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Abstract

Much recent work has been devoted to approximate nearest neighbor
queries. Motivated by applications in recommender systems, we consider
approzimate furthest neighbor (AFN) queries and present a simple, fast,
and highly practical data structure for answering AFN queries in high-
dimensional Euclidean space. The method builds on the technique of In-
dyk (SODA 2003), storing random projections to provide sublinear query
time for AFN. However, we introduce a different query algorithm, im-
proving on Indyk’s approximation factor and reducing the running time
by a logarithmic factor. We also present a variation based on a query-
independent ordering of the database points; while this does not have
the provable approximation factor of the query-dependent data structure,
it offers significant improvement in time and space complexity. We give
a theoretical analysis, and experimental results. As an application, the
query-dependent approach is used for deriving a data structure for the
approximate annulus query problem, which is defined as follows: given
an input set S and two parameters r > 0 and w > 1, construct a data
structure that returns for each query point ¢ a point p € S such that the
distance between p and ¢ is at least r/w and at most wrm

1 Introduction

Similarity search is concerned with locating elements from a set S that are
close to a given query ¢q. The query can be thought of as describing criteria
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we would like returned items to satisfy approximately. For example, if a cus-
tomer has expressed interest in a product ¢, we may want to recommend other,
similar products. However, we might not want to recommend products that
are too similar, since that would not significantly increase the probability of a
sale. Among the points that satisfy a near neighbor condition (“similar”), we
would like to return those that also satisfy a furthest-point condition (“not too
similar”), without explicitly computing the set of all near neighbors and then
searching it. We refer to this problem as the annulus query problem. We claim
that an approximate solution to the annulus query problem can be found by
suitably combining Locality Sensitive Hashing (LSH), which is an approxima-
tion technique commonly used for finding the nearest neighbor of a query, with
an approximation technique for furthest neighbor, which is the main topic of
this paper.

The furthest neighbor problem consists of finding the point in an input set
S that maximizes the distance to a query point g. In this paper we investigate
the approximate furthest neighbor problem in d-dimensional Euclidean space
(i.e., £9), with theoretical and experimental results. We then show how to cast
one of our data structures to solve the annulus query problem. As shown in the
opening example, the furthest neighbor problem has been used in recommender
systems to create more diverse recommendations [23,24]. Moreover, the furthest
neighbor is an important primitive in computational geometry, that has been
used for computing the minimum spanning tree and the diameter of a set of
points [2 [11].

Our focus is on approximate solution because the exact version of the fur-
thest neighbor problem would also solve exact similarity search in d-dimensional
Hamming space, and thus is as difficult as that problem [26, [3]. The reduction
follows from the fact that the complement of every sphere in Hamming space
is also a sphere. That limits the hope we may have for an efficient solution to
the exact version, so we consider the c-approzimate furthest neighbor (c-AFN)
problem where the task is to return a point 2’ with d(q, 2") > max,cs d(q, x)/c,
with d(x,u) denoting the distance between two points. We will pursue random-
ized solutions having a small probability of not returning a c-AFN. The success
probability can be made arbitrarily close to 1 by repetition.

We describe and analyze our data structures in Section [2} We propose two
approaches, both based on random projections but differing in what candi-
date points are considered at query time. In the main query-dependent version
the candidates will vary depending on the given query, while in the query-
independent version the candidates will be a fixed set.

The query-dependent data structure is presented in Section It returns
the c-approximate furthest neighbor, for any ¢ > 1, with probability at least
0.72. When the number of dimensions is O(logn), our result requires O(n'/<")
time per query and O(n2/ C2) total space, where n denotes the input Size The-
orem [7] gives bounds in the general case. This data structure is closely similar
to one proposed by Indyk [I6], but we use a different approach for the query

3The O() notation omits polylog terms.



algorithm.

The query-independent data structure is presented in Section [2.2] When
the approximation factor is a constant strictly between 1 and v/2, this approach
requires 294 query time and space. This approach is significantly faster than
the query dependent approach when the dimensionality is small.

The space requirements of our data structures are quite high: the query-
independent data structure requires space exponential in the dimension, while
the query-dependent one requires more than linear space when ¢ < v/2. How-
ever, we claim that this bound cannot be significantly improved. In Section 2-3]
we show that any data structure that solves the c-AFN by storing a suitable
subset of the input points must store at least min{n, 2Q(d)} —1 data points when
c< V2.

Section [3] describes experiments on our data structure, and some modified
versions, on real and randomly-generated data sets. In practice, we can achieve
approximation factors significantly below the y/2 theoretical result, even with
the query-independent version of the algorithm. We can also achieve good ap-
proximation in practice with significantly fewer projections and points examined
than the worst-case bounds suggested by the theory. Our techniques are much
simpler to implement than existing methods for v/2-AFN, which generally re-
quire convex programming [9, 21I]. Our techniques can also be extended to
general metric spaces.

Having developed an improved AFN technique we return to the annulus
query problem in Section [l We present a sublinear time solution to the ap-
proximate annulus query problem based on combining our AFN data structure
with LSH techniques [14].

A preliminary version of our data structures for c-AFN appeared in the
proceedings of the 8th International Conference on Similarity Search and Ap-
plications (SISAP) [22].

1.1 Related work

Exact furthest neighbor In two dimensions the furthest neighbor problem
can be solved in linear space and logarithmic query time using point location in
a furthest point Voronoi diagram (see, for example, de Berg et al. [5]). However,
the space usage of Voronoi diagrams grows exponentially with the number of
dimensions, making this approach impractical in high dimensions. More gen-
erally, an efficient data structure for the ezact furthest neighbor problem in
high dimension would lead to surprising algorithms for satisfiability [26], so
barring a breakthrough in satisfiability algorithms we must assume that such
data structures are not feasible. Further evidence of the difficulty of exact fur-
thest neighbor is the following reduction: Given a set S C {—1,1}? and a query
vector ¢ € {—1,1}¢, a furthest neighbor (in Euclidean space) from —g¢ is a vector
in S of minimum Hamming distance to ¢. That is, exact furthest neighbor is at
least as hard as exact nearest neighbor in d-dimensional Hamming space, which
is also believed to be hard for large d and worst-case [26].



Approximate furthest neighbor Agarwal et al. [2] proposes an algorithm
for computing the c-AFN for all points in a set S in time O (n/(c — 1)@=1/2)
where n = |S| and 1 < ¢ < 2. Bespamyatnikh [6] gives a dynamic data
structure for c-AFN. This data structure relies on fair split trees and requires
(0] (1/(0 — 1)d’1) time per query and O (dn) space, with 1 < ¢ < 2. The query
times of both results exhibit an exponential dependency on the dimension. In-
dyk [I6] proposes the first approach avoiding this exponential dependency, by
means of multiple random projections of the data and query points to one di-
mension. More precisely, Indyk shows how to solve a fized radius version of the
problem where given a parameter r the task is to return a point at distance at
least r/c given that there exist one or more points at distance at least . Then,
he gives a solution to the furthest neighbor problem with approximation factor
c+ 6§, where 6 > 0 is a sufficiently small constant, by reducing it to queries
on many copies of that data structure. The overall result is space O(dn!*1/<)
and query time O(dnl/ 62), which improved the previous lower bound when
d = Q (logn). The data structure presented in this paper shows that the same
basic method, multiple random projections to one dimension, can be used for
solving c-AFN directly, avoiding the intermediate data structures for the fixed
radius version. Our result is then a simpler data structure that works for all
radii and, being interested in static queries, we are able to reduce the space to
O(dn2/<").

Methods based on an enclosing ball Goel et al. [I3] show that a /2-
approximate furthest neighbor can always be found on the surface of the min-
imum enclosing ball of S. More specifically, there is a set S* of at most d + 1
points from S whose minimum enclosing ball contains all of S, and returning
the furthest point in S* always gives a y/2-approximation to the furthest neigh-
bor in S. This method is query independent in the sense that it examines the
same set of points for every query. Conversely, Goel et al. [I3] show that for
a random data set consisting of n (almost) orthonormal vectors, finding a c-
approximate furthest neighbor for a constant ¢ < v/2 gives the ability to find an
O(1)-approximate near neighbor. Since it is not known how to do that in time
n°) it is reasonable to aim for query times of the form nf(¢) for approximation

¢ < V2.

Applications in recommender systems Several papers on recommender
systems have investigated the use of furthest neighbor search [23) 24]. The
aim there was to use furthest neighbor search to create more diverse recom-
mendations. However, these papers do not address performance issues related
to furthest neighbor search, which are the main focus of our paper. The data
structures presented in this paper are intended to improve performance in rec-
ommender systems relying on furthest neighbor queries. Other related works
on recommender systems include those of Abbar et al. [I] and Indyk et al. [I7],
which use core-set techniques to return a small set of recommendations no two
of which are too close. In turn, core-set techniques also underpin works on



Figure 1: The (r,w)-annulus query.

B(q, rw)

approximating the minimum enclosing ball [4, [19].

1.2 Notation
We use the following notation throughout:

e B(x,r) for the set of all points in a ball of radius r with center x.

A(g, r,w) for the annulus between two balls, that is A(q,r, w) = B(q,rw)—
B(q,r/w). For an example, see Figure

[n] for the integers 1,..,n.

argmax¢’ f(x) for the set of m elements from S that have the largest
values of f(x), breaking ties arbitrarily.

N(u,0?) for the normal distribution with mean p and variance o2.

2 Algorithms and analysis

2.1 Furthest neighbor with query-dependent candidates

Our data structure works by choosing a random line and storing the order of
the data points along it. Two points far apart on the line are at least as far
apart in the original space. So given a query we can find the points furthest
from the query on the projection line, and take those as candidates to be the



furthest point in the original space. We build several such data structures and
query them in parallel, merging the results. ,
Given a set S C R? of size n (the input data), let £ = 2n'/¢" (the number

of random lines) and m =1 + e%logcz/%l/?’ n (the number of candidates to be
examined at query time), where ¢ > 1 is the desired approximation factor. We
pick ¢ random vectors ai,...,a; € R? with each entry of a; coming from the
standard normal distribution N(0,1).

For any 1 < i < £, we let S; = argmax].ga; - z and store the elements
of S; in sorted order according to the value a; - . Our data structure for c-
AFN consists of £ subsets Sq,...,S; C S, each of size m. Since these subsets
come from independent random projections, they will not necessarily be disjoint
in general; but in high dimensions, they are unlikely to overlap very much. At
query time, the algorithm searches for the furthest point from the query ¢ among
the m points in Sy,..., Sy that maximize a;x — a;q, where x is a point of S;
and a; the random vector used for constructing .S;. The pseudocode is given in
Algorithm [[] We observe that although the data structure is essentially that of
Indyk [16], our technique differs in the query procedure.

Algorithm 1 Query-dependent approximate furthest neighbor

1: initialize a priority queue of (point, integer) pairs, indexed by real keys
2: fori=1to ¢ do

3 compute and store a; - ¢

4 create an iterator into S;, moving in decreasing order of a; - x
5: get the first element x from S; and advance the iterator

6 insert (x,%) in the priority queue with key a; - — a; - ¢

7: end for

8 rval + L

9: for j =1 tom do

10: extract highest-key element (z,) from the priority queue

11: if rval = L or z is further than rval from ¢ then

12: rval < x

13: end if

14: get the next element 2’ from S; and advance the iterator

15: insert («',1) in the priority queue with key a; -2’ — a; - ¢

16: end for

17: return rval

Note that early termination is possible if r is known at query time.

Correctness and analysis The algorithm examines distances to a set of at
most m points selected from the S;, we will call the set S:

Sq € Uf:lsiv |Sq| < m.

We choose the name S; to emphasize that the set changes based on ¢q. Our
algorithm succeeds if and only if S, contains a c-approximate furthest neighbor.



We now prove that this happens with constant probability.
We make use of the following standard lemmas that can be found, for ex-
ample, in the work of Datar et al. [I0] and Karger, Motwani, and Sudan [I§].

Lemma 1 (See Section 3.2 of Datar et al. [I0]). For every choice of vectors
z,y € Re:
a; - (x —y)
[ = yll2
Lemma 2 (See Lemma 7.4 in Karger, Motwani, and Sudan [I8]). For every
t>0,if X ~N(0,1) then

~ N(0,1).

1 1 1 —t2/2 I 1 _p2p
—— |- = e LPr X >t < —-—-e"
(i p) Rz s

The next lemma follows, as suggested by Indyk [16, Claims 2-3].

Lemma 3. Let p be a furthest neighbor from the query q with r = ||p—q||2, and
let p’ be a point such that ||p" — q||2 < r/c. Let A = rt/c with t satisfying the
equation et /2t = n/(2m)¢°/2 (that is, t = O (VIogn)). Then, for a sufficiently
large n, we have

2
1 C /271/3
Pria-(y —q) > A< 22— "
a n

1
nl/ct”

Proof. Let X ~ N(0,1). By Lemma [l| and the right part of Lemma [2| we have
for a point p’ that

Prlo-(p—q) > A] > (1-o(1))

Pria-(p'—q) = Al =Pr[X > A/|lp" = qll2] <Pr[X > Ac/r] = Pr{X > 1]

a

1 67t2/2

T 2T

og02/2_1/3n

2-11 1
< (t\/27r) - <
n

n

The last step follows because et /2t = n/(27)¢"/? implies that ¢ = O (/logn),
and holds for a sufficiently large n. Similarly, by Lemma [I] and the left part of
Lemma [2| we have for a furthest neighbor p that

Prla-(p—q) > Al =Pr[X > A/|p—ql2] = Pr(X > A/r] = Pr[X >t/c]

1 c c\3 2 002 1
N —£2/(2%) > (1 _ 1
= Vo (t (t) )e 2 (1= o(l) 57
O O

Theorem 4. The data structure when queried by Algorithm[1] returns a c-AFN
of a given query with probability 1 — 2/e? > 0.72 in

o (nl/c2 10gc2/2_1/3 n(d + log n))



time per query. The data structure requires O(nl“/C2 (d+1logn)) preprocessing
time and total space

O (min {dnz/C2 10g02/2_1/3 n, dn+n?< logcz/z_l/3 n}) .

Proof. The space required by the data structure is the space required for storing
the ¢ sets S;. If for each set S; we store the m < n points and the projection
values, then O (¢md) memory words are required. On the other hand, if pointers
to the input points are stored, then the total required space is O (¢m + nd). The
representations are equivalent, and the best one depends on the value of n and d.
The claim on space requirement follows. The preproceesing time is dominated
by the computation of the nf projection values and by the sorting for computing
the sets 5;. Finally, the query time is dominated by the at most 2m insertion
or deletion operations on the priority queue and the md cost of searching for
the furthest neighbor, O (m(log ¢ + d)).

We now upper bound the success probability. As in the statement of Lemmal[3]
we let p denote a furthest neighbor from ¢, » = ||p — ¢||2, ' be a point such
that ||p" — q|l2 < r/e¢, and A = rt/c with ¢ such that et’/24e = n/(27r)cz/2.
The query succeeds if: (i) a;(p — q) > A for at least one projection vector a;,
and (i) the (multi)set S = {p/|3i : a;(p’ — q) > A, ||p’ — gll2 < r/c} contains
at most m — 1 points (i.e., there are at most m — 1 near points each with a
distance from the query at least A in some projection). If (i) and (ii) hold,
then the set of candidates examined by the algorithm must contain the furthest
neighbor p since there are at most m — 1 points near to ¢ with projection values
larger than the maximum projection value of p. Note that we do not consider
points at distance larger than r/c but smaller than r: they are c-approximate
furthest neighbors of ¢ and can only increase the success probability of our data
structure.

By Lemma [3| event (i) happens with probability 1/n'/ < Since there are
¢ =2nt/¢ independent projections, this event fails to happen with probability
at most (1 — 1/711/02)2”1/62 < 1/e%. For a point p’ at distance at most r/c
from ¢, the probability that a;(p" —¢q) > A is less than (logc2/271/3 n)/n for
Lemma [3] Since there are ¢ projections of n points, the expected number of
such points is Elogcz/z_l/3 n. Then, we have that |5'| is greater than m — 1 with
probability at most 1/e? by the Markov inequality. Note that a Chernoff bound
cannot be used since there exists a dependency among the projections onto the
same random vector a;. By a union bound, we can therefore conclude that the
algorithm succeeds with probability at least 1 — 2/e? > 0.72. O O

2.2 Furthest neighbor with query-independent candidates

Suppose instead of determining the candidates depending on the query point by
means of a priority queue, we choose a fixed candidate set to be used for every
query. The v/2-approximation the minimum enclosing sphere is one example
of such a query-independent algorithm. In this section we consider a query-
independent variation of our projection-based algorithm.



During preprocessing, we choose ¢ unit vectors yi,¥yo, ...,y independently
and uniformly at random over the sphere of unit vectors in d dimensions. We
project the n data points in S onto each of these unit vectors and choose the
extreme data point in each projection; that is,

z‘e[é]}.

The data structure stores the set of all data points so chosen; there are at
most £ of them, independent of n. At query time, we check the query point ¢
against all the points we stored, and return the furthest one.

To prove a bound on the approximation, we will use the following result
of Boroczky and Wintsche [7, Corollary 1.2]. Note that their notation differs
from ours in that they use d for the dimensionality of the surface of the sphere,
hence one less than the dimensionality of the vectors, and ¢ for the constant,
conflicting with our ¢ for approximation factor. We state the result here in
terms of our own variable names.

argmaxx - v;
zeS

Lemma 5 (See Corollary 1.2 in Boéréczky and Wintsche [7]). For any angle ¢
with 0 < ¢ < arccos 1/\/;1!, in d-dimensional Euclidean space, there exists a set
V' of at most Cq(p) unit vectors such that for every unit vector u, there exists
some v € V with the angle between u and v at most ¢, and

1 3
VI < Calp) = vcosp - —rr— - (d+ 1) In(L+ (d+ ) cos®¢), (1)
sin ©

where v is a universal constant.

Let . = % arccos %; that is half the angle between two unit vectors whose dot
product is 1/c, as shown in Figure[2] Then by choosing ¢ = O(Cy(¢.) - log Ca(p.))
unit vectors uniformly at random, we will argue that with high probability we
choose a set of unit vectors such that every unit vector has dot product at least
1/c with at least one of them. Then the data structure achieves c-approximation
on all queries.

Theorem 6. With { = O(f(c)?) for some function f of ¢ and any c such that
1 < ¢ < 2, with high probability over the choice of the projection vectors, the
data structure returns a d-dimensional c-approximate furthest neighbor on every
query.

Proof. Let . = %arccos % Then, since % is between % and 1, we can apply the
usual half-angle formulas as follows:

1 1 /- 1 .
8in @, = sin = arccos = = /1 — cosarccos1/c _ Vv Jc
V2 V2
1 1 1 1 1 1
€08 (Pe = COS = ATCCOS = = \/1+ cosarccos1/c _ V1+1/e .
V2 V2




-1 1
e = 5 Arccos <

Figure 2: Choosing ¢..

Substituting into from Lemma [5| gives

d/2 c c
Calpe) = W(f_wm(d + 1)3/2 In (1 +(d+1) 1 +21/ )

9 (d+1)/2 32
= 1 .
O (1 — l/c) d ogd

Let V' be the set of Cy(p.) unit vectors from Lemma [5} every unit vector on
the sphere is within angle at most ¢, from one of them. The vectors in V are
the centres of a set of spherical caps that cover the sphere.

Since the caps are all of equal size and they cover the sphere, there is prob-
ability at least 1/C4(p.) that a unit vector chosen uniformly at random will
be inside each cap. Let £ = 2C4(¢.)In Cy(p.). This £ = O(f(c)?). Then for
each of the caps, the probability none of the projection vectors y; is within that
cap is (1 — 1/C4(¢.))*, which approaches exp(—21InCy(p.)) = (Calpe)) 2. By
a union bound, the probability that every cap is hit is at least 1 — 1/Cy(p.).
Suppose this occurs.

Then for any query, the vector between the query and the true furthest
neighbor will have angle at most ¢, with some vector in V, and that vector
will have angle at most (. with some projection vector used in building the
data structure. Figure [2] illustrates these steps: if @ is the query and P is the
true furthest neighbor, a projection onto the unit vector in the direction from
@ to P would give a perfect approximation. The sphere covering guarantees
the existence of a unit vector S within an angle ¢, of this perfect projection;
and then we have high probability of at least one of the random projections also
being within an angle ¢, of S. If that random projection returns some candidate
other than the true furthest neighbor, the worst case is if it returns the point

10



labelled R, which is still a c-approximation. We have such approximations for all
queries simultaneously with high probability over the choice of the ¢ projection
vectors. 0 U

Note that we could also achieve c-approximation deterministically, with
somewhat fewer projection vectors, by applying Lemma [5| directly with ¢, =
arccos 1/c and using the centres of the covering caps as the projection vectors
instead of choosing them randomly. That would require implementing an ex-
plicit construction of the covering, however. Boroczky and Wintsche [7] argue
that their result is optimal to within a factor O(logd), so not much asymptotic
improvement is possible.

2.3 A lower bound on the approximation factor

In this section, we show that a data structure aiming at an approximation factor
less than /2 must use space min{n,2#} — 1 on worst-case data. The lower
bound holds for those data structures that compute the approximate furthest
neighbor by storing a suitable subset of the input points.

Theorem 7. Consider any data structure D that computes the c-AFN of an
n-point input set S C RY by storing a subest of the data set. If ¢ = v/2(1 — ¢)
with € € (0,1), then the algorithm must store at least min{n, ZQ(EQd)}—l points.

Proof. Suppose there exists a set S’ of size r = 92(¢”4) such that for any z € S’
we have (1 —¢) < ||lz[|2 < (1 +¢) and z -y < 2¢, with € € (0,1). We will
later prove that such a set exists. We now prove by contradiction that any
data structure requiring less than min{n,r} — 1 input points cannot return a
v2(1 — €)-approximation.

Assume n < r. Consider the input set S consisting of n arbitrary points of
S’ and set the query ¢ to —z, where z is an input point not in the data structure.
The furthest neighbor is « and it is at distance ||z — (—x)||2 > 2v/1 — €¢’. On the
other hand, for any point y in the data structure, we get

ly = (=2)l2 = \/IIIH% +lyl3 + 22y < V21 +€) +4e.

Therefore, the point returned by the data structure cannot be better than a ¢

approximation with
— (= 1—¢
P e ey N ,
v (ol = V1730 .

The claim follows by setting ¢ = (2¢ — €2)/(1 + 3(1 — ¢)?).

Assume now that n > r. Without loss of generality, let n be a multiple
of r. Consider as input set the set S containing n/r copies of each vector
in S’, each copy expanded by a factor ¢ for any ¢ € [n/r]; specifically, let
S = {iz|z € §',i € [n/r]}. By assumption, the data structure can store at most
r — 1 points and hence there exists a point x € S’ such that iz is not in the data

11



structure for every ¢ € [1,n/r]. Consider the query ¢ = —ha where h = n/r. The
furthest neighbor of ¢ in S is —¢ and it has distance ||¢ — (—¢)||2 > 2hv/1 — €.
On the other hand, for every point y in the data structure, we get

ly — (~ha)lla = h2l|]3 + [yl}3 + 2ha -y < /ZRE(L+ &) + k2.

We then get the same approximation factor ¢’ given in equation 2} and the claim
follows.

The existence of the set S’ of size r follows from the Johnson-Lindenstrauss
lemma [20]. Specifically, consider an orthornormal base z1,...x, of R". Since
d=Q (log r/e 2), by the Johnson-Lindenstrauss lemma there exists a linear map
£() sueh that (1 — )a; — 203 < | f(@:) — F(2,)3 < (1+€)]lzi — a]13 and
(1—¢) <|f(z)I3 < (1 +¢€) for any 4,j. We also have that f(z;) - f(x;) =
(£ )3+ 17 )3 = [1£ (i) — F(2,)]3)/2, and hence —2¢ < f(a)- f(a;) < 2e.
It then suffices to set S’ to {f(x1),..., f(z+)}. O O

The lower bound translates into the number of points that must be read by
each query. However, this does not apply for query dependent data structures.

3 Furthest neighbor experiments

We implemented several variations of furthest neighbor query in both the C and
F# programming languages. This code is available onlineﬂ Our C implemen-
tation is structured as an alternate index type for the SISAP C library [12],
returning the furthest neighbor instead of the nearest.

We selected five databases for experimentation: the “nasa” and “colors” vec-
tor databases from the SISAP library; two randomly generated databases of 10°
10-dimensional vectors each, one using a multidimensional normal distribution
and one uniform on the unit cube; and the MovieLens 20M dataset [I5]. The
10-dimensional random distributions were intended to represent realistic data,
but their intrinsic dimensionality as measured by the p statistic of Chavez and
Navarro [8] is significantly higher than what we would expect to see in real-life
applications.

For each database and each choice of ¢ from 1 to 30 and m from 1 to 4/,
we made 1000 approximate furthest neighbor queries. To provide a represen-
tative sample over the randomization of both the projection vectors and the
queries, we used 100 different seeds for generation of the projection vectors, and
did 10 queries (each uniformly selected from the database points) with each
seed. We computed the approximation achieved, compared to the true furthest
neighbor found by brute force, for every query. The resulting distributions are
summarized in Figures BH7]

We also ran some experiments on higher-dimensional random vector databases
(with 30 and 100 dimensions, in particular) and saw approximation factors very
close to those achieved for 10 dimensions.

4https://github.com/johanvts/FN-Implementations
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Figure 3: Experimental results for 10-dimensional uniform distribution
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Figure 4: Experimental results for 10-dimensional normal distribution

{ vs. m tradeoff The two parameters ¢ and m both improve the approxima-
tion as they increase, and they each have a cost in the time and space bounds.
The best tradeoff is not clear from the analysis. We chose £ = m as a typical
value, but we also collected data on many other parameter choices.

Figure [§] offers some insight into the tradeoff: since the cost of doing a
query is roughly proportional to both ¢ and m, we chose a fixed value for their
product, £-m = 48, and plotted the approximation results in relation to m given
that, for the database of normally distributed vectors in 10 dimensions. As the
figure shows, the approximation factor does not change much with the tradeoff
between ¢ and m.

Query-independent ordering The furthest-neighbor algorithm described in
Section [2.1] examines candidates for the furthest neighbor in a query dependent
order. In order to compute the order for arbitrary queries, we must store m
point IDs for each of the ¢ projections, and use a priority queue data structure
during query, incurring some costs in both time and space. It seems intuitively
reasonable that the search will usually examine points in a very similar order
regardless of the query: first those that are outliers, on or near the convex hull
of the database, and then working its way inward.

We implemented a modified version of the algorithm in which the index stores
a single ordering of the points. Given a set S C R of size n, for each point = € S
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Algorithm 2 Query-independent approximate furthest neighbor

1: rval < L

2: for j =1 tom do

3 if rval = L or z; is further than rval from ¢ then
4: rval < x;

5 end if

6: end for

7: return rval

let key(z) = max;e1. ¢a; - x. The key for each point is its greatest projection
value on any of the ¢ randomly-selected projections. The data structure stores
points (all of them, or enough to accomodate the largest m we plan to use)
in order of decreasing key value: z1, xa, ... where key(x1) > key(zg) > ---
Note that this is not the same query-independent data structure discussed in
Section it differs both in the set of points stored and the order of sorting
them.

The query examines the first m points in the query independent ordering and
returns the one furthest from the query point. Sample mean approximation
factor for this algorithm in our experiments is shown by the dotted lines in

Figures

Variations on the algorithm We have experimented with a number of prac-
tical improvements to the algorithm. The most significant is to use the rank-
based depth of projections rather than the projection value. In this variation
we sort the points by their projection value for each a;. The first and last point
then have depth 0, the second and second-to-last have depth 1, and so on up
to the middle at depth n/2. We find the minimum depth of each point over all
projections and store the points in a query independent order using the mini-
mum depth as the key. This approach seems to give better results in practice.
A further improvement is to break ties in the minimum depth by count of how
many times that depth is achieved, giving more priority to investigating points
that repeatedly project to extreme values. Although such algorithms may be
difficult to analyse in general, we give some results in Section for the case
where the data structure stores exactly the one most extreme point from each
projection.

The number of points examined m can be chosen per query and even during
a query, allowing for interactive search. After returning the best result for some
m, the algorithm can continue to a larger m for a possibly better approximation
factor on the same query. The smooth tradeoff we observed between ¢ and m
suggests that choosing an ¢ during preprocessing will not much constrain the
eventual choice of m.

Discussion The main experimental result is that the algorithm works very
well for the tested datasets in terms of returning good approximations of the
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furthest neighbor. Even for small £ and m the algorithm returns good approxi-
mations. Another result is that the query independent variation of the algorithm
returns points only slighly worse than the query dependent. The query inde-
pendent algorithm is simpler to implement, it can be queried in time O (m) as
opposed to O (mlogf+ m) and uses only O (m) storage. In many cases these
advances more than make up for the slightly worse approximation observed in
these experiments. However, by Theorem to guarantee /2 — e approximation
the query-independent ordering version would need to store and read m =n—1
points.

In data sets of high intrinsic dimensionality, the furthest point from a query
may not be much further than any randomly selected point, and we can ask
whether our results are any better than a trivial random selection from the
database. The intrinsic dimensionality statistic p of Chévez and Navarro [§]
provides some insight into this question. Note that instrinsic dimensionality as
measured by p is not the same thing as the number of coordinates in a vector.
For real data sets it is often much smaller than that. Intrinsic dimensionality
also applies to data sets that are not vectors and do not have coordinates. Skala
proves a formula for the value of p on a multidimensional normal distribution [25]
Theorem 2.10]; it is 9.768 . . . for the 10-dimensional distribution used in Figure[d]
With the definition p?/202, this means the standard deviation of a randomly
selected distance will be about 32% of the mean distance. Our experimental
results come much closer than that to the true furthest distance, and so are
non-trivial.

The concentration of distances in data sets of high intrinsic dimensionality
reduces the usefulness of approximate furthest neighbor. Thus, although we
observed similar values of ¢ in higher dimensions to our 10-dimensional random
vector results, random vectors of higher dimension may represent a case where
c-approximate furthest neighbor is not a particularly interesting problem. How-
ever, vectors in a space with many dimensions but low intrinsic dimensionality,
such as the colors database, are representative of many real applications, and
our algorithms performed well on such data sets.

The experimental results on the MovieLens 20M data set [15], which were
not included in the conference version of the present work, show some interesting
effects resulting from the very high nominal (number of coordinates) dimension-
ality of this data set. The data set consists of 20000263 “ratings,” representing
the opinions of 138493 users on 27278 movies. We treated this as a database
of 27278 points (one for each movie) in a 138493-dimensional Euclidean space,
filling in zeroes for the large majority of coordinates where a given user did not
rate a given movie. Because of their sparsity, vectors in this data set usually
tend to be orthogonal, with the distance between two simply determined by
their lengths. Since the vectors’ lengths vary over a wide range (length pro-
portional to number of users rating a movie, which varies widely), the pairwise
distances also have a large variance, implying a low intrinsic dimensionality. We
measured it as p = 0.263.

The curves plotted in Figure [7]show similar behaviour to that of the random
distributions in Figures [3] and ] Approximation factor improves rapidly with
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more projections and points examined, in the same pattern, but to a greater
degree, as in the 10-coordinate vector databases, which have higher intrinsic di-
mensionality. However, here there is no noticeable penalty for using the query-
independent algorithm. The data set appears to be dominated (insofar as fur-
thest neighbours are concerned) by a few extreme outliers: movies rated very
differently from any others. For almost any query, it is likely that one of these
will be at least a good approximation of the true furthest neighbour; so the
algorithm that identifies a set of outliers in advance and then chooses among
them gives essentially the same results as the more expensive query-dependant
algorithm.

4 Annulus query

In this section we return to the problem of annulus query. Using the AFN
data structure in combination with LSH techniques we present a sub-linear
time data structure for solving the approximate annulus query problem (AAQ)
with constant failure probability in Euclidean space. Let’s begin by defining the
exact and approximate annulus query problem:

Annulus query: Consider a set of points S in (X, D) and » > 0,w > 1.
The exact (r,w)-annulus query is defined as follows: Given a query point g,
return a point p € SN A(q,r,w). That is, we search for p € S such that
r/w < D(p,q) < wr. If no such point exists in S the query returns null. An
alternative definition returns all points in S N A(g,r, w), but we will focus our
attention on the definition above.

Approzimate annulus query: For a set of points S in (X, D), r > 0 and
¢,w > 1. The (¢, r, w)-approximate annulus query (AAQ) is defined as follows:
Given a query point g, if there exists p € S N A(q,r,w), then return a point
p € SN A(gr cw). If no such p exists we can return either null or any point
within A(q,r, cw).

4.1 Solving the (c,w,r)-AAQ

We now show how to solve the (¢, w, r)-AAQ with constant failure probability in
R¢ by combining the furthest neighbor technique with locality sensitive hashing
methods [14]. Consider an LSH function family H = {R¢ — U}. We say that
H is (11, 79,1, p2)-sensitive for (RY, £y) if:

1. Pry[h(q) = h(p)] > p1 when |[p —qll2 <7
2. Pry[h(q) = h(p)] < p2 when [|p — g2 > 2

Theorem 8. Consider a (wr,wer, py,p2)-sensitive hash family H for (R, 15)

and let p = igiifﬁi . For any set S € RY of at most n points there exists a data

structure for (¢, w,r)-AAQ such that:

e Queries can be answered in time O (dnl/c2 log(171/62)/2 n)
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Figure 9: Tllustration of a bucket for {x,zo, 23,25} C S. £ =3.
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o The data structure takes space O (712(p+1/“’2)10g;1_1/c2 n) in addition to

storing S.

The failure probability is constant and can be reduced to any 6 > 0 by in-
creasing the space and time cost by a constant factor.

We will now give a description of such a data structure and then prove that
it has the properties stated in Theorem [§]

4.2 Annulus query data structure

Let k, £ and L be integer parameters to be chosen later We construct a function
family G = g : R — U* by concatenating k¥ members of H. Choose L functions
g1, ..,gr, from G and pick ¢ random vectors ai,..,a; € R? with entries sampled
independently from N (0,1).

4.2.1 Preprocessing

During preprocessing, all points = € S are hashed with each of the functions
g1,..,9r- We say that a point z is in a bucket Bj; if g;(x) = i. For every point
x € S the £ dot product values a; - ¢ are calculated. These values are stored in
the bucket along with a reference to x. Each bucket consists of ¢ linked lists,
list ¢ containing the entries sorted on a; - x, decreasing from the head of the list.
See Figure@ for an illustration where p; ; is the tuple (a; - z;, ref(z;)). A bucket
provides constant time access to the head of each list. Only non-empty buckets
are stored.

4.2.2 Querying

For a given query point g the query procedure can be viewed as building the
set S, of points from S within B(q,rcw) with the largest a;c(g - (p — ¢) values
and computing the distances between ¢ and the points in S;. At query time ¢
is hashed using ¢1,..,gr. From each bucket Bj; . (,) the top pointer is selected
from each list. The selected points are then added to a priority queue with
priority a; - (p —¢). This is done in O(L¥¢) time. Now we begin a cycle of adding
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and removing elements from the priority queue. The largest priority element is
dequeued and the predecessor link is followed and the returned pointer added
to the queue. If the pointer just visited was the last in its list, nothing is added
to the queue. If the priority queue becomes empty the algorithm fails. Since r
is known at query time in the (¢, w, r)-AAQ it is possible to terminate the query
procedure as soon as some point within the annulus is found. Note that this
differs from the general furthest neighbor problem. For the analysis however we
will consider the worst case where only the last element in .S, lies in the annulus
and bound |S,| to achieve constant success probability.

Proof. Fix a query point ¢. By the problem definition, we may assume |S N
A(g,r,w)| > 1. Define S; C S to be the set of candidate points for which the
data structure described in section [£.2] calculates the distance to ¢ when queried.
The correctness of the algorithm follows if |S, N A(g, 7, cw)| > 1.

To simplify the notation let Phe,y = S N B(g,r/(cw)) and P, = S —
B(q,r/w). Points in the these two sets have useful properties. Let ¢ be the
solution to the equality:

2

1 e 1

Var t

If we set A = Ti), we can use the ideas from Lemma to conclude that:

C

Prlai(p — ) > A] < - for p € Paca
Also, for p € P, the lower bound gives:
Prla;(p—q) > A] > 1 p 1/ a=1/e) (1 - 02)
v = = (27)(171/(32)/2 +2

By definition, t € O(y/logn), so for some function ¢ € O(nl/c2 log(lfl/CQ)/2 n)
we get:

1
Prla;(p —q) > A] > 5, for p € Pray.

Now for large n, let D be the set of points that hashed to the same bucket as ¢
for at least one hash function and projected above A on at least one projection
vector.

D ={z € S[3j,i: g;j(x) = g;(q) and a; - (x — q) = A}

Let £ = 2¢,m =1+ €% and L = [n”/p;]. Using the probability bound
we see that E[| DN Pyear|] < 20l = £. So Pr[|DNPyear| > m] < 1/€* by Markov’s
inequality. By a result of Har-Peled, Indyk, and Motwani [14, Theorem 3.4], the
total number of points from S — B(q, rcw) across all g;(¢) buckets is at most 3L
with probability at least 2/3. So Pr[|D — B(q,rcw) > 3L] < 1/3. This bounds

the number of too far and too near points expected in D.

Pr[|D\ A(g,r,cw)| >m +3L] < 1/3 +e 2
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By applying [14, Theorem 3.4] again, we get that for each z € A(q,r, w) there
exists ¢ € [L] such that g;(z) = g;(¢) with probability at least 1 — 1/e. Con-
ditioning on the existence of this hash function, the probability of a point pro-
jecting above A is at least 1 — (1 — 1/¢)?® > 1 — 4. Then it follows that
Pr[|DNA(g,7,w)| < 1] < 1/e+1/e%. The points in D will necessarily be added
to S, before all other points in the buckets; then, if we allow for |S,| = m + 3L,
we get

Pr[|S, N A(g,r,cw)| > 1] > 1 — (1/3 +1/e +2/e?) > 0.02.

O

The data structure requires us to store the top O (mL) points per projection

vector, per bucket, for a total space cost of O(m#L?), in addition to storing the

dataset, O(nd). The query time is O (¢L + m(d + log¢L)). The first term is for

initializing the priority queue, and the second for constructing S, and calculating

distances. Substituting in L € O(n?) and £, m € O(n/<’ log(l_l/cz)/2 n) we get
query time:

@) (n”H/Cz log* n + Y/ log* n (d + log (n? /<" 1og* n))) , (3)

where A\ = (1 — 1/c?)/(2). Depending on the parameters different terms might
dominate the cost, but for large d we can simplify to the version stated in the
theorem. The hash buckets take space:

(0] (nQ("+1/‘22) logl_l/C2 n) . (4)

Depending on ¢, we might want to bound the space by O(nfL) instead, which
yields a bound of O(n!+e+1/¢’ log1—1/¢)/2 n). O O

5 Conclusions and future work

We have proposed a data structure for AFN with theoretical and experimen-
tal guarantees. We have introduced the approximate annulus query and given
a theoretical sublinear time solution. Although we have proved that it is not
possible to use less than min{n, 2@} — 1 total space for c-AFN when the ¢
approximation factor is less than /2, it is an open problem to close the gap
between this lower bound and the space requirements of our result. Another
interesting problem is to apply our data structure to improve the output sensi-
tivity of near neighbor search based on locality-sensitive hashing. By replacing
each hash bucket with an AFN data structure with suitable approximation fac-
tors, it is possible to control the number of times each point in S is reported.

Our data structure extends naturally to general metric spaces. Instead of
computing projections with dot product, which requires a vector space, we could
choose some random pivots and order the points by distance to each pivot. The
query operation would be essentially unchanged. Analysis and testing of this
extension is a subject for future work.
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