
ar
X

iv
:1

60
3.

02
06

3v
2

 [
cs

.D
S]

 3
0

M
ar

 2
01

6

Aggregated 2D Range Queries on Clustered Points✩

Nieves R. Brisaboaa, Guillermo De Bernardob, Roberto Konowc, Gonzalo
Navarroc, Diego Secod

aUniversity of A Coruña, Campus de Elviña, A Coruña, Spain
bEnxenio S.L., Baños de Arteixo, A Coruña, Spain

cDCC, University of Chile, Beauchef 851, Santiago, Chile
dUniversity of Concepción, Edmundo Larenas 219, Concepción, Chile

Abstract

Efficient processing of aggregated range queries on two-dimensional grids is
a common requirement in information retrieval and data mining systems, for
example in Geographic Information Systems and OLAP cubes. We intro-
duce a technique to represent grids supporting aggregated range queries that
requires little space when the data points in the grid are clustered, which
is common in practice. We show how this general technique can be used to
support two important types of aggregated queries, which are ranked range
queries and counting range queries. Our experimental evaluation shows that
this technique can speed up aggregated queries up to more than an order of
magnitude, with a small space overhead.

Keywords: Compact Data Structures, Grids, Query Processing,
Aggregated queries, Clustered Points

✩Funded in part by European Union’s Horizon 2020 research and innovation programme
under the Marie Sk lodowska-Curie grant agreement No 690941, by Millennium Nucleus In-
formation and Coordination in Networks ICM/FIC P10-024F (Chile), by MINECO (PGE
and FEDER) Projects TIN2013-46238-C4-3-R and TIN2013-46801-C4-3-R (Spain), and
also by Xunta de Galicia (GRC2013/053) (Spain). A preliminary partial version of this
article appeared in Proc. SPIRE 2014, pp. 215–226.

✩✩This is an Author’s Original Manuscript of an article whose final and definitive form,
the Version of Record, has been published in Information Systems [copyright Elsevier],
available online at: http://dx.doi.org/10.1016/j.is.2016.03.004.

Corresponding author: dseco@udec.cl. Tel.: +56 41 2204692; fax: +56 41 2221770

Preprint submitted to Information Systems September 20, 2018

http://arxiv.org/abs/1603.02063v2
http://dx.doi.org/10.1016/j.is.2016.03.004

1. Introduction

Many problems in different domains can be interpreted geometrically by
modeling data records as multidimensional points and transforming queries
about the original records into queries on the point sets [1, Chapter 5]. In
2D, for example, orthogonal range queries on a grid can be used to solve
queries of the form “report all employees born between y0 and y1 who earn

between s1 and s2 dollars”, which are very common in databases. In the same
way, other aggregated range queries (e.g., top-k, counting, quantile, majority,
etc.) have proved to be useful for data analysis in various domains, such as
Geographic Information Systems (GIS), OLAP databases, Information Re-
trieval, and Data Mining, among others [2]. In GIS, aggregated range queries
can facilitate decision making [3] by counting, for example, the number of
locations within a specific area for which the values of pollution are above
a threshold. Similarly, top-k range queries on an OLAP database1 of sales
can be used to find the sellers with most sales in a time slice. In this exam-
ple, the two dimensions of the grid are seller ids (arranged hierarchically in
order to allow queries for sellers, stores, areas, etc.) and time (in periods of
hours, days, weeks, etc.), and the weights associated to the data points are
the amount of sales made by a seller during a time slice. Thus, the query
asks for the k heaviest points in some range Q = [i1, i2]× [t1, t2] of the grid.

The approach of modeling problems using a geometric formulation is well-
known. There are many classical representations that support the queries re-
quired by the model and solve them efficiently. Range trees [4] and kd-trees
[5] are two paradigmatic examples. Some of these classical data structures
are even optimal both in query time and space. However, such classical rep-
resentations usually do not take advantage of the distribution of the data in
order to reduce the space requirements. When dealing with massive data,
which is the case of some of the aforementioned data mining applications, the
use of space-efficient data structures can make the difference between main-
taining the data in main memory or having to resort to (orders of magnitude
slower) external memory.

In this work we consider the case where we have clustered points in a 2D
grid, which is a common scenario in domains such as Geographic Information
Systems, Web graphs, social networks, etc. There are some well-known prin-

1The support of more than two dimensions is essential in OLAP databases. We discuss
the extension to multi-dimensional structures in the conclusions.

2

ciples that hold in most scenarios of that kind. Two examples are Tobler’s
first law of geography [6], which states that near things are more related than
distant things, and the locality of reference for time-dependent data. This is
also the case in Web graphs [7], where clusters appear when the Web pages
are sorted by URL. We take advantage of these clusters in order to reduce
the space of the data structures for aggregated 2D range queries.

The K2-tree [8] (a space-efficient version of the classical Quadtree) is a
good data structure to solve range queries on clustered points and it has been
extensively evaluated in different domains [9, 10, 11]. We introduce a general
technique to extend this data structure in order to support aggregated range
queries. We then illustrate its potential by instantiating the technique in two
emblematic cases: range counting and ranked (MAX/MIN) queries within a
2D range.

The paper is organized as follows. First, we introduce basic concepts and
related work in Sections 2 and 3, respectively. In Section 4 we describe the
general technique to extend the K2-tree to solve different aggregated range
queries on grids. Two paradigmatic examples of such queries are described
in Section 5 (ranked range queries) and Section 6 (range counting queries).
Section 7 presents an exhaustive empirical evaluation of the proposed so-
lutions. Finally, Section 8 concludes and sketches some interesting lines of
future work.

2. Basic Concepts

2.1. Aggregated queries on clustered points

We consider two dimensional grids with n columns and m rows, where
each cell aij can either be empty or contain a weight in the range [0, d − 1]
(see Fig. 1). For some problems, we will omit the weights and just consider
the non-empty cells, which can be represented as a binary matrix (Fig. 2)
in which each cell contains a 1 (if there is a weighted point in the original
matrix) or a 0 (in other case).

Let t be the number of 1s in the binary matrix (i.e., the number of
weighted points). If we can partition the t points into c clusters, not neces-
sarily disjoint and c << t, we will say that the points are clustered. This
definition is used by Gagie et al. [12] to show that in such case a Quadtree
needs only O(c log u +

∑
i ti log li) bits, where u = max(n,m), and ti and li

are the number of points and the diameter of cluster i, respectively.

3

Figure 1: Weighted ma-
trix.

Figure 2: Binary ma-
trix.

Figure 3: Range query.

A range query Q = [x1, x2] × [y1, y2] defines a rectangle with all the
columns in the range [x1, x2] and the rows in [y1, y2] (see Fig. 3). An aggre-
gated range query defines, in addition to the range, an aggregate function
that must be applied to the data points in the query range. Examples of
aggregated queries are COUNT (Q), which counts the number of data points
in the query range, MAX /MIN (Q), which computes the maximum (alt.
minimum) value in the query range, and its generalization top-k, which re-
trieves the k lightest (alt. heaviest) points in the query range. These top-k
queries are also referred to in the literature as ranked range queries. For the
range query q in Fig. 3 the result of COUNT (q) is 6, MAX (q) returns 7,
MIN (q) returns 1, and the top-3 heaviest elements are 7, 4, and 3.

There are other interesting data-analysis queries on two-dimensional grids.
For example, QUANT ILE(Q, a) returns the a-th smallest value in Q, and
MAJORIT Y(Q,α) retrieves those values in Q that appear with relative
frequency larger than α. These and other queries have been studied by
Navarro et al. [13], who introduce space-efficient data structures with good
time performance. We restrict ourselves to an emblematic subset of these
queries, and propose data structures that are even more space-efficient when
the points in the set are clustered.

2.2. Rank and select on bitmaps

Two basic primitives used by most space-efficient data structures are rank
and select on bitmaps. Let B[1, n] be a sequence of bits, or a bitmap. We
define operation rankb(B, i) as the number of occurrences of b ∈ {0, 1} in
B[1, i], and selectb(B, j) as the position in B of the j-th occurrence of b.
B can be represented using n + o(n) bits [14, 15], so that both operations
are solved in constant time. These operations have proved very efficient in

4

practice [16]. In addition, when the bitmaps are compressible, it is possible
to reduce the space and still support these operations in constant time [17].

2.3. Wavelet tree and discrete grids

An elegant generalization of rank and select queries to an arbitrary alpha-
bet Σ of size σ is provided by the wavelet tree [18]. Given a sequence S over
the alphabet Σ, the wavelet tree supports rank, select and access in O(log σ)
time with n log σ+o(n log σ) bits. The wavelet tree is a complete binary tree,
in which each node represents a range R ⊆ [1, σ] of the alphabet Σ, its left
child represents a subset Rℓ ⊂ R and the right child the subset Rr = R \Rℓ.
Every node representing subset R is associated with a subsequence S ′ of the
input sequence S composed of the elements whose values are in R. The node
only stores a bitmap of length |S ′| such that a 0 bit at position i means that
S ′[i] belongs to Rℓ, and a 1 bit means that it belongs to Rr. The three basic
operations require to traverse the tree from the root to a leaf (for rank and
access) or from a leaf to the root (for select) via rank and select operations
on the bitmaps stored at the nodes of the wavelet tree (those bitmaps are
then represented with the techniques cited above).

The wavelet tree can also be used to represent grids [19, 20]. An n ×m
grid with n points, exactly one per column (i.e., x values are unique), can
be represented using a wavelet tree. In this case, this is a perfect balanced
binary tree of height ⌈logm⌉ where each node corresponds to a contiguous
range of values y ∈ [1, m] and represents the points falling in that y-range,
sorted by increasing x-coordinate. The root represents [1, m] and the two
children of each node split its y-range by half. The leaves represent a single
y-coordinate. Each internal node stores a bitmap, which tells whether each
point corresponds to its left or right child. Using rank and select queries
on the bitmaps, the wavelet tree uses n logm + o(n logm) bits, and can
count the number of points in a range in O(logm) time, because the query
is decomposed into bitmap ranges on at most 2 nodes per wavelet tree level
(see Section 3). Any point can be tracked up (to find its x-coordinate) or
down (to find its y-coordinate) in O(logm) time as well.

When the grids may contain more than one point per column, an addi-
tional bitmap B is used to map from the original domain to a new domain
that has one point per column. This bitmap stores, for each column, a bit
1 followed by as many zeros as the number of points in such column. Then,
a range of columns [cs, ce] in the original domain can be mapped to a new
range [select1(B, cs)− cs + 1, select1(B, ce + 1)− ce − 1]. If the grid is very

5

Figure 4: On the left, the conceptual K2-tree for the binary matrix in Fig.
2 (highlighted edges are traversed when computing the range query in Fig.
3). On the right, the two bitmaps that are actually used to store the tree.

sparse and/or the distribution of the data points is very skewed, this bitmap
can be compressed with RRR [17] or the sd-bitvector [21].

2.4. K2-trees

The K2-tree [8] is a data structure designed to compactly represent sparse
binary matrices (which can also be regarded as point grids). The K2-tree
subdivides the matrix into K2 submatrices of equal size. In this regard, when
K = 2, the K2-tree performs the same space partitioning of the traditional
Quadtree. The submatrices are considered left-to-right and top-to-bottom
(i.e., in Morton order), and each is represented with a bit, set to 1 if the
submatrix contains at least one non-zero cell. Each node whose bit is 1 is
recursively decomposed, subdividing its submatrix into K2 children, and so
on. The subdivision ends when a fully-zero submatrix is found or when we
reach the individual cells. A K2-tree for the running example is shown in
Fig. 4.

The K2-tree is stored in two bitmaps: T stores the bits of all the levels
except the last one, in a level-order traversal, and L stores the bits of the
last level (corresponding to individual cells). Given a node whose bit is at
position p in T , its children nodes are located after position rank1(T, p) ·K2.
This property enables K2-tree traversals using just T and L.

The worst-case space, if t points are in an n×nmatrix, isK2 t logK2

n2

t
(1+

o(1)) bits. This can be reduced to t log n2

t
(1 + o(1)) if the bitmaps are com-

pressed. This is similar to the space achieved by a wavelet tree, but in practice
K2-trees use much less space when the points are clustered. Gagie et al. [12]
show that this quadtree-like partitioning results in O(c logn+

∑
i ti log li) bits,

when the t points can be partitioned into c clusters with ti, . . . , tc points and
diameters l1, . . . , lc. Therefore, the K2-tree is competitive in domains where

6

ALGORITHM 1: Range(n, x1, x2, y1, y2, dp, dq, p) lists all non-empty cells in

[x1, x2] × [y1, y2] with a k2-tree

if p ≥ |T | then /* leaf */

if L[p− |T |] = 1 then output (dp, dq)
else/* internal node */

if p = −1 or T [p] = 1 then

y ← rank1(T, p) · k2

for i← ⌊x1/(n/k)⌋ . . . ⌊x2/(n/k)⌋ do
if i← ⌊x1/(n/k)⌋ then x′1 ← x1 mod (n/k) else x′1 ← 0 if

i← ⌊x2/(n/k)⌋ then x′2 ← x2 mod (n/k) else x′2 ← (n/k) − 1 for

j ← ⌊y1/(n/k)⌋ . . . ⌊y2/(n/k)⌋ do
if j = ⌊y1/(n/k)⌋ then y′1 ← y1 mod (n/k) else y′1 ← 0 if

j = ⌊y2/(n/k)⌋ then y′2 ← y2 mod (n/k) else y′2 ← (n/k)− 1
Range(n/k, x′1, x

′
2, y

′
1, y

′
2, dp + (n/k) · i, dq + (n/k) · j, y + k · i + j)

end

end

end

end

such clusters arise, for example in Web graphs or social networks.
Among other types of queries (such as direct/reverse neighbors, check

edge, etc.), theK2-tree can answer range queries with multi-branch top-down
traversal of the tree, following only the branches that overlap the query range.
This is illustrated in Algorithm 1 (adapted from [8, Alg. 1]), which solves the
query Q = [x1, x2] × [y1, y2] by invoking Range(n, x1, x2, y1, y2, 0, 0,−1). To
show an example, in Fig. 4 the edges traversed in the computation of the
range query in Fig. 3 are highlighted. As mentioned above, this traversal is
computed via rank queries on T . While this algorithm has no good worst-case
time guarantees, in practice times are competitive.

2.5. Treaps, priority search trees and ranked range queries

A treap [22] is a binary search tree whose n nodes have two attributes:
key and priority. The treap maintains the binary search tree invariants for
the keys and the heap invariants for the priorities, that is, the key of a node is
larger than those in its left subtree and smaller than those in its right subtree,
whereas its priority is not smaller than those in its subtree. The treap does
not guarantee logarithmic height, except on expectation if priorities are inde-
pendent of keys [23]. A treap can also be regarded as the Cartesian tree [24]

7

of the sequence of priorities once the values are sorted by keys. The succinct
representations of the Cartesian tree topology [25] are called range maximum
query (RMQ) data structures, use just 2n + o(n) bits, and are sufficient to
find the maximum in any range of the sequence. By also storing the priority
data, they can answer top-k queries in O(k log k) or O(k log logn) time. The
treap can also be used to compress the representation of keys and priorities
[26]. Similar data structures for two or more dimensions are convenient only
for dense grids (full of points) [27].

The priority search tree [28] is somewhat similar, but it is balanced. In
this case, a node is not the one with highest priority in its subtree, but the
highest-priority element is stored in addition to the element at the node, and
removed from the subtree. Priority search trees can be used to solve 3-sided
range queries on t-point grids, returning k points in time O(k + log t). This
has been used to add rank query capabilities to several index data structures
such as suffix trees and range trees [29].

3. Related Work

Navarro et al. [13] introduce compact data structures for various queries
on two-dimensional weighted points, including range top-k queries and range
counting queries. Their solutions are based on wavelet trees. For range top-k
queries, the bitmap of each node of the wavelet tree is enhanced as follows:
Let x1, . . . , xr be the points represented at a node, and w(x) be the weight
of point x. Then, a RMQ data structure built on w(x1), . . . , w(xr) is stored
together with the bitmap. Such a structure uses 2r + o(r) bits and finds
the maximum weight in any range [w(xi), . . . , w(xj)] in constant time [25]
and without accessing the weights themselves. Therefore, the total space
becomes 3n logm+ o(n logm) bits.

To solve top-k queries on a grid range Q = [x1, x2] × [y1, y2], we first
traverse the wavelet tree to identify the O(logm) bitmap intervals where the
points in Q lie. The heaviest point in Q in each bitmap interval is obtained
with an RMQ, but we need to obtain the actual priorities in order to find the
heaviest among the O(logm) candidates. The priorities are stored sorted by
x- or y-coordinate, so we obtain each one in O(logm) time by tracking the
point with maximum weight in each interval. Thus a top-1 query is solved
in O(log2m) time. For a top-k query, we must maintain a priority queue of
the candidate intervals and, each time the next heaviest element is found,
we remove it from its interval and reinsert in the queue the two resulting

8

subintervals. The total query time is O((k + logm) log(km)). It is possible
to reduce the time to O((k + logm) logǫm) time and O(1

ǫ
n logm) bits, for

any constant ǫ > 0 [30], but the space usage is much higher, even if linear.
Wavelet trees can also compute range counting queries in O(logm) time

with n logm+o(n logm) bits. The algorithm to solve range counting queries
on a grid range Q = [x1, x2] × [y1, y2] also starts by traversing the wavelet
tree to identify the O(logm) bitmap intervals where the points in Q lie, but
then it just adds up all the bitmap interval lengths.

A better result, using multi-ary wavelet trees, was introduced by Bose et
al. [31]. They match the optimal O(logn/ log log n) time using just n logn+
o(n logn) bits on an n × n grid. Barbay et al. [32] extended the results to
n×m grids. This query time is optimal within space O(n polylog(n)) [33].

4. Augmenting the K
2-tree

In this section we describe a general technique that can be used to solve
aggregated range queries on clustered points. We then present two applica-
tions of this technique to answer two paradigmatic examples, ranked range
queries and range counting queries. These examples illustrate how to adjust
and tune the general technique for particular operations.

Let M [n×n] be a matrix in which cells can be empty or contain a weight
in the range [0, d− 1] and let BM [n × n] be a binary matrix in which each
cell contains a zero or a one. Matrix BM represents the topology of M , that
is, BM [i][j] = 1 iff M [i][j] is not empty.

We store separately the topology of the matrix and the weights associated
with the non-empty cells. For the topology, we use a K2-tree representation
of BM (recall Section 2.4), which will take advantage of clustering.

A level-wise traversal of the K2-tree can be used to map each node to
a position in an array of aggregated values, which stores a summary of the
weights in the submatrix of the node. Thus the position where the aggregated
value of a node is stored is easily computed from the node position in T .

The specific value of this summary depends on the operation. For exam-
ple, for ranked range queries (Section 5) the summary represents the max-
imum weight in the corresponding submatrix, whereas for counting queries
(Section 6), it represents the number of non-empty cells in the submatrix.
However, a common property is that the value associated with a node ag-
gregates information about its K2 children. Therefore, we use a sort of
differential encoding [34] to encode the values of each node with respect to

9

the value of its parent. In other words, the information of a node (such as
its summary and number of children) is used to represent the information
of its children in a more compact way. In order to access the original (non-
compressed) information of a node we need to first access its parent (i.e., the
operations in this technique are restricted to root-to-leaf traversals).

To summarize, we use a K2-tree to represent the topology of the data and
augment each node of such a tree with additional values that represent the
aggregated information related with the operation to be supported. These
aggregated values are differentially encoded with respect to information of
the parent node in order to store them in reduced space. In the following
sections we show how both the K2-tree and the differentially encoded values
can be tuned to efficiently solve two types of queries.

Finally, note that we present our results for matrices of size n× n. This
does not lose generality, as we can extend a matrix M ′[n × m] with zeros
to complete a square matrix M [n × n] (w.l.o.g. we assume m ≤ n). As the
topology of the matrix is represented with a K2-tree, this does not cause a
significant overhead because the K2-tree is efficient to handle large areas of
zeros. Actually, we round n up to the next power of K [8].

5. Answering Ranked (Max/Min) Range Queries

We present a first application of the general technique described in the
previous section, to solve ranked range queries. We present the case ofMAX
queries, but the results are analogous forMIN queries. We name this data-
structure K2-treap, as it conceptually combines a K2-tree with a treap data
structure.

Consider a matrixM [n×n] where each cell can either be empty or contain
a weight in the range [0, d−1]. We consider a quadtree-like recursive partition
of M into K2 submatrices, the same performed in the K2-tree with binary
matrices. We build a conceptual K2-ary tree similar to the K2-tree, as
follows: the root of the tree will store the coordinates of the cell with the
maximum weight of the matrix, and the corresponding weight. Then the
cell just added to the tree is marked as empty, deleting it from the matrix.
If many cells share the maximum weight, we pick any of them. Then, the
matrix is conceptually decomposed into K2 equal-sized submatrices, and we
add K2 children nodes to the root of the tree, each representing one of the
submatrices. We repeat the assignment process recursively for each child,
assigning to each of them the coordinates and value of the heaviest cell in

10

Figure 5: Example of a K2-treap construction for the matrix in Fig. 1. At
the top, Mi represents the state of the matrix at level i of the decomposition.
On the bottom, the conceptual K2-treap.

the corresponding submatrix and removing the chosen point. The procedure
continues recursively on each branch until we reach the cells of the matrix,
or we find a completely empty submatrix (either because the submatrix was
initially empty or because we emptied it by successively extracting heaviest
points).

Fig. 5 shows an example of K2-treap construction, for K = 2. On the
top of the image we show the state of the matrix at each level of the de-
composition. M0 represents the original matrix, where the maximum value
is highlighted. The coordinates and value of this cell are stored in the root
of the tree. In the next level of the decomposition (matrix M1) we find the
maximum values in each quadrant (notice that the cell assigned to the root
has already been removed from the matrix) and assign them to the children
of the root node. The process continues recursively, subdividing each matrix
into K2 submatrices. The cells chosen as local maxima are highlighted in
the matrices corresponding to each level, except in the last level where all
the cells are local maxima. Empty submatrices are marked in the tree with
the symbol “-”.

11

Figure 6: Storage of the conceptual tree in our data structures. On the
top, the differentially encoded conceptual K2-treap. On the bottom left, the
conceptual K2-tree that stores the topology of the matrix, and its bitmap
implementation T . On the bottom right, the local maximum values.

5.1. Local maximum coordinates

The data structure is represented in three parts: The coordinates of the
local maxima, the weights of the local maxima, and the tree topology.

The conceptual K2-treap is traversed level-wise, reading the sequence of
cell coordinates from left to right in each level. The sequence of coordinates
at each level ℓ is stored in a different sequence coord[ℓ]. The coordinates at
each level ℓ of the tree are transformed into an offset in the corresponding
submatrix, representing each ci as ci mod (n/Kℓ) using ⌈log(n) − ℓ logK⌉
bits. For example, in Fig. 6 (top) the coordinates of node N1 have been
transformed from the global value (4, 4) to a local offset (0, 0). In the bot-
tom of Fig. 6 we highlight the coordinates of nodes N0, N1 and N2 in the
corresponding coord arrays. In the last level all nodes represent single cells,
so there is no coord array in this level. With this representation, the worst-

case space for storing t points is
∑log

K2 (t)
ℓ=0 2K2ℓ log n

Kℓ = t log n2

t
(1+O(1/K2)),

that is, the same as if we stored the points using the K2-tree.

5.2. Local maximum values

The maximum value in each node is encoded differentially with respect to
the maximum of its parent node [34]. The result of the differential encoding

12

is a new sequence of non-negative values, smaller than the original. Now the
K2-treap is traversed level-wise and the complete sequence of values is stored
in a single sequence named values. To exploit the small values while allowing
efficient direct access to the array, we represent values with Direct Access
Codes (DACs) [35]. Following the example in Fig. 6, the value of node N1
has been transformed from 7 to 8− 7 = 1. The bottom of the figure depicts
the complete sequence values. We also store a small array first [0, logK2 n]
that stores the offset in values where each level starts.

5.3. Tree structure

We separate the structure of the tree from the values stored in the nodes.
The tree structure of the K2-treap is stored in a K2-tree. Fig. 6 shows the
K2-tree representation of the example tree, where only cells with value are
labeled with a 1. We will consider a K2-tree stored in a single bitmap T
with rank support, that contains the sequence of bits from all the levels of
the tree. Our representation differs from a classic K2-tree (which uses two
bitmaps T and L and only adds rank support to T) because we will need to
perform rank operations also in the last level of the tree. The other difference
is that points stored separately are removed from the grid. Thus, we save
the K2-tree space needed to store those removed points. Our analysis above
shows that, in a worst-case scenario, the saved and the extra space cancel out
each other, thus storing those explicit coordinates is free in the worst case.

5.4. Query processing

5.4.1. Basic navigation

To access a cell C = (x, y) in the K2-treap we start accessing the K2-tree
root. The coordinates and weight of the element stored at the root node
are (x0, y0) = coord[0][0] and w0 = values[0]. If (x0, y0) = C, we return
w0 immediately. Otherwise, we find the quadrant where the cell would be
located and navigate to that node in the K2-tree. Let p be the position of
the node in T . If T [p] = 0 we know that the complete submatrix is empty
and return immediately. Otherwise, we need to find the coordinates and
weight of the new node. Since only nodes set to 1 in T have coordinates and
weights, we compute r = rank1(T, p). The value of the current node will be
at values[r], and its coordinates at coord[ℓ][r−first[ℓ]], where ℓ is the current
level. We rebuild the absolute value and coordinates, w1 as w0 − values[r]
and (x1, y1) by adding the current submatrix offset to coord[ℓ][r−first [ℓ]]. If
(x1, y1) = C we return w1, otherwise we find again the appropriate quadrant

13

in the current submatrix where C would be located, and so on. The formula
to find the children is identical to that of theK2-tree. The process is repeated
recursively until we find a 0 bit in the target submatrix, we find a 1 in the
last level of the K2-tree, or we find the coordinates of the cell in an explicit
point.

5.4.2. Top-k queries

The process to answer top-k queries starts at the root of the tree. Given
a range Q = [x1, x2] × [y1, y2], the process initializes an empty max-priority
queue and inserts the root of the K2-tree. The priority queue stores, in
general, K2-tree nodes sorted by their associated maximum weight (for the
root node, this is w0). Now, we iteratively extract the first element from
the priority queue (the first time this is the root). If the coordinates of
its maximum element fall inside Q, we output it as the next answer. In
either case, we insert all the children of the extracted node whose submatrix
intersects with Q, and iterate. The process finishes when k results have been
found or when the priority queue becomes empty (in which case there are
less than k elements in Q).

5.4.3. Other supported queries

The K2-treap can also answer basic range queries (i.e., report all the
points that fall inQ). This is similar to the procedure on aK2-tree, where the
submatrices that intersect Q are explored in a depth-first manner. The only
difference is that we must also check whether the explicit points associated to
the nodes fall within Q, and in that case report those as well. Finally, we can
also answer interval queries, which ask for all the points in Q whose weight
is in a range [w1, w2]. To do this, we traverse the tree as in a top-k range
query, but we only output weights whose value is in [w1, w2]. Moreover, we
discard submatrices whose maximum weight is below w2.

6. Answering Range Counting Queries

Consider a binary matrix BM [n×n] where each cell can either be empty
or contain data2. In this case, a K2-tree can be used to represent BM

2It is easy to allow having more than one point per cell, by using the aggregated sums
described in Section 6.1.2.

14

Figure 7: Storage of the conceptual tree in our data structures. On the top,
the conceptual K2-treap for the binary matrix in Fig. 2. On the bottom
left, the conceptual K2-tree that stores the topology of the matrix. On the
bottom right, the bitmap that implements the k2-tree, T , and the sequence
of differentially encoded counting values, counts.

succinctly while supporting range queries, as explained in Section 2.4. Obvi-
ously, the algorithm presented for range reporting can be optimized to count
the number of elements in a range, instead of reporting such elements. In
this section, we show how to augment the K2-tree with additional data to
further optimize those range counting queries. In Section 7 we show that this
adds a small overhead in space, while drastically reducing the running time
of those queries.

6.1. Augmenting the K2-tree

The augmented data structure stores additional information to speed up
range counting queries. In Fig. 7 we show a conceptual K2-tree in which each
node has been annotated with the number of elements in its corresponding
submatrix. Note that this is the same example of Fig. 5, considering as
non-empty cells those with weight larger than 0.

This conceptual tree is traversed level-wise, reading the sequence of counts
from left to right at each level. All these counts are stored in a sequence
counts using a variant of the differential encoding technique presented in
Section 4. Let v be a node of the K2-tree, children(v) the number of children

15

of v, and count(v) the number of elements in the submatrix represented by

v. Then, count(v′) = count(v)
children(v)

represents the expected number of elements

in the submatrix associated with each child v′ of v, assuming a uniform
distribution. Thus, the count of each node v′ is stored as the difference
of the actual count and its expected value. In the running example, the
root has three children and there are 22 elements in the matrix. Each of
the corresponding submatrices is expected to contain ⌊22/3⌋ = 7 elements
whereas they actually contain 10, 7 and 5 elements, respectively. Hence, the
differential encoding stores 10− 7 = 3, 7− 7 = 0, and 5− 7 = −2.

The result of this differential encoding is a new sequence of values smaller
than the original, but which may contain negative values. In order to map
this sequence, in a unique and reversible way, to a sequence of non-negative
values we use the folklore overlap and interleave scheme, which maps a neg-
ative number −i to the ith-odd number (2i− 1) and a positive number j to
the jth even number (2j). Finally, to exploit the small values while allowing
efficient direct access to the sequence, we represent counts with DACs [35].

As counts corresponds with a level-wise traversal of the K2-tree, it is not
necessary to store this additional information for all the levels of the tree.
In this way, we provide a parametrized implementation that sets the space
overhead by defining the number of levels for which counting information is
stored. This provides a space-time trade-off we later study experimentally.

6.1.1. Range counting queries

The base of the range counting algorithm is the range reporting algorithm
of the K2-tree, Algorithm 1. We modify this divide-and-conquer algorithm
in order to navigate both the K2-tree and counts at the same time. Given
a query range Q = [x1, x2] × [y1, y2], we start accessing the K2-tree root,
and set c0 = counts[0] and result = 0. Then, the algorithm explores all the
children of the root that intersect Q and decodes the counting value of the
node from the counts sequence and the absolute counting value of the root.
The process continues recursively for each children until it finds a completely
empty submatrix, in which case we do not increment result, or a matrix
completely contained inside Q, in which case we increment result with the
counting value of such matrix.

To clarify the procedure, let us introduce some notation and basic func-
tions. We name the nodes with the position of their first bit in the bitmap
T that represents the K2-tree. Then, v = 0 is the root, v = K2 is its first
non-empty child, and so on. Recall that rank1(T, v) ·K2 gives the position

16

in T where the children of v start and each of them is represented with K2

bits. We can obtain the number of children of v as NumChildren(v) =
rank1(T, v+K2)− rank1(T, v− 1). Non-empty nodes store their differential
encoding in counts in level order, so we must be able to compute the level
order of a node in constant time. Node v stores K2 bits that indicate which
children of v are non-empty. If the ith bit is set to 1, then the level order of
that child node is rank1(T, v + i), with i ∈ [0, K2 − 1].

Given a node v with absolute counting value cv and NumChildren(v)
children, each child v′ is expected to contain count(v′) = cv

NumChildren(v)
el-

ements. Let p be the level order number of child v′. Then, the absolute
counting value of v′ can be computed as cv′ = counts[p] + count(v′). Note
that counts is stored using DACs, which support direct access. We use the
computed value cv′ to recursively visit the children of v′.

Let us consider a query example q = [0, 1] × [0, 2]. We start at the root
with c0 = 22 and result = 0. The root has three children, but only the first
one, stored at position 4 in T , intersects q. Each child is expected to represent
⌊22/3⌋ = 7 elements, so we set c4 = counts[rank1(T, 0+0)]+7 = 3+7 = 10.
Similarly, we recurse on the first and third child of this node. On the first
branch of the recursion, we process node 16 and set c16 = counts[rank1(T, 4+
0)] + ⌊10/4⌋ = counts[4] + 2 = 2. As the submatrix corresponding with this
node is contained in q, we add 2 to the result and stop the recursion on this
branch. On the other child, we have to recurse until the leaves in order to
sum the other element to the result, and obtain the final count of 3.

6.1.2. Other supported queries

This data structure obviously supports all the queries that can be imple-
mented on a K2-tree, such as range reporting or emptiness queries. More
interesting is that it can also support other types of queries with minor mod-
ifications. A natural generalization of range counting queries are aggregated
sum queries. In this case, we consider a matrix M [n×n] where each cell can
either be empty or contain a weight in the range [0, d− 1]. We perform the
same data partitioning on the conceptual binary matrix that represents the
non-empty cells. In other words, we use a K2-tree to represent the topology
of the matrix. Then, instead of augmenting the nodes with the count of
the non-empty cells in the corresponding submatrix, we store the sum of the
weights contained in such submatrix. The same differential encoding used
for range counting can be used to store these sums. In this case, however,
the space-efficiency achieved by the data structure depends not only on the

17

clustering of the data, but also on the distribution of the weights. The en-
coding achieves its best performance when the sums of the weights of all the
children of a node are similar.

7. Experiments and Results

In this section we empirically evaluate the two types of queries studied in
previous sections. As the datasets and evaluated solutions for both scenarios
are quite different, we devote one subsection to each type of query: we first
present the experiment setup (baselines and datasets), then an evaluation in
terms of space usage, and finally a running time comparison.

All the data structures were implemented by ourselves and the source
code is available at http://lbd.udc.es/research/aggregatedRQ. We ran
all our experiments on a dedicated server with 4 Intel(R) Xeon(R) E5520
CPU cores at 2.27GHz 8MB cache and 72GB of RAM memory. The machine
runs Ubuntu GNU/Linux version 9.10 with kernel 2.6.31-19-server (64 bits)
and gcc 4.4.1. All the data structures were implemented in C/C++ and
compiled with full optimizations.

All bitmaps that are employed use a bitmap representation that supports
rank and select using 5% of extra space. The wavelet tree employed to
implement the solution of Navarro et al. [13] is a pointerless version obtained
from LIBCDS (http://www.github.com/fclaude/libcds). This wavelet
tree is augmented with an RMQ data structure at each level, which requires
2.37n bits and solves range maximum queries in constant time.

7.1. Ranked range queries

7.1.1. Experiment setup

We use several synthetic datasets, as well as some real datasets where
top-k queries are of interest. Our synthetic datasets are square matrices
where only some of the cells have a value set. We build different matrices
varying the following parameters: the size s × s of the matrix (s = 1024,
2048, 4096, 8192), the number of different weights d in the matrix (16, 128,
1024) and the percentage p of cells that have a point (10, 30, 50, 70, 100%).
The distribution of the weights in all the datasets is uniform, and the spatial
distribution of the cells with points is random. For example, the synthetic
dataset with (s = 2048, d = 128, p = 30) has size 2048 × 2048, 30% of its
cells have a value and their values follow a uniform distribution in [0, 127].

18

http://lbd.udc.es/research/aggregatedRQ
http://www.github.com/fclaude/libcds

Table 1: Description of the real datasets used, and space (in bits per cell)
required to represent them with the compared data structures.

Dataset #Sellers Time instants Number of K2-treap mk2tree wtrmq
(rows) (columns) diff. values (bits/cell) (bits/cell) (bits/cell)

SalesDay 1314 471 297 2.48 3.75 9.08
SalesHour 1314 6028 158 1.06 0.99 3.90

We also test our representation using real datasets. We extracted two dif-
ferent views from a real OLAP database (https://www.fupbi.com3) stor-
ing information about sales achieved per store/seller each hour over sev-
eral months: salesDay stores the number of sales per seller per day, and
salesHour the number of sales per hour. Huge historical logs are accu-
mulated over time, and are subject to data mining processing for decision
making. In this case, finding the places (at various granularities) with most
sales in a time period is clearly relevant. Table 1 shows a summary with
basic information about the real datasets. For simplicity, in these datasets
we ignore the cost of mapping between real timestamps and seller ids to
rows/columns in the table, and assume that the queries are given in terms
of rows and columns.

We compare the space requirements of the K2-treap with a solution based
on wavelet trees enhanced with RMQ structures [13] (wtrmq). Since our
matrices can contain none or multiple values per column, we transform our
datasets to store them using wavelet trees. The wavelet tree will store a grid
with as many columns as values we have in our matrix, in column-major
order. A bitmap is used to map the real columns with virtual ones: we
append a 0 per new point and a 1 when the column changes. Hence, range
queries in the wtrmq require a mapping from real columns to virtual ones (2
select1 operations per query), and the virtual column of each result must be
mapped back to the actual value (a rank1 operation per result).

We also compare our proposal with a representation based on constructing
multiple K2-trees, one per different value in the dataset. In this represen-
tation (mk2tree), top-k queries are answered by querying consecutively the
K2-tree representations for the higher values. Each K2-tree representation in
this proposal is enhanced with multiple optimizations over the simple bitmap

3The dataset belongs to SkillupChile R©, which allow us to use it for our research.

19

https://www.fupbi.com

approach we use, like the compression of the lower levels of the tree (see [8]
for a detailed explanation of this and other enhancements of the K2-tree).

7.1.2. Space comparison

We start by comparing the compression achieved by the representations.
As shown in Table 1, the K2-treap overcomes the wtrmq in the real datasets
considered by a factor over 3.5. Structure mk2tree is competitive with the
K2-treap and even obtains slightly less space in the dataset salesHour, tak-
ing advantage of the relatively small number of different values in the matrix.

The K2-treap also obtains the best space results in most of the synthetic
datasets studied. Only in the datasets with very few different values (d = 16)
the mk2tree uses less space than the K2-treap. Notice that, since the dis-
tribution of values and cells is uniform, the synthetic datasets are close to a
worst-case scenario for the K2-treap and mk2tree. Fig. 8 provides a sum-
mary of the space results for some of the synthetic datasets used. The left
plot shows the evolution of compression with the size of the matrix. The
K2-treap is almost unaffected by the matrix size, as its space is around
t log s2

t
= s2 p

100
log 100

p
bits, that is, constant per cell as s grows. On the

other hand, the wtrmq uses t log s = s2 p
100

log s bits, that is, its space per
cell grows logarithmically with s. Finally, the mk2tree obtains poor results
in the smaller datasets but it is more competitive on larger ones (some en-
hancements in theK2-tree representations behave worse in smaller matrices).
Nevertheless, notice that the improvements in the mk2tree compression stall
once the matrix reaches a certain size.

The right plot of Fig. 8 shows the space results when varying the num-
ber of different weights d. The K2-treap and the wtrmq are affected only
logarithmically by d. The mk2tree, instead, is sharply affected, since it
must build a different K2-tree for each different value: if d is very small the
mk2tree representation obtains the best space results also in the synthetic
datasets, but for large d its compression degrades significantly.

As the percentage of cells set p increases, the compression in terms of
bits/cell (i.e., total bits divided by s2) will be worse. However, if we measure
the compression in bits/point (i.e., total bits divided by t), then the space of
the wtrmq is independent of p (log s bits), whereas theK2-treap andmk2tree
use less space as p increases (log 100

p
). That is, the space usage of the wtrmq

increases linearly with p, while that of the K2-treap and mk2tree increases
sublinearly. Over all the synthetic datasets, the K2-treap uses from 1.3 to 13
bits/cell, the mk2tree from 1.2 to 19, and the wtrmq from 4 to 50 bits/cell.

20

0

2

4

6

8

10

1024 2048 4096 8192

Size of the matrix (s)

Space usage varying s

k2treap (d=128,p=10)
k2treap (d=1024,p=10)
mk2tree (d=128,p=10)

mk2tree (d=1024,p=10)
wtrmq (d=128,p=10)

wtrmq (d=1024,p=10)

0

2

4

6

8

10

16 128 1024

Number of different values (d)

Space usage varying d

S
p

a
c
e

 (
b

it
s
/c

e
ll)

S
p

a
c
e

 (
b

it
s
/c

e
ll)

k2treap (s=1024,p=10)
k2treap (s=2048,p=10)
mk2tree (s=1024,p=10)
mk2tree (s=2048,p=10)

wtrmq (s=1024,p=10)
wtrmq (s=2048,p=10)

Figure 8: Evolution of the space usage with s and d in the synthetic datasets,
in bits/cell (in the right plot, the two lines for the K2-treap coincide).

7.1.3. Query processing

In this section we analyze the efficiency of top-k queries, comparing our
structure with the mk2tree and the wtrmq. For each dataset, we build
multiple sets of top-k queries for different values of k and different spatial
ranges (we ensure that the spatial ranges contain at least k points). All query
sets are generated for fixed k and w (side of the spatial window). Each query
set contains 1,000 queries where the spatial window is placed at a random
position within the matrix.

Fig. 9 shows the time required to perform top-k queries in some of our
synthetic datasets, for different values of k and w. The K2-treap obtains
better query times than the wtrmq in all the queries, and both evolve sim-
ilarly with the size of the query window. On the other hand, the mk2tree
representation obtains poor results when the spatial window is small or large,
but it is competitive with the K2-treap for medium-sized ranges. This is due
to the procedure to query the multiple K2-tree representations: for small
windows, we may need to query many K2-trees until we find k results; for
very large windows, the K2-treap starts returning results in the upper levels
of the conceptual tree, while the mk2tree approach must reach the leaves;
for some intermediate values of the spatial window, the K2-treap still needs
to perform several steps to start returning results, and the mk2tree repre-
sentation may find the required results in a single K2-tree. Notice that the
K2-treap is more efficient when no range limitations are given (that is, when
w = s), since it can return after exactly K iterations. Fig. 9 only shows the

21

 10

 100

 1000

 10000

 50000

 4 10 50 100 500 4096

Q
ue

ry
 ti

m
e

(m
ic

ro
se

cs
/q

ue
ry

)

Spatial window size

s=4096, d=128, p=100

 4 10 50 100 500 4096

Spatial window size

s=4096, d=1024, p=100

k2treap (k=10)
k2treap (k=1000)
mk2trees (k=10)

mk2trees (k=1000)
wt-rmq (k=10)

wt-rmq (k=1000)

Figure 9: Times (in microseconds per query) of top-k queries in synthetic
datasets for k = 10 and k = 100 and range sizes varying from 4 to 4,096. The
number of different weights d in the matrix is 128 on the left graph and 1,024
on the right graph, while s and p remain fixed. We omit the lines connecting
the points for wtrmq variants, as they produce several crosses that hamper
legibility.

results for two of the datasets, but similar results were obtained in all the
synthetic datasets studied.

Next we query our real datasets. We start with the same w × w queries
as before, which filter a range of rows (sellers) and columns (days/hours).
Fig. 10 shows the results of these range queries. As we can see, the K2-treap
outperforms both the mk2tree and wtrmq in all cases. As in the synthetic
spaces, the mk2tree obtains poor query times for small ranges but it is better
in larger ranges.

We also run two more specific sets of queries that may be of interest in
many datasets, as they restrict only the range of sellers or the time periods,
that is, only one of the dimensions of the matrix. Row-oriented queries ask
for a single row (or a small range of rows) but do not restrict the columns,
and column-oriented ask for single columns. We build sets of 10,000 top-k
queries for random rows/columns with different values of k. Fig. 11 (left)
shows that in column-oriented queries the wtrmq is faster than the K2-treap
for small values of k, but our structure is still faster as k grows. The reason
for this difference is that in “square” range queries, the K2-treap only visits
a small set of submatrices that overlap the region; in row-oriented or column-
oriented queries, the K2-treap is forced to check many submatrices to find
only a few results. The mk2tree suffers from the same problem, being unable
to efficiently filter the matrix, and obtains the worst query times in all cases.

22

 1

 10

 100

 4 10 50 100

Q
ue

ry
 ti

m
e

(m
ic

ro
se

cs
/q

ue
ry

)

Spatial window size

dataset salesDay

 4 10 50 100

Spatial window size

dataset salesHour

k2treap (k=1)
k2treap (k=5)

k2treap (k=50)
mk2tree (k=1)
mk2tree (k=5)

mk2tree (k=50)
wtrmq (k=1)
wtrmq (k=5)

wtrmq (k=50)

Figure 10: Query times (in microseconds per query) of top-k queries in the
real datasets SalesDay (left) and salesHour (right) for k = 1, k = 5 and
k = 50, and range sizes varying from 4 to 100.

In row-oriented queries (Fig. 11, right) the wtrmq is even more competi-
tive, obtaining the best results in many queries. The reason for the differences
with column-oriented queries in the wtrmq is the mapping between real and
virtual columns: column ranges are expanded to much longer intervals in the
wavelet tree, while row ranges are left unchanged. Notice anyway that our
structure is still competitive unless k is very small.

 10

 100

 1000

 1 5 10 50 100

Q
ue

ry
 ti

m
es

 (
m

ic
ro

se
co

nd
s/

qu
er

y)

k

Column-oriented queries

k2treap - salesDay
k2treap - salesHour
mk2tree - salesDay

mk2tree - salesHour
wtrmq - salesDay

wtrmq - salesHour

 100

 1000

 10000

 1 5 10 50 100

Q
ue

ry
 ti

m
es

 (
m

ic
ro

se
co

nd
s/

qu
er

y)

k

Row-oriented queries

k2treap - salesDay
k2treap - salesHour
mk2tree - salesDay

mk2tree - salesHour
wtrmq - salesDay

wtrmq - salesHour

Figure 11: Query times (in microseconds per query) of column-oriented (left)
and row-oriented (right) top-k queries on the real datasets for k varying from
1 to 100.

23

7.2. Range counting queries

7.2.1. Experiment setup

In this evaluation, we use grid datasets coming from three different real
domains: Geographic Information Systems (GIS), Social Networks (SN) and
Web Graphs (WEB). For GIS data we use the Geonames dataset4, which
contains the geographic coordinates (latitude and longitude) of more than
6 million populated places, and converted it into three grids with different
resolutions: Geo-sparse, Geo-med, and Geo-dense. The higher the resolution,
the sparser the matrix. These datasets allow for evaluating the influence of
data sparsity in the different proposals. For SN we use three social networks
(dblp-2011, enwiki-2013 and ljournal-2008) obtained from the Laboratory for
Web Algorithmics5 [7, 36]. Finally, in the WEB domain we consider the grid
associated with the adjacency matrix of three Web graphs (indochina-2004,
uk-2002 and uk-2007-5) obtained from the same Web site. The clustering
in these datasets is very dissimilar. In general, GIS datasets do not present
many clusters, whereas data points in the WEB datasets are highly clustered.
SN represents an intermediate collection in terms of clustering.

In this experiment, we compare our proposal to speed up range counting
queries on a K2-tree, named rck2tree, with the original K2-tree. Recall from
Section 6 that we augment the K2-tree with additional data in order to speed
up this type of queries. Thus, in this evaluation we show the space-time trade-
off offered by the rck2tree structure, which is parametrized by the number
of levels of the original K2-tree augmented with counting information. As a
baseline from the succinct data structures area, we include a representation
of grids based on wavelet trees, named wtgrid in the following discussion.
This representation was described in Section 2.3 and an algorithm to support
range counting was sketched in Section 3. As explained in Section 2.3, this
representation requires a bitmap to map from a general grid to a grid with
one point per column. In our experiments we store this bitmap with either
plain bitmaps, RRR or sd-arrays, whichever requires less space. As for the
wavelet tree itself, we use a balanced tree with just one pointer per level and
the bitmaps of each level are compressed with RRR. In other words, we use
a configuration of this representation that aims to reduce the space. Note,
however, that we use the implementation available in Libcds [16], which

4http://www.geonames.org
5http://law.di.unimi.it

24

Table 2: Description of the real datasets used, and space (in bits per point)
required to represent them with the compared data structures.

Dataset Type Grid (u) Points (n) wtgrid K2-tree rck2tree4 rck2tree8 rck2tree16

(bits/point) (bits/point) (bits/point) (bits/point) (bits/point)
Geo-dense GIS 524,288 6,049,875 17.736 14.084 14.085 14.356 18.138
Geo-med GIS 4,194,304 6,080,640 26.588 26.545 26.564 29.276 36.875
Geo-sparse GIS 67,108,864 6,081,520 44.019 41.619 41.997 48.802 56.979
dblp-2011 SN 986,324 6,707,236 19.797 9.839 9.844 10.935 13.124
enwiki-2013 SN 4,206,785 101,355,853 19.031 14.664 14.673 16.016 19.818
ljournal-2008 SN 5,363,260 79,023,142 20.126 13.658 13.673 15.011 18.076
indochina-2004 WEB 7,414,866 194,109,311 14.747 1.725 1.729 1.770 2.13

uk-2002 WEB 18,520,486 298,113,762 16.447 2.779 2.797 2.888 3.451
uk-2007-5 WEB 105,896,555 3,738,733,648 16.005 1.483 1.488 1.547 1.919

uses O(alphabet size) counters to speed up queries. As we will show in the
experiments, this data structure, even with the compression of the bitmaps
that represent the nodes of the wavelet tree, does not take full advantage of
the existence of clusters in the data points.

Table 2 shows the main characteristics of the datasets used: name of the
dataset, size of the grid (u)6, number of points it contains (n) and the space
achieved by the baseline wtgrid, by the original K2-tree and by different
configurations of our rck2tree proposal. Unlike the previous scenario, the
space is measured in bits per point because these matrices are very sparse,
which results in very low values of bits per cell.

7.2.2. Space comparison

As expected, the representation based on wavelet trees, wtgrid, is not
competitive in terms of space, especially when the points in the grid are
clustered. Even though the nodes of the wavelet tree are compressed with
RRR, this representation is not able to capture the regularities induced by the
clusters. In the WEB domain, where the points are very clustered, the wtgrid
representation requires up to 10 times the space of the K2-tree. Therefore,
the latter allows for the processing in main memory of much larger datasets.
In domains where the data points are not that clustered, space-savings are
still significant but not as outstanding as in the previous case.

Second, we analyze the space overhead incurred by the rck2tree in com-
parison with the original K2-tree. As mentioned above, this overhead de-

6Note that, unlike the grids used in the previous scenario, these are square grids, and
thus u represents both the number of rows and columns.

25

 0

 10

 20

 30

 40

 50

GEO_dense GEO_med GEO_sparse

S
pa

ce
 (

bi
ts

/p
oi

nt
)

Dataset

rck2tree16

rck2tree8

rck2tree4

K2-tree

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

indochina-2004 uk-2002 uk-2007-5

S
pa

ce
 (

bi
ts

/p
oi

nt
)

Dataset

rck2tree16

rck2tree8

rck2tree4

K2-tree

Figure 12: Space overhead (in bits per point) in the real datasets GIS (left)
and WEB (right). Each bar, from bottom to top, represents the K2-tree and
the additional space used by the rck2tree with 4, 8, and 16 levels, respec-
tively. The additional space required by rck2tree4 is almost negligible.

pends on the number of levels of the K2-tree that are augmented with addi-
tional range counting information. In these experiments, we show the results
of three configurations in which 4, 8 and 16 levels were augmented, respec-
tively. As Table 2 shows, the space overhead is almost negligible for the
rck2tree4 and it ranges from 25% to 40% for rck2tree16. In the next section
we will show the influence of this extra space in the performance of the data
structure to solve range counting queries.

It is interesting to notice that the space overhead is lower in the domains
where the K2-performs best. The K2-tree performs better in sparse domains
where data points are clustered [8], for example, in the Web graph. In the
largest WEB dataset, uk-2007-5, the K2-tree requires about 1.5 bits per
point, and we can augment the whole tree with range counting information
using less than 0.5 extra bits per point (this is an overhead of less than
30%). Sparse and clustered matrices result in less values being stored in
the augmented data structure (as in the original K2-tree, we do not need to
store information for submatrices full of zeros). In Fig. 12 we show the space
overhead in two of our dataset collections, GIS and WEB.

Note also that, unlike the K2-tree, the space overhead does not increase
drastically in sparse non-clustered datasets (e.g., Geo-sparse). This is be-
cause isolated points waste K2 bits per level in the original K2-tree, and
this is much more than the overhead incurred by the range counting fields,

26

where they use approximately two bits per level. The reason is that these
fields represent the difference between the expected number of elements in
the submatrix, 1, and the actual number, which is also 1.7. For example,
in Geo-sparse the K2-tree uses more than 40 bits per point, which is much
more than the (roughly) 2 bits per point in the sparse and clustered WEB
datasets. However, the space overhead of the rck2tree16 (with respect to the
K2-tree) is about 40% in Geo-sparse and 30% in uk-2007-5 (i.e., a difference
of 10 percentage points). In the configurations that store range counting val-
ues only for some levels of the K2-tree, the difference is even smaller. This
is expected because there are fewer isolated points in the higher levels.

7.2.3. Query processing

In this section we analyze the efficiency of range counting queries, com-
paring our augmented K2-tree with the original data structure and with the
wtgrid. For each dataset, we build multiple sets of queries with different
query selectivities (i.e., size of spatial ranges). All the query sets were gener-
ated for fixed query selectivity. A query selectivity of X% means that each
query in the set covers X% of the cells in the dataset. Each query set con-
tains 1,000 queries where the spatial window is placed at a random position
in the matrix.

As in the space comparison, we show the results of three different con-
figurations of our augmented data structure, in which 4, 8, and 16 levels
are augmented with range counting data. Fig. 13 shows the time required
to perform range counting queries in some of our real datasets, for different
values of query selectivity. For each domain (GIS, SN and WEB), we only
show the results of the two most different datasets, as the others do not alter
our conclusions.

Our augmented data structure consistently outperforms the original K2-
tree for all domains and query selectivities. The only exception is the rck2tree4

in the two SN datasets and Geo-dense for very selective queries (i.e., with
the smallest areas). The influence of the query selectivity in the results is
evident. The larger the query, the higher the impact of the additional range
counting data in the performance of the data structure. Larger queries are
expected to stop the recursion of the range counting algorithm in higher lev-
els of the K2-tree because those queries are more likely to contain the whole

7Recall that these data are represented using DACs, which require at least two bits.

27

 1

 10

 100

 1000

 10000

 100000

0.001% 0.01% 0.1% 1%

Q
ue

ry
 ti

m
e

(m
ic

ro
se

co
nd

s/
qu

er
y)

Query selectivity

dataset Geo-dense

K2-tree
rck2tree4

rck2tree8

rck2tree16

wtgrid

 1

 10

 100

 1000

 10000

 100000

 1e+06

0.001% 0.01% 0.1% 1%

Q
ue

ry
 ti

m
e

(m
ic

ro
se

co
nd

s/
qu

er
y)

Query selectivity

dataset Geo-sparse

K2-tree
rck2tree4

rck2tree8

rck2tree16

wtgrid

 1

 10

 100

 1000

 10000

 100000

0.001% 0.01% 0.1% 1%

Q
ue

ry
 ti

m
e

(m
ic

ro
se

co
nd

s/
qu

er
y)

Query selectivity

dataset dblp-2011

K2-tree
rck2tree4

rck2tree8

rck2tree16

wtgrid

 1

 10

 100

 1000

 10000

 100000

 1e+06

0.001% 0.01% 0.1% 1%

Q
ue

ry
 ti

m
e

(m
ic

ro
se

co
nd

s/
qu

er
y)

Query selectivity

dataset ljournal-2008

K2-tree
rck2tree4

rck2tree8

rck2tree16

wtgrid

 1

 10

 100

 1000

 10000

 100000

 1e+06

0.001% 0.01% 0.1% 1%

Q
ue

ry
 ti

m
e

(m
ic

ro
se

co
nd

s/
qu

er
y)

Query selectivity

dataset indochina-2004

K2-tree
rck2tree4

rck2tree8

rck2tree16

wtgrid

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0.001% 0.01% 0.1% 1%

Q
ue

ry
 ti

m
e

(m
ic

ro
se

co
nd

s/
qu

er
y)

Query selectivity

dataset uk-2007-5

K2-tree
rck2tree4

rck2tree8

rck2tree16

wtgrid

Figure 13: Query times (in microseconds per query) of range counting queries
in two examples of each type of real dataset: GIS (top), SN (middle) and
WEB (bottom) for range queries sizes varying from 0.001% to 1%.

28

area covered by nodes of the K2-tree. Recall that a node of the K2-tree at
level i represents u2/(K2)i cells. In our experiments we use a configuration of
the K2-tree in which the first six levels use a value of K1 = 4 (thus partition-
ing the space into K2

1 = 16 regions) and the remaining levels use a value of
K2 = 2. Therefore, for the rck2tree4 to improve the performance of the range
counting queries, those queries must contain at least u2/(42)4 = u2/216 cells.
In the rck2tree8 and rck2tree16, which contain range counting data for more
levels of the K2-tree, this value is much lower, and thus the recursion can
be stopped early even for small queries. For larger queries, the performance
improvement reaches several orders of magnitude in some datasets (note the
logarithmic scale).

In most datasets, the performance of rck2tree8 and rck2tree16 is very
similar, therefore the former is preferable as it requires less extra space.
Hence, in general, we can recommend the use of the rck2tree8 configuration
to speed up range counting queries. If the queries are not very selective,
and there are memory constraints, the rck2tree4 can be an alternative as it
requires almost the same space of the original K2-tree.

The wtgrid is consistently not only faster than the data structures based
on the K2-tree, but also less sensitive to the size of the query. However,
as we showed above, it also requires significantly more space. To reinforce
these conclusions, Fig. 14 shows the space-time trade-offs of the different
configurations. We selected two representative datasets that were not used
in the previous experiment, enwiki-2013 (SN) and uk-2002 (WEB), and two
query selectivities for each of them, 0.001% and 0.1%. Each point in the lines
named rck2tree represents a different configuration with 4, 8, and 16 levels
augmented with range counting information, respectively from left to right.

These graphs show that the rck2tree8 configuration offers the most inter-
esting trade-off, as it requires just a bit more space than the original K2-tree
and it speeds up range counting queries significantly. This effect is more
evident for larger queries, but even for very selective queries the improve-
ment is significant. The wtgrid competes in a completely different area of
the trade-off, being the fastest data structure, but also the one that requires
the most space.

8. Conclusions

We have introduced a technique to solve aggregated 2D range queries
on grids, which requires little space when the data points in the grid are

29

 1

 10

 100

 1000

 10000

 100000

 14 15 16 17 18 19 20

Q
ue

ry
 ti

m
e

(m
ic

ro
se

co
nd

s/
qu

er
y)

Space (bits/point)

dataset enwiki-2013

K2-tree (0.001%)
K2-tree (0.1%)

rck2tree (0.001%)
rck2tree (0.1%)
wtgrid (0.001%)

wtgrid (0.1%)

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18

Q
ue

ry
 ti

m
e

(m
ic

ro
se

co
nd

s/
qu

er
y)

Space (bits/point)

dataset uk-2002

K2-tree (0.001%)
K2-tree (0.1%)

rck2tree (0.001%)
rck2tree (0.1%)
wtgrid (0.001%)

wtgrid (0.1%)

Figure 14: Space-time trade-offs offered by the compared range counting
variants on examples of SN (left) and WEB (right) datasets.

clustered. We use a K2-tree to represent the topology of the data (i.e., the
positions of the data points) and augment each node of the tree with addi-
tional aggregated information that depends on the operation to be supported.
The aggregated information in each node is differentially encoded with re-
spect to its parent in order to reduce the space overhead. To illustrate the
applicability of this technique, we adapted it to support two important types
of aggregated range queries: ranked and counting range queries.

In the case of ranked queries, we named the resulting data structure K2-
treap. This data structure performs top-k range queries up to 10 times faster
than current state-of-the-art solutions and requires as little as 30% of their
space, both in synthetic and real OLAP datasets. This holds even on uniform
distributions, which is the worst scenario for K2-treaps.

For range counting queries, our experimental evaluation shows that with
a small space overhead (below 30%) on top of the K2-tree, our data structure
answers queries several orders of magnitude faster than the original K2-tree,
especially when the query ranges are large. These results are consistent in
the different databases tested, which included domains with different levels
of clustering in the data points. For example, in Web graphs the data points
are very clustered, which is not the case in GIS applications. The comparison
with a wavelet tree-based solution shows that, although the wavelet tree is
faster, our proposal requires less space (up to 10 times less when the points
are clustered). Thus, we provide a new alternative in the space-time trade-off
which allows for the processing of much larger datasets.

30

Although we have presented the two types of queries separately, this does
not mean that an independent data structure would be required for each type
of aggregated query. The topology of the data can be represented by a unique
K2-tree and each type of aggregated query just adds additional aggregated
and differentially encoded information. However, some specific optimizations
on the K2-tree, such as the one presented for ranked range queries, may not
be possible for all types of queries.

The technique can be generalized to represent grids in higher dimensions,
which is essential in some domains such as OLAP databases [37], by re-
placing our underlying K2-tree with its generalization to d dimensions, the
Kd-tree [38] (not to be confused with kd-trees [5]). The algorithms stay
identical, but an empirical evaluation is left for future work. In the worst
case, a grid of t points on [n]d will require O(t log nd

t
) bits, which is of the

same order of the data, and much less space would be used on clustered
data. Instead, an extension of the wavelet tree will require O(n logd n) bits,
which quickly becomes impractical. Indeed, any structure able to report the
points in a range in polylogarithmic time requires Ω(n(log n/ log log n)d−1)
words of space [39], and with polylogarithmic space one needs time at least
Ω(log n(log n/ log logn)⌊d/2⌋−2) [40]. As with top-k queries one can report
all the points in a range, there is no hope to obtain good worst-case time
and space bounds in high dimensions, and thus heuristics like Kd-treaps are
the only practical approaches (kd-trees do offer linear space, but their time
guarantee is rather loose, O(n1−1/d) for n points on [n]d).

References

[1] M. d. Berg, O. Cheong, M. v. Kreveld, M. Overmars, Computational
Geometry: Algorithms and Applications, 3rd Edition, Springer-Verlag,
2008.

[2] G. Navarro, Y. Nekrich, L. Russo, Space-efficient data-analysis queries
on grids, Theoretical Computer Science 482 (2013) 60–72.

[3] J. H. Harvey J. Miller, Geographic Data Mining and Knowledge Dis-
covery, Chapman & Hall/CRC Data Mining and Knowledge Discovery
Series, 2009.

[4] J. L. Bentley, Decomposable searching problems, Information Processing
Letters 8 (5) (1979) 244–251.

31

[5] J. L. Bentley, Multidimensional binary search trees used for associative
searching, Communications of the ACM 18 (9) (1975) 509–517.

[6] W. Tobler, A computer movie simulating urban growth in the detroit
region, Economic Geography 46 (2) (1970) 234–240.

[7] P. Boldi, S. Vigna, The WebGraph framework I: Compression tech-
niques, in: Proc. of the Thirteenth International World Wide Web Con-
ference (WWW 2004), ACM Press, Manhattan, USA, 2004, pp. 595–601.

[8] N. Brisaboa, S. Ladra, G. Navarro, Compact representation of web
graphs with extended functionality, Information Systems 39 (1) (2014)
152–174.

[9] S. Álvarez-Garćıa, N. R. Brisaboa, J. D. Fernández, M. A. Mart́ınez-
Prieto, G. Navarro, Compressed vertical partitioning for efficient RDF
management, Knowledge and Informations Systems 44 (2) (2015) 439–
474.

[10] G. de Bernardo, S. Alvarez-Garćıa, N. Brisaboa, G. Navarro, O. Pe-
dreira, Compact querieable representations of raster data, in: Proc.
20th International Symposium on String Processing and Information
Retrieval (SPIRE), LNCS 8214, 2013, pp. 96–108.

[11] D. Caro, M. A. Rodŕıguez, N. R. Brisaboa, Data structures for temporal
graphs based on compact sequence representations, Information Systems
51 (2015) 1–26.

[12] T. Gagie, J. González-Nova, S. Ladra, G. Navarro, D. Seco, Faster com-
pressed quadtrees, in: Proc. 25th Data Compression Conference (DCC),
2015, pp. 93–102.

[13] G. Navarro, Y. Nekrich, L. Russo, Space-efficient data-analysis queries
on grids, Theoretical Computer Science 482 (2013) 60–72.

[14] G. Jacobson, Space-efficient static trees and graphs, in: Proc. SFCS,
1989, pp. 549–554.

[15] D. Clark, Compact pat trees, Ph.D. thesis, University of Waterloo
(1996).

32

[16] F. Claude, G. Navarro, Practical rank/select queries over arbitrary se-
quences, in: Proc. 15th SPIRE, 2008.

[17] R. Raman, V. Raman, S. Rao, Succinct indexable dictionaries with ap-
plications to encoding k-ary trees and multisets, in: Proc. SODA, 2002,
pp. 233–242.

[18] R. Grossi, A. Gupta, J. Vitter, High-order entropy-compressed text in-
dexes, in: Proc. 14th SODA, 2003, pp. 841–850.

[19] B. Chazelle, A functional approach to data structures and its use in
multidimensional searching, SIAM Journal on Computing 17 (3) (1988)
427–462.

[20] V. Mäkinen, G. Navarro, Position-restricted substring searching, in:
Proc. 7th LATIN, 2006, pp. 703–714.

[21] D. Okanohara, K. Sadakane, Practical entropy-compressed rank/select
dictionary, in: Proc. 9th Workshop on Algorithm Engineering and Ex-
periments, ALENEX, 2007.

[22] R. Seidel, C. Aragon, Randomized search trees, Algorithmica 16 (4/5)
(1996) 464–497.

[23] C. Mart́ınez, S. Roura, Randomized binary search trees, J. ACM 45 (2)
(1997) 288–323.

[24] J. Vuillemin, A unifying look at data structures, Communications of the
ACM 23 (4) (1980) 229–239.

[25] J. Fischer, V. Heun, Space-efficient preprocessing schemes for range min-
imum queries on static arrays, SIAM J. Comp. 40 (2) (2011) 465–492.

[26] R. Konow, G. Navarro, C. Clarke, A. López-Ort́ız, Faster and smaller
inverted indices with treaps, in: Proc. 36th SIGIR, 2013, pp. 193–202.

[27] M. Golin, J. Iacono, D. Krizanc, R. Raman, S. S. Rao, Encoding 2D
range maximum queries, in: Proc. 22nd ISAAC, 2011, pp. 180–189.

[28] E. M. McCreight, Priority search trees, SIAM J. Comp. 14 (2) (1985)
257–276.

33

[29] I. Bialynicka-Birula, R. Grossi, Rank-sensitive data structures., in:
SPIRE, 2005, pp. 79–90.

[30] G. Navarro, Y. Nekrich, Top-k document retrieval in optimal time and
linear space, in: Proc. 23rd SODA, 2012, pp. 1066–1078.

[31] P. Bose, M. He, A. Maheshwari, P. Morin, Succinct orthogonal range
search structures on a grid with applications to text indexing, in: Proc.
of the 11th International Symposium on Algorithms and Data Struc-
tures, WADS, 2009, pp. 98–109.

[32] J. Barbay, F. Claude, G. Navarro, Compact binary relation representa-
tions with rich functionality, Information and Computation 232 (2013)
19–37.

[33] M. Patrascu, Lower bounds for 2-dimensional range counting, in: Proc.
of the 39th Annual ACM Symposium on Theory of Computing, 2007,
pp. 40–46.

[34] F. Claude, P. K. Nicholson, D. Seco, On the compression of search trees,
Information Processing & Management 50 (2) (2014) 272–283.

[35] N. Brisaboa, S. Ladra, G. Navarro, DACs: Bringing direct access to
variable-length codes, Information Processing & Management 49 (1)
(2013) 392–404.

[36] P. Boldi, M. Rosa, M. Santini, S. Vigna, Layered label propagation: A
multiresolution coordinate-free ordering for compressing social networks,
in: Proceedings of the 20th international conference on World Wide
Web, ACM Press, 2011.

[37] S. Sarawagi, Indexing OLAP data, IEEE Data Eng. Bull. 20 (1) (1997)
36–43.

[38] G. de Bernardo, S. Álvarez-Garćıa, N. R. Brisaboa, G. Navarro, O. Pe-
dreira, Compact querieable representations of raster data, in: Proc. 20th
SPIRE, 2013, pp. 96–108.

[39] B. Chazelle, Lower bounds for orthogonal range searching I: The report-
ing case, J. ACM 37 (2) (1990) 200–212.

34

[40] P. Afshani, L. Arge, K. G. Larsen, Higher-dimensional orthogonal range
reporting and rectangle stabbing in the pointer machine model, in: Proc.
SCG, 2012, pp. 323–332.

35

	1 Introduction
	2 Basic Concepts
	2.1 Aggregated queries on clustered points
	2.2 Rank and select on bitmaps
	2.3 Wavelet tree and discrete grids
	2.4 K2-trees
	2.5 Treaps, priority search trees and ranked range queries

	3 Related Work
	4 Augmenting the K2-tree
	5 Answering Ranked (Max/Min) Range Queries
	5.1 Local maximum coordinates
	5.2 Local maximum values
	5.3 Tree structure
	5.4 Query processing
	5.4.1 Basic navigation
	5.4.2 Top-k queries
	5.4.3 Other supported queries

	6 Answering Range Counting Queries
	6.1 Augmenting the K2-tree
	6.1.1 Range counting queries
	6.1.2 Other supported queries

	7 Experiments and Results
	7.1 Ranked range queries
	7.1.1 Experiment setup
	7.1.2 Space comparison
	7.1.3 Query processing

	7.2 Range counting queries
	7.2.1 Experiment setup
	7.2.2 Space comparison
	7.2.3 Query processing

	8 Conclusions

