for encrypting its data;
moreover, it also adopts a 8-bit length password as
credential for ensuring both confidentiality and authen-
tication. As shown in Table I (points 1 and 2), AES is a
countermeasure associated to the gconf group; while the
password is associated to both gconf and gauth groups.
The steps performed by NOS to assess over the time the
confidentiality score secconf are the following:

• The initial weights corresponding to the two pairs
attack-countermeasure (i.e., AES-packet sniffing,
8-bit password-credential violation) are set to 1;
therefore, the corresponding confidentiality score
secconf is 1. Eq. 9 is initially evaluated as shown in
Figure 5. For simplicity, aconf,src is considered, in
this example, equal to agconf

. aconf,src is composed
by two elements (i.e., packet sniffing and credential
violation), and also aconf,src (i.e., AES and 8-bit
password).

Fig. 5: Confidentiality score assessment - initial stage

• During the system operations, NOS recognizes no
violated packets from the source src, but sev-
eral times its password has been intercepted (e.g,
through brute-force attack).

• As a consequence, the weight related to the pair
8-bit password-credential violation decreases; for
such an example, it is updated to 0.3 by the learning
algorithm (Eq.s 7 and 8).

• The new data obtained from the source src will
receive a lower confidentiality score secconf , which
is recomputed to 0.65, as shown in Figure 6.

Fig. 6: Confidentiality score assessment - update

As a consequence, a user who wants to receive data
from the source src will be aware that they have a level
of confidentiality not greater than 0.65, so there is a 35%
risk of a confidentiality attack.

Instead, considering a malicious device which tries to
execute a man-in-the-middle attack among two registered
sources src1 and src2, the scope of the proposed security
algorithm is to evaluate how robust is the countermea-
sures adopted by such sources (i.e., the robustness of
the data content encryption scheme adopted, as shown
in Table I). For example, in this case, the affected score
is that of integrity secint. Therefore, NOS executes the
following steps:

• The initial weights corresponding to the attack-
countermeasure pairfor the two sources, src1 and
src2, are both set to 1, but src1 adopts a 128-bit
key for encrypting its data, while src2 uses a 256-
bit key.

• If NOS analyzes the level of robustness of such
a countermeasure in terms of integrity against a
possible man-in-the-middle attack, then it considers
the difference in the bit-length of the used keys, and,
following Eq. 10, the result will be that secintsrc1
is less than secintsrc2 .

Therefore, a user may choose to receive data only
from the source src2, since it presents a greater level
of integrity with respect to the source src1.

secint =
aint,src
agint

·
∑
iεaint,src,jεcint,src

wi,j

cint,src
(10)

The same considerations apply to the following met-
rics:

secpri =
apri,src
agpri

·
∑
iεapri,src,jεcpri,src

wi,j

cpri,src
(11)

secauth =
aauth,src
agauth

·
∑
iεaauth,src,jεcauth,src

wi,j

cauth,src
(12)

Note that, as stated above, the presented algorithm is
suitable for both registered and non-registered sources.
It is very remarkable that the proposed algorithm allows
to perform a security analysis and obtain a valid score
(not trivially set to 0 or to “undefined”) also for non-
registered sources, with which NOS does not share,
for example, any encryption schemes. This is achieved
by analysing the data they provide over time and the
node’s behaviour within the IoT system. Concluding
the discussion about security evaluation, Algorithm 1
summarizes the steps performed by the security assess-
ment scheme proposed in this paper. Note that NOS is
conceived as a modular architecture, therefore such a
mechanism can be enabled or disabled on the basis of

Algorithm 1 Security Assessment
Input: Relationships among an, cn from the taxonomy

1: for all ai, ci do
2: Assigment to groups gconf , gint, gpri, gauth
3: Initialization of the weight wai,ci to 1
4: end for
5: while Learning is enabled do
6: Events monitoring
7: Weights adjustment (Eqs 7 and 8)
8: Scores update (Eqs 9, 10, 11, 12)
9: end while

the current application needs. The effectiveness of the
proposed algorithm will be discussed in Section V.

The rules just presented for the assessment of the
security and quality scores of data are stored in a proper
format in another NOS storage unit called Config. Such
a collection contains all the configuration parameters
required for the correct management of the IoT system
(e.g., how to calculate quality properties, which attacks
or security countermeasures to consider), represented in
JSON format (as described in Section IV). It can also
be configured at any time by an IoT system adminis-
trator through a secure connection (e.g., via HTTPS)
depending on the requirements of the specific deploy-
ment, without the need to re-start the NOS system. The
communication protocol to be used is HTTPS, since the
policy adopted by the NOS for processing the IoT data
have to be protected against external attacks. Analyzers
periodically query the Config storage unit in order to
know which rules shall be used.

The NOS architecture has been designed to provide
a score for each security and data quality requirement;
in this way a possible application scenario can be easily
integrated depending on its purposes and on the specific
context, and can benefit of a high level of flexibility. For
example, some applications require to use data with a
high level of integrity and confidentiality, but there is
no interest in privacy issues. Other application domains,
on the contrary, may aim to provide a service character-
ized by error-free data and high confidentiality scores,
therefore the data to be selected are those provided by
sources able to satisfy these requirements. Note that
searching and selecting data sources when there is no
description neither about the sources nor the acquired
data is a very challenging task. Although a NOS is not
able to directly counteract malicious devices, it is able to
recognize that the data provided by a source is corrupted
or it presents a poor level of confidentiality or privacy
and discard it as unsuitable. Note that, after repeatedly
receiving bad data from the same source, NOS could
even block it. By means of the algorithm presented
above, a NOS is able to perform automatic reasoning
about data quality and security and, then, allow the users
to filter information and deal properly with the massive

amount of data received by IoT services.

D. NOS northbound interfaces

While the NOSs southbound interfaces are based on
the HTTP protocol, the northbound interface is based
on the Message Queue Telemetry Transport (MQTT)
protocol. MQTT is a lightweight publish/subscribe pro-
tocol [30] specifically designed for resource-constrained
devices. In the IoT context, it is widely used to enable
communication among devices using a publish/subscribe
messaging approach. An MQTT client, as that contained
in NOSs, exchanges messages with an MQTT broker by
means of publications and subscriptions to topics. Such
mechanism is adopted to support interactions among
services and IoT devices. NOSs include a module in
charge of assigning data items to the corresponding topic
and to publish them on a MQTT broker, as depicted
in Fig. 1. The mapping of data to a specific topic
depends on the application domain and is out of the
scope of this work, but it may require the usage of an
ontology able to represent the semantic of the managed
resources. In general, topics are multi-level structures
separated by a forward slash similar to a directory struc-
ture. An example of a topic for publishing temperature
information of a sensor with identifier sensorId could
be sensor/temperature/sensorId. Note that subscribers
may register for specific topics at runtime and NOSs
provide a mechanism for dynamic subscription and un-
subscription to topics. According to the MQTT protocol,
messages can be published with a Quality of Service
(QoS) parameter indicating that a message should be
delivered “at most once”, “at least once” and “exactly
once”. MQTT also supports persistence of messages to
be delivered to future clients that subscribe to a topic,
and may be configured to send messages of specific
topics when the subscriber connection is abruptly closed.
These parameters are is specified in the Config storage
unit. Summarizing, a typical MQTT message includes
the following parameters: (i) the topic; (ii) the data value;
(iii) the QoS level; (iv) the retain value.

IV. PROTOTYPE

The NOS system presented in Section III has been
implemented as a prototypical service middleware plat-
form able to manage a large amount of data from
heterogeneous devices with lightweight modules and
interfaces working in a non-blocking manner to perform
data analysis, discovery, and query [5]. This represents
an important step beyond conventional ad hoc centralized
IoT solutions. In a real scenario, one or more NOSs
can be deployed in a distributed manner. Note that,
from an analysis of NOS functionalities, there is no
need for a peer-to-peer management of NOSs. In fact,

NOSs are able to: (i) independently handle the connected
data sources, without the need to inform other NOSs of
their active and past interactions; (ii) be independently
re-configured by IoT system administrators through the
Config interface; (iii) independently assign topics and
publish data on the basis of the defined rules. Note that
the existing IoT deployments are often hardly reconfig-
urable [31], since they are conceived for very specific
applications, based on a vertical silo-based approach.
The middleware proposed in this work supports dynamic
reconfiguration and can be remote orchestrated through
Internet/intranet protocols, which are based on open
standards (see Section III-D).

The NOS prototypical implementation is compliant
with the architecture presented in Section III. The
Node.JS platform1 has been used for the platform im-
plementation, MongoDB2 for storage management, and
Mosquitto3 for the publish/subscribe system. The code
is released as open source under a permissive license4.
Modules interact among themselves via RESTful ser-
vices. They can be distinguished in: node interfaces,
processing modules, and service interfaces.

The node interfaces manage the sources registrations
and receive the data from IoT devices. As described
in Section III-A, these correspond to the southbound
interfaces of NOS. The following endpoints are exposed:

• POST data/ Used for handling transmission of data
from the nodes to the NOS. Messages shall be
formatted as valid JSON nodes.

• POST registration/ Used by nodes for
registering to the NOS. Messages shall be
formatted as valid JSON nodes. The following
fields are mandatory: NodeId, NodeType,
CommunicationMode. Optional field:
EncryptionScheme. The response includes
node credentials.

The NOS system includes also additional modules,
namely data normalization and data analyzers. Such
processing modules are daemons which start along with
the NOS and periodically extract data from Raw Data
or Processed Data storage units. Since they are internal
to NOS, no specific APIs are provided.

As far as northbound interfaces are concerned, the
following endpoint is exposed:

• mqtt.Client#publish(topic,payload,[options])
Used by NOS for publishing normalized data
to the MQTT broker. Mandatory parameters:
topic (channel on which the message is to be
published), payload (message to be published).
Optional parameters: [options] (QoS, retain

1http://nodejs.org/
2http://www.mongodb.org/
3http://mosquitto.org
4https://bitbucket.org/alessandrarizzardi/nos

flag, callback). The address of the broker is
specified at client initialization time.

A great advantage of our approach is that it is possible
to introduce new modules or duplicate the existing ones
since they are able to work in a parallel and non-blocking
manner. Moreover, it is possible to add new functionality
or to remove active ones without re-starting the whole
system. The use of the non-relational MongoDB database
allows the data model to evolve dynamically. Further-
more, such an implementation is independent both of
the data model and the application domain.

Given the overall system architecture, it is worth
remarking that NOS does not require data persistence for
IoT-generated data. Rather, data is temporarily cached on
the NOS while being processed and before being submit-
ted to the MQTT broker. Accordingly, NOS uses the in-
memory capability of MongoDB for two of its databases,
namely Raw Data and Normalized Data, whereas the
databases Config and Sources must be persistent. A
routine runs on NOS in order to remove from Raw Data
the data already normalized and from Normalized Data
the data already published. Such an approach greatly im-
proves NOS performance, significantly lowering query
and read/write performance.

As far as the MQTT broker is concerned, the open-
source Mosquitto implementation —compliant with ver-
sion 3.1.1. of the MQTT protocol— is used. Note that the
broker is a module which runs out of the NOS system,
therefore it acts as an intermediary among NOS and the
subscribers.

V. EXPERIMENTAL VALIDATION

In our experimental setup, the NOS platform runs on a
Raspberry Pi, which has the computational and resources
capabilities for running the NOS functionalities. To
simulate the behaviour in a real-world setting, the NOS is
connected to a number of open data feeds. In particular
we use data provided in real time from six sensors at
the meteorological station of the city of Campodenno
(Trentino, Italy). Data refers to temperature, humidity,
wind speed, energy consumption and air quality; a
web service exposes them in JSON format, and the
NOS retrieves them through HTTP GET requests, as
detailed in Section IV. According to the prototypical
implementation presented in the previous sections, the
NOS processes data assessing their reliability in terms
of security, privacy and quality. Data is then transmitted
to a MQTT broker. A simple visualization service is also
implemented, which makes it possible for users to set
their preferences in terms of security, privacy and data
quality and to visualize compound indicators computed
only from data matching the expressed preferences.The
dashboard is shown in Figure 7.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 7: User Dashboard

TABLE II: Sources parameters

Sources Authentication Encryption technique
Source 1 IPSec RSA
Source 2 16-bit password logon AES
Source 3 none MD5
Source 4 8-bit password logon SHA-1
Source 5 none none
Source 6 8-bit password logon none

Since meteorological data are obtained from six differ-
ent sources in real time, it is assumed that each of them
adopts different authentication and encryption methods
for communicating with the NOS, as summarized in
Table II.

The evaluation of the the data provided, both in terms
of security and quality, is performed by the system
following the methods presented in Sections III-B and
III-C, eventually returning a score for each security
and quality metric. For testing the effectiveness of the
proposed mechanisms, the system has been observed
for a period of a week. Figures 8 (for security) and
9 (for data quality) show the day-by-day evaluation
regarding the data provided by the six sources. For
security assessment, the outcomes are compliant with the
expected robustness of the authentication and encryption
techniques adopted by the monitored sources. Note that
each score is initially set to the maximum value (i.e., 1),
as specified in Sections III-B and III-C, and that a source
may change its communication agreement with NOS,
thus modifying the corresponding security assessment
scores. From the figures, it can be observed that NOS
can interact which sources characterized, for example,
by a good level of authentication, but, at the same time,
by a low level of reliability in terms of confidentiality,
integrity and privacy (e.g., source 6 in Figure 8) and
vice versa (e.g., source 3 in Figure 8). Another case is
that the data provided by a source may present good

levels of completeness and timeliness, but poor accuracy
and precision levels (e.g., source 4 in Figure 9). The
assessment confirms the potential of the NOS approach
in empowering the user with the ability to choose the
requirements to be met by the data used by a given IoT-
enabled service.

More in detail, in order to clarify the effectiveness of
the new security evaluation algorithm proposed in Sec-
tion III-C, Figure 10 shows an analysis of the behaviour
of source number 6 with respect to the integrity score
in particular conditions. From Figure 8 it emerges that
such source obtains low scores for data integrity (at day
7 the integrity score is equal to 2). Now, the whole set
of attack-countermeasure pairs, referred to the integrity
of the data of source number 6, are considered and
remain constant for the whole observation period, except
for one pair, which corresponds to a man-in-the-middle-
attack able to modify the data content and, therefore, to
violate the integrity of the information transmitted by the
source node. As reported in Table II, source number 6
does not adopt any encryption technique, therefore the
man-in-the middle attack simulated within the network
is successful. As a consequence, the integrity score gets
lower. However, if the source decides at day 2 to adopt
AES for encrypting its data, sharing the proper keys with
NOS, it is expected that the security algorithm varies
the integrity evaluation accordingly. In fact, Figure 8
represents the integrity score assessment in the “normal”
case (i.e., the source does not change its communication
agreements with NOS) and in the “modified” case. Note
that, at day 6, source number 6 revokes the use of the
encryption scheme with NOS sending again the data in
clear; as shown in Figure 8, the integrity score starts
again to get lower.

The presented results just represent an example of how
NOS interacts with IoT data sources. Moreover, it shows
how NOS, although it does not directly tackle attacks
able to compromise the IoT devices, it recognizes the
possible threats for each data source and, consequently,
it estimates the corresponding levels of security. In this
way, users can select the data with a deep level of
awareness about the services offered by the IoT system.
Our plan for the next future includes a consistent evalua-
tion in different domains and IoT contexts, in particular
including an analysis of the behaviour in the presence
of sensitive data and of nodes joining and leaving the
system.

VI. CONCLUSIONS

The rising adoption, at different levels and within
different application domains, of IoT technologies is
fostering requests for solutions able to harness the het-
erogeneity of IoT devices while at the same time, capable
of guaranteeing an adequate level of security and data

Fig. 8: Security Score Evaluation

Fig. 9: Quality Score Evaluation

Fig. 10: Attack-Countermeasure Analysis

quality used to power services and applications. In this
paper we have presented the design and a prototypical
implementation of a distributed middleware layer, named
NOS, able to manage heterogeneous data sources, to
provide a uniform, consistent data representation and to
evaluate the security and quality level associated to each
data unit. In particular, a proper security algorithm has
been developed in order to assess the trustworthiness
of registered and non registered IoT data sources. The
effectiveness of the proposed solution has been validated
through the implementation of a real prototype of the
NOS platform. Future extensions include the introduc-
tion of a key management system in the platform.

REFERENCES

[1] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet
of Things: Vision, applications and research challenges,” Ad Hoc
Networks, vol. 10, no. 7, pp. 1497–1516, 2012.

[2] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini,
“Security, privacy and trust in Internet of Things: The road
ahead,” Computer Networks, vol. 76, pp. 146–164, 2015.

[3] A. Coen Porisini, P. Colombo, and S. Sicari, Privacy aware
systems: from models to patterns, igi global ed. Software Engi-
neering for Secure Systems: Industrial and Research Perspectives,
2011.

[4] S. Sicari, A. Rizzardi, C. Cappiello, and A. Coen-Porisini, “A
NFP model for internet of things applications,” in Proc. of IEEE
WiMob, Larnaca, Cyprus, Oct 2014, pp. 164–171.

[5] A. Rizzardi, D. Miorandi, S. Sicari, C. Cappiello, and A. Coen-
Porisini, “Networked smart objects: Moving data processing
closer to the source,” in 2nd EAI International Conference on
IoT as a Service, Oct 2015.

[6] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-oriented computing: State of the art and research chal-
lenges,” Computer, vol. 40, no. 11, pp. 38–45, Nov 2007.

[7] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed, “Deploying
and managing web services: Issues, solutions, and directions,”
The VLDB Journal, vol. 17, no. 3, pp. 537–572, May 2008.

[8] “Peertrack,” http://cs.adelaide.edu.au/peertrack/.
[9] “PERCI (PERvasiveServiCe interaction),”

http://www.hcilab.org/projects/perci/index.htm.

[10] M. Palattella, N. Accettura, X. Vilajosana, T. Watteyne,
L. Grieco, G. Boggia, and M. Dohler, “Standardized protocol
stack for the Internet of (important) Things,” Communications
Surveys Tutorials, IEEE, vol. 15, no. 3, pp. 1389–1406, Third
2013.

[11] I. Bagci, S. Raza, T. Chung, U. Roedig, and T. Voigt, “Combined
secure storage and communication for the Internet of Things,” in
2013 IEEE International Conference on Sensing, Communica-
tions and Networking, SECON 2013, New Orleans, LA, United
States, June 2013, pp. 523–631.

[12] D. Boswarthick, O. Elloumi, and O. Hersent, M2M Communica-
tions: A Systems Approach, 1st ed. Wiley Publishing, 2012.

[13] D. Conzon, T. Bolognesi, P. Brizzi, A. Lotito, R. Tomasi, and
M. Spirito, “The VIRTUS middleware: An XMPP based architec-
ture for secure IoT communications,” in 2012 21st International
Conference on Computer Communications and Networks, ICCCN
2012, Munich, Germany, July 2012, pp. 1–6.

[14] A. Gòmez-Goiri, P. Orduna, J. Diego, and D. L. de Ipina,
“Otsopack: Lightweight semantic framework for interoperable
ambient intelligence applications,” Computers in Human Behav-
ior, vol. 30, pp. 460–467, January 2014.

[15] C. H. Liu, B. Yang, and T. Liu, “Efficient naming, addressing
and profile services in Internet-of-Things sensory environments,”
Ad Hoc Networks, vol. 18, no. 0, pp. 85–101, 2013.

[16] S. Sicari, C. Cappiello, F. D. Pellegrini, D. Miorandi, and
A. Coen-Porisini, “A security-and quality-aware system archi-
tecture for Internet of Things,” Information Systems Frontiers,
pp. 1–13, 2014.

[17] “European FP7 IoT@Work project,” http://iot-at-work.eu.
[18] “iCORE project,” http://www.iot-icore.eu.
[19] “IOT-EST project,” http://ict-iotest.eu/iotest/.
[20] “EBBITS project,” http://www.ebbits-project.eu/.
[21] “Usable trust in the Internet of Things,” http://www.utrustit.eu/.
[22] “BUTLER project,” http://www.iot-butler.eu.
[23] B. Guo, D. Zhang, Z. Wang, Z. Yu, and X. Zhou, “Opportunistic

iot: Exploring the harmonious interaction between human and
the internet of things,” J. Netw. Comput. Appl., vol. 36, no. 6,
pp. 1531–1539, Nov. 2013.

[24] A. Metzger, C.-H. Chi, Y. Engel, and A. Marconi, “Research
challenges on online service quality prediction for proactive
adaptation,” in Software Services and Systems Research - Results
and Challenges (S-Cube), 2012 Workshop on European, June
2012, pp. 51–57.

[25] F. Li, S. Nastic, and S. Dustdar, “Data quality observation
in pervasive environments,” in Proceedings of the 2012 IEEE
15th International Conference on Computational Science and
Engineering. IEEE Computer Society, 2012, pp. 602–609.

[26] C. Cappiello and F. A. Schreiber, “Quality- and energy-aware
data compression by aggregation in WSN data streams,” in Pro-
ceedings of the 2009 IEEE International Conference on Pervasive
Computing and Communications. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 1–6.

[27] A. Klein and W. Lehner, “Representing data quality in sensor
data streaming environments,” J. Data and Information Quality,
vol. 1, no. 2, pp. 10:1–10:28, Sep. 2009.

[28] T. Roosta, S. Shieh, and S. Sastry, “Taxonomy of security attacks
in sensor networks and countermeasures,” in The first IEEE
international conference on system integration and reliability
improvements, vol. 25, 2006, p. 94.

[29] G. Tesauro, Practical issues in temporal difference learning.
Springer, 1992.

[30] “IBM and eurotech, ”mqtt v3.1 protocol specification”,”
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/
mqtt-v3r1.html.

[31] I. Mashal, O. Alsaryrah, T.-Y. Chung, C.-Z. Yang, W.-H. Kuo,
and D. P. Agrawal, “Choices for interaction with things on
Internet and underlying issues,” Ad Hoc Networks, vol. 28, no. 0,
pp. 68–90, 2015.

