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Abstract

In order to create better decisions for business analytics, organizations increas-

ingly use external structured, semi-structured, and unstructured data in addi-

tion to the (mostly structured) internal data. Current Extract-Transform-Load

(ETL) tools are not suitable for this “open world scenario” because they do not

consider semantic issues in the integration processing. Current ETL tools nei-

ther support processing semantic data nor create a semantic Data Warehouse

(DW), a repository of semantically integrated data.

This paper describes our programmable Semantic ETL (SETL) framework.

SETL builds on Semantic Web (SW) standards and tools and supports de-

velopers by offering a number of powerful modules, classes, and methods for

(dimensional and semantic) DW constructs and tasks. Thus it supports seman-

tic data sources in addition to traditional data sources, semantic integration,

and creating or publishing a semantic (multidimensional) DW in terms of a

knowledge base. A comprehensive experimental evaluation comparing SETL to

a solution made with traditional tools (requiring much more hand-coding) on a

concrete use case, shows that SETL provides better programmer productivity,

knowledge base quality, and performance.
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Semantic-Aware, Knowledge Base

1. Introduction

Business Intelligence (BI) tools support intelligent business decisions by an-

alyzing available organizational data. Data Warehouses (DWs) are used to

store large data volumes from different operational databases in enterprises, and

On-Line Analytical Processing (OLAP) queries are applied on DWs to answer5

business analytical questions. Extract-Transform-Load (ETL) is the backbone

process of a DW, and the ETL design and deployment takes up to 80% of the

time in DW projects [1]. To support data analyses or OLAP queries on it, the

underlying schema of a DW is represented using the Multidimensional (MD)

model. In the MD model, data are categorized as either facts with associated10

numerical measures or dimensions that characterize the facts [2]. This model

represents any interesting observation of the domain (i.e., measures) in its con-

text (i.e., dimensions) [3].

Nowadays, the Web is also an important source of information. Moreover,

Semantic Web (SW) technologies and the Linked Data (LD) principles inspire15

organizations to publish and share their data using the Resource Description

Framework (RDF) [4]. The role of data semantics in such sources is defined by

different facets: using Internationalized Resource Identifiers (IRIs) to uniquely

identify resources globally, providing common terminology, semantically linking

published information, and providing further knowledge to allow reasoning [5].20

The number of semantic data sources is ever increasing over time, and the

growth rate of the data in the SW is faster than the computational power of

computers [6]. As a result, besides analyzing internal data available in a DW,

it is essential to incorporate external data from various (semantic) sources into

the DW to derive the needed business knowledge. For example, companies want25

to include product reviews, customer complains, competitors’ status from the

Web in their analytical process besides the internal sales and customer data [3].

The inclusion of external data, especially RDF data, however, raises several
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challenges for integration and transformation in comparison to the traditional

ETL process. One of the drawbacks of using RDF data in the corporate analysis30

process is that data sometimes do not have any schema (e.g., only instances are

delivered with implicit schema) [7], have a poor schema where not all the schema

constructs are explicitly defined (e.g., only taxonomies are depicted), or complex

schema (e.g., other more expressive ontological languages, such as OWL, are

used). Unlike the relational data model, the RDF data model does not impose35

a common schema for all instances. In contrast, it provides flexible means to

tackle different schema information as well as its evolution. This flexible nature

of the RDF data model makes it suitable for representing and exchanging data in

the SW. However, different sources may describe the same data in different ways,

introducing semantic heterogeneity problems. Therefore, to build a successful40

DW system with heterogeneous data, the integration process should be able

to deal with data semantics as a first-class citizen. Traditional ETL tools are

unable to process such external data because they (1) do not support semantic

data sources, i.e., they are not prepared to deal with semantic heterogeneity,

(2) are entirely schema-dependent, and (3) do not focus on meaningful semantic45

relationships to integrate data from disparate sources [8]. Thus, a DW with both

internal and external (semantic) data requires more powerful tools to define,

enrich, integrate, and transform data semantically.

Until now, the DW community has timidly used SW technologies for con-

sidering the semantic issues in a DW [9], e.g., for data integration or describing50

the DW. SW technology aims at converting the ‘Web of Documents’ to the

‘Web of Data’ where data are presented and exchanged in a machine-readable

and understandable format. In the SW, RDF is used for presenting and ex-

changing data in a machine-readable format. To express richer constraints on

data, formal languages such as RDF Schema (RDFS) [10] and Web Ontology55

Language (OWL) [11] can be used in combination with the RDF data model to

define Knowledge Bases (KBs). Although [3, 8, 12] have used SW technologies

to design conceptual frameworks of different phases of ETL processes, no one

has so far offered an integrated and implemented framework to build a Seman-
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tic DW (SDW) that covers all of the phases of updating of sources, extraction,60

validation, and integration in one integrated platform.

This paper presents Semantic ETL (SETL), a unified framework for process-

ing and integrating data semantically by bridging SW and DW technologies.

SETL uses and extends SW tools and standards to overcome the limitations

of the traditional ETL tools. Using SETL, the BI community can benefit by65

including semantic annotated data in their analytical processes and the SW

community can benefit by having an MD view over semantic data for enabling

OLAP-like analysis. Hence, it supports publishing better quality RDF datasets

as well. The novel contributions of this paper are:

- We propose SETL, a unified framework for semantic ETL. The main tasks70

can be conducted within the framework are given below:

(a) In addition to traditional relational data, SETL allows including se-

mantically annotated data (RDF data) in the analytical process. To

process a Non Semantic Data Source, it builds a semantic layer on

top of the source.75

(b) To integrate data from disparate data sources, the user can define

the intensional knowledge of SDW in the form of a terminology

(TBox) [13] using the ontological constructs. In addition, it pro-

vides functionality to annotate the TBox with MD constructs, such

as, dimensions, facts, levels, etc. Here, we use the QB4OLAP vocab-80

ulary [14] to define the MD constructs.

(c) SETL provides functionality to produce semantic data (in RDF triples

format) from the source data according to the (MD) semantics en-

coded in the TBox of the SDW.

(d) SETL creates a SDW, a KB, composed of a TBox annotated with-85

/without MD constructs and an ABox (the instances of the TBox).

It also provides functionality to semantically connect internal data

with other internal/external data.

- We develop a high-level Python-based programmable framework that pro-

vides a number of powerful modules, classes, and methods for performing90
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the tasks mentioned above. It facilitate developers by providing a higher

abstraction level that lowers the entry barriers. Thus, one of the contri-

butions is to automatically map the high-level abstraction to executable

code.

- Using SETL, we perform a comprehensive experimental evaluation by pro-95

ducing an MD SDW that integrates a Semantic and Non Semantic Data

Sources. The evaluation shows that SETL improves considerably over

the competing solutions/tools in terms of programmer productivity, KB

quality, and performance.

This paper very significantly extends an earlier workshop paper [15] by (1)100

adding a sub-component QB4OLAP in the architecture of SETL that allows

to define a target TBox with MD constructs, (2) adding a semantic layer on

top of a Non Semantic Data Source, (3) extending the use case for creating

an MD SDW which integrates a Semantic Data Source and a Non Semantic

Data Source, (4) updating the semantic transformation algorithm to produce105

RDF triples according to MD constructs, (5) introducing a provenance graph

for tracking how the IRIs used in the SDW are generated, and (6) comparing

the experiment with other ETL tools/solutions.

The remainder of the paper is organized as follows. We discuss the termi-

nologies and the notations used throughout the paper in Section 2. Section 3110

details the source datasets and the target TBoxes of the SDW that we use as

the running example. Section 4 gives an overview of SETL and its components.

Section 5 describes the Definition Layer of SETL framework. The ETL Layer of

the framework is described in Section 6. Section 7 describes the implementation

of the framework in details. We evaluate SETL in terms of productivity, qual-115

ity, and performance in Section 8. Section 9 describes related work. Finally, we

conclude and give pointers to future work in Section 10.
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2. Preliminary Definitions

In this section, we give the definitions of the notions and terminologies used

throughout the paper.120

RDF Graph. An RDF graph can be represented as a set of statements, called

RDF triples. The three elements of a triple are subject, predicate, and object,

respectively, and a triple represents a relationship between its subject and object

by its predicate. Let I, B, and L be the sets of IRIs, blank nodes, and literals,

respectively, where we denote the set of RDF terms (I ∪ B ∪ L) as T and125

(I ∩ B ∩ L) = ∅. An IRI is an unique identifier that can be used to identify

a resource globally (Web-scope). Blank nodes serve as locally-scoped identifier

for resources that are unknown to the outside world. Literal are a set of lexical

values enclosed with inverted commas. An RDF triple is defined as a 3-tuple

(s, p, o), where s ∈ (I ∪ B), p ∈ I, and o ∈ (I ∪ B ∪ L). An RDF graph G is a130

set of RDF triples, where G ⊆ (I ∪B)× I × T [16].

Knowledge Base. A Knowledge Base (KB) is typically composed of two Com-

ponents: TBox and ABox. The TBox introduces the domain terminology. The

ABox is the set of assertions representing individuals or instances. The ABox

assertions must follow the TBox [13]. In this paper, we assume the components135

of a KB are described by a set of RDF triples, i.e., a KB is an RDF graph

without distinguishing classes and instances.

The TBox is defined as a 3-tuple:

TBox = (C,P,AO)

where C, P , and AO are the sets of concepts, properties, and terminological140

axioms, respectively. A concept provides a general description of the features

for similar types of resources. We use the terms “concept” and “class” inter-

changeably. Similar to other ontological formalisms, in this paper, we distin-

guish between object and datatype properties, depending on the RDF element

used as object in the RDF triple. An object property relates concept instances,145
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represented as IRIs, while a datatype property is used to associate instances

to literals. AO describes a domain’s concepts, properties, and the relationships

among them. RDF-schema (RDFs) and the Web Ontology Language (OWL)

provide basic constructs to define the TBox of a KB.

3. A Use case150

This section describes the source datasets, and the TBoxes for integrating

and understanding the knowledge of those datasets, used as the running exam-

ple in this paper. We consider three Datasets: a Danish Agricultural dataset

(DAD) [17], a Danish Business dataset (DBD) [18], and a European Union (EU)

Farm Subsidy (Subsidy) dataset and integrate the datasets in two steps. First,155

we integrate the DAD with DBD to (re-)produce a SDW (called SETLKB) from

the earlier paper [19]. Second, by integrating the Subsidy dataset and the pro-

duced SETLKB (which is considered as an external Semantic Data Source),

we build the final MD SDW. In our context, the integration of different sources

is achieved in an iterative and incremental manner. As proposed in [20], each160

iteration integrates a new source with the results of the previous integration (a

single existing source table in the first iteration).

We build the SDW instead of a traditional DW because we want to pub-

lish the resulting DW on the Web in a format that other sources can easily

integrate and make use of. SDW follows Linked Open Data (LOD) principles165

and provides IRIs that other people and sources can dereference and therefore

receive information from them without having to issue an analytical query. Be-

sides, it provides links to other Web accessible datasets. Therefore, in principle,

we could even issue queries involving remote data at other sources, which is

also something that a traditional DW cannot handle. Thus, our approach en-170

ables analyzing situational data (from external datasets) to personalize the user

analysis, as discussed in [3, 20].

The DAD consists of three smaller Datasets: Field, Organic Field, and Field

Block. All the datasets are available in Shape [21] format. The Field dataset
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has 9 attributes and contains all registered fields in Denmark. This dataset175

overall contains information about 641,081 fields. The Organic Field dataset

has 12 attributes and contains information about 52,060 organic fields. The

Field Block dataset has 12 attributes for 314,648 field blocks [19].

The DBD is provided in CSV format. The dataset consists of two sub

Datasets: Company and Participant. The Company dataset consists of 59 at-180

tributes and contains information about 603,667 companies and 659,639 produc-

tion units. The Participant dataset describes the relations that exist between a

participant and a legal unit [19]. Figure 1 shows how the datasets are connected

to each other.

Figure 1: The schemas of the DAD and DBD datasets. Field, Field Block and

Organic Field are spatially connected [19].

Figure 2: The conceptual schema of the Subsidy dataset. For simplicity, we do

not show all columns.
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Figure 3: The TBox for the Danish Agricultural dataset and Danish Business

dataset. The arrows show the cardinality of the relationship. Because of the large

number of concept data type properties, they are not included in the figure.

Every year the EU provides subsidies to the farms of its member countries.185

We collect EU Farm subsidies for Denmark from http://data.farmsubsidy.

org/index.html?prefix=Raw/2014/. The dataset contains two MS Access

database Tables: Recipient and Subsidy. The Recipient table contains the in-

formation of 342,786 recipients who receive the subsidies and the Subsidy table

contains the amount of subsidy given to the recipients in different years. In190

total, the Subsidy table contains 4,392,390 distinct records. The conceptual

schema of the Subsidy dataset is shown in Figure 2.

To integrate the DAD and DBD datasets, we need to define a TBox of

the SDW. The TBox of the SDW is illustrated in Figure 3. This is an up-

9
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dated version of the TBox (ontology) described in [19]. We start the description195

from the bus:Ownership concept. This concept contains information about

the owners of companies, the type of the ownership, and the start date of the

company ownership. This concept is related to the bus:Owner concept through

the bus:isOwnedBy property. The bus:Owner includes the details of the owners.

The bus:Ownership has a one-to-many relationship with the bus:Company con-200

cept and they are related to each other through the property bus:hasCompany.

The bus:Company concept is related to the concepts bus:BusinessFormat and

bus:ProductionUnit. The concepts bus:Company and bus:ProductionUnit

are also related to the bus:Activity concept through one main activity and/or

through one to three secondary activities. Each company and each production205

unit have a postal address and an official address. Therefore, both concepts are

related with the bus:Address concept. Each address has an address feature and

it is contained within a particular municipality. The bus:Company concept is

also related to the concept agri:OrganicField through the relation bus:owns

as each company may contain one or more organic fields. Through this relation,210

the business and agricultural datasets are connected. The agri:Field con-

cept defines the structure for all the registered agricultural fields of Denmark.

Thus, agri:OrganicField is a subclass of agri:Field. The agri:Field is also

equivalent to the UN definition of a European field. A field produces a crop,

thus, agri:Field is connected to agri:Crop. A field is contained within a field215

block. Each field block has an application. The concepts bus:AddressFeature,

bus:Municipality, agri:Field, agri:FieldBlock are defined as subclasses of

the GeoNames:Feature concept in the GeoNames ontology. According to the

semantics encoded in the TBox, we produce a SDW named SETLKB.

We create an MD SDW by integrating the produced SETLKB and the220

Subsidy dataset. The Recipient table in the Subsidy dataset contains the

information of recipient id, name, address, and etc. From the SETLKB, we

can extract information of the owner of a company who may receive the EU

farm subsidy. The TBox of the SDW is shown in Figure 4, where the concept
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Figure 4: The TBox of our example SDW. Because of the large number, not all

data properties of the dimensions/levels are shown.

sdw:Subsidy represents the factual concept1 of the MD SDW and sdw:amounteuro225

is the measure. The SDW has two Dimensions: sdw:Beneficiary and sdw:Time.

The dimensions are shown by a box with dotted line in Figure 4. Here, each

level of the dimensions is represented by a concept and the hierarchies of the

dimensions, i.e., how the levels of the dimensions are connected to each other

through object properties, are also shown.230

1A factual concept is the concept that provides a general description of the features for the

facts of the DW.
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4. SETL Framework Overview

In this section, we present the overview of our Semantic ETL framework

(SETL in short). SETL follows a demand-driven approach to design a (MD)

SDW. The first step of this approach is to identify and analyze the information

requirements of business users and decision makers. Then, based on the gathered235

requirements, the next two steps of the DW are to build the DW schema and to

build the ETL [22]. As the data in a SDW should be semantically connected,

we assume the SDW to be a KB and it allows to produce an MD schema for the

SDW to benefit from OLAP. The semantic ETL process populates the SDW

from the data sources according to the semantics captured in the schema.240

Our discussion focuses on SETL’s architecture and its main components that

support the different steps of creating a SDW. Requirement engineering (RE) is

the process of identifying the needs of involved stakeholders and modeling and

documenting those requirements in a form that is comprehensible, analyzable

and communicable [23]. RE in the DW is itself a research topic and it is beyond245

the scope of this paper. We direct readers to [22, 23] for RE. The main steps

that SETL supports are: defining a TBox for the SDW based on the domain of

interest, extracting data from multiple heterogeneous data sources, transforming

the source data into RDF triples according to the target TBox, linking the

data internally and externally, and loading the data into a triple store, and/or250

publishing the data on the Web as Linked Data (LD).

Figure 5 illustrates how the components of SETL framework are connected

to each other. We divide the framework into three Layers: Definition Layer,

ETL Layer, and Data Warehouse Layer. The red-colored dashed lines in Fig-

ure 5 separate the layers. In the Definition Layer, the SDW schema, sources, and255

the mappings among the sources and the target are defined. The SDW TBox

Definition component is used to define a TBox describing the relevant data and

the SDW schema based on the requirements. The sub-component QB4OLAP

is used to define the MD semantics of the SDW. Using the Define Mapping

component, the user can define the mappings between a source TBox and the260
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Figure 5: SETL architecture.
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target TBox. To map between a Non Semantic Data Source and the target

TBox, the TBox Extraction component generates a TBox representing the Non

Semantic Data Source. In the ETL Layer, an ETL process to populate the

SDW from sources are designed. The Extraction component extracts data from

multiple sources, the Traditional Transformation component cleanses and for-265

mats (e.g., unique value generation, null value handling, noisy data filtering etc.)

the extracted data and stores them in a Staging Area. The Staging Area is a

storage used to keep the intermediate results of the ETL sub-processes. Then,

the Semantic Transformation converts the data into RDF triples according to

the target TBox. As a sub-task Semantic Transformation stores the meta in-270

formation of concepts, properties, instances, and IRIs used in the SDW into the

Provenance Graph. The External Linking component links the resources in the

created RDF dataset to other external resources. The SaveToFile component

writes the created RDF dataset into a file on disk. Finally, the Load component

can either directly load the RDF triples created by the Semantic Transformation275

component or load from the RDF dump file into the triple store, which can

directly be queried by the user. Extraction-Transformation-Load is an iterative

block repeated for each ETL flow (shown as a curved arrow in Figure 5). The

Data Warehouse Layer concerns where the transformed semantic data should

be stored. SPARQL queries can be used to analyze the stored data. The SDW280

defined in MD fashion can also be integrated with an OLAP tools to perform

OLAP queries. Here, we focus on building an ETL process. The following sec-

tions describe the Definition Layer and ETL Layer along with their components

in more details.

5. Definition Layer285

In this section, we describe the Definition Layer of SETL. This layer inte-

grates different components required to define the schema of a SDW, to define

the different sources that feed data in the SDW, and to define the mappings

between the sources and the target. The following sections describe the different

14



components of the Definition Layer.290

5.1. SDW TBox Definition

The data in a SDW are semantically connected with other internal and/or

external data. Therefore, capturing the semantics of the data at the conceptual

level is indispensable. SETL uses ontological constructs to design a SDW (in

our context the SDW TBox) because of the following reasons. First, ontologies295

allow for a semantic integration of disparate data sources as we can explicitly

define how two concepts of an ontology are structurally related and how they are

associated with different properties. Second, given the cubes share dimensions,

it facilitates drill-across operations [24] by basic graph operations during the

integration of cubes. Third, it is machine-readable and allows us to automate300

the ETL modelling tasks. Fourth, compared to other representations, it is easier

to evolve the DW. Fifth, it allows to preserve the semantics of the Semantic

Data Sources.

As mentioned in Section 2, some standard languages, such as RDFS or OWL

can be used to describe a TBox. They both provide basic constructs to define305

the formal semantics of the TBox. OWL uses owl:Class and rdfs:Property

to define concepts and properties of the TBox, uses rdfs:subClassOf and

rdfs:subPropertyOf to define hierarchical relationships among concepts and

among properties, respectively, and uses rdfs:domain and rdfs:range to as-

sociate properties with concepts.310

On-Line Analytical Processing (OLAP) is a technology to analyze the data

available in a DW to support decision making [25]. As OLAP is on-line, it should

provide answers quickly. To enable OLAP queries, the DW is represented using

the MD model. The central attraction of the MD model of a business is its

simplicity and the easy and intuitive way of making analytical queries [26]. In315

the MD model, data are viewed in an n-dimensional space, usually known as a

data cube, composed of facts (the cells of the cube) and dimensions (the axes

of the cube). A fact is the interesting thing or process to be analyzed (for

example, analysis of subsidy given by the EU) and the attributes of the fact are
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called measures (e.g., amount of subsidy), usually represented as numeric values.320

A dimensions is organized into hierarchies, composed of a number of levels,

which permit users to explore and aggregate measures at various levels of detail.

For example, the Address hierarchy (recipient → Municipality → Region →

Country) of the Beneficiary dimension allows to aggregate the subsidy amount

at various levels of detail. Therefore, to enable OLAP, we support the MD325

representation of the SDW.

Although the version of the framework described in the workshop paper [15]

allows to define a TBox using OWL, it does not support to define MD con-

structs. We extend this version by adding the QB4OLAP sub-component to

support MD constructs. To describe the MD semantics at the TBox level, we330

use the QB4OLAP vocabulary [27]. QB4OLAP is used to annotate the TBox

with MD constructs and is based on the RDF Data Cube (QB) which is the

W3C standard to publish MD data on the Web [28]. The QB is mostly used

for analyzing statistical data and does not adequately support OLAP MD con-

structs. Therefore, we direct to QB4OLAP. Figure 6 depicts the QB4OLAP335

vocabulary [27]. The terms prefixed with “qb:” are from the original QB vo-

cabulary, and QB4OLAP terms are prefixed with “qb4o:” and displayed with

gray background. Capitalized terms represent RDF classes, and non-capitalized

terms represent RDF properties. Capitalized terms in italics represent classes

with no instances. An arrow with black triangle head from class A to class B,340

labeled pro means that pro is an RDF property with domain A and range B.

White triangles represent sub-classes or sub-properties.

In QB4OLAP, the concept qb:DataStructureDefinition is used to define

the structure of a cube in terms of dimensions, measures, and attributes. To de-

fine dimensions, levels, level-attributes and hierarchies, the concepts qb4o:Dimen345

sionProperty, qb4o:LevelProperty, qb4o:LevelAttribute, and qb4o:Hierar

chy are used, respectively. The association between a level-attribute and a

level is defined by qb4o:hasAttribute property. The hierarchies are connected

with dimensions via the property qb4o:hasHierarchy. Hierarchies are com-

posed of pairs of levels, which are defined by the concept qb4o:HierarchyStep.350
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qb:DataSet

qb:Observation

qb:Slice

qb:SliceKey

qb:AttributeProperty

qb:MeasureProperty

qb:CodedProperty

skos:ConceptScheme

sdmx:Collection

skos:Concept

qb:codeList

qb:sliceKeyqb:structure

qb:dataSet qb:observation

qb:sliceStructureqb:slice

qb:componentProperty

qb:concept

qb:ComponentProperty

qb:componentProperty

qb:subSlice

qb4o:LevelMember

qb4o:AggregateFunction

qb4o:memberOf

skos:broader

qb:HierarchicalCodeList

<<union>>

qb:DimensionProperty

qb4o:hasLevel

qb4o:hasHierarchy
qb4o:inDimension

qb:component

qb4o:Max

qb4o:Avg

qb4o:Count

qb4o:Min

qb4o:Sum

qb4o:Cardinality

qb4o:OneToOne

qb4o:OneToMany

qb4o:ManyToOne

qb:ComponentSpecification

qb:componentRequired:boolean
qb:componentAttachment:rdfs:Class

qb:order: xsd:int

qb4o:pcCardinality

qb4o:HierarchyStep

qb4o:ManyToMany

qb4o:childLevel

qb4o:parentLevel

qb:dimension

qb:attribute

qb:measure

qb4o:level

qb4o:cardinality

qb4o:aggregateFunction

qb4o:hasAttribute

qb4o:isCuboidOf

qb4o:Hierarchy

qb4o:inHierarchy
qb4o:LevelProperty

qb4o:LevelAttribute

qb4o:inLevel

qb:DataStructureDefinition

Figure 6: QB4OLAP vocabulary.

The reason of defining the hierarchy as a collection of pairs is to establish a

rollup relationship between the levels of a pair. A rollup relation is defined by

qb4o:RollupProperty and the cardinality of the rollup relation is stated using

the qb4o:pcCardinality. Each pair of levels is connected to a rollup relation

via qb4o:rollup. The role of the levels of a pair is distinguished using the355

property qb4o:parentLevel and qb4o:childLevel. Pairs are connected with

hierarchies through the property qb4o:inHierarchy [27]. Therefore, the set

of concepts C and the set of properties P in the TBox contains Cm ⊂ C and

Pm ⊂ P created from the QB4OLAP constructs, where

Cm = {qb:DataStructureDefinition, qb4o:DimensionProperty, ..}360

and Pm = {qb4o:hasAttribute, qb4o:hasHierarchy, qb4o:inHierarchy, ..}.

Figure 7a shows a part of the QB4OLAP cube structure for our use case.

A cube may have several dimensions and measures. The cube (sdw:cube) has

a set of components (blank nodes), which represent different measures, dimen-
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(a) A fragment of the cube structure. (b) Beneficiary dimension definition.

Figure 7: Description of a part of the cube structure and a dimension of our

running example using QB4OLAP.

sions, attributes, levels, and so on. A measure has a property to store nu-365

merical values in the dataset (e.g., sdw:amount) and an aggregation function

(e.g., qb4o:sum). A measure can be analyzed according to different dimen-

sions, e.g., sdw:Beneficiary, sdw:Time. Figure 7b illustrates a segment of

sdw:Benificiary dimension. It has a hierarchy named sdw:BusinessHierarchy,

which is composed of two hierarchy steps, namely :h1 and :h2. Each hierarchy-370

step maintains the roles between the levels it contains, e.g., :h1 contains two

levels, namely, sdw:BusinessType, and sdw:Company, and the parent and the

child of :h1 are sdw:BusinessType, and sdw:Company, respectively. The car-

dinality of the step is defined by qb4o:pcCardinality.

SETL allows users to define a TBox manually. It allows to define various375

ontological constructs, such as, concepts, properties, and blank nodes individu-

ally as well as to capture how they relate to each other. The user first defines

concepts and properties individually and then explicitly connects particular con-

cepts to a set of properties. The MD constructs, such as, dimensions, levels,

factual concepts, hierarchies, cube structures, cubes are represented by anno-380
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tating the concepts of the TBox using the QB4OLAP vocabulary. In order to

denote a particular MD construct, the concept is annotated as a member of

corresponding QB4OLAP class. For example, the triples (sdw:Beneficiary

rdf:type owl:Class, qb4o:DimensionProperty.) represent that the concept

sdw:Beneficiary is annotated as a dimension of the target TBox. At first, the385

user defines the concepts for dimensions, levels, level attributes, measures, and

hierarchies, and then based on the defined concepts, the structure of the data

cube, dataset and factual concept are defined. Internally, SETL indexes the set

of properties connected to a particular concept. As user can also define a TBox

using other ontology editors, such as Protege, SETL also allows to parse a given390

TBox.

5.2. Data Source

A data source is the source of data that can be used to populate a DW. We

define a data source as a 2-tuple:

D = (ds, type)395

where ds is the formal definition of the data source and type is the type of

the data source. The types of a data source can be either a Semantic Data

Source (ss) or a Non Semantic Data Source (ns).

Figure 8: A segment of SETLKB TBox.

Semantic Data Source. A Semantic Data Source is a typical KB, which

is discussed in Section 2. Therefore, a Semantic Data Source is defined as400

D = (KB, ss). Figure 8 depicts a part of TBox shown in Figure 3. The semantic
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graph to logically define a part of TBox and ABox of Figure 8 is depicted in

Figure 9. In Figure 9, the segment of the graph above the vertical dashed

line represents the TBox and below the dashed line represents sample instances

(i.e., ABox). The semantic graph (RDF graph) is considered as a directed label405

graphs which conceptualize an RDF dataset. In the graph, subjects and objects

of RDF triples are drawn by the labeled vertices and predicates are shown as

directed labeled edges. To differentiate between the TBox and ABox, we draw

the instances in ABox with rectangle, and literal-vertices with simple text.

Figure 9: Semantic graph to represent a portion of TBox and ABox of Figure 8.

Typically, an RDF dataset is physically stored as an RDF dump file or in a410

triple store, for instance, Jena TDB, Virtuoso, Sesame store [29].

Non Semantic Data Source. A Non Semantic Data Source can be a

relational database (RD), a shapefile, an XML file, an object-oriented database,
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or a CSV. However, the current version of SETL supports RD, shapefile, and

CSV, and the framework is designed in a way that allows it to be easily extended415

to support other formats as well.

For an RD, D = (R, ns), and R can be further defined as R = (S,D), where

S and D represent the schema and data of R. To give the formal definition of

a RD, we use the notation from [30]. An RD is composed of a set of tables T .

Each t ∈ T can be defined by 2-tuples: t = ((Ct, PKt, FKt), Rt), where420

−(Ct, PKt, FKt) denotes the schema of the table t

−Ct is the set of all columns of t

−PKt is the set of all primary key columns of t

−FKt is the set of foreign keys

−Rt is the set of rows in t , which represents the data of table t .425

Each foreign key FKt,t′ ∈ FKt is a subset of one or more columns and holds

∀FKt,t′ ∈ FKt,∀r ∈ Rt : ∃t′ ∈ T ,∃r′ ∈ Rt′ where r(FKt,t′ = r′(PKt′)), i.e.,

each foreign key of a table must be a primary key of same/other table.

Table 1: The sample data of Subsidy dataset

(a) Subsidy

subsidyId paidTo amount

10611390 366894 617308

10611402 362146 6310

(b) Recipient

recipientId name address

362146 Jan’S Værksted
Gammel

4

366894
Videncentret

For Landbrug

Agro

Park 15

Therefore, considering all tables T in the RD, D becomes

D = ((
⋃

t∈T (Ct, PKt, FKt)), (
⋃

t∈T (Rt))), ns).430

Figure 2 shows the conceptual schema of the Subsidy dataset. Table 1 shows

some sample data of Subsidy and Recipient tables. We can define the Subsidy

database as

Subsidy = (({({subsidyId, paidTo, amount}, {subsidyId}, {paidTo}),

({recipientId, name, address}, {recipientId}, {})}), ({(“10611390”, “366894”,435

21



“617308”), (“10611402”, “362146”, “6310”)}, {(“362146”, “Jan′SVærksted”,

“Gammel4”), (“366894”, “VidencentretForLandbrug”, “AgroPark15”)}), ns).

Typically, the tables of a RD are stored in a Relational Database Manage-

ment System (RDBMS), for example, PostgreSQL, Oracle RDBMS, Microsoft

SQL server etc.440

A shapefile [21] is a file format that stores geometric location and attribute

information of geographic features in vector format. Points, lines, and polygons

can be used to describe a geographic feature. It can also be represented in the

format of a table. This table is just like any other relational table except it

contains a special geometry column. This column stores the actual geometry445

shape of geographic data. These are the edges and vertices locations that make

up the spatial data. Typically, all the other columns in this table are the

attributes information associated with the spatial data.

A CSV file is a comma separated values file, which allows data to be saved

in a table structured format. Each line of the file is a row of the table and each450

row consists of one or more fields, separated by commas. Thus, shape and CSV

files can be formalized using the notation of RD.

5.3. Define Mapping

A relationship between semantically similar but autonomously designed data

needs to be established [31]. As data sources are highly heterogeneous in syn-455

tax, mapping should be done between sources and the target at the schema

level. Mappings define the relationship between the elements (either concepts

or properties) of a source and the corresponding elements in the target TBox

[32].

Given two TBoxes TS and TT , a mapping maps an element in TS to the460

corresponding element in TT . TS and TT are called the source TBox and target

TBox, respectively. We formally define an TBox Mapping as

Map(TS , TT ) = {(es1, et1, typei)|es1 ∈ TS , et1 ∈ TT , typei ∈ {skos : exact,

skos : narrower, skos : broader, owl : sameAs, rdfs : subClassOf,

rdfs : subPropertyOf}}.465

22



Each 3-tuple (es1, et1, typei) in Map(TS , TT ) represents that es1 in TS is mapped

to et1 in TT with the relationship typei. The relationship can be either equivalence

relationship (es1 ≡ et1) or subsumption relationship (es1 v et1) [33]. Dif-

ferent knowledge representation languages use different properties to represent

equivalence and subsumption relationships. Therefore, the set of properties470

supporting the (equivalence and subsumption) relationships can be extended,

but in the current version, we use, skos : exact, and owl : sameAs to represent

equivalence relationship and skos : narrower, skos : broader, rdfs : subClassOf,

and rdfs : subPropertyOf are used to represent subsumption relationship.

(a) TS : Source TBox. (b) TT : Target TBox.

Figure 10: Fragments of a source and the target TBoxes to be mapped. Same

colors across the TBoxes indicate mapped elements.

Figure 10 shows the fragments of a source TBox (Figure 10a) and the target475

TBox (Figure 10b). The mappings from the source TBox to the target TBox

are shown in Table 2. SETL allows users to define the mappings manually to

keep them up to date with the needs of end-users.

Mapping for Semantic Data Source. As the schema of a Semantic Data

Source is defined using a TBox and we assume that the TBox is integrated in480

the source, no additional step is required to define the mappings between the

source and target TBoxes. However, as discussed in Section 1, sometimes RDF

datasets do not include an explicit schema. In that case, a TBox should be

derived from the RDF [7]. Currently, SETL does not provides this facility. It

23



Table 2: Mapping example from the source TBox to the target TBox

Entity in TS Mapped entity in TT Relation

bus:Owner sdw:Recipient subsumption (bus:Owner w sdw:Recipient)

bus:Activity sdw:MainActivity subsumption (bus:Activity w sdw:MainActivity)

bus:Activity sdw:SecondaryActivity subsumption (bus:Activity w sdw:SecondaryActivity)

bus:hasCompany sdw:hasCompany equivalence

bus:hasPrimaryActivity sdw:hasPrimaryActivity equivalence

bus:hasSecondaryActivity sdw:hasSecondaryActivity equivalence

bus:BusinessFormat sdw:BusinessType equivalence

bus:hasFormat sdw:inCompany equivalence

will be addressed in future.485

Mapping for Non Semantic Data Source. In Figure 5, it is shown

that the Define Mapping component takes a source and the target TBoxes as

input and outputs the mapped elements across the TBoxes. Thus, a further

step is required to extract the TBox from a Non Semantic Data Source. The

following paragraph defines how a TBox is defined as a semantic layer on top490

of the underlying Non Semantic Data Source.

TBox Extraction TBox Extraction is the process of constructing a TBox

(semi-) automatically from a given data source [34]. We define the extraction

process f from a data source D by:

f : D → T B495

where T B is the TBox derived from D. Given the heterogeneous types of

sources (e.g., relational, xml, object-oriented) from where the ontologies to be

derived, an instance of f should be defined for each type of sources [30].

Using the notation of a RD described in Section 5.2, we define the TBox

extraction function for a RD as frd : S → T B, where S is the schema of500

the given RD, composed of set of tables T . For this function, we also use the

notation and process from [30]. Table 3 shows the mapping between the elements

of a RD schema and corresponding OWL constructs. Each table t ∈ T of the

RD is mapped to an OWL class, each column c ∈ Ct is mapped to a datatype

property, and each foreign key FKt,t′ ∈ Ct is mapped to an object property.505

The additional properties (e.g., rdfs:domain, rdfs:range) related to the main
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Table 3: TBox extraction function from RD

x frd(x)

∀t ∈ T owl:class

∀c ∈ Ct

owl:DatatypeProperty

[rdfs:domain = frd(t),

rdfs:range=type(c)]

∀FKt,t′ ∈ Ct

owl:ObjectProperty

[rdfs:domain = frd(t),

rdfs:range=frd(t′)]

property are shown within a square bracket in Table 3. For example, for an

OWL property, the domain and range are also shown in Table 3. Figure 11

shows the extracted TBox of the Subsidy database shown in Figure 2.

Figure 11: The extracted Subsidy TBox.

To map the relational data to RDF data using the extracted TBox the510

R2RML Mapper component is used. This component uses the R2RML map-

ping language, which is a W3C standard to define customized mappings from

relational data to RDF [35]. This mapping is done by users. As all relational

data may not be relevant to the target, we also consider the output of De-

fine Mapping component in the R2RML Mapper (shown in Figure 5) to map515

only the relevant data. An R2RML mapping is itself represented as an RDF
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graph. Listing 1 shows a segment of the R2RML mapping between the Subsidy

dataset (in Table 1) and the Subsidy TBox (shown in Figure 11). An R2RML

mapping document consists of one or more structures called TripleMaps (e.g.,

sub:subsidyMap and sub:recipentMap in Listing 1). The rr:TriplesMap class520

consists of three properties, namely, rr:logicalTable, rr:subjectMap, and

rr:predicateObjectMap. Each TripleMap contains a reference to a logical

table (e.g., Subsidy, Recipient) using the property rr:logicalTable (lines 5-

6). A logical table can be a table, or a view or a SQL query. The property

rr:subjectMap specifies the target class of TBox and the IRI generation process525

for each row (lines 7-10). The RDF triples generated from a row share the same

subject. The property rr:predicateObjectMap defines a target property and

the generation of the value of the property using rr:objectMap. The type of the

RDF terms is either a constant, or a template, or a column value. A constant-

valued term map always generates the same RDF terms. PredicateMaps are530

usually constant-valued (line 12). If the term map is a column-valued, the val-

ues in the specified column of the logical table will be used to generate the terms

(lines 13-14). If it is template-valued, the terms will be generated based on the

given template. A template is a string that concatenates several columns names

or the base IRI and the values of one or more column names to generate unique535

IRIs. Line (8-9) creates IRIs for the subject of the triple using rr:template

term map. The term map also have specified term type (IRI, Blank node, or

Literal) [36].

Listing 1:R2ML mapping from Subsidy TBox to Subsidy relational data

1 @pref ix r r : <http ://www. w3 . org /ns/ r2rml\#>.540

2 @pref ix sub : <$http :// ex tb i . lab . aau . dk/ onto logy /sub/> .

3 sub : subsidyMap

4 a r r : TriplesMap ;

5 r r : l o g i c a l T a b l e [

6 r r : tableName ’ Subsidy ’ ] ;545

7 r r : subjectMap [
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8 r r : template ’ http :// ex tb i . lab . aau . dk/

9 onto logy /sub/ subs idy /{ subs idyId } ’ ;

10 r r : c l a s s sub : Subsidy ; ] ;

11 r r : predicateObjectMap [550

12 r r : predicateMap [ r r : constant sub : subs id Id

13 ] ;

14 r r : objectMap [

15 r r : column ’ subs idyId ’ ;

16 r r : termType r r : L i t e r a l ; ] ;555

17 ] ;

18 r r : predicateObjectMap [

19 r r : predicateMap sub : paidTo ;

20 r r : objectMap [

21 r r : template ’ http :// ex tb i . lab . aau .560

22 dk/ onto logy /sub/ r e c i p i e n t /{paidTo } ’ ; ] ;

23 ] ;

24 r r : predicateObjectMap [

25 r r : predicateMap sub : amounteuro ;

26 r r : objectMap [565

27 r r : template ”{amounteuro } . 00” ;

28 r r : termType L i t e r a l ; ] ;

29 ] ;

30 sub : rec ip ientMap

31 a r r : TriplesMap ;570

32 . . . .

6. ETL Layer

In this section, we describe the ETL Layer of SETL. This layer integrates

different components to design an ETL process to populate the SDW from575
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different data sources. The following sections describe the different components

in details.

6.1. Extraction

Extraction is the process of acquiring data from sources. In this section we

describe how to extract data from Semantic Data Sources and Non Semantic580

Data Sources.

Extraction from Semantic Data Source. SPARQL is the standard

pattern matching language for querying a Semantic Data Source. It uses SE-

LECT query to retrieve the desired output from the source. The output of the

SPARQL SELECT query is a bag of bindings for the variables in the SPARQL585

query pattern. Unlike SELECT query, the SPARQL CONSTRUCT query is

used to construct the triples from the Semantic Data Source, i,e., the output

of the query itself is an RDF graph. As we need to retrieve the triples from a

Semantic Data Source, in this section, we discuss the semantics of the basic

SPARQL CONSTRUCT query.590

To define the basic semantics of SPARQL CONSTRUCT query, we need to

introduce the notion of triple patterns and basic graph pattern (BGP). A triple

pattern is an RDF triple which allows query variables in any position of the

triple, i.e., tp ∈ (I ∪B∪V )× (I ∪V )× (I ∪B∪L∪V ), where V is a set of query

variables that range over all RDF terms T , and V ∩ T = ∅. A query variable595

v ∈ V is led by the symbol ′?′, e.g., (?s p o). A BGP is a set of triple patterns

connected via logical conjunctions. The SPARQL graph pattern expression is

defined based on BGP.

The execution of triple patterns against a Semantic Data Source produces

a set of solution mappings. A solution mapping µ is a partial function that600

maps V to T , µ : V → T . The domain of µ, denoted by dom(µ), is the subset

of V for which µ is defined.

Let K and tp be a Semantic Data Source and a triple pattern, and var(tp)

denotes the set of query variables tp contains. The evaluation of tp against K is
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the set of all mappings that can map tp to a triple contained in K, i.e.,

JtpKK = {µ | dom(µ) = var(tp) and µ(tp) ∈ K}.

where µ(tp) is the triple obtained by replacing the variables in tp according to

µ. The SPARQL CONSTRUCT query makes the class of queries whose inputs

and answers are RDF graphs [37]. Therefore, we define the answer ans(tp,K)

of the SPARQL CONSTRUCT query as a set of triples matched tp in K , i.e.,

ans(tp,K) = {µ(tp) | µ ∈ JtpKK and µ(tp) ∈ K}.

If B = {tp1, tp2, tp3, ...} is a BGP, then the evaluation of B over K is

JBKK = {µ | dom(µ) = var(B) and µ(B) ⊆ K}.

Here, µ(B) is the set of triples obtained by replacing the variables in the

triple patterns of B according to µ. Therfore, the answer ans(B,K) of the

query is

ans(B,K) = µ(B) =
⋃

tpi∈B
{µ(tpi)|µ ∈ JBKK and µ(tpi) ∈ K)}.

Consider the Semantic Data Source shown in Figure 9 and we want to

construct the triples for the properties of bus:Company. Here, tcp =

(?property rdfs : domain bus : Company), dom(µ) = ?property. The evaluation

of tcp over DAB is

JtcpKDAB = {{?property → bus : hasFormat}, {?property → bus : officialAddress},

{?property → bus : postalAddress}, {?property → bus : hasPrimaryActivity},

{?property → bus : hasSecondaryActivity}}.

The answer ans(tcp, DAB) of the query is the set of following triples.

bus:hasFormat rdfs:domain bus:Company .
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Algorithm 1: TripleExtraction

Input: endpoint, batchsize

Output: tripleset

begin

1 P ← retrieveDistinctProperty(endpoint)

2 foreach property p ∈ P do

3 x← retrieveNumberOfTriples(p, endpoint);

4 for count ← 0 to x/batchsize do

5 tripleset←

tripleset+ retrieveTriples(count, batchsize, endpoint);

6 return tripleset

bus:officialAddress rdfs:domain bus:Company .

bus:postalAddress rdfs:domain bus:Company .

bus:hasPrimaryActivity rdfs:domain bus:Company .

bus:hasSecondaryActivity rdfs:domain bus:Company .
605

Typically, data from a Semantic Data Source is retrieved by applying queries

to a local RDF file or through a SPARQL endpoint. When the output of a given

query is very big or if it is required to extract all triples from the Semantic Data

Source, a simple download strategy might fail because some SPARQL endpoints

restrict result sizes; DBpedia [38], for instance, does not allow more than 10,000610

result triples at a time. To overcome this limitation, we design Algorithm 1. The

algorithm takes a sparqlEndpoint URL and a batchsize (indicating how many

triples to extract at a time) as parameters and returns the extracted triples. In

line 1, the algorithm extracts all distinct properties in the KB. Then, for each

property (lines 2-3), the algorithm determines the number of triples containing615

the property as predicate. Based on this number the algorithm determines how

many queries need to be sent to receive all these triples and executes the queries

(lines 4-5). This is done by sorting the triples by subject, using batchsize in the

LIMIT clause, and using the iteration number multiplied by the batchsize as
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OFFSET.620

Extraction from Non Semantic Data Source.

Figure 12: The process of extraction from Non Semantic Data Source.

Figure 12 shows the process of extraction from a Non Semantic Data Source.

At first, we make a semantic version of the Non Semantic Data Source using

the R2RML Engine. The R2RML Engine component is typically an R2RML

processor that takes a relational database and an R2RML mapping document625

as input and outputs an RDF graph according to the mapping document [39].

Hence, the data of the Non Semantic Data Source are converted into RDF

dataset which can simply be queried using SPARQL queries discussed in the

Section 6.1. The following triples are the sample output of the R2ML Engine

component with the input Listing 1 and Table 1.630

sub:subsidy/10611390 sub:subsidyId 10611390 .

sub:subsidy/10611390 sub:paidTo sub:recipient/366894 .

sub:subsidy/10611390 sub:amount 617308 .

sub:subsidy/10600402 sub:paidTo sub:recipient/362146 .

sub:subsidy/10600402 sub:amount 6010 .

......

6.2. Transformation

In the data transformation process, the extracted source data are trans-

formed in a way such that it can easily be fed to the SDW. To ensure that data

in the SDW are consistent with the semantics of its TBox, i.e., ABox follows

TBox, we divide the transformation tasks into two Components: Traditional635

Transformation, and Semantic Transformation. The following sections detail

the components.
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Traditional Transformation. Traditional Transformation includes oper-

ations known from traditional ETL tools, such as cleansing the data and format-

ting the source data according to the target schema. This includes removing du-640

plicate data, recalculating data, normalizing data, renaming attributes, checking

integrity constraints, refining data, unique identifier generation, creating new

attributes based on existing attributes, null value and default value handling,

noisy data filtering, sorting data, and grouping/summarizing data [40]. In this

component, the data related to each concept of the target TBox are stored in a645

separate table where the columns of the table represents the properties associ-

ated with the concept and the records of the table represent the instances of the

concept. The transformed data are kept into a Staging Area. The Staging

Area is an intermediate storage where the intermediate results of each process

are stored. This can prevent the loss of transformed data in case of the failure650

of the loading process.

Semantic Transformation. Semantic Transformation includes operations

to create RDF triples according to the semantics of the target TBox from the

data output by the Traditional Transformation component.

Algorithm 2 describes the steps of converting a table (table) (from Tradi-655

tional Transformation) into a set of RDF triples (T). As additional inputs, the

algorithm takes the name of an attribute in the table (resourceKey) that can

be used to uniquely identify each row, a target TBox (onto), mapping files be-

tween the sources and the target (mapping), a provenance graph (provGraph)

and datasetname is the name of the dataset to be created. It is an instance of660

qb:Dataset. The values of resourceKey will be used to create resource identi-

fiers. The provGraph is required to search for an existing IRI and to store the

information of how the IRIs are formulated and its original source (literal/IRI

and dataset) information. We describe the Provenance Graph in Section 6.3.

At first, a dictionary D is created based on the input table (line 1). D665

consists of (key, value) pairs for each row r in table; the key corresponds to r’s

resourceKey value. The value in turn corresponds to a list of (attribute, value)

pairs where each pair represents one of r’s cells.
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Algorithm 2: createTriples

Input: table, resourceKey, onto, mapping, provGraph, datasetname

Output: T

begin

1 D ← makeDictionary(table)

2 concepts← getMatchingConcepts(table,mapping, concepts(onto))

3 foreach c ∈ concepts do

4 foreach r ∈ D do

5 sub← createInstanceIRI(c, resourceKey(r), provGraph)

6 if !(propertyTable(table)) then

7 obj ← createConceptIRI(c, provGraph)

8 T.addtriple(sub, rdf:type, obj)

9 if (type(c) = qb4o:LevelProperty) then

10 T.addtriple(sub, qb4o:memberOf, obj)

11 if (type(c) = qb:Observation) then

12 T.addtriple(sub, rdf:type, qb:Observation)

13 T.addtriple(sub, qb:dataSet, datasetname)

14 foreach (attribute, value) ∈ r do

15 if (value! = NULL) then

16 prop← getMatchingProperty(attribute,

17 mapping, property(c, onto))

18 T.addTriple(sub, createPropertyIRI(c, prop, provGraph),

createObject(value))

19 return T

The next step is to determine which concepts in the target TBox the infor-

mation contained in the table correspond to (line 2). Based on this informa-670

tion, the algorithm runs through each such concept c. Some tables in relational

databases do not directly correspond to a concept, instead they represent many-
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to-many relationships between instances of concepts (entity types). Hence, only

for those tables that directly correspond to a concept, the algorithm creates a

new resource for each entry in the dictionary D and a triple (with rdf:type675

as predicate) that defines the new resource as an instance of the concept (lines

6-8). To create an instance IRI, the createInstanceIRI() function (in line 5) first

checks the Provenance Graph whether there is an existing IRI for the instance;

if it finds an existing one, then returns it, else creates new one and updates the

Provenance Graph. Different type of resources (i.e, concept, property, instance),680

takes different parameters to create new IRIs. Table 4 shows the parameters to

create different type of resources.

Table 4: Required parameters for creating different types of IRIs

Type of IRI
Base

IRIs

Concept

Name

Property

Name

Property

Range Name
Value(s)

Resource

Key(s)

Concept IRI Y Y

Property IRI Y Y Y

Object Property value IRI Y Y Y

Instance IRI Y Y Y

If the concept c is a qb4o:LevelProperty, then a triple saying that the new

resource is a member of the level property c is added (lines 9-10). If the concept

c is a factual concept, i.e., a qb:Observation, then the resource is added as685

a qb:Observation and the qb:dataSet of the resource is datasetname (lines

11-13). Furthermore, for each (attribute, value) pair for which the attribute is

defined as a match of one of c’s properties and value is not null, a triple encoding

this information is created (lines 14-18). Depending on the type of property

(data type or object), the object of the created triple either corresponds to a690

literal or a resource. For example, the values of sdw:hasrecipient are resources

and the values of sdw:amounteuro are literals.

The computational complexity of Algorithm 2 depends on its constituents:

the number of concepts in the target TBox matched with the input table, and

the size of the given table. For each row of the input table, the makeDictionary695

operation creates an entry for the dictionary D. Therefore, line 1 takes O(N)
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complexity, where N is the number of rows in the table. The loop depends on

the number of concepts matched with the table. In the worst case, the number

of concepts in the target TBox matched with the table is equivalent to the

number of concepts in the target TBox. Let say C is the number of concepts in700

the target TBox matched with the input table. The for loop in line 4 is executed

for each entry in D, therefore, it takes O(N) time. The for loop in lines 14-18

is executed for each attribute of the table and it takes O(M) time, where M

is the number of attributes in table. Thus, the total time for Algorithm 2 is

O(N)+O(CNM) = O(CNM) in worst case, where C is the number of concepts705

in the target TBox, N is the size of the dictionary, and m is the average size of

the entries of the dictionary. The best case is O(NM) where, C = 1.

6.3. Provenance Graph

The provenance graph is an RDF graph that stores the meta information

of concepts, properties, instances and IRIs of resources used in a SDW. At this710

version, we only consider the provenance of IRIs, and the provenance graph

contains the type of resource it indicates in the target, its prefix (base IRI),

its source dataset, and the original IRI or the original literal corresponding to

each IRI. The type of a resource is either a concept, a property or an instance.

For example, an IRI can be generated for a concept Company, for a property715

hasCompany, or for an instance of Company DanskBank. The prefix is the

base IRI of the target. The graph is queried using SPARQL query. Figure 13

shows how an IRI is represented in the IRI provenance graph. The blank node

represents that the IRI is an instance of sdw:Day. The literal used to generate

the IRI is shown as the value of pro:originalLiteral which is taken from720

the subsidy dataset. The URL of the subsidy dataset are shown as the value

of pro:sourcedataset. The new generated IRI is shown as the value of the

pro:generatedIRI property. This graph needs to be built by semantic-ETL

processes.
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Figure 13: An IRI represented in the provenance graph.

Algorithm 3: LinkToExternalResources

Input: intResource, externalDataSource, flag, k

Output: L

begin

1 sbinternal ← semanticBag(intResource)

2 if flag = 0 then

E ← search(intResource, externalDataSource, k)

3 else

E ← search(intResource, externalDataSource, query, k)

4 foreach extResource ∈ E do

5 extTriples← retrieveTriples(extResource)

6 sbexternal ← semanticBag(extTriples)

7 if match(sbinternal, sbexternal) > δ then

8 alignedPairs← alignedPairs ∪ (intResource, extResource)

9 alignedPairs← userInteraction(alignedPairs)

10 foreach pair ∈ alignedPairs do

11 L.addTriple(intResource, owl:sameAs, extResource)

12 ER← getEquivalentResource(extResource)

13 foreach equiResource ∈ ER do

14 L.addTriple(intResource, owl:sameAs, equiResource)

15 return L
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6.4. External linking725

Algorithm 3 formalizes the steps required to link an internal resource to

external resources. It takes intResource, externalDataSource flag, and k as

input parameters. intResource is a given internal resource that we want to

find external links for, and externalDataSource can be either a keyword search

API or the SPARQL endpoint of a KB. In our DOLAP workshop paper [15],730

we use the Sindice API [41] as a default API, However, the service of the API

is currently stopped by its provider. Therefore, in this version, we replace the

default API with the DBpedia Lookup API 2). flag indicates whether the target

external source is a search API (flag = 0) or an external KB (flag = 1), and k

is the number of top k IRIs that we want to retrieve.735

At first, the algorithm creates a semantic bag (sbinternal) for the internal

resource (line 1). Such a semantic bag consists of triples describing the in-

ternal resource. Then, if externalDataSource is a search API, then a web

service request embedding the intResource is sent through the API for the top

k matching external resources (line 2). If externalDataSource is the SPARQL740

endpoint of a KB, then it submits a query to the endpoint for retrieving top k

matching external resources (line 3). An example query is shown in Listing 2.

The query retrieves top-20 resources from a KB which are the subjects of triples

whose objects are literals containing the string ”obama” most. For each exter-

nal resource (extResource), the algorithm retrieves triples describing it (line 5),745

creates a semantic bag (sbexternal) from them (line 6), and compares the bag to

the one created for the internal resource (line 7). If the Jaccard Simarity (see

Equation 1) between the two semantic bags exceeds a certain threshold δ, the

internal and external resource are considered a match (lines 7-8).

J(sbinternal, sbexternal) = |sbinternal ∩ sbexternal
sbinternal ∪ sbexternal

| (1)

After having identified all candidate pairs, the user can optionally interact with750

2https://github.com/dbpedia/lookup
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the system and filter pairs. Then, for each pair of internal and external resources,

a triple with the owl:sameAs property3 is created to materialize the link in the

dataset (line 11). Finally, the algorithm also retrieves the set of resources from

the KB that are already linked to the external resource via by owl:sameAs

property and materializes the links to the internal resource as well (lines 12-14).755

The computational complexity of Algorithm 3 depends on its constituents:

the generation of semantic bags, the similarity computation, and the number of

aligned pairs. A semantic bag of a resource is created from the RDF graph of

the resource [42, 43]. The set of triples describing the resource defines the RDF

graph of that resource. Therefore, a semantic bag creation takes O(N) time760

complexity where N is the size of the graph. Hence, line 1 takes O(N) time.

The given internal source is compared to every external source. Therefore, the

loop in line 4 is executed O(K) times where K is the number of external sources,

and since each semanticBag operation takes O(N) time, the total time for all

calls to semanticBag is O(NK). The match operation matches the semantic765

bags of two resources and takes O(N2) time. Therefore, the total time of the

loop lines 4-8 is O(KN +KN2) = O(KN2). The maximum number of aligned

pairs can be the equivalent of the number of external sources K. Hence, the

total time for the loop in lines 10- 14 is O(KR), where R is the average number

of equivalent resources of each aligned external sources. Thus, the total time770

for Algorithm 3 is O(N + KN2 + KR) = O(K(N2 + R)), where K, N, R are

the number of external resources, N is the average size of the RDF graphs, and

R is the average number of resources same as with external resources.

Listing 2:An example SPARQL query for keyword based searching

1 SELECT ?sub (count(?sub) as ?count)775

2 WHERE {

3 ?sub rdf:type ?class.

3An owl:sameAs property indicates that two IRI references refer to the same real world

object. Hence, subject and object IRIs of a triple with owl:sameAs are considered linked.
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4 ?sub ?pro ?label.

5 Filter regex(?label , "obama", "i")

6 }780

7 group by ?sub

8 order by desc(?count)

9 limit 20

6.5. Load785

This component loads the RDF triples created by Semantic Transformation

into a triple store or saves to an RDF dump file. SETL currently uses Jena

TDB [44] as a triple store and allows loading data batch-wise. It provides two

kinds of load, namely, trickle load and bulk load. The trickle load mode trans-

forms and feeds data as it arrives from the previous transformation step without790

staging on disk using SPARQL INSERT queries. As it provides concurrent pro-

cessing and loading, therefore, it takes long time to store whole dataset because

it includes process and loading time. In bulk load mode, the triples are written

into a file on disk after transformation and then loaded batch-wise into the triple

store.795

7. Implementation

We implement the SETL framework, discussed in Sections 4, 5, 6, using

Python [45]. The reasons for choosing Python are its comprehensive standard

libraries and its support to programmer productivity [46]. The following sections

discuss how we implement the main components of the framework.800

7.1. Definition Layer

SDW TBox Definition . We define three Python Classes: Concept, Prop-

erty, BlankNode to give the structure of concepts, properties and blank nodes of

a TBox, respectively. These classes play a meta modeling role and the user can
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instantiate the classes to define their TBox constructs, such as, concept, prop-805

erty, and blank node. The user can define the MD constructs, such as, cube,

dimensions, level, factual concept, and hierarchies by instantiating the Concept

class. Listing 3 shows a segment of Python script to create a TBox of our

running example. It shows how to define different MD constructs, such as, di-

mension (lines 1-4), level (lines 5-7), hierarchy (lines 8-11), hierarchy step (lines810

12-17), level attributes (lines 18-27), measure (lines 28-32), cube structure (lines

33-40 ), cube (lines 41-43), factual concept(43-44). To internally connect each

concept with an explicit set of properties, such as data type property, level at-

tribute, object property, functional property, inverse-functional property, SETL

offers a method conceptPropertyBinding() which takes the list of all concepts,815

properties and blank nodes as parameters (line 51). The method createTriples()

creates the triples according to the TBox (line 53).

Listing 3:A segment of Python script to create the TBox of our running example

1 # Def in ing Time Dimension

2 Time=Concept (name=‘PayDate ’ , b a s e i r i =‘sdw : ’ )820

3 Time . setrdfType ( [ ‘ owl : class ’ , ‘ qb : DimensionProperty ’ ] )

4 Time . setqb4oHasHierarchy ( ‘ sub : TimeHierarchy ’ )

5 Time . s e t r d f s L a b e l ( ‘ ‘ ‘ PayDate”@en ’ )

6 # Def in ing l e v e l s f o r Time Dimension

7 Day=Concept (name=‘Day ’ , b a s e i r i =‘sdw : ’ )825

8 Day . setrdfType ( [ ‘ owl : class ’ , ‘ qb4o : Leve lProperty ’ ] )

9 Day . s e t r d f s L a b e l ( ‘ ‘ ‘ Day”@en ’ )

10 Month=Concept (name=‘Month ’ , b a s e i r i =‘sdw : ’ )

11 Day . setrdfType ( [ ‘ owl : c l a s s ’ , ‘ qb4o : Leve lProperty ’ ] )

12 Day . s e t r d f s L a b e l ( ‘ ‘ ‘ Month”@en ’ )830

13 # Def in ing a time h i e ra r chy

14 TimeHier=Concept (name=‘TimeHier ’ , b a s e i r i =‘sdw : ’ )

15 TimeHier . setrdfType ( [ ‘ owl : c l a s s ’ , ‘ qb4o : Hierarchy ’ ] )

16 TimeHier . setqb4oHasLevel ( [ ‘ sdw : day ’ , ‘ sdw : Month ’ }}
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17 TimeHier . se tqb4oInHierarchy ( [ ‘ b t1 ’ }}835

18 # Def in ing a h i e r a r c y s t e p

19 b t1=BlankNode (name=‘ : t1 ’ )

20 b t1 . setrdfType ( ‘ qb4o : HierarchyStep ’ )

21 b t1 . se tqb4oparentLeve l ( ‘ sub : Month ’ )

22 b t1 . s e tqb4och i l dLeve l ( ‘ sub : Day ’ )840

23 b t1 . s e tqb4opcCard ina l i ty ( ‘OneToMany ’ )

24 b t1 . s e tqb4o inHierarchy ( ‘ sdw : TimeHier ’ )

25 # Def in ing l e v e l a t t r i b u t e s

26 hasMonth=Property (name=‘hasMonth ’ , b a s e i r i =‘sdw : ’ )

27 hasMonth . setrdfType ( [ ‘ owl : ObjectProperty ’ ,845

28 ‘ qb4o : Leve lAtt r ibute ’ ] )

29 hasMonth . se t rd f sRange ( ‘ sdw : Month ’ )

30 hasMonth . setrdfsDomain ( ‘ sdw : Day ’ )

31 paydate=Property (name=‘paydate ’ , b a s e i r i =‘paydate ’ )

32 paydate . setrdfType ( [ ‘ owl : ob jec tProper ty ’ ,850

33 ‘ qb4o : l e v e l A t t r i b u t e ’ ] )

34 paydate . setrdfsDomain ( ‘ sdw : Subsidy ’ )

35 paydate . se t rd f sRange ( ‘ sdw : Day ’ )

36 amount=Property (name=‘amounteuro ’ , b a s e i r i =‘sdw ’ )

37 amount . setrdfType ( [ ‘ owl : datatypeProperty ’ ,855

38 ‘ qb : MeasureProperty ’ ] )

39 amount . setrdfsDomain ( ‘ sdw : Subsidy ’ )

40 amount . se t rd f sRange ( ‘ xsd : double ’ )

41 # Def in ing a data s t r u c t u r e d e f i n i t i o n

42 cubes t ruc t=Concept (name=‘ cubes t ruc t ’ , b a s e i r i =‘sdw : ’ )860

43 cubes t ruc t . setrdfType ( [ ‘ owl : Class ’ ,

44 ‘ qb : DataSt ruc tu reDe f in i t i on ’ ] )

45 cubes t ruc t . setqbComponent ( [ ‘ b d ’ , ‘ b m ’ ] )

46 b d=BlankNode (name=‘ d ’ )
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47 b d . setqbdimens ion ( ‘ sdw : Time ’ )865

48 b m=BlankNode (name=‘ m ’ )

49 b m . setqbmeasure ( ‘ sdw : amount ’ )

50 # Def in ing a cube

51 cube=Concept (name=‘ datase t ’ , b a s e i r i =‘sdw : ’ )

52 cube . setrdfType ( [ ‘ owl : Class ’ , ‘ qb : DataSet ’ ] )870

53 cube . s e t q b s t r u c t u r e ( ‘ sdw : cubes t ruc t ’ )

54 # Def in ing f a c t u a l concept

55 Subsidy=Concept (name=‘Subsidy ’ , b a s e i r i =‘sdw : ’ )

56 Subsidy . setrdfType ( [ ‘ owl : Class ’ , ‘ qb : Observation ’ })

57 # Def in ing l i s t f o r concepts , p rope r t i e s , and blank node875

58 conceptL i s t=l i s t ( )

59 p r o p e r t y l i s t=l i s t ( )

60 b lankL i s t=l i s t ( )

61 # Extending the l i s t s

62 conceptL i s t . extend ( [ Time , Day , TimeHier ] )880

63 prope r tyL i s t . extend ( [ hasMonth , amount , paydate ] )

64 b lankL i s t . extend ( [ b t1 , b d , b m ] )

65 # E s t a b l i s h i n g r e l a t i o n s h i p s among the e lements

66 conceptPropertyBinding ( conceptLi s t , p roper tyL i s t , b l ankL i s t )

67 # Generating t r i p l e s f o r the tbox885

68 c r e a t e T r i p l e ( c o n c e p t l i s t , p roper tyL i s t , BlankList )

We also define a Python class named ParseOntology(object) to parse a given

TBox. The user can instantiate it by passing the path of the given TBox. It

provides several methods (getConcepts(), getDataProperties(), getProperties(),890

and etc.) to process the TBox.

Define Mapping. To define the mappings between the elements (concepts

and properties) of a source TBox and the target TBox, we use a Python dic-

tionary which is composed of (key, value) pairs. The key of a pair is the source

element and the value of the pair is a list which contains the corresponding895
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target element and relationship type (lines 1-8 in Listing 4). The relationship

type is presented using sup, sub, and equi. Here, sup means that the source

concept is the super class of the target concept, sub means source concept is the

sub class of the target concept, and equi means equivalence relationship. We

also define the mappings between all source TBoxes and the target TBoxusing900

a Python dictionary whose keys are the source TBoxes names and the values

are the individual source and target mapping dictionary (lines 9-10). Currently,

SETL supports basic mapping, however, in the future we will allow it to sup-

port complex mappings, for example, mapping a property of a source TBox to

a concept of the target TBox.905

Listing 4: Python script for defining mapping

1 bus sdw=dict ( )

2 bus sdw={ ‘bus : Owner ’ : [ ‘ sdw : Rec ip i ent ’ , sup ] ,

3 ‘ bus : Ac t i v i ty ’ : [ ‘ sdw : mainAct iv ity ’ , ‘ sup ’ ] ,

4 ‘ bus : Ac t i v i ty ’ : [ ‘ sdw : SecondaryAct iv i ty ’ , ‘ sup ’ ] ,910

5 ‘ bus : hasCompany ’ : [ ‘ sdw : hasCompany ’ , ‘ equ i ’ ] ,

6 ‘ bus : hasPr imaryAct iv i ty ’ : [ ‘ sdw : hasPr imaryAct iv i ty ’ , ‘ equ i ’ ]

7 , ‘ bus : BusinessFormat ’ : [ ‘ sdw : BusinessType ’ , ‘ equ i ’ ] ,

8 ‘ bus : hasFormat ’ : [ ‘ sdw : inCompany ’ , ‘ equ i ’ ]}

9 mapping=dict ( )915

10 mapping [ ‘ bus ’ ]=bus sdw

For processing a Non Semantic Data Source, users can define a TBox repre-

senting the source using the classes of SDW TBox Definition. Then, the map-

ping between the target and the extracted TBox can be defined using Python920

dictionary. For converting the Non Semantic Data Source into RDF triples

based on R2RML mapping, we implement the simple algorithms of R2RML

processor provided in [39].
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7.2. ETL Layer

SETL enables the extraction of data from a KB through SPARQL endpoints,925

RDF files, relational databases, CSV files, and shapefiles. The framework is

designed in a way that allows it to be easily extended to support other formats.

Extraction from a SPARQL endpoint. Using the SPARQLWrap-

per [47] library, we extract data/triples from a KB by applying queries through

a SPARQL endpoint.930

Extraction from an RDF file. We use the RDFLib library [48] to

execute a query on a local RDF file. If the RDF file is too large to fit into main

memory, we split the file into several smaller files, execute the query on the

smaller files, and then combine the partial results. However, this method can

only be used for simply queries, such as retrieving all triples with a particular935

predicate. More complex queries involving joins need to be handled differently,

e.g., by loading the data into a local SPARQL endpoint first and using the

method described in the previous paragraph.

Extraction from a relational database or a CSV file. SETL is

based on Petl [40], which is a traditional ETL Python package including a rich940

set of methods to perform extraction, cleansing, and transformation based on

relational databases and CSV files. Making use of these methods, SETL provides

the functionality as well.

Extraction from a shapefile. To read data from a shapefile, we use the

pyshape [49] library. Internally, SETL can store the data of a shapefile either in945

a file or in a database table. SETL provides methods to automatically create a

table in a database based on the structure of a shapefile and to insert the data

from the shapefile into the created table. It also provides a method to store the

attribute information of a shapefile in CSV format.

Figure 1 shows that there is no direct connection between Field and Organic-950

Field, neither between Field and FieldBlock. In the target TBox (Figure 3), how-

ever, we have defined connections, e.g., agri:Field and agri:OrganicField

are connected through the owl:sameAs property and agri:FieldBlock and

agri:Field are connected via the agri:contains property. These connections
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are computed based on a spatial join that SETL computes during the extraction955

process for pairs of shapefiles. We use the ArcPy [50] library to perform the

spatial join analysis.

Transformation. To perform the operations related to Traditional Trans-

formation, described in the 2nd paragraph of Section 6, we again use the Petl [40]

library. For creating RDF triples according to the target TBox based on the data960

output from the Traditional Transformation component, we develop a Python

method, named createTriples(table, resourceKey, onto, mapping, provGraph,

filepath) that implements Algorithm 2, where the parameters maintain the same

meanings as Algorithm 2. Additionally, it requires a parameter filepath, the

location of the file, to store the generated RDF triples.965

External Linking. We develop a method named link(intResource, extSource,

flag, k) that implements Algorithm 3. We use Python built-in requests library

to retrieve the top-k related resources of inResource through DBpedia Loopup

API in JSON format. Sometimes the queries submitted to a SPARQL endpoint

result in timeout error. For this reason, we download the RDF dump files of970

the selected KB and store them to a triple store locally for accessing it through

local SPARQL endpoint.

Load. Bulk load stores the RDF triples from a file (created by createTriple

() method) to the triple store. To support bulk load, SETL offers two methods:

bulkTDBLoader (tdblocation, filePath, batchsize) and bulkSPARQLInsert(tdbloc975

ation, filePath, batchsize, database). The BulkTDBLoader is used to load data

from a file on disk into a triple store using the jena TDBLoader command. The

parameter tdblocation denotes the location of a TDB database, the filePath

is the path to the triple file, and batchsize is the number of triples to be

fed into the store at a time. The BulkSPARQLInsert is similar to BulkTD-980

BLoader but defines SPARQL INSERT statements to load triples instead of

using the jena TDBLoader command. It additionally requires the name of the

database as parameter. Unlike bulk load, which loads the triples from a file,

trickle load converts the cleansed and transformed data into triples and subse-

quently loads them into a triple store holding the triples in main memory. The985
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trickleload(table, resourceKey, onto,mapping, provGraph, tdblocation, batchsize)

method has same parameters like createTriple() method. In addition, it takes

tdblocation and batchsize as input parameters to directly load the triples into

the triple store.

8. Evaluation990

To evaluate SETL, as discussed in Section 3, we first create a SDW called

SETLKB applying the proposed ETL process on sources covering Danish agri-

cultural and business information. Then, we create an MD SDW called SETLSDW

using SETL by integrating SETLKB and the Subsidy dataset. We create

SETLKB in order to be able to compare it with an existing dataset integrating995

DAD and DBD [19] that has been created in a manual process by using a broad

range of different tools. In contrast, SETL allows to perform this process mostly

automatically with minimal user interaction. This allows us to compare the dif-

ferent ETL processes as well as the RDF datasets themselves. Furthermore, to

show the strength of SETL over the non-semantic traditional data integration1000

tools, we also re-create SETLSDW using Pentaho Data Integration (PDI, also

called Kettle) [51] and compare the productivity and the performance of the

processes with SETL.

Table 5 shows the description of SETLKB and SETLSDW. As DAD and

DBD do not have any numerical measures, we do not model SETLKB in an1005

MD fashion. On the other hand, SETLSDW is defined with MD constructs. It

has 4,392,390 facts, 2 dimensions, 9 hierarchies, and 15 levels.

In the following, we refer to the dataset published by [19] as ExtBIKB.

Our evaluation concentrates on three aspects: productivity, i.e., to what extent

SETL eases the work of a user when performing an ETL task to produce a SDW,1010

quality of the produced datasets, and performance, i.e., the time required to run

the processes.

We run the experiment on a HP ProLiant DL385 server with an AMD

Opteron(tm) processor 6376 with 32 cores (only 1 core is used in the experi-
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ments); it has 256 GB DDR3 RAM and is running Ubuntu 14.04.1 LTS (Trusty1015

Tahr). The data is stored on an 1-TB SCSI disk running in an HP Smart Array.

Table 5: Description of SETLKB and SETLDW

Dataset

# of

RDF

Triples

# of

Concepts

# of

Datatype

Properties

# of

Object

Properties

# of

External

Linkings

# of

Dimensions

# of

Levels

# of

Level

Attributes

# of

Hierarchies

# of

Observations

SETLKB 34,177,652 16 76 22 14,153 - - - - -

SETLSDW 54,995,678 54 63 16 3,538 2 15 58 9 4,392,390

8.1. Productivity

One of the main advantages of working with SETL is that all the phases

of an ETL process can easily be maintained and implemented using Python.

SETL offers high-level classes and functionality for development of semantic1020

ETL processes. Using SETL the users can write their own code to create an

ETL process in Python. Therefore, it allows extensibility. The modularized

structure of SETL allows users to call different modules simply by passing ar-

guments. Hence, it hides the complexity of the processes from the users. For

example, to populate the SDW with transformed data, the user just write one1025

line of code to call the method createTriples(table, resourceKey, onto, mapping,

provGraph, filepath) by passing the required arguments, where the parameters

maintain the same meanings as Algorithm 2. Concretely, SETL uses 224 lines

of code to implement Algorithm 2. Hence, it provides a higher level abstraction

to the user by hiding details. Table 6 summarizes the tools, languages, and1030

the Lines Of Code (LOC) used to produce the SETLKB dataset using SETL

and the ExtBIKB dataset using the process described in [19]. To process a

shapefile, SETL provides methods to automatically create and insert data into

PostgreSQL. It uses only 2 lines of Python code. To perform spatial inter-

section operation between two shapefiles, SETL uses the ArcPy [50] library,1035

which is faster than ArcGIS [52] which is used in [19]. On the other hand, the

ETL process used in [19] converts the shapefile into PostgreSQL table using

the PostgreSQL tool shp2pgsql. To make it compatible with vtSQL, they have

performed some find-replace actions. For performing, spatial operation, they
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use ArcGIS [52]. For filtering inconsistent values, unknown characters and for1040

correcting candidate keys, we use different methods from the Petl library [40],

which are efficient and easy to access. To cleanse our all dataset, SETL only

takes 173 lines of code. On the other hand, the [19] uses different MySQL

views and hand-crafted methods to cleanse the data, and it takes 360 LOC. To

generate triples for all data sources, SETL takes only 109 LOC whereas [19]1045

uses 1,511 LOC. SETL only takes two line of codes to call the external linking

procedure. On the hand, [19] does not support any linking process. The last

row of Table 7 shows the total number of LOC. SETL takes in total 570 LOC

to make the ETL process where 286 LOC is used to build the TBox. On the

other hand, for ExtBI, we sum only the LOC of Cleansing and Triple Genera-1050

tion because we can not count the LOC for other processes, hence, the sum is

1879 + 5NA. In summary, SETL is significantly more productive, using only a

fraction of the LOC of 1879 + 5NA and using only Python instead of 7 different

languages and tools.

PDI contains a rich set of data integration functionality to create an ETL1055

solution for non-semantic data sources. However, it does not support any func-

tionality to support semantic integration. We use PDI in combination with

other tools and manual tasks to re-create SETLSDW. Table 7 shows the com-

parison between the ETL processes of SETL and PDI to create SETLSDW.

SETL provides built-in classes to annotate MD constructs with a TBox. On1060

the other hand, PDI does not support to define a TBox. To create SETLSDW

using PDI, we use the TBox created by SETL. SETL provides built-in classes

to parse a given TBox and users can use different methods to parse the TBox

based on their requirements. In PDI, we implement a Java class to parse the

TBox created by SETL which takes an RDF file containing the definition of1065

a TBox as input and outputs the list of concepts and properties contained in

the TBox. The class also includes the functionality to internally connects the

concepts and properties of the TBox. PDI is a non-semantic data integration

tools, thus, it does not support to process semantic data. In this case, we manu-

ally extract data from SPARQL endpoints and materialize them in a relational1070

48



database to further processing. PDI provides drag & drop functionality to pro-

cess database and CSV files. On the other hand, SETL provides methods to

extract semantic data either from a SPARQL endpoint or an RDF dump file

batch-wise. SETL allows users to create an IRI by simply passing argument to

the createIRI () method. Moreover, SETL supports to update the provenance1075

graph to store the provenance information of IRIs. On the other hand, PDI does

not include any functionality to create IRIs for resources. We define a 23 line of

Java class to enable the creation of IRIs for resources. To generate triples from

the source data based on the MD semantics of the target TBox, SETL provides

createTriple() method; users can just call it by passing required arguments. On1080

the other hand, we develop a Java class of 60 lines to create the triples for the

sources. PDI does not support to load data directly to a triple store which can

easily be done by SETL. Finally, we could not run the ETL process of PDI

automatically (i.e., in a single pass) to create the SETLSDW. We make it with

significant number of user interactions. In total SETL takes 401 LOC to run1085

the ETL, where PDI takes 471LOC + 4NA+ 21Activity. Thus, SETL creates

an MD SDW with minimum number of LOC, user interactions comparing to

PDI where users have to build their own Java class, plugin, and manual tasks

to enable semantic integration.

Table 6: Comparison between the ETL processs of SETL and [19]

Tools SETL ExtBI

Task Used tools Used language LOC Used tools Used language LOC

TBox Definition Built-in SETL Python 286 Virtuoso, Protege Not Applicable (NA) NA

CSV Built-in Petl Python 2 MySQL,vtSQL SQL NA

Reading Shapefile Built-in SETL Python 3
ArcGIS,PostgreSQL,

shp2pgsql
NA NA

Spatial join Built-in ArcPy Python 2 ArcGIS NA NA

Cleansing Built-in Petl Python 173 MySQL, Google refine SQL 360

Triple Generation Built-in SETL Python 2 Virtuoso iSQL 1511

External Linking Built-in SETL Python 2 NA NA NA

Loading Built-in SETL Python 1 Virtuoso iSQL 4

Total LOC for the complete ETL process 570 1879 + 5 NA4

4Note that this is not the total number of LOC for the complete ETL process because
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Table 7: Comparison between the ETL processes of SETL and PDI for SETLSDW

Tools SETL PDI (Kettle)

Task Used Tools Used Lnaguages LOC Used Tools Used Languages LOC

TBox with

MD semantics
Built-in SETL Python 312 Protege, SETL Python 312

Ontology

Parser
Built-in SETL Python 2 User Defined Class Java 77

Semantic Data Extraction

through SPARQL endpoint
Built-in SETL Python, SPARQL 2

Manually extraction

using SPARQL endpoint
SPARQL NA

Semantic Data Extraction

from RDF Dump file
Built-in SETL Python 2 NA NA NA

Reading

CSV/Database
Built-in Petl Python 2 Drag & Drop NA

Number of

used Activity: 1

Cleansing Built-in Petl Python 36 Drag & Drop NA
Number of

used Activity: 19

IRI Generation Built-in SETL Python 2 User Defined Class Java 22

Triple Generation Built-in SETL Python 2 User Defined Class Java 60

External Linking Built-in SETL Python 2 NA NA NA

Loading as

RDF dump
Built-in SETL Python 1 Drag & Drop NA

Number of

used Activity: 1

Loading to

Triple Store
Built-in SETL Python 1 NA NA NA

Total LOC for the complete ETL process 401 471 LOC +4 NA + 21 Activity

8.2. Quality1090

In this section, we examine the extent to which the produced triples are con-

sistent, complete, interpretable, fresh, and semantically linked [53]. We compare

the result created with SETL (SETLKB) to ExtBIKB.

Consistency. According to the definition, an object property relates in-

stances of two classes, i.e, if x is a value of an object property, there must1095

exist at least one triple whose subject is x. We found out that for a sig-

nificant number of values for the object properties bus:postalAddress and

bus:officialAddress, ExtBIKB does not contain such information. There

are 83,302 bus:officialAddresses and 34 bus:postalAddresses that are not

used as a subject of any triple in ExtBIKB. In SETLKB, on the other hand,1100

all bus:officialAddresses and bus:postalAddresses have correctly been re-

lated to the bus:Address concept. Hence, data consistency is completely main-

tained in SETLKB.

ExtBI uses different tools for different processes. Thus, it could not run the ETL process in

a single pass.
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Information loss. In ExtBIKB, fields that do not produce any crop

are not represented. This affects 2,650 instances of the concept agri:Field.1105

Similarly, instances of agri:OrganicField that have the value “999999-99” for

the agri:FieldBlock property are not represented in ExtBIKB. This affects

1,213 instances. For SETLKB on the contrary, we do not want to miss any

agri:Field or agri:OrganicFields instance even though they do not have

crop information. Hence, in the cleansing step, we replace the value “999999-1110

99” with NULL. If an instance of a concept contains NULL or an unknown value

for a property, the createTriples () method (described in Section 6) simply does

not produce a triple for that property. This is how SETLKB ensures data

completeness.

In the original raw datasets, we can find out since when a legal unit belongs1115

to an owner. This is not possible in ExtBIKB if an owner owns more than one

company. We fix this issue by extending the target TBox. In addition, we also

add the information related to the type of the owner, i.e., whether the owner is

a person or another company, both are missing in ExtBIKB.

Furthermore, the main and secondary activity of a company or production1120

unit are treated as the same activity in the ExtBIKB. In SETLKB, the con-

cepts bus:Company and bus:ProductionUnit are connected to bus:Activity

through two object properties: bus:hasMainAcitivity and bus:hasSecondary

Activity. Thus, SETLKB provides more information than ExtBIKB.

Redundant triples. If a property is inversely connected to another1125

property, then storing the same types of triples for both properties, simply

by interchanging the subject and predicate of the triples, makes a KB re-

dundant. The properties bus:belongsTo and bus:hasProductionUnit are

inversely connected to each other and relate the concepts bus:Company and

bus:ProductionUnit. In ExtBIKB, triples are stored for both properties sep-1130

arately, which produces extra 659,639 triples. On the other hand, we create

triples only for bus:belongsTo property. Hence, SETLKB reduces redundancy.

External linking. We enhance SETLKB by linking it to external knowl-

edge bases at instance level. Section 6.4 describes the linking process. On the
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other hand, ExtBIKB is not connected with other external knowledge bases1135

at instance level. We run the linking process only for instances of agri:Crop,

agri:FieldBlockApplication, bus:BusinessFormat, and bus:Municipality

because for instances of other concepts, DBpedia [38] does not contain relevant

information. Note that the following results are produced by the automatic

matching process without any pre-filtering by the user (which is mentioned as1140

an optional step in Section 6.4). Table 8 shows the different types of concepts

for which we run the linking process, their total number of internal instances,

the number of internal instances linked to the external resources, the number

of external resources connected to the internal instances, and the accuracy rate

of the linking. In total, 196 instances of SETLKB are linked to 9,618 external1145

resources. To evaluate the linking process, we randomly chose 5% of the triples

that linked internal and external resources and manually evaluated their correct-

ness. The accuracy rate in Table 8 shows the accuracy rate in percentage. We

only consider the values of rdfs:comment, rdfs:label and rdf:description

in the semantic bags of compared resources in order to make the process faster.1150

One of the reasons having the low accuracy rate for some cases is the language.

The description of each instance is translated from Danish to English using

Google Translate API, which sometimes fails to give accurate translation.

Listing 5:The SPARQL query that connects SETLKB with DBpedia to retrieve

the description of top-3 municipalities where most of the companies belongs to.

1 PREFIX bus:<http :// extbi.lab.aau.dk/ontology/business/>1155

2 PREFIX dbo:<http :// dbpedia.org/ontology/>

3 PREFIX owl:<http :// www.w3.org /2002/07/ owl#>

4

5 select ?municipality ?abstract

6 where {1160

7 {select ?municipality count (*)

8 where {

9 ?company a bus:Company.

10 ?company bus:officialAddress ?address.
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11 ?address bus:positionedAt ?addFeature.1165

12 ?addFeature bus:inMunicipality ?municipality .}

13 Group by ?municipality

14 order by desc(count (*))

15 limit 3

16 }1170

17 ?municipality owl:sameAs ?db.

18 SERVICE <http :// dbpedia.org/sparql?default -graph -uri=

19 http :// dbpedia.org > { ?db dbo:abstract ?abstract .

20 FILTER (lang(? abstract) = ’en’)}

21 }1175

Because of being linked with external resources, users can analyze SETLKB

based on external knowledge bases as well. Listing 5 shows an SPARQL query

that retrieves the descriptions of top-3 Danish municipalities from DBpedia

with the most companies in them. The query returns eight entries. The first1180

3 entries describe Copenhagen, next 2 entries describe Aarhus, and the last 3

entries describe Aalborg. This query cannot be answered by ExtBIKB.

Table 8: Linking local resources to external resources

Concept
# of

instances

Linked

instances

External

resources
Accuracy

agri:Crop 244 95 5,309 83%

bus:BusinessFormat 30 16 976 66%

agri:FieldBlockApplication 17 6 403 43%

bus:Municipality 98 79 2,930 73%

Total 389 196 9,618 66.25%

Based on these findings, we can conclude that SETLKB is more consistent,

complete, and resourceful than ExtBIKB. Table 9 summarizes some notable

triple-wise differences between SETLKB and ExtBIKB.1185
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Table 9: Comparison between SETLKB and ExtBIKB

Concept(c)/

Property(p)

# of Triples

SETLKB

# of Triples

ExtBIKB
Comments

Whole KB 34,177,652 32,457,657 SETLKB is the updated version.

External Linking 9,618 0 No instance is linked with external sources in ExtBIKB.

Company(c) 603,667 603,668 One duplicate triple in ExtBIKB.

Address(c) 499,850 497,938
In ExtBIKB, Address concept were not mapped with the

postal address of Danish Business dataset.

Field(c) 52,060 50,842 ExtBIKB used poor cleansing techniques.

OrganicField(c) 613,903 611,093 ExtBIKB used poor cleansing techniques.

belongsTo(p) 659,638 659,640 Two duplicate triples in ExtBIKB.

hasProductionUnit(p) 0 659,640 belongsTo and hasProductionUnit are inversely connected.

hasOwnerType(p) 353,954 0 ExtBIKB did not include owner type information.

8.3. Performance

In this section, we discuss the time required for different sub-processes to

create SETLKB and SETLSDW using SETL, the performance of different sub-

process, and the comparison of performance with the previous solution [19] and

PDI.1190

Figure 14: Time for the ETL process to create SETLKB. s and h stand for second

and hour respectively.

Runtime of the different phases. Figure 14 and 15 illustrate the time

and the percentage of the total time that each phase of the ETL processes of

SETLKB and SETLSDW respectively accumulated. The figures show both the

time for each phase in separate and the overall runtime of the complete process.

The times represent averages over 5 test runs. As SETL automatically connects1195

all the phases, the end time of one phase becomes the starting time of the next.
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Figure 15: Time for the ETL process to create SETLSDW

Figure 14 and 15 also show the materialized output with the data size of each

phase.

Figure 14 shows that the Extraction and Traditional Transformation phase

take 37% of the total time. This phase takes the longest time comparing to1200

other phases because of the following reasons. First, the DAD is given with

three Shapefiles: Field, Organic Field, and Field Block ; therefore, we need to

do some preprocessing tasks to extract the attribute information from the files

and to keep them into a PostgreSQL database. Second, we perform two spatial

join operations: between Field and Field Block, and between Field and Organic1205

Field datasets. To perform the spatial join operations, we use ArcPy library

which takes 30% time of this phase which is out of our control. Third, we extract

a TBox from the dataset and based on the source-target mappings, we keep

the data into 9 smaller tables. We perform extensive cleansing operations for

correcting candidate keys, fixing inconsistent and incomplete data, and filtering1210

noisy data which are also time intensive. Fourth, we also fix and filter the

noisy, inconsistent and incomplete data from Company and Participant datasets

and split the two datasets into 19 smaller tables according to the source-target

mappings which are also time consuming.

The Semantic Transformation process is time-intensive because all the data1215

needs to be processed and matched to the TBox of the SETLKB. In Section 6.2,

we discuss the computational complexity of Semantic Transformation which

depends on the three nested loops. The first loop iterates for the number of
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concepts in the target TBox matched with the input table. The second loop

repeats for each row of the input table. Further, each iteration creates an1220

IRI for each row of the table and updates the Provenance Graph. The third

loop iterates for each value of a row, and Semantic Transformation creates a

separate triple for each value in the SDW according to the semantics encoded in

the target TBox. On the other hand, the building block of a traditional DW is

tuple which contain multiple values. Many triples of SDW are kept into a tuple1225

of a traditional DW table. This is why our SDW takes longer time comparing

to the traditional DW.

The total time required for the Linking process is 3,657 seconds. All the

information of the resources are given in Danish, so we first translate the name

of the resource into English, then use DBpedia Lookup API to retrieve the1230

top 20 relevant resources. Eventually, we use our instance matcher described

in Section 6.4 to link the internal and external resources. The computational

complexity depends on the number of external resources to be matched, the

average size of the RDF graphs of internal and external resources, and the

number of resources same as external sources. As we consider the semantic1235

bags of two resources in the matching operation, we need to retrieve the RDF

graph of each external resource from DBpedia through its SPARQL endpoint.

Moreover, the matching operation is time consuming because it takes O(N2)

complexity, where N is the average size of the RDF graphs of internal and

external resources. Table 10 shows the time consumed for linking the instances1240

of each concept. In summary, SETLKB is linked to 9,618 external resources.

To load all triples at a time, the BulkTDBLoader takes 936 seconds which is

almost 7% of the total time. For loading triples into a triplestore, we depend

on the native loading commands of the underlying triplestore. The elapsed

time depends on the internal strategy of the triplestore which is also out of1245

control. We have discussed the performance of the different loading methods in

the earlier workshop paper [15].

In Figure 15, it is shown that the ETL process takes SETLKB and the

Subsidy dataset as input. the Extraction and Traditional Transformation phase
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includes time for 1) Filtering the noisy data from the Subsidy dataset (2.3 GB1250

in size), 2) converting the Subsidy dataset into RDF according to the R2RML

mapping, 3) extracting data from the Semantic Data Sources through its

SPARQL endpoints, and 4) stores them into the Staging Area based on the

source-target mappings. The Semantic Transformation makes the RDF triples

based on the MD semantics encoded in the target. Here, we only link the in-1255

stances of sdw:Municipality with the external resources. In total, the ETL

process for creating SETLSDW takes 10,820 seconds.

Table 10: Time required for the linking process

Concept Time(in seconds)

agri:Crop 1,925

bus:BusinessFormat 504

agri:FieldBlockApplication 63

bus:Municipality 1,165

Total 3,657

Performance analysis of Semantic Transformation. Figure 16 shows

the performance of our Semantic Transformation method. To evaluate the

method, we consider the factual concept sdw:Subsidy from SETLSDW and the1260

central concept sub:Company from SETLKB because sub:Company also acts as

a super class of the sdw:Company level of SETLSDW. Figure 16a shows the

number of triples generated with the increasing input data size, and Figure 16b

shows the processing time with the increasing input data size. With the in-

crease of input data size, the number of generated triples (shown in Figure 16a)1265

and the processing time (shown in Figure 16b) increase almost linearly for both

concepts. In general, the processing time and the number of generated triples

depends on the nature of the input data, e.g., whether it corresponds to a fact

entry, a dimension entry or a level entry, how big the value of each attribute is.

Figure 16 summarizes that the number of triples generated per data size and1270

the data processing rate for sub:Company are higher than that of sdw:Subsidy.
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This is because each entry of sdw:Subsidy only contains a measure property

and the pointers to two dimensions, namely, sdw:Beneficiary and sdw:Time.

Therefore, sdw:Subsidy is straightforward to process while sub:Company re-

quires more effort as it involves 17 properties with relatively long strings, such1275

as address, name, email, etc. Table 11 reports the performance of Semantic

Transformation for sdw:Subsidy and sub:Company using different comparison

metrics. Triple generate rate of Semantic Transformation for sdw:Subsidy is

4.9 times higher than that of sub:Company. sdw:Subsidy has a higher data

process rate (i.e., the amount of data that can be processed per time) than1280

sub:Company. To process 1 MB input data, sdw:Subsidy takes 4.8 seconds

while sub:Company takes 8.7 seconds. We also compare the number of triples

per (1 MB) data size for both input and output data size. 1 MB of the output

file generated for sdw:subsidy contains 6,134 triples where sub:Company con-

tains 5,393 triples. The output file size for sdw:Subsidy is 31 times larger than1285

the input data size. On the other hand, the output file for sub:Company is 12

times larger than its input file.

(a) Number of triples vs data size. (b) Processing time of increasing data.

Figure 16: Performance of Semantic Transformation based on the number of gen-

erated triples and processing time with increasing data size.
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Table 11: Comparison to process the factual concept and a level of the running

example by Semantic Transformation

Comparison Metrics sdw:Subsidy sub:Company

Triple generate rate

(triples/second)
39816.47 8089.80

Data process rate

(data size/second)
0.22MB 0.11MB

Data process time (time to

process unit data size (in MB))
4.80s 8.70s

Average time for generating a triple 25.20µs 120 µs

Number of triples per

input unit data size (in MB)
190986.40 69961.85

Number of triples

per output data size (in MB)
6134 5393

Output data size

and input data size ratio
31 12
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Comparison between SETL and ExtBI [19]. To make it comparable with

the results of [19], we also run the computer on our local machine which is

2.10 GHz Intel Core i7-2600 processor with 8 GB RAM operated by Windows 71290

and similar to the machine used by ExtBI. Table 12 shows the time in seconds

takes different sub-processes of the ETL processes. In this case, we do not

run the External Linking process. SETL takes more time in data cleansing

step comparing to ExtBI. This is because we handle the null value and other

unknown values which are simply discarded in ExtBI. On the other hand, our1295

createTriple() method takes less time to make the RDF dump although we create

2M more triples than ExtBI shown in Table 9. Loading RDF triples more time

as we load more triples than ExtBI. In summary, SETL takes 5,725.05 seconds

where ExtBI takes 6,141.56 seconds, i.e., SETL takes 6.7% less time than ExtBI.

Table 12: Comparison between SETL and ExtBI [19]

Tools
Data Cleansing

(excluding Spatial join)
Load Ontology

Load

Mappings

Dump

RDF
Load RDF Total

ExtBI 603.35 1.01 12.35 4,684.82 840.04 6,141.56

SETL 726 1.05 0 4,208 970 5,725.05

1300

Comparison between SETL and PDI in processing sdw:Subsidy. To

compare the performance of SETL with a Non-semantic data integration tool,

we choose PDI. We populate the SDW for sdw:Subsidy concept using PDI.

Figure 17 shows the ETL flow for sdw:Subsidy built on PDI. The TBox Ex-

traction, R2RML Mapping, Extraction using SPARQL steps are ignored in this1305

flow as those sub-processes cannot be implemented using PDI, i.e., the ETL

run with PDI starts by taking the Subsidy dataset transformed into a semantic

source. To run the process PDI takes 1903 seconds. On other hand, SETL takes

2221 seconds to complete the process which includes all sub-processes starting

from TBox Extraction to Load. If we run the ETL using SETL by skipping he1310

sub-processes skipped by PDI, then SETL takes only 1644 seconds. SETL takes

577 seconds for the sub-processes TBox Extraction, R2RML Mapping, and Ex-
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traction from semantic source. Thus, SETL is 259 seconds (13.5%) faster than

PDI.

Figure 17: ETL flow of PDI to populate sdw:Subsidy

9. Related Work1315

This section discusses the state of the art in the area of semantic ETL to

build a semantic DW and to integrate and publish data as Linked Open Data

(LOD) from multiple sources.

Recently, the use of SW technology in data warehouses has become popular.

Some approaches have used ontologies as a data integration method for mapping1320

between sources and target whereas others have considered a data warehouse

as a repository of ontologies and its instances.

In [1, 12], an OWL ontology is used to link the schemas of semi-structured

and structured data to a target DW schema. At first, the schemas of the data

sources and the DW are described by a common graph-based model named1325

datastore graph. Then, an application ontology is constructed to describe the

semantics of the data sources and the DW, and mapping between them can be

done through that ontology. In this way, the heterogeneity issues among the

schemas of sources and target have been resolved. In this work, it is assumed

that source and target schemas are known beforehand. However, it does not1330

consider the MD view over the DW. In [54], the authors have shown that an

ontological approach can automate and minimize the maintenance cost of the
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evolution of a DW schema. Here, they define every design step of DW using

ontology.

A framework for designing semantic DW has been proposed in [55]. Here,1335

the usage of SW languages to integrate distributed DWs and to automate the

ETL process of a DW has been discussed. The DW has been considered as a

repository of ontologies and semantically annotated data sources. [56] proposes

a methodology describing important steps required to create a semantic DW

that enables to integrate data from semantic databases, which is composed of1340

an ontology and its instances. A multidimensional (MD) framework has been

proposed in [57] to analyze semantic data that are provided by the SW and that

are annotated by application and domain ontologies. It allows to build and pop-

ulate a DW from both the analyst requirements and the knowledge encoded in

the ontologies. In [30], authors have proposed a solution for supporting data in-1345

tegration tasks by constructing ontologies from XML and relational sources and

integrating the derived ontologies by means of existing ontology alignment and

merging techniques. However, ontology alignment technique itself is a difficult

and error-prone process [58].

In the past couple of years, publishing data in a machine-readable format1350

has become more popular and (Linked Open Data) LOD has emerged as a

way to share such data across Web sources. [59] presents a process to publish

governmental data as LOD and [19] discusses how to spatially integrate and

publish a Danish Agricultural dataset and a Danish Business dataset as LOD.

The approach uses views to cleanse the data and Virtuoso for creating and1355

storing RDF data. To integrate data from heterogeneous sources and publish

those data as LOD, a semantic ETL framework is presented in [8] at conceptual

level. The approach uses the semantic technology to facilitate the integration

process and discusses the use of different tools to accomplish the different steps

of the ETL process. To enable warehouse-style analysis over RDF data, some1360

approaches [60, 61] propose the use of a native RDF data warehouse. To analyze

an RDF graph, [60] introduced a lens named analytical schema, which is a graph

of classes and properties. Each node of the schema represents a set of facts,
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which can be analyzed by exploring the reachable nodes. To enable OLAP-style

analysis over Linked Data (LD), W3C recommend RDF Data Cube Vocabulary1365

(QB vocabulary) to describe the RDF data in MD fashion [28]. However, it has

limitations to fully define the traditional MD constructs and it is mostly used

to present the statistical data as LD. In [14], authors propose QB4OLAP model

by extending the QB model to annotate an existing graph with MD constructs.

To enable OLAP over LD datasets which contains numerical values, even if1370

they are not annotated either QB or QB4OLAP, in [62], authors proposed a

SPARQL-based ETL framework.

Because of the decentralized structure and dynamic nature of LOD, some-

times it is required to integrate external sources in a federated way. Unlike

DW, data federation avoids the need of materializing integrated data into a1375

centralized warehouse. It emphasizes on logical rather than physical integration

of data. In [63], authors have proposed a theoretically well-founded approach

to the logical federation of OLAP and XML data sources. A set of query pro-

cessing strategies for executing OLAP-like SPARQL queries over a federation of

SPARQL endpoint has been proposed in [64]. However, federation techniques1380

have an additional number of unique challenges on several levels. Participating

sources in a federation are autonomous, i.e., they might be unavailable at some

point or change their data. So, for query processing, federations introduce de-

lays because of the distribution and there is no guarantee that the data is still

available or in the same state as when the federation was created - both schema1385

and data might have changed so that the integration rules might no longer be

valid. So, a standard approach is to avoid federations and have a local copy of

the data which is the focus of this study. This guarantees that the data will be

available and an answer to a user query can be computed efficiently. Moreover,

scalability is indeed a problem for analytical queries in federations [64].1390

As data become outdated due to updates in the sources, using different tools

for extraction, validation, and integration becomes very tedious and time con-

suming. Hence, a framework is necessary that makes it possible to accomplish

every step in a single platform. Although the state-of-the-art approaches pro-
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vide different conceptual frameworks, there is no implemented programmable1395

framework that facilitates the developers by providing required tools, classes,

and methods to build ETL process with the goal of either creating a semantic

multidimensional DW or publishing the semantically integrated data as LOD.

Hence, this paper discusses a semantic ETL framework, SETL, which provides

various modules, classes, and methods to extract semantic-aware data, geo-1400

spatial data, and other traditional data, to integrate source data semantically

using a target TBox defined with/without MD constructs, and to store the data

as semantic data. SETL facilitates developers to build a semantic DW using a

single platform instead of using different tools and a manual process.

10. Conclusion1405

Building a DW integrating internal and external data published in different

formats requires semantic integration. Here, we have proposed and developed a

programmable framework, named Semantic ETL (SETL) that facilitates users

to build a (MD) SDW. SETL uses TBox as an underlying schema to integrate

heterogeneous data sources. To annotate the target TBox with MD constructs,1410

it uses the constructs of QB4OLAP model. It allows to process both semantic

and Non Semantic Data Sources. In order to process a Non Semantic Data

Source, it builds a semantic layer on top of the Non Semantic Data Source.

Eventually, it stores the data as RDF triples based on the MD semantics en-

coded in the target TBox. It also allows to link the internal resources with1415

external resources. In order to evaluate our framework, we produced a SDW by

integrating a semantic and a Non Semantic Data Sources. In Section 8, we

show that SETL has good performance for all the steps and is faster than the

competing tools/solutions.

The model behind a triplestore is an RDF graph. Another issue is how to1420

implement physically the store. We can choose graph, relational or Hadoop,

but in this paper, we focus on increasing the abstraction level and thus the user

productivity. Therefore, physical or platform-dependent optimizations remain
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for the future. Our future research also includes proposing a well-defined set of

basic semantic ETL operators that can be combined to perform any semantic1425

ETL operations. Besides, developing techniques to explore the Linked Open

Data cloud for the related dimensions and level and linking them with the

internal ones are also in our consideration.
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A. Abelló Gamazo, M. J. Aramburu, Semantic web technologies for busi-

ness intelligence.1445

[6] M. S. Kotoulas, F. van Harmelen, J. Weaver, Kr and reasoning on the

semantic web: Web-scale reasoning, in: Handbook of Semantic Web Tech-

nologies, Springer, 2011, pp. 441–466.

65

http://www.w3.org/RDF/


[7] K. Christodoulou, N. W. Paton, A. A. Fernandes, Structure inference for

linked data sources using clustering, in: Transactions on Large-Scale Data-1450

and Knowledge-Centered Systems XIX, Springer, 2015, pp. 1–25.

[8] S. K. Bansal, Towards a Semantic Extract-Transform

-Load (ETL) Framework for Big Data Integration, in: Big Data, 2014, pp.

522–529.
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iadis, et al., Fusion cubes: towards self-service business intelligence.

[21] ESRI, Shapefile Technical Description, INC, 1998.

[22] M. Golfarelli, S. Rizzi, Data warehouse design: Modern principles and1485

methodologies, McGraw-Hill, Inc., 2009.
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