

Libraries and Learning Services

University of Auckland Research
Repository, ResearchSpace

Version

This is the Accepted Manuscript version of the following article. This version is
defined in the NISO recommended practice RP-8-2008
http://www.niso.org/publications/rp/

Suggested Reference

Naeem, M. A., Dobbie, G., Lutteroth, C., & Weber, G. (2017). Skewed distributions in
semi-stream joins: How much can caching help?. Information Systems, 64, 63-74.
doi:10.1016/j.is.2016.09.007

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved,
unless otherwise indicated. Previously published items are made available in
accordance with the copyright policy of the publisher.

This is an open-access article distributed under the terms of the Creative
Commons Attribution-NonCommercial-NoDerivatives License.

For more information, see General copyright, Publisher copyright,
SHERPA/RoMEO.

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1016/j.is.2016.09.007
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.library.auckland.ac.nz/services/research-support/depositing-theses/copyright
https://www.elsevier.com/about/open-science
http://www.sherpa.ac.uk/romeo/issn/0306-4379/

Skewed Distributions in Semi-Stream Joins: How much can Caching help?

M. Asif Naeem

School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Private Bag 92006,

Auckland, New Zealand.

Gillian Dobbie, Christof Lutteroth, and Gerald Weber

Department of Computer Science, The University of Auckland, Private Bag 92019, Auckland, New Zealand.

Abstract

Semi-stream join algorithms join a fast data stream with a disk-based relation. This is important, for

example, in real-time data warehousing where a stream of transactions is joined with master data before

loading it into a data warehouse. In many important scenarios, the stream input has a skewed distribution,

which makes certain performance optimisations possible.

We propose two such optimisation techniques: 1) a caching technique for frequently used master data,

and 2) a technique for selective load shedding of stream tuples. The caching technique is fine-grained,

operating on a tuple-level. Furthermore, it is generic in the sense that it can be applied to different semi-

stream join algorithms to deal with high loads. We analyze it by combining it with various well-known

semi-stream joins, and show that it improves the service rate by more than 40% for typical data with

skewed distributions. The load shedding technique sheds the fraction of the stream that is most expensive

to join. In contrast to existing approaches, the service rate improves under load shedding. We present

experimental data showing significant improvements as compared to related approaches and perform a

sensitivity analysis for various internal parameters.

Keywords: Semi-stream processing, join, front-stage cache, performance optimization.

1. Introduction

Stream-based joins are important operations in modern system architectures where just-in-time de-

livery of data is expected. We consider a particular class of stream-based join: a semi-stream join that

joins a single stream with a slowly changing table. Such a join can be applied, for example, in real-time

data warehousing [1, 2, 3] where the slowly changing table is typically a master data table and the stream

contains incoming real-time sales data. The join is used to enrich the stream data with master data. A

common type of join in this scenario is an equijoin.

In this work, we consider one-to-many equijoins: we assume the stream data contains a foreign key

referring to the master data. This is a very important class as they are used naturally to join a stream of

updates and master data in a data warehousing context [3], online auction systems [4] and supply-chain

management [5]. We do not consider, for example, joins on categorical attributes in master data, such

as gender. In the aforementioned applications, stream data usually has a skewed stream distribution: we

assume the stream tuples to have random foreign keys, and we assume these keys to follow a Zipfian

distribution (which can be a uniform distribution in the extreme).

Preprint submitted to Journal of Information Systems September 6, 2016

With the availability of large main memory and powerful cloud computing platforms, considerable

computing resources can be utilized when executing stream-based joins. However, there are several

scenarios where approaches that can function with limited resources are of interest. Firstly, the master

data may simply be too large (e.g. dozens of GBs) for the resources allocated for a stream join, so that a

scalable algorithm is necessary. Secondly, low-resource consumption approaches may be necessary when

mobile and embedded devices are involved. For example, stream joins such as the ones discussed here

could be used in sensor networks. As a consequence, semi-stream join algorithms that can function with

limited resources are important building blocks for a resource-aware system setup.

In this article we present optimization approaches that allow semi-stream join algorithms to perform

well with limited resources. First, we propose a caching approach that works as a front-stage for existing

semi-stream join algorithms. The approach was first presented in [6] and we now provide an extensive

analysis. It is different from other cache-based approaches [7, 8] in that it uses a tuple-level rather

than a page-level cache. The front-stage significantly improves join performance for data with Zipfian

distributions of the foreign keys, which can be found in a wide range of applications [9]. We do not

consider the ordering of stream tuples in the join output as it is not important particularly in the scenario

of data warehousing. To evaluate the approach, we combine the front-stage with two known semi-stream

algorithms: (i) MESHJOIN [10, 11], (ii) HYBRIDJOIN [12]. Our experimental results demonstrate the

performance benefit of the approach. Furthermore, in order to obtain a baseline measurement of the

influence of the front stage, we combine it with the textbook Index Nested Loop Join (INLJ) [13]. The

size of the front stage is kept constant in all three variants in order to make the measurements of the

impact of the front stage comparable.

Second, we propose a novel load shedding approach. In our approach tuples are shed only after being

considered, while other load shedding approaches typically shed tuples before they are processed. In our

approach tuples are kept as candidates for joining for a certain amount of time, and if they are not joined,

they are shed to the disk/network. In this way the algorithm determines the stream tuples that are most

costly to process, without much overhead. As a consequence load shedding increases the service rate, i.e.

the rate of join outputs. By contrast, in other load shedding approaches for semi-stream joins, the service

rate does not change significantly under shedding; the purpose of the load shedding is simply to store the

overhead load. Our experimental data shows that our approach provides a significant improvement.

In summary, we provide the following contributions. 1) A generic front-stage for tuple-level

caching: We present a front-stage caching component, which has the granularity of tuples, with a

number of well-known semi-stream join algorithms and study its effect on performance. 2) A novel

load shedding technique: We present a load shedding approach that sheds the tuples that are most

expensive to process, thus increasing the service rate. We measure the service rate under load shedding

and compare it with other related approaches. 3) Sensitivity analysis: We perform a sensitivity

analysis with respect to various parameters, validating a cost model in the process.

The rest of the paper is structured as follows. Section 2 presents related work. Section 3 discusses

how the caching strategy can be seen as independent, by studying two well-known algorithms. Section 4

introduces the load shedding approach, including a problem overview and existing approaches. Section 5

2

describes an experimental study of the proposed approaches. Section 6 concludes the paper.

2. Related work

Early stream-based joins focused on scenarios where both inputs are in the form of streams. Such

joins are called stream joins, as opposed to semi-stream joins.

The Symmetric Hash Join (SHJ) algorithm [14, 15] is a stream join that extends the original hash join

algorithm. It produces join output as early as possible, i.e. is non-blocking, while increasing the memory

requirement. SHJ uses a separate hash table for each of the two input relations. When a tuple t of one

input arrives, SHJ probes the hash table of the other input, generates the result (if any) and then stores

t into the hash table of its own stream. SHJ can produce results before reading either input relation

entirely; however, it stores both relations in memory.

XJoin [16] is an extended form of SHJ that handles memory overflow by flushing the largest partition

to disk. XJoin presents a three stage strategy to switch its execution state between disk and memory.

The first priority is given to the memory-resident tuples. While there is no incoming stream data, the

algorithm executes the second, disk-to-memory phase and lastly deals with the tuples stored on disk (disk-

to-disk) in the case when the inputs are terminated. Duplicate tuples are avoided by using a timestamp

approach.

The Double Pipelined Hash Join (DPHJ) [17] is also an extension of SHJ based on two stages. In

the first stage, which is similar to SHJ and XJoin, the algorithm joins the tuples which are in memory.

In the second stage the algorithm marks the tuples which are not joined in memory and joins them on

the disk. In DPHJ duplication of tuples is possible in the second phase when all tuples from both inputs

have been read and the final clean-up join is executed. This algorithm is suitable for medium-size data

but does not perform well for large-size data. A related symmetric join algorithm is the Hash-Merge Join

(HMJ) [18], which is based on push technology and consists of two phases, hashing and merging.

Early Hash Join (EHJ) [19] is an improved version of XJoin with a different flushing strategy and

a simplified technique to determine the duplicate tuples. EHJ uses a biased flushing strategy flushes

the partition with the largest input first, similar to Dynamic Hash Join [20]. The technique used in

EHJ to determine duplicate tuples is chosen by cardinality; only for many-to-many relationships arrival

timestamps are used.

MJoin [21], a generalized form of XJoin, extends the symmetric binary join operators to handle

multiple inputs, using a separate hash table for each input. When a tuple arrives from an input, it is

stored in the corresponding hash table and is probed in the other hash tables. It is not necessary to probe

all the hash tables for each arrival, as the sequence of probing stops when a probed tuple does not have

a match in a hash table. The methodology for choosing the correct sequence of probing is determined

by performing the most selective probes first. The algorithm uses a coordinated flushing technique that

involves flushing the same partition on the disk for all inputs. To identify duplicate tuples, MJoin uses

two timestamps for each tuple, the arrival time and the departure time from memory.

Adaptive, Hash-partitioned Exact Window Join (AH-EWJ) [22] has been introduced to produce

accurate results for sliding window joins over data streams. AH-EWJ can also be used to join a stream

3

with disk-based data. However, the focus of this approach is on giving the join output in the order of the

stream input.

MESHJOIN (Mesh Join) [10, 11] has been designed especially for joining a continuous stream with

a disk-based relation, like the scenario in active data warehouses. MESHJOIN is a hash join where the

stream serves as the build input and the disk-based relation serves as the probe input. A characteristic

of MESHJOIN is that it performs a staggered execution of the hash table build in order to load in stream

tuples more steadily. The algorithm makes no assumptions about data distribution and the organization

of the master data, and the MESHJOIN authors report that the algorithm performs worse with skewed

data[10, 11]. We previously presented a variant, R-MESHJOIN (reduced Mesh Join) [23], in order to

clarify certain dependencies among the components of MESHJOIN. R-MESHJOIN is simpler and has

slightly improved performance compared to MESHJOIN.

The Index Nested Loop Join (INLJ) [13] is a simple textbook algorithm that can also be used as a

semi-stream join. It is trivially capable of dealing with intermittent data streams. However, every index

has to be considered non-clustered with respect to the stream data. This is because stream data arrive

in the order that the updates are performed. For example, if the join is over product-id with the stream

representing purchases, and the master data is indexed by product-id, the index is non-clustered in that

regard. INLJ is known to be inefficient for non-clustered index access, as the disk I/O cost cannot be

amortized over a fast incoming data stream and eventually produces a low service rate.

The partition-based join algorithm described in [8] improves MESHJOIN’s performance and can also

deal with intermittent streams. It uses a two-level hash table for attempting to join stream tuples as

soon as they arrive, and uses a partition-based waiting area for other stream tuples. However, the time

that a tuple is waiting for execution is not bounded. Moreover, it uses a page-level cache, so the cache

memory is not fully exploited if some tuples on a cached page are infrequent in the stream.

The Semi-Streamed Index Join (SSIJ) [7] operates in three phases: the pending phase, the online

phase and the join phase. In the pending phase, the stream tuples wait in an input buffer until the size of

the buffer is less than the predefined threshold limit or the stream ends. Once the size of the input buffer

crosses the threshold limit, the algorithm starts its online phase. In the online phase, stream tuples from

the input buffer are looked up in cached disk blocks. If the required disk tuple is in the cache, the join

is executed and the algorithm produces an output. In the case of a cache miss, the algorithm flushes

the stream tuple into a stream buffer where it waits for the join phase. The algorithm specifies another

threshold on the stream buffer, and during the join phase a disk block is loaded if the size of the stream

buffer is greater than the threshold value. The algorithm joins the tuples from the stream buffer with

the tuples in the loaded disk block. It implements a utility counter for each disk block that determines

which disk blocks need to be retained in memory. Again, SSIJ uses a page-level cache. The published

work does not include a mathematical cost model, so the criteria for choosing optimal parameters for

SSIJ are unclear.

Another algorithm HYBRIDJOIN (Hybrid Join) [12] was proposed for joining a stream with a slowly

changing table with limited main memory requirements. This algorithm is an interesting candidate for a

resource aware system setup. The key objective of this algorithm is to amortize the fast input stream with

4

the slow disk access within limited memory budget and to deal with the bursty nature of the input data

stream. Although the HYBRIDJOIN algorithm amortizes the fast input stream using an index-based

approach to access the disk-based relation and can deal with bursty streams, the performance can still be

improved if some characteristics of stream data (e.g. skewed in stream data) are taken into consideration.

A number of tools have been developed for stream warehousing that can process stream data with

archive data [3, 24, 25, 26]. However, these tools do not provide optimal solutions for the non-uniform

characteristics of stream data. Some other approaches [3, 27] have considered the problem of joining

stream data with disk-based data, but to the best of our knowledge they did not propose an algorithm

for it.

3. Caching

In this section we propose a generic caching technique for semi-stream joins, which is based on previous

work on the semi-stream join algorithms CMESHJOIN [6] and CACHEJOIN [28]. We generalise the

contributions of the previous works and show that they can be seen as instances of one generic caching

technique that can act as a front-stage for any semi-stream join algorithm. We also introduce a baseline

for measurements of the effects of caching, by combining the caching module with a simple index nested

loop join.

The generic caching technique differs from other approaches such as [7, 8] in two aspects. 1) Gran-

ularity: the technique is a tuple-level cache, i.e. individual master data tuples are cached. Hence every

tuple in the cache is frequent in the stream, ensuring optimal memory usage. By contrast, existing ap-

proaches use a page-level cache, which can at best match a tuple-level cache in memory utilization, and

this only in extreme, artificial cases of locality. 2) Genericity: the technique can be easily combined

with any semi-stream join operator, and then gives some guarantee on better performance with respect

to skewed distributions. It guarantees that frequent tuples are joined fast, while generally having a small

impact on memory consumption. If the join operator is not in itself already optimized for skewed distri-

butions, this can enhance the performance significantly. Because of its generic nature, we call this cache

module a front-stage in the following. In the following, we show how to combine this front-stage with

three semi-stream join algorithms.

3.1. CMESHJOIN (Cached Mesh Join)

We first illustrate the use of the proposed generic front-stage cache component with the well-known

MESHJOIN algorithm. We call the resulting combined algorithm CMESHJOIN (Cached Mesh Join) [?].

Both the front-stage as well as MESHJOIN use hash joins, so the CMESHJOIN algorithm can overall be

seen as possessing two complementary hash join phases, somewhat similar to Symmetric Hash Join [14,

15]. The MESHJOIN phase uses the master data relation R as the probe input, with the largest part of

R typically being stored on disk. The new front-stage phase uses the stream as the probe input and deals

only with a small part of R. For each incoming stream tuple, CMESHJOIN first uses the front-stage to

find a match for frequent requests quickly, and if no match is found, the stream tuple is forwarded to the

MESHJOIN phase.

5

If not matched Stream
buffer
(SB2)

Stream
buffer
(SB1)

Frequency
manipulation

Output
.	
 .	
 .	
 .	
 .	
 .	
 .	
 .	
 .	
 .	
 .	
 .	

.	
 .	
 .	
 .	
 .	
 .	
 .	
 .	
 .	
 .	
 .	
 .

Disk-based
master data

R

Disk buffer

Queue

Hash

function

Hash table (HR)
contains frequent

disk tuples

Hash table (HS)
contains stream

If matched

Stream

S

If frequency ≥ threshold value,
switch this tuple to HR.

front-stage
phase MESHJOIN

phase

Frequency recorder

wB	
 	
 .	
 .	
 .	
 wB	
 wB	
 wB	
 Hash
function

Figure 1: Data structures and architecture of CMESHJOIN

The execution architecture of CMESHJOIN is shown in Figure 1. Relation R and stream S are the

external input sources of the join. The key components of CMESHJOIN with respect to memory size

are two hash tables: one storing stream tuples, denoted by HS , and the other storing tuples from the

disk-based relation, denoted by HR. HR is the cache that contains the most frequently accessed part of

R. The other main components of CMESHJOIN are a disk buffer, a queue (Q), a frequency recorder,

and two stream buffers (SB1 and SB2). The disk buffer is used to load parts of R into memory using

equal-size partitions. Q stores pointers to the stream tuples in HS , keeping track of their order and

enabling the deletion of fully processed tuples. The frequency recorder records the access frequency of

each tuple stored in HR. Both stream buffers are small waiting buffers to hold part of the stream for a

while, if necessary. These components are included in the diagram for completeness, but are in reality

always tiny e.g. 0.05MB for each was sufficient in all our experiments. For reference, we have preserved

the original architecture of MESHJOIN in the MESHJOIN phase, although alternative architectures are

thinkable (e.g. using an order-preserving hash table data structure instead of the queue).

CMESHJOIN alternates between the front-stage and the MESHJOIN phases. HS is used to store

only that part of the update stream that does not match tuples in HR. A front-stage phase ends if HS is

full or if the stream buffer (SB1) is empty. Then the MESHJOIN phase becomes active. In each iteration

of the MESHJOIN phase, the algorithm loads a set of tuples (a partition) of R into memory to amortize

the costly disk access. After loading the disk tuples into the disk buffer, the algorithm probes each tuple

of the disk buffer in HS . If the required tuple is found in HS , the algorithm generates that tuple as an

output. After each iteration the algorithm removes the oldest chunk of stream tuples from HS . This

chunk is found at the end of Q; its tuples were joined with the whole of R and are thus completely

processed now. Later we call them expired stream tuples. As the algorithm reads R sequentially, no

index on R is required. After one probe step, a sufficient number of stream tuples are deleted from HS , so

the algorithm switches back to the front-stage phase. One phase of front-stage with a subsequent phase

of MESHJOIN constitutes one outer iteration of CMESHJOIN.

The front-stage phase is used to boost the performance of the algorithm by quickly matching the

most frequent master data. An important question is how frequently a master data tuple must be used

in order to get into this phase, so that the memory sacrificed for this phase really delivers a performance

6

If not matched

Stream

buffer

(SB2)

Frequency recorder

Queue . . . tm t1 t3 t2

HYBRIDJOIN

phase

Frequency

manipulation

Output
.
.

Disk-based

master data

R

Disk buffer

Stream

buffer

(SB1)

Hash table (HR)

contains frequent

disk tuples

Hash table (HS)

contains stream

If matched

Stream

S
Hash

function

If frequency ≥ threshold

value, switch this tuple to HR.

front-stage

phase

Hash

function

Figure 2: Data structures and architecture of CHYBRIDJOIN

advantage. In Section 5.4 we give a precise and comprehensive analysis that shows that a remarkably

small amount of memory (15% of total memory) assigned to the front-stage phase can deliver a substantial

performance gain. For determining very frequent tuples in R and loading them into HR, a frequency

detection process is required, which is described in Section 3.2.1.

3.2. CHYBRIDJOIN (Cached Hybrid Join)

We now illustrate how the proposed front-stage can be combined with a different semi-stream join

algorithm, HYBRIDJOIN (Hybrid Join) [12]. We call the resulting combined algorithm CHYBRIDJOIN

(Cached Hybrid Join) [28]. HYBRIDJOIN differs from MESHJOIN in that it addresses specifically one-

to-many joins and accesses the disk-based relation R selectively. For that, an index is needed, however

a non-clustered index is sufficient if we consider equijoins on a foreign key element that is stored in

the stream. The CHYBRIDJOIN algorithm again possesses two complementary phases: the front-stage

phase and the HYBRIDJOIN phase.

The execution architecture for CHYBRIDJOIN is shown in Figure 2. The HYBRIDJOIN phase

requires most of the memory. The components for the HYBRIDJOIN phase are similar to those for the

MESHJOIN phase in CMESHJOIN. Similar to CMESHJOIN, CHYBRIDJOIN alternates between the

front-stage and HYBRIDJOIN phases. The working of the front-stage has already been explained.

In the HYBRIDJOIN phase of CHYBRIDJOIN, the oldest tuple in the queue is used to determine

the partition of R that is loaded into the disk buffer, with the help of the non-clustered index. A few disk

pages of R have to be loaded at the same time in order to amortize the costly seek time of disk access.

After one probe step, a sufficient number of stream tuples in HS are matched with the disk buffer. These

tuples are deleted; for that purpose we choose a queue implementation that supports this process, e.g. a

doubly-linked-list. One execution of the front-stage with a subsequent execution of the HYBRIDJOIN

phase constitutes one outer iteration of CHYBRIDJOIN.

3.2.1. Algorithm

We now explain CHYBRIDJOIN as shown in Algorithm 1. The algorithm takes stream S and disk-

based relation R as inputs, and as an output it produces the join between these two inputs. The main

parameters for each iteration of the algorithm are the following: wF denotes the number of stream tuples

7

matching in the front-stage phase in one iteration; wB denotes the number of stream tuples matching

in the HYBRIDJOIN phase in one iteration, and therefore the number of slots that are emptied in HS .

At the start of the algorithm all slots in HS are empty; therefore wB is initialized with hS (line 1). The

outer loop of the algorithm is an endless loop, which is natural in stream processing algorithms (line 2).

The body of the outer loop has two main parts: the front-stage phase and the HYBRIDJOIN phase. Due

to the endless loop, these two phases alternate. Before starting the execution of these two phases the

algorithm first executes the load shedding module (line 3), which is explained in Section 4.

First, CHYBRIDJOIN executes the front-stage phase (line 4) which is presented in Algorithm 3. The

front-stage phase has to know the number of empty slots in HS , kept in variable wB . Before starting

its actual execution, the front-stage algorithm first resets wF to zero (line 1). The front stage processes

one stream tuple at a time in a loop until either the stream buffer SB1 is emptied, or the number of

unprocessed tuples, which is the inputSize for the next phase, has reached wB (line 2). In each iteration

of the loop the algorithm reads a stream tuple t from SB1 (line 3) and performs a look-up of t in HR

(line 4). In the case of a match, the algorithm generates the join output and increments wF by one (line

5 and 6). Where t does not match in HR, the algorithm adds t to SB2 and increments variable inputSize

by one (lines 8 and 9).

Lines 5 to 24 of Algorithm 1 describe the HYBRIDJOIN phase. At the start of this phase, the

algorithm reads wB tuples from SB2 and loads them into HS while placing their key attribute values

(called pointers) into the queue (line 5). After reading the input the algorithm resets wB to zero (line 6).

The algorithm then reads the oldest key attribute value g from the end of Q and finds the relative index

value in R. If the relative index value does not exist it means this key attribute value does not have a

matching tuple in the master data; the algorithm deletes g from the queue with the related stream tuple

from HS and jumps back to line 7 (lines 7 to 10). The algorithm then loads b tuples of R into the disk

buffer using g as an index (line 12). In an inner loop, the algorithm looks up one-by-one all tuples r from

the disk buffer in HS . In the case of a match, the algorithm generates the join output (lines 13 to 15).

Since HS is a multi-hash-map, there can be more than one match; the number of matches is f (line 16).

The algorithm removes all matching tuples from HS while also deleting the corresponding pointers from

Q (line 17). This creates empty slots in HS which are accumulated in wB , denoting the size of the next

input (line 18).

Lines 19 to 22 are concerned with frequency detection of stream tuples which means the total number

of matching values f in the whole queue against each master data tuple r in the disk buffer. In line

19 the algorithm tests whether this f is larger than a pre-set threshold. If it is, then tuple r needs to

be added to the cache HR. The algorithm overwrites an existing least-frequent tuple in HR using the

frequency recorder (line 20). We assume that empty cache slots are initialized with frequency 0. After

inserting r into HR, the frequency detection process updates the frequency recorder with the new join

attribute value from r and its frequency f (line 21). The frequency recorder is a two dimensional list

containing join attribute values and their frequencies for all elements in the cache. The threshold is a

flexible barrier which can move up and down. If the cache is not full, this means the threshold is too

high; in this case, the threshold can be lowered automatically. Similarly, the threshold can be raised if

8

Algorithm 1 CHYBRIDJOIN algorithm

Input: A disk based relation R with index on join attribute and a stream of updates S.

Output: R ./ S

Parameters: wF and wB tuples of S and k number of pages of R.

Method:

1: wB ← hS

2: while (true) do

3: Load-Shedding(wB , SB1, Q, HS)

4: Front-Stage(wF , wB , SB1, SB2)

5: LOAD wB tuples from SB2 to HS and also place their pointers (join attribute values) into Q

6: RESET wB to 0

7: READ the oldest join attribute value g from Q

8: if g does not match with index value in R then

9: DELETE g from Q

10: Go to line 7

11: end if

12: READ b tuples of R into the disk buffer using g as an index look-up

13: for each tuple r in disk buffer do

14: if r ∈ HS then

15: OUTPUT r ./ HS

16: f ← number of matching tuples found in HS

17: DELETE all matched tuples from HS along with the corresponding nodes from Q

18: wB ← wB + f

19: if f ≥ thresholdV alue then

20: OVERWRITE least frequent tuple in HR with r using frequency recorder

21: UPDATE frequency recorder with new join attribute value from r and its frequency f

22: end if

23: end if

24: end for

25: end while

Algorithm 2 Load-Shedding(wB , SB1, Q, HS)

1: if sizeof(SB1) > 2wB then

2: SHED (sizeof(SB1) − 2wB) pointers from end of Q along with their corresponding tuples from

HS on disk/network

3: else

4: LOAD 2wB tuples from disk/network to SB1

5: end if

9

Algorithm 3 Front-Stage(wF , wB , SB1, SB2)

1: RESET wF to 0

2: while inputSize < wB AND SB1 is not empty do

3: READ stream tuple t from SB1

4: if t ∈ HR then

5: OUTPUT t

6: wF ← wF +1

7: else

8: ADD stream tuple t in SB2

9: inputSize← inputSize+1

10: end if

11: end while

tuples are evicted from the cache too frequently. This makes the front-stage phase flexible and able to

adapt online to changes in the stream behavior. Necessarily, it will take some time to adapt to changes,

similar to the warmup phase. However, this is usually deemed acceptable for a stream-based join that is

supposed to run for a long time.

3.3. Cached Index Nested Loop Join (CINLJ)

Finally, we consider a combination of the proposed front-stage with the classic Index Nested Loop

Join (INLJ) [13]. This setup is not intended as a recommended algorithm for practical purposes, but

establishes a baseline for the effects of the front-stage alone. The resulting algorithm is called CINLJ

(Cached Index Nested Loop Join). The execution architecture of CINLJ is shown in Figure 3. The front-

stage phase is essentially the same component as before. In the INLJ phase, the algorithm processes

one stream tuple at a time. For each stream tuple the algorithm queries the disk-based master data

using a join attribute value as an index. If a relevant tuple is found, the algorithm performs the join and

generates an output.

In order to use our front stage with the INLJ, we need to determine the frequent tuples in the stream.

Since the INLJ itself does not accumulate enough information, we need an extra component, a small

buffer in the INLJ phase that is labeled “temporary buffer” in the figure. This buffer stores the join

attribute values from stream data for a certain time span, and after a certain time span the buffer is

refreshed. This buffer is much smaller than the queue plus hash table of the preceding algorithms, and

needs to store the join attribute values only long enough so that the most frequent ones can be detected.

In general, if the frequency of a join attribute value is greater than the specified threshold value, then

the frequency manipulation process puts that tuple into the front-stage cache. If the desire is to make

the buffer as small as possible, this frequency can be set to 2, and the life span of the buffer content can

be set so that the most frequent tuples are expected to appear with frequency 2.

10

Stream

buffer

(SB2)

output
If not matched

Stream

buffer

(SB1)

Frequency

manipulation

Hash table (HR)

contains frequent

disk tuples

If matched

If frequency ≥ threshold

value, switch this tuple to HR

Hash

function

Stream

S

Disk-based

master data

R

 Temporary buffer (Tb)
stores join attribute values of

stream and refreshes periodically

front-stage

phase
INLJ

phase

Frequency

recorder

INLJ

Figure 3: Data structure and architecture of CINLJ

4. Load Shedding

While caching is a useful performance optimisation for semi-stream joins, there are situations where a

join is unable to process the incoming stream tuples at the rate they arrive. To deal with such situations,

a mechanism for load shedding is necessary, i.e. a mechanism that is able to selectively move arriving

tuples to storage for later processing. A load shedding technique should be as efficient as possible on

its own, with further improvements possible by adding a caching technique as discussed in the previous

sections. In the following, we propose a novel and efficient technique for load shedding in semi-stream

joins which is particularly suited for skewed distributions.

Load shedding has been discussed for approximate stream join processing [29, 30, 31], but in these

approaches all inputs of the join operator are streams. For semi-stream joins, load shedding has been

first discussed in [11]. There the authors discuss two different heuristics (goals) for load shedding in

many-to-one joins, namely maximizing the subset and random sample. The random sample goal is

that the produced tuples are a random sample of the join output without load shedding. For this goal

one can hardly do any better than choosing a random subset, except with very strong assumptions.

However, for the other goal, maximizing the subset, we propose a novel improved solution. From the

brief description in [11], and due to the fact that the sources are not public, it can be inferred that their

“keep” strategy sheds stream tuples upfront, i.e. before processing them in a substantial way, which is

the standard approach to load shedding. This results in effect to dropping every stream tuple with the

same probability. By contrast, we present a load shedding approach which preferably sheds tuples from

the stream that are more expensive to process. This is further explained in Section 4.2. As a result, our

algorithm yields a significantly higher service rate under shedding than without shedding, as shown in

experiments in Section 5.3.

4.1. Problem overview

In algorithms without load shedding, the assumption is that the join operator has been allocated

enough memory to cope with the stream arrival rate. However, the converse scenario is of interest, where

the stream arrival rate can exceed the service rate of the join operator, for example because the memory

is fixed. This is explained in Figure 4. The figure presents both the stream arrival rate and the service

rate. From the figure it can be observed that after a certain point (we call it shedding point, at which

11

Arrival rate

Maximum service rate
for available memory

Service rate
line

Service
rate

shedding point

Figure 4: Interpretation of stream load shedding

the service rate is optimal within assigned memory limit) due to memory constraint the service rate

cannot withstand the stream arrival rate. So under this memory settings the algorithm is unable to

process the stream after the shedding point. A load shedding option should automatically detect high

load, and perform load shedding only during said high load. The approach to detect high load is based

on the iterative nature of the algorithm. From previous executions of the main join loop, we obtain an

expected number of tuples w processed in each iteration. In the simplest case, which is used in the current

implementation, this is simply the number of tuples processed in the last iteration. If the current size of

the stream buffer is larger than w, then the stream buffer does not get emptied, and tuples might start

to accumulate. If the current size of the stream buffer is larger than 2w, we assume that the buffer is

accumulating tuples, and we perform a load shedding operation. In this way, load shedding decisions are

made within the timeframe of one loop execution, and the algorithm can react quickly to varying load.

Algorithm 2 describes the load shedding module. The load shedding algorithm first compares the

size of SB1 with wB (line 1). If the number of tuples in SB1 is more than twice wB , load shedding is

required. In this case the algorithm sheds (sizeof(SB1) − 2wB) pointers from the end of Q along with

their corresponding tuples from HS onto disk/network (line 2). On the other hand if the size of SB1 is

less than twice wB , this means the stream is slower than the service rate. In this case the algorithm loads

2wB number of tuples from disk/network to SB1 (line 3 and 4).

4.2. Load shedding after considering tuples

The load shedding approach that we implemented in our CHYBRIDJOIN algorithm sheds the tuples

that are most expensive in terms of resource consumption, yielding a higher service rate as the “keep”

approach of MESHJOIN. This is possible by dropping tuples only after considering them for processing,

which is achieved by shedding tuples from the end of the queue. Assume the detection of high load has

decided that w tuples have to be shed. Instead of shedding w tuples upfront from the stream buffer, our

approach, which we call “considering”, sheds w tuples from the end of the queue, thus freeing an identical

amount of space.

We show that “considering” is better than the upfront “keep” approach by discussing the processing

cost of stream tuples. For this we have to consider for each stream tuple the master data partition that

it matches. We can define the stream probability [32] of a master data partition, as the probability that a

random stream tuple matches a master data record on that partition. We first observe that if stream tuple

foreign keys follow a Zipfian random distribution, then there are the following options for the distribution

of the stream probability. If the rank of the master data tuples is distributed randomly over the master

12

data, then the stream probability will be normally distributed according to the central limit theorem of

probability theory. This means, there are still more and less frequent master data partitions, but the

differences are by far not as extreme as the skew in the foreign keys, but in all data sets considered, it is

noticeable.

In reality, we expect locality of master data rank, i.e. frequent items will have other frequent items

on the same page (e.g. if all ”‘bread”’ product codes are on the same page). Then we can expect again

a Zipfian distribution for the stream probability. However, for the sake of generality we do not make

strong assumptions about this distribution. Given a strategy for using queue tuples to look up and load

master data partitions (we call this a lookup strategy), we define the load probability [32] of a master

data partition as the probability that this partition is loaded during the HYBRIDJOIN phase. Note that

this probability is dependent on the workings of the algorithm; however, the algorithm is for a given

stream probability. For any lookup strategy that uses a fixed or random position in the queue to load

the corresponding master data partition, the load probability of a partition increases with the stream

probability, and this is a desirable property. These concepts can be turned into a property of tuples:

for a tuple we can consider the stream probability and load probability of its master data partition. We

consider Ps(n), the expected stream probability of the master data partition for the tuple at position n

in the queue (counting from the start of the queue).

Lemma 1 Ps(n) decreases with increasing n.

Proof. Let t be the tuple currently at position n. The higher n, the higher the expected number of

master data lookups that have been performed while t is in the queue. Every master data lookup is

more likely to load a partition with high load probability, and will remove all matching tuples from the

queue. Therefore tuples such as t that remain after these lookups, have themselves a lower expected load

probability and hence also a lower expected stream probability.

Theorem 1 Shedding after “considering” yields a higher service rate than shedding upfront.

Proof. The bottleneck of CHYBRIDJOIN is the master data disk access. If we increase the average

number of matches per loaded master data partition then we increase the service rate of the algorithm.

Shedding after considering means we shed tuples from the end of the queue. It remains to show that

this increases the average number of matches per master data disk access. We can conclude from Lemma

1 that the average stream probability of a group of tuples at the end of the queue is lower than the

average stream probability of tuples before entering the queue. This means the strategy indeed picks

tuples with lower stream probability than the strategy of shedding upfront. Lower stream probability

of a tuple however means that if this tuple needs to be processed and its master data partition has to

be loaded, there are fewer other tuples that will match at the same time. This means the tuples picked

by shedding after considering are indeed more expensive than average, so shedding them increases the

service rate.

The result is at first glance somewhat paradoxical since one would assume that the process of con-

sidering, i.e. having the tuples sit in the queue, incurs some additional cost. But with the alternative

13

Table 1: Data specifications for synthetic dataset

Parameter value

Total allocated memory M 1% of R (0.11GB) to 10% of R (1.12GB)

Size of disk-based relation R 100 million tuples (≈11.18GB)

Size of each disk tuple 120 bytes (same as MESHJOIN)

Size of each stream tuple 20 bytes (same as MESHJOIN)

Size of each node in the queue 4 bytes in CMESHJOIN while 12 bytes in CHYBRIDJOIN

Data set based on Zipf’s law (skew value from 0 to 1)

Stream arrival rate (λ) varies

strategy of shedding tuples upfront, about the same fraction of tuples sitting in the queue would be

low-frequency tuples. The difference to our strategy is that we do not waste the most important resource

(loading master data partitions) on these tuples.

5. Experiments

In this section we present an extensive experimental study of our approaches using synthetic, TPC-H,

and real-life data. We divide our experiments into three different subsections in the text. In Section 5.2, we

present the comparisons of service rate and processing time using front-stage cache module. In Section 5.3,

we present the comparisons of service rate under load shedding. Finally, in Section 5.4 we perform

sensitivity analysis with respect to various internal design parameters. In this category of experiments

we only consider the CMESHJOIN approach. This subsection also validates the calculated costs with

measured costs for all algorithms, considered in this article. Before proceeding to the experimental results

we first describe the setup in which we carried out our experiments.

5.1. Experimental setup

Hardware and software specifications: We performed our experiments on a Pentium-i5 with

8GB main memory and 500GB hard drive as secondary storage. We implemented our experiments in

Java using the Eclipse IDE. As join attribute values can be duplicated in stream data against one value

of the master data due to the attribute being a foreign key, a hash table is needed that can store multiple

values against one value of the master data. The hash table provided by the Java library does not support

this feature, therefore org.apache.MultiHashMap was used.

Measurement strategy: The performance or service rate of the join is measured by calculating

the number of tuples processed in a unit second. In each experiment, both algorithms first completed

their warmup phase before starting the actual measurements. These kinds of algorithms normally need

a warmup phase to tune their components with respect to the available memory resources, so that each

component can deliver a maximum service rate. For each measurement where necessary, we calculated

the 95% confidence interval. During the execution of the algorithm, no other application was running in

parallel.

14

Data specifications: The relation R was stored on disk using a MySQL database. Both the algo-

rithms read master data from the database. To measure the I/O cost more accurately, we set the fetch

size for ResultSet equal to the disk buffer size.

Synthetic data: The stream dataset we used is based on a Zipfian distribution. The master data we used

was unsorted. The detailed specifications of our synthetic dataset are shown in Table 1.

TPC-H: We also analyzed the service rate of both algorithms using the TPC-H dataset, which is a well-

known decision support benchmark. We created the datasets using a scale factor of 100. More precisely,

we used the table Customer as master data and the table Order as stream data. In table Order there is

one foreign key attribute custkey, which is a primary key in the Customer table, so the two tables can

be joined. Our Customer table contained 20 million tuples, with each tuple having a size of 223 bytes.

The Order table contained the same number of tuples, with each tuple having a size of 138 bytes. The

plausible scenario for such a join is to add customer details corresponding to an order before loading the

order into the warehouse.

Real-life data: We also compared the service rate of both algorithms using a real-life dataset1. This

dataset contains cloud information stored in a summarized weather report format. It was also used to

evaluate the original MESHJOIN. We use one part of the table as master data, and transform another

part of the table into a continuous stream of data. The tuple size is therefore the same in the master

data table and the stream data, 128 bytes. The master data table contains 20 million tuples. Both tables

are joined on the longitude (LON) attribute. The domain of the join attribute is the interval [0,36000].

5.2. Experimental evaluation of caching

5.2.1. Service rate analysis

We investigate the effect of three parameters on the behavior of the algorithms: the size of the master

data table R, the total memory available, and the value of skew in the foreign keys of stream data.

For the sake of brevity, we restrict the discussion for each parameter to a one-dimensional variation, i.e.

we vary one parameter at a time. Note that we do not plot the service rate of INLJ and CINLJ in

the figures as they were invisible due to their small values. However, where necessary we present these

service rate values in the text. First we evaluate the performance of all the algorithms by varying the

three parameters using synthetic data. Later we also evaluate the performance of all the algorithms using

TPC-H and real-life data. The details about all these datasets have already been presented in Section 5.1.

Analysis by varying size of memory: In this experiment we compared the service rate of the

algorithms while varying the memory size from 1% to 10% of R, with the size of R being 100 million tuples

(≈11.18GB) and skew value 1. For each memory setting we measure the service rate of each algorithm.

The results of our experiment are shown in Figure 5(a). We can see that CMESHJOIN performed up to 6.5

times faster than MESHJOIN and CHYBRIDJOIN performs about 2.8 times better than HYBRIDJOIN

with the 10% memory setting. With less memory (1% of R), CMESHJOIN still performed up to 4 times

better than MESHJOIN and CHYBRIDJOIN performs up to 2.4 times better than HYBRIDJOIN, which

makes the new algorithms good adaptive solutions suitable for memory-constrained applications. We did

1This dataset is available at: http://cdiac.ornl.gov/ftp/ndp026b/

15

http://cdiac.ornl.gov/ftp/ndp026b/

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Allocated memory (in %age of R)

Se
rv

ice
 ra

te
 (t

up
le

s/
se

c)

CMESHJOIN
CHYBRIDJOIN
HYBRIDJOIN
MESHJOIN

(a) Service rate vs memory

20 40 60 80 100
0

2

4

6

8

10

12

14
x 10

4

Tuples (in millions)

Se
rv

ic
e

ra
te

 (t
up

le
s/

se
c)

CMESHJOIN

MESHJOIN

CHYBRIDJOIN

HYBRIDJOIN

(b) Service rate vs size of R

1 2 3 4 5
0

50

100

150

200

250

300

350

400

450

Size of R (in million tuples)

Se
rv

ic
e

ra
te

 (t
up

le
s/

se
c)

CINLJ
INLJ

(c) Service rate vs size of R (INLJ vs CINLJ)

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4

Skew

Se
rv

ice
 ra

te
 (t

up
le

s/
se

c)

CMESHJOIN
MESHJOIN
CHYBRIDJOIN
HYBRIDJOIN

(d) Service rate vs skew

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

Allocated memory (in %age of R)

Se
rv

ic
e

ra
te

 (t
up

le
s/

se
c)

CMESHJOIN
CHYBRIDJOIN
HYBRIDJOIN
MESHJOIN

(e) TPC-H dataset

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

16000

Allocated memory (in %age of R)

S
er

vi
ce

 ra
te

 (t
up

le
s/

se
c)

CMESHJOIN
CHYBRIDJOIN
HYBRIDJOIN
MESHJOIN

(f) Real-life dataset

Total allocated memory (% of R)
1 2 3 4 5 6 7 8 9 10

Se
rv

ice
 ra

te
 (t

up
les

/se
c)

×104

0

1

2

3

4

5
CMESHJOIN N=1
CMESHJOIN N=5
CMESHJOIN N=10
CMESHJOIN N=20
MESHJOIN N=1
MESHJOIN N=5
MESHJOIN N=10
MESHJOIN N=20

(g) Temporal locality

Figure 5: Service rate analysis without load shedding

16

not include INLJ in this comparison as memory does not matter in its service rate. However, we believe

that CINLJ will significantly outperform INLJ for all the memory settings.

Analysis by varying size of R: In this experiment we compared the service rate of all the algorithms

for different sizes of R, with a fixed memory size (≈1.12GB). We also fixed the skew value to 1 for all

settings of R. The results for all the algorithms except INLJ and CINLJ are shown in Figure 5(b). From

Figure 5(b) we see that for R with 20 million tuples CMESHJOIN performed up to 4.7 times better than

MESHJOIN while CHYBRIDJOIN performs about 3 times better than HYBRIDJOIN. This improvement

increased to 6.5 times for CMESHJOIN when the size of R was 100 million tuples. For the same setting

CHYBRIDJOIN is still significantly better than HYBRIDJOIN, but the margin of improvement slightly

decreases (to 2.8 times) because an index is used to access R. In case of INLJ and CINLJ the service

rate is very low as is to be expected for an unclustered index. It is still important to see the impact of

the frontstage in this case, therefore we provide a separate graph in Figure 5(c). We see that CINLJ

performs up to 2.5 times better than INLJ. However, as expected, these two perform substantially worse

than the other four algorithms. The reason for their poor service rate is the high I/O cost of the INLJ

phase; it does not amortize the expensive I/O cost.

Analysis by varying skew value: In this experiment we compared the service rate of the algorithms

while varying the skew of the streaming data, expressed as the Zipfian exponent, from 0 to 1. At exponent

0 the input stream S is uniform, while exponent 1 expresses a relatively strong skew. The size of R was

fixed at 100 million tuples (≈11.18GB) and the available memory was set to 10% of R (≈1.12GB).

The results presented in Figure 5(d) show that CMESHJOIN and CHYBRIDJOIN perform significantly

better than MESHJOIN and HYBRIDJOIN respectively, even for only moderately skewed data, and this

becomes more pronounced for higher skew. At a skew of 1, CMESHJOIN performs approximately 6.5

times better than MESHJOIN and CHYBRIDJOIN performs 2.8 times better than HYBRIDJOIN. As

MESHJOIN does not exploit skew in its algorithm, its service rate actually decreased slightly for more

skewed data, which is consistent with the original MESHJOIN findings. We do not present data for skew

values larger than 1, which would imply short tails. However, we assume that for such short tails the

trend continues. Also from the figure we can see that CMESHJOIN and CHYBRIDJOIN perform worse

than MESHJOIN and HYBRIDJOIN respectively when stream data is completely uniform (exponent

of 0). The reason is that the front-stage does not add any value in case of fully uniform distribution.

However, these differences are relatively small and represent the worst case.

TPC-H and real-life datasets: In these experiments we measured the service rate produced by

the above four algorithms at different memory settings. The results of using TPC-H data and real-life

data are shown in Figure 5(e) and Figure 5(f) respectively. From Figure 5(e) it can be noted that

CMESHJOIN performed about 3.7 times better than MESHJOIN and CHYBRIDJOIN performed about

2.5 times better than HYBRIDJOIN, which is significant especially for a smaller memory size, 1% of

R. Similarly, it is obvious from Figure 5(f) that both CMESHJOIN and CHYBRIDJOIN outperform

MESHJOIN and HYBRIDJOIN under all memory settings.

Temporal locality: We considered an important characteristic of stream data that is called temporal

locality. This is the case if within a certain time period most of the join attribute values in stream data

17

fall within a subset of the master data domain. In this experiment, we generated data simulating this

scenario as follows. We considered 100 million tuples in the master data R, uniformly distributed within

the domain of the join attribute, which is [1, R
N]. N is an arbitrary number and is used to set the domain

value. Now each value in R appears exactly N times. The stream data contained 50 million tuples and

was divided into 25 equal-size intervals, with each interval containing 2 million tuples. Each interval I,

I ∈ [1, 25], contained a Zipfian distribution with skew 1 and a domain of [I × R
25N , (I + 1)× R

25N]. Hence,

each stream interval required localized reads from a limited number of blocks of R (e.g. in the case of

N = 10 the domain of each stream interval would be 0.4 million, which is 4% of the domain of R).

The results of this experiment under different memory settings are depicted in Figure 5(g). We

consider in this experiment only two algorithms, CMESHJOIN and MESHJOIN. From the figure it can

be observed that for N=1 CMESHJOIN performed 6.5 times better than MESHJOIN, while for N=20

it was about 10 times better than MESHJOIN. The service rate in CMESHJOIN also decreased with an

increase in the value of N because of the MESHJOIN phase, but it decreased significantly slower than

for MESHJOIN. This is because the front-stage stored the frequent tuples of R.

5.2.2. Processing time analysis

20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

20

Size of R (tuples in millions)

A
ve

ra
ge

 p
ro

ce
ss

in
g

tim
e

fo
r

ea
ch

 s
tr

ea
m

 tu
pl

e
(m

in
ut

es
)

MESHJOIN
HYBRIDJOIN
CHYBRIDJOIN
CMESHJOIN

Figure 6: Processing time analysis

A second kind of performance parameter

besides service rate refers to the time an al-

gorithm takes to process a tuple. Processing

time is an average time that every stream

tuple spends in the join module from load-

ing to matching without including any de-

lay due to a low arrival rate of the stream.

Figure 6 shows a comparison of the process-

ing times. We can see that the processing

time in both CMESHJOIN and CHYBRID-

JOIN is significantly smaller than those of

MESHJOIN and HYBRIDJOIN respectively.

This difference became larger particularly in

the case of CMESHJOIN as we increased the size of R. The plausible explanation for this is that in both

CMESHJOIN and CHYBRIDJOIN a big part of the stream data is directly processed through the front-

stage phase without joining it with the whole relation R in memory. We do not present the processing

time for CINLJ and INLJ because it does not change significantly, even when the size of R changes. In

the cases of CINLJ and INLJ, since the algorithms work at tuple level, a delay appears in the form of a

stream backlog that occurs due to faster incoming stream rate than the processing rate.

5.3. Experimental evaluation of load Shedding

5.3.1. Choosing an optimal position to access the queue at the time of load shedding

Since in our load shedding approach the last queue elements are shedded, it is intuitively clear that

one should not use the last element as a lookup element, i.e. the stream tuple that determines which

18

front 5% 10%15%20%25%30%35%40%45%50%55%60%65%70%75%80%85%90%95% end
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Positions of lookup element in the queue

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

Figure 7: Queue optimization for load shedding

0 5 10 15 20 25 30 35 40 45 50 55 60
0

0.5

1

1.5

2

2.5
x 10

4

Time (in minutes)

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

Stream arrival rate
CHYBRIDJOIN with tuned load shedding on network
CHYBRIDJOIN with tuned load shedding on disk
CHYBRIDJOIN with untuned load shedding
CHYBRIDJOIN using MESHJOIN load shedding technique
MESHJOIN with load shedding

Figure 8: Service rate analysis under load shedding

master data tuple is loaded next. So the question arises which position in the queue the algorithm should

choose as the lookup element.

This section explains our quantitative measurements for choosing an optimal position for accessing

the queue while load shedding is on. The details about the dataset we used here have been presented in

Section 5.1. We conducted an experiment in which we measured the performance of the algorithm by

accessing the queue at different positions in steps of 5% of the queue length.

The results of our experiment are shown in Figure 7. As we move the access position away from the

front of the queue the performance is improving. This observation matches our qualitative expectation

from Theorem 1. This behavior continues up to a certain position (which is at 15% in our experiment) and

after that maximum, performance decreases towards the end of the queue. The reason for this behaviour

is stated in Theorem 1. As a result of this experiment we can say that position 15% is optimal and we

use this position later in all our performance evaluation experiments.

5.3.2. Service rate analysis

We now analyze the service rate produced by CHYBRIDJOIN under load shedding, including a

comparison of the service rate using the optimal lookup position with the end lookup position. In the

case of optimal lookup the algorithm accesses the queue at a position of 15% while in the case of non-

optimal lookup the algorithm accesses the queue from the end. Therefore, we call shedding using the

former case tuned load shedding, while shedding using the latter case is called untuned load shedding. In

the case of tuned load shedding, we presented the results for shedding on disk as well as on network.

Figure 8 presents the results of our experiment. To visualize the effect clearly we also plotted the

stream arrival rate in the figure. From the figure it is clear that CHYBRIDJOIN with tuned load shedding

performs 33% better than that of untuned load shedding, which is a significant improvement. The reason

for this better performance has already been described in the above theorem. From the figure we can also

observe a slight improvement in service rate in the case when shedding has taken place on the network.

The other positive outcome that we can extract from the experiment is that the algorithm does not lose

much performance if we shed the stream data onto the disk.

To illustrate the effect of our load shedding approach on service rate, we also implemented the

19

MESHJOIN load shedding approach in CHYBRIDJOIN and compared the service rate of both ap-

proaches. From the figure it can be observed that using our load shedding approach CHYBRIDJOIN

performs 3.1 times better than with the MESHJOIN load shedding approach. The reason for this im-

provement is that in the case of our load shedding the algorithm sheds the stream tuples from the end

of the queue, while these tuples are infrequent in the stream. Contrarily, in the case of MESHJOIN

load shedding the algorithm sheds the stream tuples from the stream buffer (before processing them)

without caring of frequent and infrequent stream tuples. For the sake of completeness we also included

MESHJOIN in this experiment. From the figure, MESHJOIN has a very low service rate as the algorithm

does not implement tuned load shedding. Apart from that the algorithm also does not have a front-stage.

In summary, CHYBRIDJOIN with tuned load shedding reaches a higher service rate than that of the

MESHJOIN load shedding approach. This means we have utilized the opportunity of load shedding to

focus on those tuples where fast progress is possible.

5.4. Analysis of algorithm design parameters

Design parameters are parameters that can be tuned. In this section we consider only CMESHJOIN

and analyze the sensitivity of its design parameters. However, a similar analysis can be performed for

the other algorithms’ parameters.

Sensitivity to front-stage size: In this experiment we analyzed the effect of the front-stage size

on the service rate of CMESHJOIN. We ran the algorithm with different sizes of the front-stage and

measured the service rate of the algorithm. We also tested the algorithm without the front-stage; in this

case CMESHJOIN essentially operates like MESHJOIN. In this experiment we used an R with size of 100

million tuples (≈11.18GB). The results are shown in Figure 9(a). From the figure it can be observed that

if we increase the memory for the front-stage, the service rate continuously improves up to a maximum

at ≈15% and after that the service rate again starts decreasing. It is noteworthy that with a 75% cache

size the algorithm produces a service rate still greater than that of not using the front-stage at all. This

behavior is consistent for a wide range of total memory settings and can be understood as a trade-off

between the front-stage phase and the MESHJOIN phase.

Threshold sensitivity: The threshold is a parameter of CMESHJOIN used by the frequency ma-

nipulator to decide whether a tuple is frequent or not. In this experiment we observe the sensitivity of

the frontstage behavior to this parameter. We therefore measured the service rate produced through

the front-stage phase only. The natural expectation is that for lower threshold values this service rate

becomes bigger, since that with a high threshold value the cache does not fill up completely, and there-

fore the algorithm cannot fully exploit the front-stage phase. We used an R with a size of 100 million

tuples (≈11.18GB) and allocated memory the size of 10% of R (≈1.12GB). The stream followed a Zipfian

distribution with skew value of 1. The results are shown in Figure 9(b). For threshold values decreasing

from 10 the service rate increases first rapidly as expected, but only down to a certain threshold. The

plausible reason for this is that once the cache fills up completely, the frequency manipulator replaces

the least-frequent tuple in the cache with a new one, which does not make a significant difference in the

service rate. Normally, CMESHJOIN fills the cache in a warmup phase by adjusting the threshold value

20

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Total allocated memory (% of R)

Se
rv

ic
e

ra
te

 (t
up

le
s/

se
c)

15% front−stage (optimal)
5% front−stage
10% front−stage
25% front−stage
50% front−stage
75%front−stage
without front−stage

(a) Front-stage analysis

2345678910
0

200

400

600

800

1000

1200

1400

Threshold value

T
up

le
s

pr
oc

es
se

d
th

ro
ug

h
th

e
fr

on
t−

st
ag

e
ph

as
e

(b) Threshold sensitivity analysis

8 16 32 64 128 256 512 1024 2048 4096
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Disk buffer (# pages)
on log scale

S
er

vi
ce

 r
at

e
pr

od
uc

ed
 th

ro
ug

h
M

E
S

H
JO

IN
 p

ha
se

 (
tu

pl
es

/s
ec

)

(c) Disk buffer size analysis

0.11 0.22 0.34 0.45 0.56 0.67 0.78 0.89 1.01 1.12
0

2

4

6

8

10

12

14
x 10

5

Total allocated memmory (GB)

Tu
pl

es
 p

ro
ce

ss
ed

 th
ro

ug
h

th
e

fro
nt

−s
ta

ge
 p

ha
se

in
 1

00
0

ite
ra

tio
ns

 (m
ill

io
ns

)

(d) Role of the front-stage

400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8

9

10
x 10

4

iteration number

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

Size of R=100 million tuples

Refilling of front−stage
 cache

Size of R=50 million tuples

(e) Changing the size of R online

1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Allocated memory (in %age of R)

P
ro

ce
ss

in
g
 c

o
st

 (
se

cs
)

CHYBRIDJOIN measured
CHYBRIDJOIN calculated
CMESHJOIN measured
CMESHJOIN calculated
CINLJ measured
CINLJ calculated
INLJ measured
INLJ calculated

(f) Cost validation

Figure 9: Sensitivity analysis

dynamically. Later, if the memory size or R change, the algorithm has the ability to adapt and refill the

cache online.

Sensitivity to the disk buffer size: The disk buffer is a very sensitive component of the MESHJOIN

phase, which influences the service rate directly. We analyzed the sensitivity of this parameter in an

21

experiment with a size of R of 100 million tuples (≈11.18GB), a total allocated memory of 1% of R

(≈0.11GB), and a Zipfian distribution with a skew of 1. To observe the effect clearly, we measured only

the service rate produced through the MESHJOIN phase. The results are shown in Figure 9(c). When

increasing the size of the disk buffer, the cost of loading the disk pages into memory is amortized among

a larger number of stream tuples (stored in HS), and as a result the service rate improves significantly.

This trend continues up to a certain value of the disk buffer size. After that, the service rate is affected

adversely. The reason for this is that for a large disk buffer this loading cost remains almost the same.

However, the increased disk buffer size reduces the available memory for the hash table HS , so fewer

stream tuples are accommodated in memory.

Role of the front-stage: To get a better understanding of the role of the front-stage, we performed

an experiment where we counted the stream tuples processed only through the front-stage phase. The

results are shown in Figure 9(d). It is clear from the figure that in 1000 iterations, when the size of R is

≈11.18GB and the total allocated memory is ≈1.12GB (10% of R) while skew in input distribution is 1,

about 51% of the total stream is processed through the front-stage phase.

Varying R online: CMESHJOIN supports changing the master data online. To verify the argument

we conducted an experiment, as shown in Figure 9(e), with a fixed size of allocated memory (≈1.12GB)

and the stream following a Zipfian distribution with a skew of 1. Initially, the algorithm ran with a

master data size of 50 million tuples. After that, we appended an equal amount of master data while the

algorithm was running. The results presented in the figure show that the behavior of the algorithm is

completely normal. It does not lose any additional service rate apart from the expected losses: initially

due to refilling the cache of the front-stage with respect to new R and due to doubling the size of R.

Costs validation: The cost models for all the algorithms have been validated by comparing the

calculated cost with the measured cost. Figure 9(f) presents the comparisons of both costs for each

algorithm. The results show that for each algorithm the calculated cost closely resembles the measured

cost, which supports the correctness of our implementations.

6. Conclusions

In this paper we discussed two important contributions towards a robust semi-stream join that uses

limited memory, is tolerant against high load and utilizes aspects of common distributions in the input

data. The first contribution is a generic front stage component for caching. This component has a small

memory footprint but provides a large performance gain if the input data has a skewed distribution,

as is commonly the case. We quantified the performance gain for the most widely discussed skewed

distribution, a Zipfian distribution, and we demonstrated that this component is indeed generic, by

combining it with several existing semi-stream joins.

We then introduced a novel approach to load shedding, which again can utilize skew in the input

data and does this by exploiting the existing architecture of a successful semi-stream join, our previously

proposed HYBRIDJOIN. The load-shedding approach is nonobvious as it also does some processing

with the tuples that are shed. However, a theoretical argument and experimental results corroborate

its efficiency. We provide open-source implementations of our algorithms that can be used for further

22

analysis2.

References

[1] M. A. Naeem, G. Dobbie, G. Weber, An event-based near real-time data integration architecture, in:

EDOCW ’08: Proceedings of the 2008 12th Enterprise Distributed Object Computing Conference

Workshops, IEEE Computer Society, Washington, DC, USA, 2008, pp. 401–404. doi:http://dx.

doi.org/10.1109/EDOCW.2008.14.

[2] A. Karakasidis, P. Vassiliadis, E. Pitoura, ETL queues for active data warehousing, in: IQIS ’05: Pro-

ceedings of the 2nd International Workshop on Information Quality in Information Systems, ACM,

New York, NY, USA, 2005, pp. 28–39. doi:http://doi.acm.org/10.1145/1077501.1077509.

[3] L. Golab, T. Johnson, J. S. Seidel, V. Shkapenyuk, Stream warehousing with datadepot, in: SIGMOD

’09: Proceedings of the 35th SIGMOD International Conference on Management of Data, ACM, New

York, NY, USA, 2009, pp. 847–854. doi:http://doi.acm.org/10.1145/1559845.1559934.

[4] A. Arasu, S. Babu, J. Widom, An abstract semantics and concrete language for continuous queries

over streams and relations.

[5] E. Wu, Y. Diao, S. Rizvi, High-performance complex event processing over streams, in: Proceedings

of the 2006 ACM SIGMOD international conference on Management of data, ACM, 2006, pp. 407–

418.

[6] M. A. Naeem, G. Weber, G. Dobbie, C. Lutteroth, A generic front-stage for semi-stream process-

ing, in: Proceedings of the 22Nd ACM International Conference on Conference on Information &

Knowledge Management, CIKM ’13, ACM, 2013, pp. 769–774. doi:10.1145/2505515.2505734.

[7] M. Bornea, A. Deligiannakis, Y. Kotidis, V. Vassalos, Semi-streamed index join for near-real time

execution of ETL transformations, in: IEEE 27th International Conference on Data Engineering

(ICDE’11), 2011, pp. 159 –170.

[8] A. Chakraborty, A. Singh, A partition-based approach to support streaming updates over persis-

tent data in an active datawarehouse, in: IPDPS ’09: Proceedings of the 2009 IEEE International

Symposium on Parallel & Distributed Processing, IEEE Computer Society, Washington, DC, USA,

2009, pp. 1–11. doi:http://dx.doi.org/10.1109/IPDPS.2009.5161064.

[9] C. Anderson, The Long Tail: Why the Future of Business Is Selling Less of More, Hyperion, 2006.

[10] N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Simitsis, N. Frantzell, Supporting streaming updates

in an active data warehouse, in: ICDE 2007: Proceedings of the 23rd International Conference on

Data Engineering, Istanbul, Turkey, 2007, pp. 476–485.

2URL: www.cs.auckland.ac.nz/research/groups/serg/j/tkde/

23

http://dx.doi.org/http://dx.doi.org/10.1109/EDOCW.2008.14
http://dx.doi.org/http://dx.doi.org/10.1109/EDOCW.2008.14
http://dx.doi.org/http://doi.acm.org/10.1145/1077501.1077509
http://dx.doi.org/http://doi.acm.org/10.1145/1559845.1559934
http://dx.doi.org/10.1145/2505515.2505734
http://dx.doi.org/http://dx.doi.org/10.1109/IPDPS.2009.5161064
www.cs.auckland.ac.nz/research/groups/serg/j/tkde/

[11] N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Simitsis, N. Frantzell, Meshing streaming updates

with persistent data in an active data warehouse, IEEE Trans. on Knowl. and Data Eng. 20 (7)

(2008) 976–991. doi:http://dx.doi.org/10.1109/TKDE.2008.27.

[12] M. A. Naeem, G. Dobbie, G. Weber, HYBRIDJOIN for near-real-time data warehousing, Interna-

tional Journal of Data Warehousing and Mining (IJDWM) 7 (4). doi:10.4018/jdwm.2011100102.

[13] R. Ramakrishnan, J. Gehrke, Database management systems, Osborne/McGraw-Hill, 2000.

[14] A. N. Wilschut, P. M. G. Apers, Dataflow query execution in a parallel main-memory environment, in:

PDIS ’91: Proceedings of the first International Conference on Parallel and Distributed Information

Systems, IEEE Computer Society Press, Los Alamitos, CA, USA, 1991, pp. 68–77.

[15] A. N. Wilschut, P. M. G. Apers, Pipelining in query execution, in: Proceedings of the International

Conference on Databases, Parallel Architectures and Their Applications (PARBASE 1990), IEEE

Computer Society Press, Los Alamitos, 1990, pp. 562–562.

[16] T. Urhan, M. J. Franklin, XJoin: A reactively-scheduled pipelined join operator, IEEE Data Engi-

neering Bulletin 23 (2000) 2000.

[17] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, D. S. Weld, An adaptive query execution system

for data integration, SIGMOD Rec. 28 (2) (1999) 299–310. doi:http://doi.acm.org/10.1145/

304181.304209.

[18] M. F. Mokbel, M. Lu, W. G. Aref, Hash-Merge Join: A non-blocking join algorithm for producing

fast and early join results, in: ICDE ’04: Proceedings of the 20th International Conference on Data

Engineering, IEEE Computer Society, Washington, DC, USA, 2004, p. 251.

[19] R. Lawrence, Early Hash Join: A configurable algorithm for the efficient and early production of

join results, in: VLDB ’05: Proceedings of the 31st International Conference on Very Large Data

Bases, VLDB Endowment, 2005, pp. 841–852.

[20] D. DeWitt, J. Naughton, Dynamic memory hybrid hash join, Tech. rep., University of Wisconsin

(1995).

[21] S. D. Viglas, J. F. Naughton, J. Burger, Maximizing the output rate of multi-way join queries over

streaming information sources, in: VLDB ’2003: Proceedings of the 29th International Conference

on Very large Data Bases, VLDB Endowment, 2003, pp. 285–296.

[22] A. Chakraborty, A. Singh, A disk-based, adaptive approach to memory-limited computation of

windowed stream joins, in: Proceedings of the 21st International Conference on Database and Expert

Systems Applications: Part I, DEXA’10, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 251–260.

URL http://portal.acm.org/citation.cfm?id=1881867.1881892

[23] M. A. Naeem, G. Dobbie, G. Weber, S. Alam, R-MESHJOIN for near-real-time data warehousing,

in: DOLAP’10: Proceedings of the ACM 13th International Workshop on Data Warehousing and

OLAP, ACM, Toronto, Canada, 2010. doi:http://dx.doi.org/10.1109/IPDPS.2009.5161064.

24

http://dx.doi.org/http://dx.doi.org/10.1109/TKDE.2008.27
http://dx.doi.org/10.4018/jdwm.2011100102
http://dx.doi.org/http://doi.acm.org/10.1145/304181.304209
http://dx.doi.org/http://doi.acm.org/10.1145/304181.304209
http://portal.acm.org/citation.cfm?id=1881867.1881892
http://portal.acm.org/citation.cfm?id=1881867.1881892
http://portal.acm.org/citation.cfm?id=1881867.1881892
http://dx.doi.org/http://dx.doi.org/10.1109/IPDPS.2009.5161064

[24] M. H. Bateni, L. Golab, M. T. Hajiaghayi, H. Karloff, Scheduling to minimize staleness and stretch in

real-time data warehouses, in: Proceedings of the Twenty-First Annual Symposium on Parallelism

in Algorithms and Architectures, SPAA ’09, ACM, New York, NY, USA, 2009, pp. 29–38. doi:

http://doi.acm.org/10.1145/1583991.1583998.

URL http://doi.acm.org/10.1145/1583991.1583998

[25] L. Golab, T. Johnson, V. Shkapenyuk, Scheduling updates in a real-time stream warehouse, in:

ICDE 2009: Proceedings of the 25th International Conference on Data Engineering, 2009, pp. 1207

–1210. doi:10.1109/ICDE.2009.202.

[26] L. Golab, T. Johnson, Consistency in a stream warehouse, in: Conference on Innovative Data Systems

Research (CIDR11), 2011, pp. 114–122.

[27] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong, S. Krish-

namurthy, S. R. Madden, F. Reiss, M. A. Shah, TelegraphCQ: continuous dataflow processing, in:

Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, SIGMOD

’03, ACM, New York, NY, USA, 2003, pp. 668–668. doi:http://doi.acm.org/10.1145/872757.

872857.

URL http://doi.acm.org/10.1145/872757.872857

[28] M. A. Naeem, G. Dobbie, G. Weber, A lightweight stream-based join with limited resource consump-

tion, in: DaWaK ’12: Data Warehousing and Knowledge Discovery, Springer, 2012, pp. 431–442.

[29] A. Das, J. Gehrke, M. Riedewald, Approximate join processing over data streams, in: Proceedings of

the 2003 ACM SIGMOD international conference on Management of data, ACM, 2003, pp. 40–51.

[30] U. Srivastava, J. Widom, Memory-limited execution of windowed stream joins, in: Proceedings of

the Thirtieth international conference on Very large data bases-Volume 30, VLDB Endowment, 2004,

pp. 324–335.

[31] B. Gedik, K.-L. Wu, P. S. Yu, L. Liu, Adaptive load shedding for windowed stream joins, in:

Proceedings of the 14th ACM international conference on Information and knowledge management,

ACM, 2005, pp. 171–178.

[32] M. A. Naeem, G. Weber, C. Lutteroth, G. Dobbie, Optimizing queue-based semi-stream joins with

indexed master data, in: Data Warehousing and Knowledge Discovery, Springer, 2014, pp. 171–182.

25

http://doi.acm.org/10.1145/1583991.1583998
http://doi.acm.org/10.1145/1583991.1583998
http://dx.doi.org/http://doi.acm.org/10.1145/1583991.1583998
http://dx.doi.org/http://doi.acm.org/10.1145/1583991.1583998
http://doi.acm.org/10.1145/1583991.1583998
http://dx.doi.org/10.1109/ICDE.2009.202
http://doi.acm.org/10.1145/872757.872857
http://dx.doi.org/http://doi.acm.org/10.1145/872757.872857
http://dx.doi.org/http://doi.acm.org/10.1145/872757.872857
http://doi.acm.org/10.1145/872757.872857

	Introduction
	Related work
	Caching
	CMESHJOIN (Cached Mesh Join)
	CHYBRIDJOIN (Cached Hybrid Join)
	Algorithm

	Cached Index Nested Loop Join (CINLJ)

	Load Shedding
	Problem overview
	Load shedding after considering tuples

	Experiments
	Experimental setup
	Experimental evaluation of caching
	Service rate analysis
	Processing time analysis

	Experimental evaluation of load Shedding
	Choosing an optimal position to access the queue at the time of load shedding
	Service rate analysis

	Analysis of algorithm design parameters

	Conclusions

