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Abstract

The research on Enterprise Systems Integration focuses on proposals to support
business processes by re-using existing systems. Wrappers help re-use web ap-
plications that provide a user interface only. They emulate a human user who
interacts with them and extracts the information of interest in a structured for-
mat. In this article, we present TANGO, which is our proposal to learn rules
to extract information from semi-structured web documents with high precision
and recall, which is a must in the context of Enterprise Systems Integration. It
relies on an open catalogue of features that helps map the input documents into
a knowledge base in which every DOM node is represented by means of HTML,
DOM, CSS, relational, and user-defined features. Then a procedure with many
variation points is used to learn extraction rules from that knowledge base; the
variation points include heuristics that range from how to select a condition to
how to simplify the resulting rules. We also provide a systematic method to help
re-configure our proposal. Our exhaustive experimentation proves that it beats
others regarding effectiveness and is efficient enough for practical purposes. Our
proposal was devised to be as configurable as possible, which helps adapt it to
particular web sites and evolve it when necessary.
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1. Introduction

Enterprise Systems Integration is an engineering discipline that deals with
technologies and methods that help engineers devise solutions to support busi-
ness processes by re-using existing enterprise systems [12]. The problem is
challenging insofar web applications are concerned because they are typically
designed to be used by people, not by software agents. In many cases, they
have to be integrated by emulating the interactions of a human user and then
extracting the information of interest from the resulting web documents. Such
interactions are performed by means of so-called wrappers, which are typically
composed of the following modules: a form filler, which maps queries onto search
forms, a navigator, which navigates from the search forms to the appropriate
documents, an information extractor, which extracts the information of inter-
est from the previous documents, and an information verifier, which checks the
information extracted. Enterprise Systems Integration requires wrappers that
can achieve high precision and recall, chiefly when the business processes that
they support are mission-critical; the time to learn the rules or to execute them
is not an issue as long as it falls within reasonable limits.

Our research focuses on information extractors. The literature provides some
proposals to extract information from unstructured documents [33], that is,
documents that are written in natural language, and others to deal with semi-
structured documents [6], that is, HTML-based documents in which the infor-
mation is rendered in tables, lists, forms, and similar regular formats. They can
be further classified into heuristic-based information extractors or rule-based
information extractors. The former are unsupervised proposals that rely on
general heuristics that have proven to work well in many cases; the latter re-
quire specific-purpose rules that are learnt from a learning set supervisedly or
unsupervisedly, depending on whether the user has to annotate the learning sets
with the information to be extracted or not. A number of authors have worked
on orthogonal topics, e.g., finding the regions of a document that provide inter-
esting information [27], finding named entities from a small sample [14, 35], or
re-learning the rules with as little effort as possible [36]. Lately, the problem of
extracting information from unknown sites is getting much attention, but the
only conclusive results are regarding unstructured documents [10, 22].

We focus on supervised rule-based proposals to learn rules to extract infor-
mation from semi-structured web documents. We have surveyed many proposals
in this field [3–5, 7, 8, 11, 13, 16–18, 20, 21, 23, 28, 30, 32]. Our conclusion is
that the authors have tried to make them very general so that they can be
applied to documents from as many web sites as possible. The problem is that
most of them are monolithic solutions, that is, there is a tight inter-dependency
between the features that are computed from the input documents and the
learning procedure, which was not designed to be re-configured. This makes it
difficult to evolve them independently so that they can be adapted to particular
web sites or to keep with the evolution of HTML. It is not surprising then that
web information extraction is an active research field in which new proposals
sprout out continuously; unfortunately, they tend to fade away quickly because
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they are not flexible enough.
In our opinion, the research in this field must focus on flexible proposals,

which implies that they have to use an open catalogue of features, a learning
procedure with variation points, and there must be a method to help re-configure
them so that they can be adapted when necessary. The catalogue being open
means that the learning procedure does not depend on any particular features,
which implies that they can be included, removed, or replaced very easily in
order to experiment with them. This allows to adapt a proposal to a particular
web site or to changes in the way that HTML is used. A learning procedure
with variation points relies on a number of heuristics whose implementation is
plugged into the procedure; this makes it very flexible and facilitates adapting
the proposal when necessary or trying new alternatives if one thinks that they
can result in better performance. Note that adapting a proposal requires to
make multi-criteria decisions, which is not intuitive at all; therefore, it is also
necessary to have a method to help re-configure it when necessary.

None of the proposals that we have surveyed fulfils the previous require-
ments. A few authors have explored the idea of using an open catalogue of
features [3, 11, 13, 18], but they did not identify the variation points of their
learning procedures; consequently, none of them produced a method to help
re-configure their proposals. In this article, we present TANGO, which is a rule
learner that specialises in web information extraction; it relies on an open cata-
logue of features and a learning procedure in which we have identified eight vari-
ation points that implement eleven heuristics; furthermore, we provide a method
to help re-configure it. Our detailed conceptual comparison reveals that our pro-
posal clearly diverges from the existing ones and our exhaustive experimental
study confirms that it is more effective than other state-of-the-art proposals
and that it is efficient enough for practical purposes. In our experiments, we
have been able to learn very good rules from as few as six randomly-selected
documents.

The rest of the article is organised as follows: Section 2 presents a detailed
description of our proposal; Section 3 reports on how we have configured it;
Section 4 presents the results of our experimental analysis; Section 5 analyses
the related work; finally, Section 6 concludes our work.

2. Description of our proposal

In this section, we describe our proposal. We first present some definitions
and then delve into our catalogue of features, our learning procedure, our vari-
ation points, and our configuration method.

2.1. Definitions
Definition 1 (Documents). We use the standard notation to represent vari-
ables, sets, and logical formulae. We denote sequences as ⟨x1, x2, . . . , xn⟩; given
a sequence s, we denote its length as |s|; given two sequences s1 and s2, we
denote their concatenation as s1 ⊕ s2.
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Definition 2 (Documents). A document is a character string that adheres
to the HTML syntax and can then be represented as the root node of the corre-
sponding DOM tree [15, 34].

Definition 3 (Features). Features are functions that map nodes onto values
or other nodes. The former are referred to as attributive features, and they can
be based on HTML attributes [15], DOM attributes [34], CSS attributes [2], or
user-defined functions; the latter are relational features and they build on the
usual relationships amongst the nodes of a DOM tree, e.g., parents or children.

Definition 4 (Slots and annotations). A slot is a label that provides a mean-
ing to the information in a node. An annotation is a function that maps a subset
of nodes onto a set of slots. We assume that the slots may be organised hierar-
chically so that there is a first-level slot that contains some nested slots. (Note
that it is common to use term slot to refer to both a label and the nodes that are
extracted with that label.)

Definition 5 (Datasets). A dataset is a ground first-order representation of
an annotation and the instantiation of a catalogue of features on a set of docu-
ments. The datasets that are used to learn rules are referred to as learning sets
and the datasets that are used to test rules are referred to as testing sets.

Definition 6 (Rules and conditions). A rule consists of a collection of con-
ditions that characterise the nodes that provide the information to be extracted.
We represent them as ⟨h, b1, b2, . . . , bn⟩ (n ≥ 0), where h denotes the head,
which is a slot instantiator, and bi (i = 1 . . n) denotes the body, which consists
of feature instantiators, comparators, and/or further slot instantiators. A slot
instantiator is a condition of the form s(N ), where s denotes a slot and N is a
variable that can be bound to every node in the input documents. A feature in-
stantiator is a condition that binds the value of a feature on a node to a constant
or a variable; feature instantiators can be negated, in which case the condition
is satisfied if the corresponding feature cannot be instantiated. A comparator is
a condition that compares a variable to another variable or a constant using the
usual relational operators. A condition is said to be determinate in the context
of a rule if it is a feature instantiator, it can be instantiated exactly once on ev-
ery positive example that is matched by the rule, at most once on every negative
example, and does not return the same value on every example.

Definition 7 (Scores and gains). We require a rule scorer to assess how good
a rule is. Intuitively, it must return high scores for rules that are close to be a
solution and low scores for the others. Since our proposal learns rules by adding
conditions incrementally, it is also necessary to compute the gain that adding
a specific condition achieves. If r represents the current rule and r ′ represents
the rule that results from adding condition c to r, that is, r ′ = r ⊕ ⟨c⟩, then
we compute the gain of condition c as p′ (s ′ − s), where p′ denotes the number
of positive examples matched by rule r ′, s ′ is the score of rule r ′, and s is the
score of rule r. Realise that we weight the difference of scores with the number
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Table 1: Partial catalogue of features. (Sorted by empirical frequency.)

of positive examples matched by r ′, which helps make a difference that rewards
the conditions that match more positive examples.

2.2. Catalogue of features
TANGO works on an open catalogue of features, which means that the

learning procedure does not require it to provide any specific features. On the
contrary, the user can try different features or ways to compute them in order
to configure our proposal so that it performs as well as possible.

By default, we provide a catalogue that has proven to work well in our
experiments. It provides many features that compute the attributes that are
defined in the HTML, DOM, and CSS recommendations [2, 15, 34]. It also
provides a number user-defined features.

The HTML and the CSS features are attributive because they map the DOM
nodes onto values that represent their HTML and CSS attributes; the DOM
features can be either attributive, e.g., the depth of a node, or relational, e.g.,
the parent of a node. The user-defined features are typically used to implement
simple semantic checks, e.g., whether a node contains a number or not.

Table 1 provides an excerpt of our current catalogue. The actual catalogue
consists of roughly two hundred features, of which we have shown the most used
according to our experimentation.

2.3. Learning procedure
The learning procedure works on a learning set that consists of a ground

first-order representation of the input documents and their annotation. It then
uses a top-down algorithm that learns a rule set for each slot. It starts with an
overly-general rule that matches every node in the learning set and then extends
it by adding conditions that constraint the subset of nodes that it matches; when
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1: method TANGO(documents, annotation)
2: – Step 1: initialisation.
3: result = ∅
4: dataset = create a dataset from documents and annotation
5: – Step 2: learn a rule set for every slot.
6: for each different slot in annotation do
7: learningSet = create a learning set for slot from dataset
8: learningSet = preProcessLearningSet(learningSet , slot)
9: ruleset = learnRuleSet(learningSet , slot)

10: result = result ∪ {ruleSet}
11: end
12: return result

Figure 1: Main procedure.

a rule that matches positive examples only is found, it is considered a solution;
the positive examples that it matches are then removed from the learning set and
the procedure is re-started until no positive example remains to be matched or
it is not possible to find a rule, which is very unlikely in practice. Our proposal
also manages a set of savepoints to which it can backtrack if the current search
path is not good enough.

2.3.1. Main procedure
Figure 1 shows the main procedure, which works on a set of documents and

an annotation; it returns a set of rule sets, each of which is specifically tailored
to extracting information that belongs to a given slot.

The first step consists in initialising the result to an empty set and then
creating a dataset from the input documents and their annotation. Basically, we
have to loop through a user-provided catalogue of features and try to instantiate
them on every node of the input documents.

The second step iterates through the set of slots used in the annotation of
the input documents. For each slot, it first creates a learning set from the
previous dataset, pre-processes it, and then invokes the procedure to learn a
rule set; the result is stored in the result variable, which is returned when the
loop finishes. Creating the learning set amounts to creating a new dataset in
which the positive examples are the nodes that belong to the slot that is being
analysed and the negative examples are the remaining nodes. In order to reduce
the computational effort, the learning sets that correspond to nested slots have
information about the nodes in the enclosing slots only. The resulting learning
set must be simplified using a variation point called preProcessLearningSet
so that learning is as efficient as possible.

Example 1. Figure 2 shows a sample web document with a listing of phone
codes; the countries for which the system does not have a code are starred.
Table 2 shows a partial instantiation of our catalogue of features and Table 3
shows the corresponding annotation.
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Figure 2: Sample web document.

Regarding slot record, TANGO first creates a learning set in which the nodes
that belong to that slot are positive examples and the others are negative ones;
the instantiation of the features remains the same. Regarding slots country and
code, which are nested within the previous slot, TANGO creates similar learning
sets, the difference being that features are instantiated only on the nodes that
belong to a sub-tree that is known to be a record. Since this example is very
simple, it is not actually necessary to perform any pre-processing.

From those learning sets, TANGO learns the following rule sets:

{⟨record(N0), tag(N0, ‘li’), parent(N0,N1), style(N1, ‘a’)⟩},
{⟨country(N0), xPos(N0,A1),A1 ≤ 20,¬left(_,N0)⟩,
⟨country(N0), xPos(N0, 20)⟩},
{⟨code(N0),¬tag(N0,_), isNumber(N0)⟩}

2.3.2. Learning a rule set
Figure 3 presents the procedure to learn a rule set, which works on a learning

set and a slot; it returns a set of rules that are specifically tailored to extracting
information that belongs to that slot.

As usual, the first step is an initialisation step that simply sets the resulting
rule set to the empty set.

The second step is a loop that iterates until no new rule is found or no positive
example remains in the learning set. In each iteration, the procedure to learn a
rule is invoked using the current learning set and the input slot as parameters.
If this procedure returns null , then it means that it has not been able to find
a rule that matches the positive examples in the learning set; otherwise, it
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1: method learnRuleSet(learningSet , slot)
2: – Step 1: initialisation.
3: ruleSet = ∅
4: – Step 2: learn rules.
5: repeat
6: rule = learnRule(learningSet , slot)
7: if rule ̸= null then
8: ruleSet = ruleSet ∪ {rule}
9: learningSet = learningSet \ (positive examples matched by rule)

10: end
11: until rule = null ∨ there are no positive examples in learningSet
12: – Step 3: post-process the rule set.
13: ruleSet = postProcessRuleSet(ruleSet)
14: return ruleSet

Figure 3: Procedure to learn a rule set.

returns a rule that matches some positive examples and no negative one, that
is, a solution. If a rule is returned, then the resulting rule set is updated, the
learning set is subtracted the positive examples that are matched by that rule,
and the procedure is re-started if the learning set is not empty.

The third step relies on variation point postProcessRuleSet, which sim-
plifies the resulting rule set so that it can be executed as efficiently as possible.

Example 2. Let us focus on slot country. In the first iteration of Step 2, it
learns a rule that matches countries with a phone code, namely:

⟨country(N0), depth(N0,A2), children(N0,A3), yPos(N0,A4), xPos(N0,A5),
A5 ≤ 20,¬left(N4,N0)⟩

The procedure then removes the positive examples matched by the previous
rule from the learning set and invokes the procedure to learn a rule again. Now,
it returns a rule that matches starred countries, namely:

⟨country(N0), depth(N0,A2), children(N0,A3), yPos(N0,A4), xPos(N0,A5),
A5 = 20⟩

Since the previous rules match every positive example, they are then post-
processed, which results in the following simplified rule set:

{⟨country(N0), xPos(N0,A1),A1 ≤ 20,¬left(_,N0)⟩,
⟨country(N0), xPos(N0, 20)⟩}

2.3.3. Learning a rule
Figure 4 presents the procedure to learn a rule, which works on a learning

set and a slot. It returns a solution if possible, that is, a rule that matches
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1: method learnRule(learningSet , slot)
2: – Step 1: initialisation.
3: savepoints = ∅
4: var = generate a fresh variable
5: rule = ⟨slot(var)⟩
6: score = ruleScorer(rule, learningSet)
7: – Step 2: extend the current rule.
8: repeat
9: – Step 2.1: compute and select candidates.

10: candidates = computeCandidates(rule, score, learningSet)
11: (bestCandidates, saveCandidates) =
12: selectCandidates(rule, score, candidates, learningSet)
13: – Step 2.2: update savepoints and current rule.
14: savepoints = updateSavepoints(savepoints, rule, saveCandidates, learningSet)
15: rule = rule ⊕ ⟨conditions in bestCandidates⟩
16: score = ruleScorer(rule, learningSet)
17: – Step 2.3: check for a replacement.
18: if bestCandidates = ∅ ∨ isTooComplex(rule, score, learningSet) then
19: (rule, savepoints) = findBestSavepoint(savepoints)
20: end
21: until rule = null ∨ isSolution(rule, learningSet)
22: – Step 3: check for better savepoints.
23: if rule ̸= null then
24: rule = findBetterSavepoint(savepoints, rule, score, learningSet)
25: end
26: return rule

Figure 4: Procedure to learn a rule.
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at least a positive example, but no negative one; in cases in which a solution
cannot be found, it returns a null value.

The first step consists in initialising a set of savepoints and the rule that
is going to be learnt. The savepoints are initialised to an empty set; during
the learning process, this set stores some promising rules that might be used to
backtrack if the current search path is not good enough. The rule is initialised
to ⟨slot(var)⟩, where slot denotes the slot for which the procedure is learning a
rule and var denotes a fresh variable; in our examples we use N0 to denote that
variable. This rule trivially matches every example in the learning set because
no conditions have been added to its body yet. Note that we need to compute a
score to assess how good the rule is; since this computation can be accomplished
in a variety of different ways, we have implemented this procedure as a variation
point called ruleScorer.

The second step is a loop that extends the initial rule with new condi-
tions and updates the savepoints. It consists of three sub-steps. The first one
computes a set of candidates, which are tuples of the form (c, g , d), where c
represents a condition that might possibly be added to the current rule, g the
gain that it would achieve, and d is a Boolean that indicates if c is determinate.
It then selects a subset of them to extend the current rule and another subset
to update the savepoints, which is implemented using a variation point called
selectCandidates because there are several alternatives available. The sec-
ond sub-step first calls a procedure to update the savepoints, then extends the
current rule, and finally re-computes its score. The third sub-step checks for a
replacement of the current rule, which is a savepoint to which the procedure can
backtrack in cases in which no candidate is selected to extend the current rule or
cases in which it is too complex. Note that the learning process might explore
arbitrarily complex rules, which does not make sense in practice. This calls
for a mechanism to check whether a rule is complex enough not to explore it.
We have implemented it using a variation point called isTooComplex because
there are several choices available.

The third step attempts to substitute the rule that has been learnt in the
previous step by a better savepoint. To understand this intricacy, assume that
r1 = ⟨h, c1⟩ is the current rule and that it can be extended as r2 = ⟨h, c1, c2⟩
or r3 = ⟨h, c1, c3⟩. Assume, too, that r2 matches 10 positive examples and
no negative one, whereas r3 matches 30 positive examples and one negative
example. Even though rule r2 is a solution, rule r3 might be considered to
provide more gain because it matches more positive examples and thus might
lead to a smaller rule set. In such cases, the search should stick with r3 and
r2 should be kept as a savepoint. The problem is that rule r3 might lead to a
solution that matches less than 10 positive examples in the following iterations;
in such cases, it does not make sense to return rule r3, but rule r2.

Example 3. Let us focus on slot country. Regarding the variation points, we
use Information Content as the heuristic to implement the rule scorer; to extend
the current rule, we select the candidate that achieves the maximum gain only
if no candidate has at least 80% the maximum possible gain and there are no
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determinate candidates; to create new savepoints, we select the best candidate
that results in a solution, if any, or the candidates whose gain is at least 80%
the gain of the best condition that has been added to the rule; furthermore, we
only keep two savepoints in this example.

Our procedure starts working on the following initial rule:

⟨country(N0)⟩

It then generates a number of candidates that can possibly be used to extend
it, namely:

{(¬tag(N0,A1), 1.59, false), (depth(N0,A2), 0.00, true),
(children(N0,A3), 0.00, true), (yPos(N0,A4), 0.00, true),
(xPos(N0,A5), 0.00, true)}

Since the current rule scores at −2.12, the maximum gain that a condition
can achieve on it is 6.35, which happens when that condition preserves the pos-
itive examples matched by the current rule but does not match any negative
examples. None of the previous candidates achieves at least 80% the maximum
gain, so we have to extend the rule using the candidates that are determinate
conditions, namely:

⟨country(N0), depth(N0,A2), children(N0,A3), yPos(N0,A4), xPos(N0,A5)⟩

Since the rule was extended using determinate conditions and the result is
not a solution, then none of the previous conditions can be used to update the
set of savepoints, which remains empty. Branching the current rule results in
the following candidates:

{(¬tag(N0,A1), 1.59, false), (¬isNumber(N0), 1.59, false),
(parent(N0,N1), 2.23, false), (A2 ̸= 5, 2.23, false),
(A2 > 5, 2.23, false), (A2 = 6, 2.23, false), (A2 ≥ 6, 2.23, false),
(A5 ≤ 20, 3.35, false), (A5 < 32, 3.35, false)}

None of them achieves the minimum gain required to be selected, but there
are not any determinate conditions, which means that we have to select the one
that provides the maximum gain, that is, A5 ≤ 20 or A5 < 32. Since there is a
tie, we break it arbitrarily and select the first condition, namely:

⟨country(N0), depth(N0,A2), children(N0,A3), yPos(N0,A4), xPos(N0,A5),
A5 ≤ 20⟩

This rule scores at −1.32 and the maximum possible gain that a condition
may achieve on it is 2.64, which implies that a condition must achieve a gain
of at least 2.11 so that it can be selected to create a savepoint. This implies
that any of the candidates might be selected to update the savepoints, except for
¬tag(N0,A1) and ¬isNumber(N0). Since we are keeping only two savepoints,
the set gets updated as follows:
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1: method computeCandidates(rule, score, learningSet)
2: – Step 1: branch the rule.
3: conditions = branch(rule, learningSet)
4: – Step 2: bound candidate conditions.
5: candidates = ∅
6: stop = false
7: for each condition in conditions while ¬stop do
8: newRule = rule ⊕ ⟨condition⟩
9: newScore = ruleScorer(newRule, learningSet)

10: candidate = bound(rule, score,newRule,newScore)
11: if candidate ̸= null then
12: candidates = candidates ∪ {candidate}
13: stop = isPromisingCandidate(rule, score,newRule,newScore)
14: end
15: end
16: return candidates

Figure 5: Procedure to compute candidates.

{(⟨country(N0), depth(N0,A2), children(N0,A3), yPos(N0,A4), xPos(N0,A5),
parent(N0,N1)⟩,−1.00),

(⟨country(N0), depth(N0,A2), children(N0,A3), yPos(N0,A4), xPos(N0,A5),
A5 < 32⟩,−1.32)}

The savepoints are represented as tuples of the form (r , s), where r denotes
a rule and s denotes its corresponding score. Branching the current rule results
in the following candidates:

{(¬tag(N0,A1), 1.47, false), (¬parent(N2,N0), 1.47, false),
(¬left(N4,N0), 2.64, false)}

Condition ¬left(N4,N0) has the maximum possible gain, which is 2.64. That
means that adding this condition to the current rule results in a solution, namely:

⟨country(N0), depth(N0,A2), children(N0,A3), yPos(N0,A4), xPos(N0,A5),
A5 ≤ 20,¬left(N4,N0)⟩

2.3.4. Computing candidates
Figure 5 presents the procedure to compute the candidates that can possibly

be used to extend a rule or to create new savepoints. It works on the current
rule, its score, and a learning set; it returns a set of candidates. The candidates
are represented as tuples of the form (c, g , d), where c denotes a condition, g
the gain that is achieved when condition c is added to the input rule, and d is
a Boolean value that indicates if c is determinate.

The first step branches the input rule, which consists in generating a se-
quence of conditions that can be used to extend it. There can be many ap-
proaches to generating such conditions, which justifies using a variation point
called branch.
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The second step is a loop that bounds the conditions that have been gener-
ated in the previous step. Bounding a condition means that we assess its gain
and decide on whether it is bad enough to prune it. Since there are several
choices, we have implemented the bounding procedure using a variation point
called bound. The search can be stopped at any moment, when a promising con-
dition is found, that is, when a condition is considered so good that it is not nec-
essary to continue exploring the others. Since there are also several alternatives
to implement this stopping criterion and it is not clear which one is the best one,
we have implemented it using a variation point called isPromisingCandidate.

Example 4. Assume that we have to branch and then bound the following ini-
tial rule:

⟨country(N0)⟩

A simple approach to branching consists in generating every possible feature
instantiator regarding node N0, which would result in the following candidates,
where the “?” means that the gain cannot be computed because the corresponding
score is indeterminate:

{(tag(N0,A1), ?, false), (¬tag(N0,A1), 1.59, false)
(depth(N0,A2), 0.00, true), (¬depth(N0,A2), ?, false)
(children(N0,A3), 0.00, true), (¬children(N0,A3), ?, false)
(yPos(N0,A4), 0.00, true), (¬yPos(N0,A4), ?, false)
(xPos(N0,A5), 0.00, true), (¬xPos(N0,A5), ?, false)
(len(N0,A6), 0.00, false), (¬len(N0,A6), ?, false)
(isNumber(N0), ?, false), (¬isNumber(N0), 1.59, false)
(parent(N0,N1), 2.23, false), (¬parent(N0,N1),−1.05, false)
(parent(N2,N0), ?, false), (¬parent(N2,N0), 1.59, false)
(left(N0,N3),−0.47, false), (¬left(N0,N3), 0.62, false)
(left(N4,N0),−0.47, false), (¬left(N4,N0), 0.62, false)}

To bound the candidates, we first examine condition tag(N0,A1), which is
pruned because its gain is indeterminate; we then examine ¬tag(N0,A1), whose
gain is 1.59; this is the best condition found so far, so we set the pruning thresh-
old to 80% that gain, that is, 1.27; this means that the following conditions shall
be pruned unless they can achieve this minimum gain or they are determinate.
Then, condition depth(N0,A2) is examined; note that it does not achieve any
gain at all, but it is determinate; this means that we have already found a con-
dition that can expand the search space and possibly lead to a better rule. The
maximum gain that a condition can achieve on the current rule is 6.35, so we
can set the new pruning threshold to 80% this maximum, that is, 5.08 instead
of 1.27.

2.3.5. Managing savepoints
We have devised three procedures that help manage the set of savepoints,

namely: updateSavepoints, to update them, findBestSavepoint , to find the best
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1: method updateSavepoints(savepoints, rule, candidates, learningSet)
2: for each candidate (c, s, d) in candidates do
3: – Step 1: extend the current rule.
4: newRule = rule ⊕ ⟨c⟩
5: newScore = ruleScorer(newRule, learningSet)
6: – Step 2: find a savepoint to replace.
7: (r , s) = (null ,−∞)

8: if isSolution(newRule, learningSet) then
9: (r , s) = find a savepoint (r , s) in savepoints such that

10: isSolution(r , learningSet)
11: end
12: if r = null ∧ |savepoints| = k then
13: (r , s) = find savepoint (r , s) in savepoints such that
14: s is the minimum score
15: end
16: – Step 3: update the set of savepoints.
17: if r ̸= null ∧ newScore > s then
18: savepoints = savepoints \ {(r , s)} ∪ {(newRule,newScore)}
19: elsif r = null then
20: savepoints = savepoints ∪ {(newRule,newScore)}
21: end
22: end
23: return savepoints

Figure 6: Procedure to update the savepoints.
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1: method findBestSavepoint(savepoints)
2: (r , s) = select a savepoint (r , s) with maximum score from savepoints
3: sp = savepoints \ {(r , s)}
4: return (r , sp)

Figure 7: Procedure to find the best savepoint.

1: method findBetterSavepoint(savepoints, rule, score, learningSet)
2: (r , s) = select a savepoint (r , s) from savepoints such that
3: isSolution(r , learningSet)
4: if r ̸= null ∧ s > score then
5: rule = r
6: end
7: return rule

Figure 8: Procedure to find a better savepoint.

one, if any, and findBetterSavepoint , to find one that is better than a given
solution, if any. Next, we provide additional explanations on each procedure.

Figure 6 shows the procedure to update the savepoints. It works on the
current set of savepoints, the current rule (before it is extended with the best
candidates), the set of candidates that have been selected to update the save-
points, and the learning set. It returns an updated set of savepoints that fulfils
two properties, namely: a) it has at most k savepoints, where k is a user-defined
parameter; b) and there is at most one savepoint that is a solution (note that
if TANGO backtracks to such a savepoint, then it returns it immediately; thus,
it suffices to keep one savepoint that is a solution).

The procedure iterates over the set of candidates and proceeds in three steps.
In the first step, it creates a new rule by adding the condition in the current
candidate and computes its score. In the second step, it searches for a savepoint
to replace, namely: if the new rule is a solution, then it searches for the only
savepoint that is a solution, if any; if it is not a solution, then it retrieves the
savepoint with the minimum score if the set of savepoints is full (since, otherwise,
there is no need to replace any savepoint). We assume that if the search for
a savepoint fails, then the rule returned is null and the corresponding score is
−∞. The third step updates the savepoints as follows: if there is a savepoint to
replace and its score is smaller than the score of the new rule, then it is replaced;
otherwise, if there is not a savepoint to replace, the new rule is added to the
set of savepoints. This guarantees that there are no more than k savepoints, of
which only one can be a solution.

Figure 7 shows the procedure to find the best savepoint. It works on the
current set of savepoints and returns a tuple of the form (r , sp), where r denotes
the rule associated with the savepoint that has the maximum score or null if no
such savepoint exists, and sp denotes the updated set of savepoints.

Figure 8 shows the procedure to find a better savepoint, as long as it is a
solution. It works on the current set of savepoints, a rule that is a solution,
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its corresponding score, and the learning set. It first searches for the savepoint
that is a solution; if it exists, then it replaces the current rule by the rule that is
associated with that savepoint if it scores better; otherwise, it returns the input
rule.

2.4. Variation points
Our learning procedure relies on a number of variation points, each of which

groups one or more heuristics that can be implemented using several alterna-
tives. We describe them in the following subsections.

2.4.1. Variation point VP1: selectCandidates
The goal of this variation point is twofold: select the most promising can-

didates to expand the current rule and some of the remaining ones to create
savepoints. This should help TANGO learn very effective extraction rules whose
efficiency does not degrade significantly when they are executed.

Heuristic H1: select best candidates. We have considered the following alter-
natives: A0) Select the candidate that provides the maximum gain to extend
the current rule and then select the following k = 20 candidates to create save-
points. A1) Select the candidate with the maximum gain as long as it is at least
80% the maximum gain that a condition can achieve on the current rule; else,
select every determinate condition; if no such condition is a candidate, then
select the one with the highest gain. To create the savepoints, we select the
candidate with the highest gain out of the candidates that result in a solution,
if any; if it corresponds to a non-determinate condition, then we also select the
candidates whose gain is at least 80% the gain of that condition; otherwise, no
more candidates are selected.

The first alternative is a simple approach that has been used many times in
the literature. Although it is very simple and might work well in some cases,
our intuition was that there would be cases in which the candidates selected
would lead to local maxima and would not help learn good rules. The rationale
behind the second alternative is that the candidate with the maximum gain
can be added to the current rule as long as its gain is high enough with regard
to the maximum gain that a condition may achieve; otherwise, it is better
to add determinate conditions because they help expand the search space; if
no determinate conditions exists, then we have to resort to the condition that
provides the maximum gain, like in Alternative A0. Note that there might be
still cases in which we need to perform backtracking. Thus, we think that it
makes more sense to select a candidate that results in a solution, unless there is
another candidate that results in more gain, in which case the former might be
kept as a savepoint, if possible. Now, if the candidates selected to extend the
current rule are not determinate, we then select the candidates that achieve a
gain that is high enough in comparison with that candidate; otherwise, if the
selected candidates were determinate, no more candidates are selected to create
savepoints. The rationale behind this idea is that if determinate conditions
are selected, it then means that there were no conditions whose gain exceeded
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80% the maximum gain since, otherwise, they would have been selected instead
of determinate conditions. Thus, in this case, we are not interested in using
conditions that do not provide enough gain to create savepoints. If a non-
determinate condition is selected to expand the rule, we can be less demanding
regarding the candidates that should be selected to create new savepoints so
that we shall only select the k best candidates as long as their gain exceeds 80%
the gain of the non-determinate condition selected to extend the current rule.
The reason why we selected k = 20 candidates and 80% the maximum gain is
purely experimental, but we cannot report on all of our results due to space
constraints; thus, we decided to report on the best ones only.

2.4.2. Variation point VP2: preProcessLearningSet
This variation point deals with simplifying a learning set so that the learning

process is more efficient; the simplification might also have a positive impact on
the effectiveness and the efficiency of the resulting rules.

Heuristic H2: reduce negative examples. We have considered the following alter-
natives: A0) Work with the whole learning set. A1) Select a subset of negative
examples that are in the neighbourhood of every positive example. A2) Select
a subset of negative examples that are in the neighbourhood of every positive
example plus a random subset of the remaining negative examples. A3) Select
a subset with the most similar negative examples that correspond to every posi-
tive example. A5) Select a subset with the most similar negative examples that
correspond to every positive example plus a random subset of the remaining
negative examples.

The first alternative is a simple approach in which every negative example
is considered in the learning process. Our intuition was that this would not be
efficient because there are typically many negative examples. Our hypothesis
was that it would be possible to discard many such negative examples from
the learning set without a negative impact on the effectiveness of the resulting
rules, as long as the negative examples that are kept are still representative of the
whole set of negative examples. The other alternatives were intended to find that
subset. The rationale behind Alternative A1 is to discard the negative examples
that are not in the neighbourhood of the nodes that correspond to the positive
examples. By neighbourhood, we refer to the nodes that can be reached within a
given radius by applying relational features transitively. We experimented with
radius r = 10 when computing the neighbourhood of a given positive example.
Alternative A2 is based on A1, but it includes a set of negative examples that are
selected randomly; we set the radius to compute the neighbours to r = 10 and
the percentage of nodes selected randomly to p = 10%. Alternative A3 searches
for the most similar negative examples and discards the remaining ones. We
measured the similarity between any two nodes using the well-known Euclidean
distance on the attributive features; in the case of non-numeric features, we
computed the difference between two different values as 1.00 and the difference
between equal values as 0.00. We experimented with the k = 50 most similar
negative examples to each positive example. Alternative A4 explores the k most
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similar negative examples for each positive example but it includes a small
percentage of negative examples that are selected randomly; we selected the
k = 50 most similar negative examples to each positive example and p = 50% of
the remaining negative examples. We experimented with many different radiuses
and percentages, but we cannot report on them all due to space constraints; this
is the reason why we report on the best values only.

Heuristic H3: binarise features. We have considered the following alternatives:
A0) Work with the original features. A1) Binarise them.

When TANGO selects a feature instantiator to extend the current rule, it
makes a blind decision: thus far, that instantiator is the best condition that
can be added to the rule, but the value of the feature is not constrained at all;
if necessary, it can be constrained later using a comparator. In other words,
constraining the value of a feature is a two-step procedure. Binarising features
is a process by means of which a single step suffices to instantiate a feature
and constraint its value. Obviously, only attributive features can be binarised
because they are the only ones that provide values that can be constrained by
means of comparators. The binarisation process works as follows: a discrete
feature f that ranges over the set of values {v1, v2, . . . , vn} is transformed into
a collection of new features of the form fv1 , fv2 , . . . , fvn ; simply put, fvi (N ) is
satisfied as long as f (N ,A) ∧ A = vi is satisfied, where N ranges over the set
of nodes, A ranges over the set of values of feature f , and i ranges in interval
1 . . n. A numeric feature f that ranges over the set of values {v1, v2, . . . , vn} is
transformed into a collection of new features of the form f θv1 , f

θ
v2 , . . . , f

θ
vn , where

θ represents a comparison operator; simply put, f θvi (N ) is satisfied as long as
f (N ,A)∧A θ vi is satisfied, where N denotes a variable that ranges over the set
of nodes, A is a variable that ranges over the set of values of feature f , θ is a
comparison operator, and i ranges in interval 1 . . n.

2.4.3. Variation point VP3: isPromisingCandidate
This variation point deals with determining if a candidate is good enough

to stop the search for new candidates. The goal is to configure TANGO so
that it can learn rules more efficiently without degrading their effectiveness or
increasing the time required to execute them.

Heuristic H4: check promising candidates. We have considered the following
alternatives: A0) No condition is considered promising enough to stop the search
unless it leads to a rule that matches all of the positive examples matched by the
current rule and discards all of the negative examples that it matches. A1) Stop
the search when the gain achieved by a condition is at least 80% the maximum
possible gain on the current rule. A2) Like Alternative A1, but we also require
the resulting rule to be a solution.

Alternative A0 is the safest one, since almost every condition is analysed and
transformed into a candidate to extend the current rule or to create a savepoint.
The only case in which not all of the candidates are evaluated is when the best
solution is found. The rationale behind Alternative A1 is that Heuristic H1
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selects a candidate whose gain is at least 80% the maximum possible gain on
the current rule; thus, we might stop the search for candidates when such a
candidate is found; the only problem would be that if that candidate proved
not to be good enough in the forthcoming iterations, then we would miss some
better candidates that would have been evaluated later in the same iteration.
Alternative A2 is a bit more demanding since it requires the candidate on which
the search stops to result in a solution.

2.4.4. Variation point VP4: ruleScorer
This variation point deals with assessing rules. The goal is to configure

TANGO so that it learns extraction rules that are more effective and efficient.

Heuristic H5: compute scores. We have considered the following alternatives,
where tp, tn, fp, and fn denote the components of a confusion matrix and N =
tp+fp+tn+fn: A0) Information Content, which computes the score as log tp

tp+fp .
A1) Accuracy-based Information Content, which computes it as log tp+tn

tp+fp+fn+tn .

A2) Satisfaction, which computes it as
tp

tp+fp− tp+fn
N

1− tp+fn
N

. A3) Laplace Estimate, which

computes it as tp+1
tp+fp+2 . A4) Piatetski-Shapiro’s measure, which computes it as

tp tn−fp fn
N 2 .
Alternative A0 computes the score as the logarithm of precision, which

penalises very much conditions that reduce the number of positive examples
matched by the current rule. Alternative A1 is similar, but it computes the
logarithm of accuracy, which takes both the number of false negatives and true
negatives into account. Intuitively, the higher the number of true positive and
true negatives, the better; contrarily, the higher the number of false positive and
false negatives, the worse. Satisfaction reaches its maximum when precision is
close to 1.00 and decreases steadily as the number of positive examples matched
decreases. Alternative A3 penalises rules that match few positive examples; if
a rule does not match any examples, then the result is 0.50, which is as effec-
tive as a random guess; contrarily, if it matches many examples, it tends to the
precision. Finally, Alternative A4 tends to give higher scores when there are
more true positives and true negatives than false negatives and false positives,
respectively.

2.4.5. Variation point VP5: bound
This variation point deals with determining whether a condition deserves to

be selected as a candidate to extend the current rule or to create a savepoint.
The goal is to configure TANGO so that it learns extraction rules more efficiently
without degrading their effectiveness or increasing their execution time.

Heuristic H6: prune candidates. We have considered the following alternatives:
A0) Do not prune at all. A1) Prune every condition that does not result in a
gain that is at least 80% the gain of the best condition found so far, unless it is
a determinate condition; if a determinate condition is found, then the pruning
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threshold is changed to 80% the maximum gain that a condition can achieve on
the current rule.

Alternative A0 is the safest one because it does not prune any of the con-
ditions that result from branching the current rule; that is, the search is ex-
haustive. The second alternative prunes the conditions that do not achieve a
high enough gain with regard to the best condition found so far; intuitively,
one might think that if the first condition achieves a given gain, then we might
trivially discard every condition that does not exceed that gain, but we guessed
that this would be too stringent, not to mention that we need to keep a few
ones to create savepoints. Note that determinate conditions are never pruned
because they help expand the search space and avoid local maxima. The key is
that when such a condition is found, we know that there is at least a condition
that can be used to extend the current rule. Actually, Heuristic H1 is not going
to select any candidates that do not achieve 80% the maximum gain once a
determinate condition is found, so we can make our heuristic much more strin-
gent safely, that is, we can prune every non-determinate condition that cannot
achieve the minimum gain.

2.4.6. Variation point VP6: postProcessRuleSet
This variation point attempts to simplify a rule set so that it is more efficient.

Heuristic H7: post-process rule sets. We have considered the following alter-
natives: A0) The rule set is not simplified. A1) The rules are simplified by
removing useless conditions, subsumed rules, and folding constants.

Simplifying a rule set might help execute the rules more efficiently. We
guessed that it would be common to find useless conditions in the rules learnt
by TANGO. This happens when determinate conditions are added to a rule;
such conditions typically provide little or no gain and they are added to escape
local maxima; it is in the next iteration that they are expected to introduce new
comparators or further feature instantiators, but there are cases in which they
are neglected forever because there are other features that result in conditions
that provide more gain. We also guessed that some rules might subsume other
rules, that is, the examples that they match are a subset of the examples that
another rule matches; in such cases, the former rule can be discarded. This
happens because every rule is learnt independently from the others. Finally,
we also thought that folding constants might help make the rules a little more
efficient and easier to understand. Typically, TANGO learns many pairs of
conditions of the form f (N ,A)∧A = v , where f denotes an attributive feature,
N a variable that can be bound to a node, A a variable that is bound to the
value of feature f on node N , and v is one of the values in the range of that
feature; such pairs of conditions may be easily simplified as f (N , v) if variable
A is not used anywhere else.

2.4.7. Variation point VP7: branch
This variation point deals with computing the set of conditions that can

possibly be added to the current rule. The goal is to configure TANGO so that
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it can learn extraction rules more efficiently without degrading their effectiveness
or increasing the time required to execute them.

Heuristic H8: allow recursion. We have considered the following alternatives:
A0) No recursion is allowed. A1) Rules are allowed to be recursive.

Alternative A0 is very simple, as usual. Alternative A1 is a little more
involved because we have to make sure that making a rule recursive does not
result in infinite recursion. Such a recursion occurs when a recursive condition
includes a variable that is instantiated with the same example that is going to
be extracted. The simplest solution to solve this problem is to determine if there
exists a complete order amongst the variable used in the recursive condition and
the variable in the head of the rule, both of which must be bound to nodes. If
such an order exists, then it means that the variable in the recursive condition
and the variable in the head cannot be instantiated with the same examples,
which guarantees that the recursion is safe; if no such order exists, then the
recursion is unsafe and must be avoided. This check can be implemented very
efficiently using Ajwani et al.’s algorithm [1], for instance.

Heuristic H9: sort conditions. We have considered the following alternatives:
A0) Conditions are generated in a random order. A1) Comparators are gen-
erated first, then slot instantiators (if recursion is allowed), and then feature
instantiators in random order. A2) Comparators are generated first, then slot
instantiators (if recursion is allowed), and then the feature instantiators are
generated using an empirical frequency-based order.

Alternative A0 is the simplest one, as usual. Alternative A1 simply makes
it explicit that we guessed that comparators would typically result in higher
gains than feature instantiators. Alternative A2 relies on an order that we have
computed empirically, cf. Table 1. Note that we have performed hundreds of
experiments and that we have used TANGO to learn thousands of rules. What
we have done is to compute the frequency with which each feature was used in
a rule; we guessed that generating the feature instantiators using that empirical
order might help learn rules more efficiently.

Heuristic H10: consider input/output modes. We have considered the following
alternatives: A0) Do not take input/output modes into account. A1) Take them
into account.

Alternative A0 is the simplest one and it helps explore as many feature
instantiators as possible. Alternative A1 restricts the relational feature instan-
tiators so that the first parameter is a bound variable and the second one is an
unbound variable. Note that such a restriction may have a subtle implication
regarding the catalogue of features and some relational features. For instance,
recall that our running example includes relational features parent and left . If
input/output modes are not taken into account, then parent(N ,M ) helps navi-
gate from a node to its parent if N is bound and M is unbound or from a node
to its children if N is unbound and M is bound; similarly, left(N ,M ) helps
navigate from a node to its left sibling or from a node to its right sibling. Note
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that this is not possible if input/output modes are taken into account; in such
cases, features right and child must be provided explicitly in the catalogue of
features or, otherwise, TANGO will not be able to find the children of a node
or its right sibling.

2.4.8. Variation point VP8: isTooComplex
This variation point deals with preventing TANGO from learning very spe-

cific rules, which is expected to have a positive impact on efficiency.

Heuristic H11: check complexity of rules. We have considered the following
alternatives: A0) Do not use any complexity criteria. A1) Use the Minimum
Description Length principle [26].

The idea behind the Minimum Description Length principle is that a rule
that requires more bits to be encoded than to encode the examples that it
matches is too complex to be explored. The number of bits to encode a rule is
computed as the sum of the bits required to encode every condition in its body,
which is computed as the number of bits required to encode the features in the
catalogue, plus the number of combinations that would result from combining
their parameters, the built-in comparators, and the target slot instantiator (if
recursion is allowed).

2.5. Configuration method
Our proposal relies on an open catalogue of features and many variation

points. In order to configure it, it is necessary to use a sound method that allows
to explore the different alternatives systematically, so that we can make informed
decisions. Our configuration method is purely experimental. We suggest that a
repository of datasets from different web sites should be assembled. In order for
the conclusions to be statistically solid, the repository must provide a sufficiently
large number of documents from different web sites on different domains.

The proposal should be run on this repository and the usual effectiveness
and efficiency measures should be computed, namely: precision (P), recall (R),
the F1 score (F1), learning time (LT ), and extraction time (ET ). Let M denote
the previous set of performance measures. We assume that the experimenter
provides a map β that assigns a weight in range [0.00 . . 1.00] to every measure
in M . Obviously, the weights must sum up to 1.00 so that they are consistent.

Now, assume that we are dealing with a performance measure m, that we
have gathered a set of values W regarding it, that a denotes the minimum value
in set W , and that b denotes the maximum value. If m has to be maximised,
then we define its set of normalised values as W ′ = {w ′ | ∃w · w ∈ W ∧
w ′ = (w − a) div (b − a)}; otherwise, we define its set of normalised values as
W ′ = {w ′ | ∃w · w ∈ W ∧ w ′ = 1.00 − (w − a) div (b − a)}. (x div y equals
x/y if y ̸= 0.00; otherwise, it equals 1.00.) The values in W ′ range in interval
[0.00 . . 1.00], so that the closer a value to the lower bound the worse and the
closer to the upper bound the better. Let M ′ denote a set of new measures that
are in one-to-one correspondence with the measures in M , but are normalised
according to the previous procedure.
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Let p denote a configuration of our system in which we have made some
decisions regarding the alternative to implement a heuristic in a variation point.
Our proposal is to compute its rank as follows:

K p =
∑

m′∈M ′

β(m)K p
m′

K p
m′ =

MDRp
m′

MDRmax
m′

where MDRp
m′ denotes the mean-to-deviation ratio of alternative p with regard

to normalised performance measure m ′ and MDRmax
m′ denotes the maximum

mean-to-deviation ratio of performance measure m ′ across all of the alternatives.
This ratio is defined as follows:

MDRp
m=

{
(µp

m )2

σp
m

if σp
m ̸= 0.00

µp
m otherwise

where m denotes an arbitrary performance measure, µp
m denotes its mean value

regarding alternative p, and σp
m its standard deviation regarding alternative p.

Note that this ratio maps every measure onto a value that weights its mean
value with the inverse coefficient of variation (µp

m/σp
m) as long as the standard

deviation is not zero; intuitively, the smallest the coefficient of variation with
respect to the mean value, the better that measure because it is more stable.
If the standard deviation is zero, the mean-to-deviation ratio is then trivially
defined as the mean value.

We would also like to mention that our experimental analysis has revealed
that some alternatives fail when they are applied to some datasets. Sometimes,
the reason is that they consume too much memory; sometimes, they cannot learn
a rule in a reasonable time; sometimes, the dataset has some characteristics that
make it impossible to execute the learner on it. That means that we also need
to compute a failure ratio for every alternative under consideration, which is
defined as follows:

FR =
F
D
,

where F denotes the number of datasets on which an alternative did not work,
and D denotes the number of datasets on which the alternative was run. In-
tuitively, the closer to 0.00 the better and the closer to 1.00 the worse. We
obviously, are not willing to accept an alternative whose failure ratio is different
from 0.00, since that means that it is not generally applicable.

3. Configuring our proposal

In this section, we report on how we have configured our proposal. Our
experimentation environment was set up as follows:

24



�������� 	
�� 	����

������

�������

������

������

��������

������

���������

���
�
���

��������

���������

�����
���

��������

�������
���

������

�����������	�
������� �	���	��������	����	��������	�� ��������������� ������������ ������������������ ������ �!�!�� ��"#!"��

#��	�� �	���	��������	����	��������	�� ��������������� ��������#�� ������������������ ����� ��!���!� ��"!�"��

��$��%���	�� �	���	��������	����	��������	�� ��������������� ������ ���� ������������������ ����&��&���!� ��"�!"��

'����(%��)� �	���	��������	����	��������	�� ��������������� ������ �� �� ������������������ �������!!���� ��"!�"��

�	��	*�+��� �	���	��������	����	��������	�� ��������������� ������#����� ������������������ ������������!� ��"!�"��

 !"!!� #$" %�  !"!!� ���&&�'! "()� !!*)+*!!

,%�	�-�)� '���	�	��)		���������������������	)����������

�����������������	��������

��������������� ����������� ������������������ ������#������ ��"��"��

'��+�. '���	�	������������	)�������������������	���

������������������

��������������� ����� ��#�� ������������������ ����� �������� ��"!�"��

'��/	�� '���	�	��)		������������	����	�����0������������

���������	)��������������������	�������������

��������������� ������&�&�� ������������������ ������������!� ��"��"��

'�������'���*	�1��� '���	�	���	����	�����0����	)�������������������	���

������������������

��������������� �������!���� �������������&� �� ��������&�!�� ��"��"��

��������,%�	�%�)� '���	�	��)		������������	����	������������������

�����������������	��������

��������������� �������� �� ������������������ ����� ��!���&� ��"�!"��

 !"!!� &)+"+#� (#"'%� �����#�%+$" $� !(*& *+%

2��� 3	������))�������)		��������� ��������������� ������#����� �������������� ���� ����� �������� ��"��"��

2	��� 3	������))�������)		��������		������4�������� ��������������� ������  � �� ������������������ �����!� �#���� ��"�#"��

5���. 3	������))�������)		��������		������4�������� ��������������� �������!���� ������������������ ������� ��!�� ��"!�"��

-%��� 3	������))�������)		��������		������4�������� ��������������� ����������� ������������������ ������������� ��"��"��

 !"!!� & ("!#� (+"')� ���& �'$ "+$� !&* %* !

6���+
 
	��	��������))�������	�������������� ��������������� �������#���� ������������������ ������&������ ��"�!"��

,����+�)�����,��	�� 
	��	��������))�������	�������������� ��������������� ������������ ������������������ �����&��&����� ��"#�"��


������� 
	��	��������))�������	����*�.������������ ��������������� ����������� �������������&���� ��������!��!�� ��"� "��


��1�	� 
	��	��������))�������	�������������� ��������������� ������������ ����������������#� �����!��� ���� ��"��"��

1���)��2����� 
	��	��������))��������������� ��������������� �������#���� ������������������ ����#�&������ ��"��"��

 !"!!� ++"!#� (#"! � ���&!�#)#" !� !(*+'* $

7��0�)��� 8�����)�������������������%�� ��������������� ������������ ������������� ���� ����� �����&�� ��"��"��

,���'	�*������ 8�����)�������������������%�� ��������������� ���������#�� ������������������ �������� �#�� ��"#!"��

+���)� 8�����)�������������������%�� ��������������� ������������ ������������������ �������������� ��"�&"��

5
�7������ 8�����)�������������������%�� ��������������� �������#���� ������������������ ��������&&�&�� ��"�#"��

 !"!!� ( "'#� (#"')� �����'�% &")!� !(*!'* !

,�������+	���� $�����������)����	�����	�������%������ ��������������� ��������� �� ���������������!�� �������� &���� ��"��"��

,���+	���� $�����������)����	�����	�������%������ ��������������� ������������ �������������&���� ������#�&���� ��"#�"��


������+	���� $��������������	�������%������ ��������������� ������! �#�� ������������������ �������������� ��"��"��

�+
( $�����������)����	�����	�������%������ ��������������� ������������ ������������#����� ����&�������� ��"�&"��

1	%��$���� $�����������)����	�����	������ ��������������� ������������ �������������!�#�� ������ &!���� ��"!#"��

 !"!!�  %"&)� +'")&� ���&'�&)("+'� !&*&$* $

,���(		0� (		0���������%��	������������� ��������������� ������!&���� �������������!���� �����&�����#�� ��"#�"��

,9��	���(		0� (		0���������%��	������������������ ��������������� ������#����� ������������������ �����������&�� ��"!�"��

(�����6	�)�(		0� (		0���������%��	������� ��������������� ������#����� �������������#�!�� ���� �����!�� ��"# "��

+����(		0� (		0���������%��	������ ��������������� ����������� ���������������!�� ������!�!��!� ��"!#"��

6�����	��� (		0���������%��	������� ��������������� ������ ���� ���������������!�� ������&!����� ��"��"��

 !"!!� %&"+(�   "%)� ���&(�+&+"(!� !&*)$*+%

3�����3	*���� 3������������������������9���������%�� ��������������� �������!���� ������������������ ������&#����� ��"��"��

:8$, 3������������������	%������	����	�� ��������������� ���������&�� ������������������ �����&� !����� ��"��"��

,-3�6	�)�-	% 3�����������������������������9��������	%���� ��������������� ������ ����� ������������������ ����!��&#�!�� ��"!�"��

;$7 3������������������������9�������������	������ ��������������� ������&#���� ������������������ �������!#���� ��"�!"��

1	����(��� 3�����������������������������9��������	%�������%�� ��������������� �����!����� ������������������ �����������&� ��"� "��

 !"!!� '#"%#�  !"!!� ���(%�(%#"' � !(*(%* $

��
�
�

�
�
��

�
	
�

��
�
�
	

�
�
�
�
��

�
�
	
�
�

	������

	������

	������

	������

	������

	������

	������

	������

�
�
�

�
�
�
�
�
�

�

�
�
	
��

Table 4: Description of our datasets (Part 1).
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Table 5: Description of our datasets (Part 2).

Relative weights of performance measures: we set them to β(F1) = 0.50,
β(LT ) = 0.30, and β(ET ) = 0.20. These figures reflect that effectiveness
is very important, since the goal is to achieve rules that are very precise
and have high recall, and the learning time is a little more important than
the extraction time in this particular context.

Experimentation datasets: Tables 4 and 5 describe our experimentation da-
tasets. They provide many actual web documents from a variety of do-
mains, including the semi-structured datasets from the classical ExAlg
and RISE repositories. The last column reports on the time that we spent
at annotating them completely, which is less than two hours in average.
Note that we had to annotate all of the documents in order to compute the
effectiveness results. In a production setting, it suffices to annotate a few
documents that provide at least an example of every possible formatting;
in other words, the annotation effort is not a problem.

Hardware and software configuration: we performed our experiments on
a virtual computer that was equipped with four Intel Xeon E7 4807 cores
that run at 1.87 GHz, had 64 GiB of RAM, and 2 TiB of storage. The
operating system was Windows 7 Pro 64-bit and we used the following
software packages: Oracle’s Java Development Kit 1.7.9_02, JSoup 1.7.1,
PhantonJS 2.1.1, and SWI-Prolog 5.4.7. No changes were made to the
default hardware or software configurations.

Tables 6 and 7 summarise the results of our analysis. We report on the
mean and the standard deviation of each performance measure, plus the mean-
to-deviation ratio (MDR), the failure ratio (FR), and the rank (K ) of every
alternative. All of the results were computed using a learning set that was
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Table 6: Results of our configuration analysis. (Part 1)

composed of six documents that we selected randomly; the remaining ones were
used for testing purposes.

3.1. Variation point VP1: selectCandidates
Heuristic H1: select best candidates. Our conclusion regarding effectiveness is
that Alternative A1 produces better results since precision, recall, and the F1

score increase considerably with regard to Alternative A0. In average, the pre-
cision of Alternative A1 is 0.21 ± 0.39 higher, its recall is 0.23 ± 0.42 higher,
and its F1 score is 0.23± 0.40 higher than the corresponding measures regard-
ing Alternative A0. Furthermore, the standard deviation of every effectiveness
measure in Alternative A1 is smaller, which means that it is generally more
stable than Alternative A0, that is, it does not generally produce rules whose
effectiveness largely deviates from the average.
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Our conclusion regarding efficiency is that Alternative A1 seems to be faster
when learning rules since it is 139.34 ± 683.13 minutes faster than Alterna-
tive A0, which is a significant improvement; however, Alternative A1 is slower
when executing the rules that it learns, but we must take into account that there
are many datasets in which Alternative A0 could not learn any rules and that,
sometimes, the resulting rule sets were unable to match all of the positive exam-
ples; this is very likely the reason why the rules produced by Alternative A0 are
1.98±9.42 minutes faster. Backtracking was not performed in many cases; then,
our experiments cannot support the idea that Alternative A1 is better or worse
than Alternative A0 regarding the selection of candidates to create savepoints.

The rank of Alternative A1 is 0.66, which is much better than the rank of
Alternative A0, which is 0.14. Note also that the failure ratio of Alternative A1
is exactly zero, which means that it was able to learn rules for every dataset,
whereas Alternative A0 was not. Therefore, our conclusion is that Alterna-
tive A1 is the best one.

3.2. Variation point VP2: preProcessLearningSet
Heuristic H2: reduce negative examples. Our conclusion is that the best alter-
native is A2. Selecting the closest neighbours in a radius has proved to help
TANGO learn rules that discern well amongst positive and negative examples
that are very near in the DOM tree. Furthermore, selecting a small percent-
age of the remaining negative examples helps it produce rules that are general
enough to make a difference amongst the positive examples and others that are
very far away in the DOM tree. This alternative is a bit worse regarding preci-
sion and the F1 score than the baseline; it behaves similarly in terms of recall
and extraction time, but improves very much in terms of learning time since it
is 8.86 ± 123.45 minutes faster. Alternative A4 got a rank that is close to the
rank of the baseline but it is still a bit worse. Neither did Alternatives A1 nor
A3 produce better results than the baseline.

Heuristic H3: binarise features. To our surprise, the results prove that the best
choice is Alternative A0, that is, not binarising the features. Regarding effec-
tiveness, the precision of the baseline is 0.03±0.24 higher, its recall is 0.04±0.26
higher, and its F1 score is 0.03 ± 0.26 higher. Regarding efficiency, the differ-
ences are more significant: Alternative A1 is 587.76 ± 1 889.52 minutes slower
with regard to Alternative A0 when learning rules and 165.00± 644.64 minutes
slower when the rules are executed. We found several explanations for that
behaviour, namely: a) the number of features to be considered grows dramati-
cally, which leads to extremely large learning sets that are very costly to process;
b) when Alternative A0 is used, TANGO typically selects several determinate
conditions in the first iteration, that is, several feature instantiators, and the
corresponding feature values are typically constrained in the forthcoming iter-
ations by means of comparators. This means that the number of comparators
that are explored and evaluated depends on the number of feature instantiators
that were added to the rule in the previous iteration. When binarisation is
used, a feature instantiator both instantiates a feature and constrains its values
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at the same time, which means that many features that are not promising at all
must be considered in each iteration. Consequently, the number of candidates
to explore and evaluate in each iteration grows significantly when binarisation
is used. Furthermore, the standard deviation of the performance measures is
smaller regarding Alternative A0, which means that it is generally more stable
than Alternative A1. Note, too, that Alternative A1 was unable to find a set of
rules in a few cases. Thus, our conclusion is that the best alternative is to use
the features as they are provided.

3.3. Variation point VP3: IsPromisingCandidate

Heuristic H4: check promising candidates. Our results suggest that the best
alternative to implement this heuristic is the default one. Alternative A1 has
0.03 ± 0.13 less precision, 0.03 ± 0.14 less recall, and 0.03 ± 0.13 less F1 score
than Alternative A0; furthermore, its learning time is 2.11 ± 123.76 minutes
worse and the extraction time is 1.54 ± 12.77 minutes worse. We found out
that the first candidate that exceeds the selected threshold is not typically the
best one, and that it is common that some candidates that are explored later
provide more gain and result in better rules; unfortunately, this alternative pre-
vents TANGO from finding them. In other words, the number of candidates
that are explored in each iteration is smaller, but the total number of iterations
increases; this contributes to increasing the learning time and producing more
specific rules that are not likely to work well with new unseen documents. Nei-
ther did Alternative A2 perform better: it was able to learn solutions faster
than Alternative A0, exactly 2.98±101.62 minutes faster; unfortunately, the re-
sulting rule sets were larger since the individual rules learnt were more specific,
which worsened the extraction time by 1.15± 11.89 minutes. Notice, too, that
Alternative A0 is the most stable one since it achieves the lowest deviations. As
a conclusion, Alternative A0 is the best one to implement this heuristic.

We think that the more stringent the criterion to select a promising can-
didate, the better the effectiveness. However, we did not manage to find a
criterion that could improve on the baseline because if it is very stringent, then
the behaviour of TANGO is similar to the baseline, i.e., it tends to perform an
exhaustive search.

3.4. Variation point VP4: ruleScorer

Heuristic H5: compute scores. Regarding effectiveness, none of the alternatives
that we have analysed can beat the baseline, but some of them achieve results
that are very similar. This means that using the logarithm of the precision of a
rule contributes positively to the overall performance of our system. Accuracy-
based Information Content is the one that achieved the best results below the
baseline, but the baseline provides 0.01 ± 0.10 more precision and 0.01 ± 0.11
more F1 score. Regarding efficiency, Alternative A1 proved to learn 9.61±105.80
minutes faster, but it was 1.03±11.91 minutes slower when executing the rules.
Laplace ranks at the third place, which makes sense, since it is also based on pre-
cision, like Information Content. However, one can easily realise the advantage
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of using the logarithmic function, chiefly in both learning and extraction times.
Satisfaction is not bad regarding effectiveness, but it is similar to the baseline
regarding effectiveness and it is 15.64±105.54 minutes slower regarding learning
time and 2.24±11.94 minutes slower regarding extraction time. Finally, Piatet-
ski Shapiro’s measure seems to be the worst one, since it achieved good results
regarding efficiency by sacrificing the effectiveness considerably. Our conclusion
is that every alternative, but the last one, can achieve good results regarding
effectiveness.

However, the differences in efficiency are more remarkable. According to our
intuition and to the K rank, it makes sense to select Information Content as
our rule scorer since it seems to be the best alternative, followed by Accuracy-
based Information Content. There is not a clear reason why some rule scorers
performed better than others, but, in most cases, they all were able to guide the
search properly. That is, the system was able to find perfect rules that matched
the whole set of positive examples in the learning sets. However, it seems that
the choice of some conditions during the learning phase had an impact on the
testing phase and some of the candidates selected by some alternatives were not
general enough to extract the information from the testing sets. This caused
a penalty to precision and/or recall, which made a difference in some datasets
because the system was unable to extract all of the positive examples or it
extracted some more negative examples.

3.5. Variation point VP5: bound

Heuristic H6: prune candidates. Regarding effectiveness, there is a tie, because
there are no clear differences between precision, recall, or the F1 score between
alternatives A0 and A1. However, Alternative A1 is 7.85± 99.77 minutes faster
than Alternative A0 when learning rules, which is an important difference. Re-
garding the extraction time, the baseline is 1.74± 12.62 minutes faster. As the
learning time that results from using Alternative A1 is much better, it ranks at
the top and we can then select it as the best one. It makes sense that Alter-
native A1 is as effective as the baseline because it just prunes candidates that
are not going to be selected to expand the rule according to Heuristic H1, so
that good candidates are still kept; however, it avoids considering a number of
candidates that are not promising enough so that it reduces the learning time.

3.6. Variation point VP6: postProcessRuleSet

Heuristic H7: post-process rule sets. Again, the differences in effectiveness are
not very significant. In some cases performing post processing led to better re-
sults regarding precision, recall, or the F1 score, but in other cases, it resulted in
worse results; thus, we conclude that both alternatives behave similarly regard-
ing effectiveness. We studied this issue and we found out that the problem was
that removing some conditions or rules from a rule set may not have any impact
when the rules are executed on the learning set, but may have an impact when
they are executed on a testing set and result in different precisions or recalls.
Finding useless conditions or subsumed rules also has an impact on efficiency:
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we have found that the learning time is 24.93± 107.13 minutes slower with Al-
ternative A1. Contrarily, the time to execute the rules is, as expected, better,
since it is 2.05±12.04 minutes faster than the baseline. However, this difference
is not enough when compared to the time spent in the learning process. What
makes the learning process slower in Alternative A1 is the evaluation process
once the rules are learnt. That is, analysing every single condition in the context
of a rule to check if removing it can have a negative impact on their effective-
ness. Furthermore, analysing every single rule in a rule set to find out subsumed
rules also has a negative impact on effectiveness. Thus, our conclusion is that
post-processing the resulting rule sets is not really worth.

3.7. Variation point VP7: branch

Heuristic H8: allow recursion. The differences in effectiveness are not very
significant. What makes a big difference is the learning time, which is 20.43 ±
115.14 minutes slower in Alternative A1. This had a very negative impact on the
computation of the rank and made us select the baseline as the best alternative
in this heuristic. The reason why Alternative A1 took longer during the learning
phase is because it has to compute if there is an order between any two variables
that can be instantiated with nodes, which took very long and the rules did not
improve because there was not a single case in which the slot instantiator was
included in the body of the rule, so there were not any improvements regarding
making rules more simpler and/or general.

Heuristic H9: sort conditions. Note that it is Alternative A2 the one that per-
forms the best according to our rank, which was not surprising. The baseline
seems to perform a little better than Alternative A2 regarding effectiveness
but the differences are negligible. Alternative A0 results in a precision that is
0.01 ± 0.13 higher, a recall that is 0.00 ± 0.10 higher, and an F1 score that is
0.01 ± 0.12 higher than the corresponding ones in Alternative A2. However,
both alternatives A1 and A2 are faster than the baseline when learning rules,
namely: Alternative A1 is 3.54 ± 68.91 minutes faster and Alternative A2 is
5.86 ± 79.74 minutes faster. However, regarding the extraction time, Alterna-
tive A2 beats both Alternatives A0 and A1 since it is 2.28±12.02 minutes faster.
The improvement in both learning and extraction times led us to select Alter-
native A2 as the best one. It makes sense that sorting the features according
to their empirical frequencies results in better timings since the features that
have proven to work better at making a difference amongst the positive and the
negative examples are prioritised and this helps find the best conditions faster.

Heuristic H10: consider input/output modes. Again, the differences in effec-
tiveness are not very significant. Regarding the efficiency, it was expected that
Alternative A1 reduced the learning time since there are some conditions that
are not generated during the branching procedure; our experimental results
confirm this idea because Alternative A1 is 2.08 ± 62.98 minutes faster than
Alternative A0. Unfortunately, the extraction time worsened because it was
1.74 ± 2.57 minutes slower in Alternative A1. Thus, the only improvement on
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learning time of Alternative A1 regarding A0 is not enough to select it. As a
conclusion, we keep Alternative A0 as the best one.

3.8. Variation point VP8: isTooComplex

Heuristic H11: check complexity of rules. There are no differences in effective-
ness since the rules learnt are exactly the same. It seems that the rules never
become very complex since, in most of the cases, just one rule was enough to
match the whole set of positive examples in the learning set. Consequently,
there are not any differences regarding extraction time. However, computing
the bits to encode each condition that is added to a rule and encoding the ex-
amples that it matches makes the learning process a bit more inefficient. This
is why the learning time in Alternative A1 is 6.85± 95.31 minutes slower. As a
conclusion, we prefer to keep Alternative A0 as the best one.

4. Experimental analysis

In this section, we report on the results of our experimental analysis and
provide an insight into the difficult cases that we have found. We used the same
experimental environment as we used to configure our proposal. We found an
implementation for SoftMealy [17] and Wien [21], which are classical proposals,
and RoadRunner [9], FiVaTech [19], and Trinity [29], which are recent propos-
als; we also experimented with an approach that is based on Aleph [31]. We
used Iman-Davenport’s test to find out if there are statistically significant dif-
ferences in the empirical ranks and then Hommel’s test to compare the best
ranked proposal to the others. We used Kendall’s Tau test to check if there is
a significant correlation between the number of errors in the input documents
and the effectiveness of our proposal. The statistical tests were performed at
the standard significance level α = 0.05.

4.1. Effectiveness analysis
Table 8 reports on the raw effectiveness data that we got from our experi-

mentation. The first two lines also provide a summary of the results in terms
of mean value and standard deviation. Table 9 summarises the results of our
statistical analysis.

Regarding precision, TANGO seems to be the best proposal; furthermore, it
is the most stable because its standard deviation is the smallest one. The other
proposals can also achieve good results regarding precision, but their deviation
with respect to the mean is larger. Note, however, that some other proposals
can achieve results that are very good, too, chiefly Aleph. Iman-Davenport’s
test returns a p-value that is nearly zero, which is a strong indication that there
are differences in rank amongst the proposals that we have compared. Since
TANGO ranks the first regarding precision, we now have to compare it to the
others using Hommel’s test. It confirms that the differences in rank amongst
TANGO and Trinity, SoftMealy, FivaTech, Wien, and RoadRunner, are statis-
tically significant because it returns adjusted p-values that are very small with
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Table 8: Effectiveness results.
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Table 9: Statistical ranks regarding effectiveness.
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regard to the standard significance level. In the case of Aleph, the statistical test
did not find any significant differences since the corresponding adjusted p-value
is greater than the standard significance level. In other words, our experimental
data provides enough evidence to reject the hypothesis that TANGO behaves
similarly to Trinity, SoftMealy, FivaTech, Wien, and RoadRunner, regarding
precision; that is, it supports the idea that TANGO can learn rules that are
more precise than the other proposals, but we cannot reject the hypothesis that
TANGO behaves similarly to Aleph.

Regarding recall, TANGO seems to be the best proposal; furthermore, it is
the most stable because its deviation is the smallest one. Note, however, that
the other proposals can achieve results that are very good, too, chiefly Trinity
and Aleph. Iman-Davenport’s test returns a p-value that is very close to zero,
which is a strong indication that there are differences in rank amongst the
proposals that we have compared. Hommel’s test confirms that the differences
in rank between TANGO and the other proposals are statistically significant at
the standard significance level. As a conclusion, the experimental data provides
enough evidence to reject the hypothesis that TANGO behaves similarly to the
other proposals regarding recall; that is, it supports the idea that TANGO ranks
at the first position.

Regarding the F1 score, TANGO is the best one and the most stable. Trinity
and Aleph are also very stable, but their results regarding F1 are a bit poorer.
Iman-Davenport’s test returns a p-value that is nearly zero, which strongly sup-
ports the hypothesis that there are statistically significant differences in rank.
Hommel’s test returns adjusted p-values that are clearly smaller than the sig-
nificance level in every case, which supports the hypothesis that the differences
in rank between TANGO and every other proposal are statistically significant,
too; that is, we can safely assume that it ranks the first.

Since TANGO works on the tree representation of the input documents,
we need to parse them and correct their HTML errors. It was then necessary
to perform a statistical analysis to find out if our experiments provide enough
evidence to conclude that the presence of errors in the input documents has
an impact on the effectiveness of our proposal. Kendall’s Tau test returned
τ = −0.10 with p-value 0.59. Since τ is very close to zero and that the p-value
is clearly greater than the standard significance level, then the experimental data
does not provide enough evidence to reject the hypothesis that the correlation
is zero. In other words, our experiments do not provide any evidences that the
effectiveness of our proposal may be biased by the errors in the HTML code of
the input documents.

Our conclusions are that TANGO outperforms the other proposals regarding
effectiveness and that it is the proposal whose results are more stable. The
statistical tests that we have performed have found enough evidence in our
experimental data to support the hypothesis that the differences in the empirical
rank amongst TANGO and the other proposals are significant at the standard
significance level, except for the case of precision, in which case the experimental
data does not provide enough evidence to conclude that TANGO and Aleph
perform differently. Note, too, that proposals like RoadRunner, FiVaTech, and
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Aleph cannot deal with all of our datasets; such situations are indicated with a
dash in Table 8. The reason is that they took more than 1 CPU day to learn a
rule or that they raised an exception; in both cases, we could not compute any
effectiveness measures for the corresponding datasets.

4.2. Efficiency analysis
Table 10 reports on the raw efficiency data that we got from our experi-

mentation. The first two lines also provide a summary of the results in terms
of mean value and standard deviation. Table 11 summarises the results of our
statistical test.

Regarding learning times, it seems that Trinity is the proposal that takes
less time to learn a rule set. In most cases, it does not take more than a tenth of
a second. It is followed by RoadRunner, SoftMealy, and Wien, whose learning
times are very similar; then come Aleph and FivaTech; finally, TANGO ranks
at the last position. Iman-Davenport’s test returns a p-value that is very close
to zero, which clearly supports the hypothesis that there are differences in rank
amongst these proposals. Hommel’s test also returns adjusted p-values that
are very small with respect to the significance level, which also reveals that
the experimental data provides enough evidence to support the hypothesis that
Trinity performs better than the other proposals.

Regarding extraction times, Wien, SoftMealy, Aleph, and TANGO seem to
be the proposals that have the worst performance; RoadRunner and Trinity
seem to be very similar; finally, FivaTech seems to be in the middle and its
extraction time is still competitive. The timings regarding TANGO are the
worst, since applying the rules learnt takes roughly 221.68 seconds in average;
neither is its standard deviation small, which means that the results are not
as stable as we wished. Iman-Davenport’s test returns a p-value that is nearly
zero, which clearly indicates that there are statistically significant differences
in the empirical rank. Hommel’s test returns adjusted p-values that are not
smaller than the standard significance level regarding the comparisons of Trinity,
RoadRunner, and FivaTech. Therefore, we cannot reject the hypothesis that
they behave statistically similarly regarding extraction times, that is, we have to
assume that they all rank at the first position. The test, however, finds enough
evidence to reject the hypothesis that the previous proposals and the others
behave similarly regarding the extraction time.

Note that we report on the efficiency figures regarding a research prototype
of TANGO. It was implemented in Java and relies on a free Prolog engine to im-
plement rules; we think that an ad-hoc implementation would be more efficient
because it would avoid wasting resources at exchanging data with the Prolog en-
gine and going through its compilation and unification processes. Recall that we
focus on web information extraction problems in the context of Enterprise Sys-
tems Integration, where the challenge is to learn rules with very high precision
and recall, and our experimentation confirms that we have succeeded regarding
this issue. Thus, we think that the penalty to learn more effective rules is not
a serious drawback.
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Table 11: Statistical ranks regarding efficiency.

4.3. An insight into the difficult cases
Although effectiveness is generally close to 100%, there are some datasets in

which our proposal could not reach at least 90% precision and/or recall, which
we consider the minimum sensible threshold nowadays. We have gone through
these cases and we have found that the reason is not related to the structure of
the documents, but to the six documents that were randomly selected for the
learning set and/or the alternatives that we selected in our default configuration.

Precision is poor regarding datasets 6 Figure Jobs and UEFA Players. The
problem was due to the fact that we selected Alternative A2 to implement
Heuristic H9, namely: sort conditions according to our empirical order. This
alternative led to a tie amongst several feature instantiators when extending a
partially constructed rule, which was broken arbitrarily. This resulted in adding
a feature instantiator that was more general than it would have been using
Alternative A1 or breaking the tie differently; the problem with that feature
instantiator is that it matched some negative examples, which obviously had a
negative impact on precision. There was also a problem with precision in dataset
E-Bay Bids, namely: we could learn rules with precision 1.00 when we explored
Alternative A1 in Heuristic H1 to select the best candidate conditions to extend
the current rule and to create savepoints; the precision remained 1.00 when
we explored Alternative A2 in Heuristic H2 to reduce the number of negative
examples. Unfortunately, Alternative A1 in Heuristic H6 removed some slot
instantiators that were very specific. As a consequence, the resulting rule was
more general than expected, which contributed to increasing recall from 0.72 to
0.86, but reduced precision from 1.00 to 0.87. The problem regarding precision
in the Web MD and the Disney Movies datasets was the same as in the E-Bay Bids
dataset: recall was improved at the expense of extracting some false positives,
which had a negative impact on precision.

Recall is poor regarding datasets 4 Jobs, Career Builder, and Dr. Scores; the
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reason is that the documents in the learning set did not account for enough
variability regarding a few slots; as a result, the rules that TANGO learnt were
not appropriate for some testing documents, which had a negative impact on
recall. In the case of Career Builder, there was an additional problem with the
implementation of Heuristic H9: there was a tie when selecting the feature
instantiator to extend a rule, and it was broken in favour of a candidate that
resulted in a rule that was more specific than it should have been: precision
improved from 0.92 to 0.93, but recall worsened from 0.91 to 0.89. In the case of
dataset E-Bay Bids, the recall is poor solely due to the six random documents that
were selected for the learning set, which did not account for enough variability.

We also went through the cases in which our proposal took more than 100
minutes to learn a rule set. Our first intuition was that there might have been
some errors in the annotations. Our experience proves that such errors have
an important negative impact on efficiency because TANGO typically explores
the search space exhaustively before concluding that no rule can match both
the correct and the incorrect positive examples and discard both the correct
and the incorrect negative examples. After checking our datasets, we did not
find any annotation errors. The problem was simpler: for instance, in datasets
Auto Trader and Soccer Base, we had to learn rules for roughly ten different slots,
whereas in dataset Amazon Pop Artists there are only two slots, which clearly
justifies the extra learning time; in datasets like Trulia, IAF, IMDB, and Soul Films
the problem was not with the number of slots, but with the many different
formats in which they are rendered, which complicated the search for a rule set
that takes them all into account.

5. Related work

In the introduction, we provided a short survey of the many existing pro-
posals to extract information from web documents. In this section, we focus on
the proposals that are most closely-related to ours, namely: SRV [13], Irmak
and Suel’s proposal, L-Wrappers [3], and Fernández-Villamor et al.’ proposal.
In the following subsections, we compare them to TANGO along the following
dimensions: their catalogues of features, their learning procedures, their varia-
tion points, and their configuration method; we conclude with some additional
miscellaneous comparisons.

5.1. Catalogue of features
For a machine learner to work, it has to be fed with a representation of the

input documents that maps them onto a number of features from which it is
possible to discern the difference between the information to be extracted and
the information to be ignored. It does not make sense to believe that a single
catalogue of features can deal with every web site or that it shall be appropriate
forever. For instance, there are web sites that use intricate formats to make
it difficult for software agents to extract information from them; furthermore,
ten years ago it was usual to use HTML tables to render information, which
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is nowadays a deprecated technique. As a conclusion, it is expected that the
catalogue of features needs to be replaced or at least adapted from time to time.
That it is why it is of uttermost importance that it is open and that the proposal
is not bound with the specific features that it provides.

SRV relies on a limited catalogue of features that includes some HTML
features and a few user-defined ones, but no DOM or CSS features; it also in-
cludes relational features to navigate from one token to the next or the previous
one, or to the first token of the next column, the previous column, the next
row, the previous row, or the header when dealing with tables. SRV features
can only be computed on tokens, not on sequences of tokens or nodes. Irmak
and Suel’s proposal builds on a catalogue that includes a subset of HTML and
DOM features, plus some user-defined features; unfortunately, the authors did
not provide many details on them. L-Wrappers relies on a unique attributive
feature to map nodes onto their corresponding tags and four relational features:
next sibling, parent, first child, and last child. As a result, the conditions in the
rules basically attempt to classify nodes by means of their tags and the tags of
their neighbours. Fernández-Villamor et al.’ proposal considers a feature that
classifies HTML tags into links, images, and other tags, a subset of DOM fea-
tures regarding bounding boxes, widths, heights, font size, font weight, and font
family (which are narrowed to serif, sans-serif, and monospace families), plus a
relational feature that allows to fetch the parent of a node.

TANGO relies on an extensive catalogue of attributive features that includes
every HTML, DOM, and CSS feature defined by the W3C recommendations plus
user-defined features; the catalogue of relational features includes features to
fetch the parent of a node, its ancestors, its children, and siblings. The features
are computed on nodes, which means that some of them work on their tokens.
The catalogue has been designed so that it can be easily replaced, since there is
nothing in our proposal that is bound with the specific features provided by the
catalogue. The catalogues of features that are provided by other proposals are
very limited. In the case of SRV, it is open and can be replaced because there is
nothing in the proposals that is specific to the features in the catalogue; in the
case of Irmak and Suel’s proposal, the catalogue seems to be open, too, but the
authors did not provide many details; in the case of L-Wrappers or Fernández-
Villamor et al.’ proposal the catalogue cannot be considered open because there
are subtle inter-dependencies with the learning procedure.

5.2. Learning procedure
Learning procedures can be top-down or bottom-up. In the former case,

the search for rules starts with overly-general rules that match every example
in the learning set; it then adds conditions that constraint the examples that
are matched, and the process continues until a rule that matches at least a
positive example and no negative example is found. In the latter case, the
search starts with overly-specific rules that match a single positive example; it
then generalises or drops some conditions so that the resulting rules match as
many positive examples as possible, and the process continues until no further
generalisation is possible. In practice, both approaches have proven to work
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well, even though the bottom-up approach has got some criticism regarding
information extraction [13]. TANGO is a top-down proposal, so we restrict our
attention to SRV and L-Wrappers, which are also top-down.

A difference with regard to SRV and L-Wrappers is that TANGO is intended
to learn extraction rules for slots that are structured hierarchically. That is,
TANGO can deal with data models in which the information to be extracted
is represented by means of records that are composed of attributes or further
nested records. In other words, TANGO first learns rules to extract first-level
slots and then creates specific learning sets to learn additional rules to extract
their nested records or attributes. This approach has proven to work very
well in practice because it reduces the size of the learning sets significantly.
Furthermore, it is a sensible approach to work with documents that have listings
of records, since, otherwise, it would not be easy to identify which slots are
nested into which other slots.

There are many additional differences between TANGO and SRV, namely:
a) SRV’s learning process requires a specific-purpose procedure for each type of
condition. Furthermore, it also requires a specific-purpose procedure to gener-
ate the first condition in the body of a rule. Such first condition is of the form
some(T ,L,F ,V ), where T is a variable that can be bound to a token inside
a positive example, L denotes a sequence of relational features that allow to
navigate from that token to a neighbour, F denotes a feature, and V a value for
that feature. In other words, these conditions are intended to check that a token
has a given value for a feature. Unfortunately, if more features of that node have
to be constrained, the token must be re-bound. This means that tokens whose
features help discern well amongst positive and negative examples need to be
rebound several times; an additional intricate implication of re-bounding is that
tokens that belong to negative examples and tokens that belong to positive ex-
amples cannot be compared regarding their relative positions. This might have
a negative impact on efficiency because this requires to search the whole condi-
tion space several times, which also includes exploring and evaluating the same
conditions several times. TANGO does not require specific-purpose procedures
to generate different types of conditions; it relies on a variation point called
branch that generates every condition that might possibly be added to a rule;
furthermore, TANGO does not consider every possible condition as a candidate,
but implements a heuristic to bound the conditions and generate a subset of
candidates. Neither does TANGO suffer from the re-binding problem in SRV
since a relational feature instantiator can bind any node to a variable, which
allows to analyse as many attributive features as necessary in the forthcoming
steps. b) SRV has many problems to compute the negative examples. Such
examples include every subsequence of tokens in the input documents that is
not explicitly annotated as a positive example; the problem is that a document
with n tokens has O(n2) possible subsequences of tokens, which are typically
too many to be computed explicitly. As a consequence, SRV has to introduce
a hard bias regarding the size in tokens of the negative examples that are con-
sidered. In TANGO, computing the negative examples is as easy as fetching
the set of nodes that are not explicitly labelled with a user-defined slot. c) SRV
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does not take into account any heuristic to select the best candidate conditions
to be added to a rule; it just computes their gains and selects the condition that
provides more gain. Contrarily, TANGO relies on a variation point since it is
not clear which the best heuristic can be. In our experiments, we have proven
that the heuristic that we propose is very effective but it can be replaced very
easily. d) SRV stops searching for a rule when it finds a solution, independently
from how complex it is. TANGO includes a variation point that allows to stop
exploring a rule when it becomes too complex. Basically, this prevents TANGO
from learning very specific rules that work well on the learning set but do not
generalise well in a production setting. SRV only includes a simple heuristic to
prevent learning too specific rules: it discards conditions that result in rules that
match less than five positive examples, which can be problematic when dealing
with detail documents that report on a single item since they typically provide
only one positive example of each slot (or a few ones in the case of multi-valued
slots, e.g., the authors of a book). e) SRV cannot backtrack from bad decisions.
This implies that it has to return the first rule that it finds, even in cases in
which there are some candidates that might result in a rule that matches more
positive examples. Since the search process is blind and there is not a guarantee
that a rule that currently matches more positive examples can actually lead to
a solution, SRV has to select the first solution that it finds. Contrarily, TANGO
implements a savepoint mechanism that allows it to explore promising rules and
backtrack if they are finally found not to be good enough. f) SRV did not take
into account that preprocessing the learning set might have an impact on the
efficiency, whereas TANGO has proven that reducing the negative examples is
appropriate. g) As far as we know, SRV does not post-process the rule sets that
it learns, whereas TANGO has proven that post-processing them may result in
simpler rules, although it increases the learning time.

There are also many differences with regard to L-Wrappers. Note that this
proposal basically consists in mapping the input documents onto a knowledge
base and then using the FOIL system [24] to learn extraction rules. FOIL is a
general-purpose inductive logic system and it was not tailored to the problem
of information extraction; unfortunately, it did not prove to be efficient enough
as it was used in L-Wrappers. The authors mentioned that their approach is
infeasible in practice when a record has more than two attributes (records are
flat tuples in this proposal). Due to this problem, they had to design a com-
plementary approach that learns to extract pairs of attributes and then merges
the results into a single rule. The main problem is regarding the exponential
explosion of negative examples, which was estimated in the order of O(nk )
for a document with n nodes and records with k attributes. Negative exam-
ples are computed by the FOIL system using the Closed World assumption.
Unfortunately, this is inefficient because FOIL has to examine every possible
instantiation of every possible feature on every possible node; in practice, the
authors had to reduce the number of negative examples to roughly 0.10% for
their approach to be manageable; it is not clear whether that reduction works
well in a general setting because the proposal was evaluated on very few datasets.
Merging can alleviate the problem, but does not solve it because it requires to
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compute a rule for each of the pairs of attributes in a record. This approach may
be problematic insofar missing or permuted attributes and different formattings
increase the number of pairs significantly. TANGO learns rules to extract the
positive examples independently from each other, which is more efficient and
resilient to missing and permuted attributes or alternating formats.

5.3. Variation points
The variation points of a proposal identify the procedures for which different

alternatives exist. A priori, it is not possible to make a decision regarding which
the best implementation is because it depends on a variety of factors. So it is
necessary to identify them, to identify some alternatives, and to have a method
to make a decision regarding which the best configuration is.

Unfortunately, none of the proposals that we have surveyed rely on variation
points. The authors devised a number of algorithms that were configured to
perform as well as possible, but it is not clear at all which one has to be replaced
if it is necessary to re-configure the proposals. That is the common theme
behind every proposal that we have surveyed, and we think that this is one
of the reasons why they tend to fade away quickly and are replaced by new
proposals that sprout out continuously.

In TANGO, we have carefully identified a number of variation points, namely:
how to pre-process a learning set, how to post-process a rule set, how to select
the candidates to extend a rule or to create savepoints, how to score a rule,
how to check if a rule is too complex, how to branch a rule into a number of
candidate conditions, how to bound candidate conditions, and how to check if
a candidate is promising; we have also identified eleven heuristics and many
alternatives to implement them. The result is a very flexible learning system.

5.4. Configuration method
Identifying variation points is not enough: it is also necessary to have a

method to select the best alternatives to implement the heuristics that they
encapsulate. Ours is the only proposal that provides such a method; since the
authors of the other proposals did not identify any variation points, it is not
surprising at all that they did not work on a configuration method.

Developing a configuration method is not a trivial task, since it has to com-
bine both effectiveness and efficiency measures into a single rank that must take
both the mean value and the deviation of each performance measure into ac-
count. We have devised a rank that can combine any performance measure and
allows the experimenter to set their relative weights to reflect which measures
he or she thinks are more important than the others.

5.5. Miscellaneous
Before concluding our insight into the related work, we would like to ex-

plore a few more dimensions. They highlight important differences that are not
clearly aligned with the previous comparison dimensions, but make our proposal
different from the others.
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Rules. All of the related proposals learn Horn-like rules, but they differentiate
regarding their expressiveness levels.

SRV’s rules rely on the following kinds of conditions: checking the length
of a token, checking that a token has a given value for a feature, checking that
every token in a positive example has a given value for a feature, checking
the position of a token, and checking the distance between two tokens. The
conditions cannot be negated and slot instantiators are not allowed, which means
that the rules cannot be recursive. Irmak and Suel’s proposal rely on conditions
that can be applied to either element nodes, e.g., checking that the tag is a
given one or checking that an attribute has a given value, or text nodes, e.g.,
checking that it matches a given regular expression or checking that it is the
i -th child; it is not clear if their proposal can deal with negated conditions or
recursion; neither is it clear if inequalities are allowed. L-Wrappers’ rules rely
on two types of conditions only: checking whether a node has a given tag and
fetching a neighbour; the authors researched regarding using negated conditions
and came to the conclusion that they were not useful with their catalogue of
features because they only helped identify nodes without a left sibling, i.e., the
first child, or nodes without a right sibling, i.e., the last child; furthermore, they
did not explore recursion. Fernández-Villamor et al.’ rules rely on two kinds of
conditions: comparators to constraint the tag, the width, the height, the font
size, the font weight, or the font family, and parent instantiators.

The main difference is that TANGO’s rules rely on slot instantiators (which
allow for recursive rules), feature instantiators (which allow to instantiate any
feature in the catalogue, if possible), and comparators (which help constraint
the values of attributive features); furthermore, the conditions can be negated.

Evaluation. Unfortunately, none of the most closely-related proposals were eval-
uated on a sufficiently large number of datasets; neither were they compared
using statistically-sound methods.

SRV was evaluated on three datasets and it was empirically compared to
two naive baselines by the same author. In L-Wrappers, the authors focused
on evaluating their proposal on a single dataset on which it worked reasonably
well, but they did not conduct an exhaustive experimentation or an empirical
comparison with other proposals in the literature. Irmak and Suel focused on
evaluating their proposal on fourteen datasets; four of them had been used to
evaluate previous traditional information extractors with which this proposal
was compared; the others were gathered from more up-to-date web sites, but
they did not conduct an exhaustive experimentation or an empirical comparison
with other proposals in the literature; furthermore, the way that they computed
the effectiveness of their proposal was not the standard one because they used
a so-called verification set that was used to request feedback from the user
and correct the extraction rules. Finally, Fernández-Villamor et al. reported
on an experimentation with three datasets; no empirical comparison with other
proposals was provided.

Contrarily, TANGO was evaluated on 52 datasets and it was empirically com-
pared to six other state-of-the-art proposals; our conclusions were supported by
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means of statistically-sound methods that proved that the differences amongst
TANGO and the other proposals are statistically significant.

6. Conclusions and future work

In this article, we present TANGO, which is a proposal to learn web informa-
tion extraction rules for semi-structured web documents. We work within the
context of Enterprise Systems Integration, which is a field in which precision
and recall are of uttermost importance. TANGO originates from a proposal that
we presented elsewhere [25], in the context of a conference on business informa-
tion systems in which the participants were interested in our solution to help
develop software agents that can extract information from web documents to
feed automated business processes. There we presented some preliminary ideas
on instantiating the general inductive logic programming paradigm to deal with
learning web information extraction rules and we got valuable feedback that
guided us to devise a new version of our proposal in which the driver was flexi-
bility. The version of TANGO that we present in this article relies on an open
catalogue of features, on a learning procedure in which we have identified a va-
riety of variation points, and has a companion method that helps re-configure
it when necessary. This makes our proposal clearly deviate from others in the
literature, which are monolithic. We have performed an exhaustive experimen-
tation and we have analysed the results using statistically-sound methods; our
conclusion is that TANGO can learn rules that are more precise and have higher
recall than other state-of-the-art proposals and that it is efficient enough to be
used in real-world scenarios.

Our current version of TANGO learns extraction rules for a slot indepen-
dently from the others. A reviewer suggested an interesting future research
direction: it might be a good idea to characterise a slot with regard to the oth-
ers. The key is to set an order amongst them, so that the extraction rules are
learnt according to that order; the rule regarding the first slot must be learnt
in isolation, but the succeeding ones might then use the previous ones, which
would be re-used as regular Boolean feature instantiators. This might result in
a rule like “a node provides an author name if it has some particular features
and its parent provides a book title”. Intuitively, re-using rules that have been
learnt previously might help make our proposal more effective and/or efficient,
but there are a couple of issues that require further research, namely: the false
positives and false negatives that are produced by a previous rule introduce
noise, which may have a negative impact on both effectiveness and efficiency;
furthermore, the presence of slot permutations and optional slots may also have
unexpected results.

It would also be interesting to do some research regarding how to break
ties. Our insight into the difficult cases that we have found in our experimental
analysis has revealed that many of them were due to bad decisions regarding
candidate conditions that resulted in exactly the same gains. Although it has
not been a serious problem, we think that it might be interesting to try to devise
a heuristic to break such ties.
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