
Event-based Failure Prediction in Distributed Business Processes

Michael Borkowskia, Walid Fdhilac, Matteo Nardellib, Stefanie Rinderle-Mac, Stefan Schultea

aDistributed Systems Group, TU Wien
bUniversity of Rome Tor Vergata

cWorkflow Systems and Technology, University of Vienna

Abstract

Traditionally, research in Business Process Management has put a strong focus on centralized and intra-organizational processes.
However, today’s business processes are increasingly distributed, deviating from a centralized layout, and therefore calling for
novel methodologies of detecting and responding to unforeseen events, such as errors occurring during process runtime. In this
article, we demonstrate how to employ event-based failure prediction in business processes. This approach allows to make use
of the best of both traditional Business Process Management Systems and event-based systems. Our approach employs machine
learning techniques and considers various types of events. We evaluate our solution using two business process data sets, including
one from a real-world event log, and show that we are able to detect errors and predict failures with high accuracy.

Keywords: failure prediction, event-based systems, business process management, machine learning

NOTICE: This is the authors’ version of the manuscript accepted for publication in Information Systems. Please cite as: Michael
Borkowski, Walid Fdhila, Matteo Nardelli, Stefanie Rinderle-Ma, Stefan Schulte: Event-based Failure Prediction in Dis-
tributed Business Processes. Information Systems (2018), https://doi.org/10.1016/j.is.2017.12.005. The content of
the version layouted by Elsevier found using this DOI is identical to this paper.
c© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
http://creativecommons.org/licenses/by-nc-nd/4.0/

1. Introduction

Business Process Management (BPM) addresses the problem
of how to design, analyze, configure, enact, and evaluate busi-
ness processes [1]. In the last two decades, research efforts in
the BPM field have resulted in a rich toolset covering all phases
of the BPM lifecycle, however, with a strong focus on central-
ized and intra-organizational processes. In contrast, distributed
and decentralized business processes have received comparably
little attention [2].

Nevertheless, today’s business processes are to a large de-
gree inter-organizational and distributed, since companies need
to collaborate in order to generate a desired output. Examples
for distributed processes can be found in healthcare, manufac-
turing [3], or smart grids [4], amongst others.

One way to include a notion of distribution into business pro-
cesses is by adopting basic concepts from the field of event-
based systems (EBS) [5]. As the name implies, EBS define
a software architecture pattern which is based on events, i.e.,
state changes of process-related objects [6]. Instead of apply-
ing a request/response, pull-based messaging pattern, EBS de-
couple message producers and consumers by pushing events to
receivers. As one prominent example, the publish/subscribe
pattern is based on events which are sent from a publisher to
subscribers [7]. Importantly, event messages are not aimed at
a particular receiver. Instead, a notification service decouples
producers and consumers and delivers events whenever nec-

essary. This allows separation of event-based communication
from computation [5]. While EBS can also be centralized, dis-
tribution is usually seen as an inherent feature of modern EBS.
This applies both to the potential distribution of data to be pro-
cessed as well as the EBS itself, i.e., such a system can be dis-
tributed in order to allow horizontal or vertical scalability. With
the advent of the Internet of Things (IoT) [8], which is a highly
distributed, worldwide network based on sensor, communica-
tion, networking, and computation technologies [9], a virtually
unlimited number of potential event sources exist.

Events can be used to control and adapt distributed business
processes during design time, change time, and runtime, or to
simply exchange data between different process stakeholders.
This includes events coming from IoT devices, but also data
from business intelligence or any other event-producing system.

One particular application area of events in business pro-
cesses is their usage in order to predict potential failures dur-
ing process execution. To the best of our knowledge, research
on fault tolerance in business processes has so far focused on
the exploitation of process-inherent knowledge, e.g., from pro-
cess logs [10, 11], while only a limited amount of approaches
consider context data like events. Nevertheless, context events,
e.g., from IoT technologies or other data sources, can influence
the outcome of a process, and should therefore be taken into
account. Thus, the goal of this paper is to examine the ex-
ploitation of events in order to find errors and predict poten-

Preprint submitted to Information Systems January 10, 2018

ar
X

iv
:1

71
2.

08
34

2v
2

 [
cs

.D
C

]
 9

 J
an

 2
01

8

https://doi.org/10.1016/j.is.2017.12.005
http://creativecommons.org/licenses/by-nc-nd/4.0/

tial failures during (distributed) process execution. Based on
this prediction, it is possible to start according countermeasures
in order to prevent a fault from causing an actual failure. The
overarching research goal of this paper is approached along the
following research questions:

1. How can contextual data of external EBS be combined
with process-intrinsic events of a (distributed) business
process in order to predict process failures?

2. How to formalize and automate failure prediction in (dis-
tributed) process settings?

3. Is the approach feasible when used in a real-world sce-
nario, and how well does the failure prediction perform?

4. What is the impact of the distribution of processes on the
failure prediction?

For answering these questions, this paper investigates the ex-
ploitation of events in business processes by combining Busi-
ness Process Management Systems (BPMS) with EBS. We em-
ploy neural networks, a technique used in machine learning
(ML), to predict whether a running business process is likely to
fail, and at which step. Since business processes often include
interactions between various partners, we analyze the impact of
inter-organizational processes on the prediction performance.

The paper follows the design science methodology [12], tak-
ing the following steps: First, the relevance of the problem
is motivated and illustrated by an example from the logistics
domain (Section 2). The main artifacts comprise the architec-
ture of the overall solution (Section 3) as well as the algorithm
for failure prediction including performance optimization (Sec-
tion 4). The proposed algorithm is evaluated with respect to its
feasibility and performance (Section 5). The evaluation there-
fore comprises a technical part, i.e., a prototypical implementa-
tion, as well as a validation part. The latter is conducted based
on two realistic data sets, i.e., one real-world data set from the
finance domain, and one data set that is simulated for a real-
world distributed manufacturing process. Both data sets are
pre-processed in order to be usable to detect faults and predict
failures of different kinds and varying amounts and levels of
distribution. In addition, we comment on the related work in
Section 6. Finally, we conclude the paper in Section 7.

2. Fundamentals and Motivation

In this section, we provide an example for a business pro-
cess involving multiple partners. This example demonstrates
the motivation for predicting a failure impacting the final pro-
cess outcome before the failure’s occurrence, in order to allow
a timely reaction to such a failure.

Example: A container with bananas is shipped from South
America to Europe. This shipment is part of a supply chain
business process “Send produce from South American planta-
tion to Viennese supermarket”. The container is equipped with
sensors, which at some point of time identify a temperature ex-
ceeding limits, and therefore emit an according event. Thus,
it is possible to derive that, with very high probability, the ba-
nanas are somewhat rotten and therefore cannot be shipped to

the supermarket. Most importantly, this can be done before the
container is actually opened at its destination in Europe, and it
is possible to ship another container (as a countermeasure to
overcome the faulty process/shipment).

In the following subsections, we present some technical fun-
damentals and preliminaries helpful to understand the contribu-
tions of this paper.

2.1. Process Collaborations
As we are dealing with both intra- and inter-organizational

processes, this section provides a brief overview on differences
between these two concepts. While a process orchestration rep-
resents the business logic of a single organization, a process
collaboration involves multiple organizations that collaborate to
achieve a common goal [13]. In a collaboration, we mainly dis-
tinguish between three different but overlapping layers: (i) pri-
vate processes, (ii) public processes, and (iii) a choreography
model [2].

The private process represents the business logic of one or-
ganization and corresponds to its executable process, i.e., or-
chestration. In particular, it defines the relationship between its
tasks and characterizes both its control and data flow. The in-
ternal logic as well as the corresponding data is hidden from
the other organizations [14]. In contrast, a public process rep-
resents the interface with the other organizations and includes
public tasks as well as the interaction activities from the per-
spective of one single organization. The public model logic and
data can be visible to the other involved organizations. Finally,
a choreography model gives an overview of the collaboration
between different organizations and defines the interaction flow
between them. In particular, a choreography model describes
how the latter should interact with each other, and furthermore
specifies the content of the message exchanges at each step.

In the presented example, we argue that a logistic business
process includes private and public processes, as well as a
choreography model: First, the initiator of the process, e.g.,
the owner of the Viennese supermarket, is interested in a timely
and efficient shipment. Second, the shipping company, as com-
missioned by the shop owner, has a business process of its own
(private process). In turn, the private process of the shop owner
might not be visible to the shipment company in its entirety, but
only the interface with the shipment company. These interfaces
together constitute the public process models. Note that the dif-
ference between the public and the private model is caused by
varying stakeholder interests. The total workflow involving all
partners to achieve the common goal of shipping goods is the
choreography model.

At runtime, each organization holds a set of process instances
which run concurrently with the process instances of the collab-
orating organizations. Instances of different process partners
are not independent, and interact with each other. In order to
correlate between them, we assume a global instance identifier.
The latter is generated by one organization, i.e., the initiator,
and transmitted to the other organizations for each new collab-
oration instance. The global identifier is important for correlat-
ing between exchanged messages/data and the corresponding
process instances.

2

2.2. Event Streams

A process task is a unit of work that is performed to com-
plete a job, and involves a set of resources, i.e., humans or ma-
chines. When a resource performs a task, data is emitted in
form of events [15]. We distinguish between two main kinds of
events [16–18]:

Intrinsic Events Process steps starting and finishing generate
events intrinsic to the process model. They consist of the
process step, or of a failure, if the given process step could
not be finished successfully.

Context Events Events stemming from the context of the pro-
cess, i.e., external sources, including IoT devices, sensors,
third-party business partners collaborating in the process,
and other data sources. These events are not directly con-
nected to the process model, but can rather be correlated
to the process steps.

We argue that the entirety of all events can be seen as an
event stream. A serialized form, either for transmission or for
persistent storage, is an execution log or event log. Sometimes,
the event log is part of the process log, e.g., [19].

In our example, the event stream consists of both intrinsic
events, i.e., the individual process steps like loading/unloading
of containers, and context events, i.e., the readings from the
sensor measuring the temperature of a banana container. Note
that a context event does not need to be related to a certain
process step (i.e., to a series of intrinsic events), but may very
well be used for failure prediction within multiple processes.
For correlation, in our approach, it is assumed that the tempo-
ral co-presence of processes and the context event is sufficient.
Nonetheless, an explicit correlation can be also expressed a pri-
ori so to limit the event scope and increase system scalability
(e.g., detecting high temperature is relevant only during the de-
livery process, because it increases the probability of rotten ba-
nanas).

2.3. Faults, Errors and Failures

Differentiating the terms fault, error and failure is significant
in the context of failure prediction. In present literature, they
have well-defined semantics [20]: A fault is the adjudged or
hypothesized cause of an error. An error is the deviation of the
system from its desired state. Finally, a failure occurs when
the system is not able to deliver its output as it is supposed to,
leading to an undesirable outcome.

In order to associate these semantics with our scenario, we
define the application on these semantics to a BPMS. Figure 1
shows an example of a business process ending with a failure.
In this example, some fault, the root cause of the overall prob-
lem, has occurred, leading to an error in the process. This error
manifests itself during step B of the process, and can be de-
tected by an observer. Finally, after steps C through G have
passed, the overall failure of the system occurs.

It is noteworthy that time passes between the fault and the
error, as well as between the error and the failure. Those delays
may be very short, but they may also be very long, depending

A B C D

E F G E

high temperature
container sensor measurement:

rotten bananas
quality control:

Shipment Company

Supermarket

Fault Error Failure

Root Cause Manifestation Process Outcome

Observable

Figure 1: Example of Faults, Errors and Failures as Parts of a Process.

on the process. Since the fault itself is generally not observable,
we can only detect its earliest manifestation, the error.

Without any prediction, the failure will only be visible upon
its occurrence. However, adding a predictive element allows us
to foresee a possible failure outcome at the first point in time
it is detectable, i.e., when the first sign of an error occurs. In
present literature, rule-based prediction is used to define the
characteristics of errors [21, 22]. In our proposed architecture,
these rules are substituted by an ML component.

In the example presented earlier, a fault could consist of a
defunct air cooling device, or an operator not activating it. The
resulting error is a temperature exceeding a certain limit, and is
detectable by a corresponding context event. Upon the recep-
tion of this event denoting excessive temperature, the failure,
i.e., rotten bananas upon arrival, can be predicted.

3. Solution Overview

The integration of EBS and BPMS enables to control and
adapt the execution of business processes at runtime by lever-
aging on intrinsic and context events.

During the execution of a business process in a BPMS, the
concrete services instantiated for the tasks contained in the busi-
ness process are executed, and this execution generates intrin-
sic events. These events consist of task status changes, e.g.,
start and termination. With respect to a specific business pro-
cess, other and more detailed intrinsic events can be defined
(e.g., delivery suspended, machine restarted, network connec-
tivity unavailable). Moreover, the service provider can enrich
these events with Quality of Service (QoS) or non-functional
information related to the service execution, such as the amount
of resources or the monetary cost required to perform the task.

Furthermore, during its execution, a business process inter-
acts with the environment (or context) that surrounds the in-
voked services and, in general, the BPMS. Therefore, we can
identify external data sources, which, generating context events,
can enrich the process execution with further information. We
argue that these context events must be correlated to the busi-
ness process to a certain degree, either using temporal infor-
mation, i.e., a sensor reading during the runtime of a process

3

step, or using expert knowledge to define certain event sources
as relevant for a certain step, i.e., defining the temperature of a
container as relevant to the shipping step. Note that we do not
necessarily need to have information about causal relationships,
i.e., it is not necessary to define that an excessive tempera-
ture reading indicates an upcoming process failure. Instead, we
merely define that the temperature sensor measurement is hap-
pening during the shipment step. Although lots of data sources
can be identified, the process of identifying the relevant ones,
leading to the generation of valuable information, strictly de-
pends on the specific business process and on the application
that will exploit this data. For example, if we want to monitor
the shipping process and predict the ability to deliver on time,
relevant data might come from weather monitors (e.g., to detect
the presence of snow or heavy rain), route monitors (e.g., to
predict traffic jams), or the presence of human agents who can
slow down the process.

To show the benefits of the cooperation between BPMS and
EBS, our solution exploits the huge amount of available data
to perform an event-based failure prediction (EFP) regarding
the business process execution. Specifically, the EBS hosts and
executes the EFP component which predicts the probability of
failures at runtime, i.e., during the business process execution.
The EFP component automatically learns the model of failure
by leveraging on intrinsic and context events. Our solution is
general enough to be able to predict failures related to func-
tional and non-functional dimensions, i.e., it can identify an
unsuccessful termination of the process (functional failure) or a
termination with unsatisfying quality requirements, e.g., a prod-
uct delivered with damages (non-functional failure).

A high-level representation of our solution is depicted in Fig-
ure 2. A user who wants to execute a business process interacts
with an initiator component which is in charge of two tasks:
First, it launches the execution of the business process and the
EFP component. Second, it forwards to the user the result of
the business process execution as well as the failure predictions
emitted by the EFP component. When the user asks for the
execution of a business process, the initiator forwards its de-
scription, expressed as a workflow, to the BPMS. At the same
time, the initiator triggers the EBS, which, in turn, creates a
new instance of the EFP component that will predict failures
for the newly started business process. Moreover, the initia-
tor informs the external data sources of interest for the busi-
ness process so that they can forward their context events to
the EBS. Acting as a surrogate of the user for the interactions
with the other systems, the initiator can be highly distributed
(not depicted in Figure 2). Within the BPMS, each task of the
business process is instantiated on a service that, aside perform-
ing its operations, generates intrinsic events. The amount and
typology of data transported by these events depends on both
the self-monitoring capability of the service and other motiva-
tions (e.g., security, privacy, political). Within the EBS, all the
collected events are forwarded to the EFP component.

To reduce the coupling among the involved entities (i.e., EFP,
services, event sources), the EBS uses a message queue system,
where the distributed data sources publish intrinsic and context
events. The EBS allocates a new queue for each business pro-

cess execution. By subscribing to this queue, the EFP compo-
nent receives, as a continuous stream, all the events related to
the business process. Since the EFP component is event-driven,
each new event can trigger a failure prediction. To learn and
identify failures, the EFP component exploits an online learn-
ing approach based on neural networks. The details of the learn-
ing and prediction process will be presented in Section 4. As
soon as a prediction is available, the EFP component publishes
a new event on an outgoing queue, which is observed by sev-
eral stakeholder services. Afterwards, each of these services
can independently perform an operation, e.g., adapt the busi-
ness process instance, notify the process owner, or trigger the
execution of a different business process. As proof-of-concept
of our approach, we implement the EFP component capable of
processing an event stream stemming from a running business
process, and of predicting possible imminent failures at run-
time.

Scalability is a key point in EBS, which try to exploit paral-
lelism to efficiently process incoming events (as our architec-
ture does). Specifically, our architecture enforces separation of
concerns and decouples the EBS from the BPMS by adopting a
queuing service to distribute events. We also devise EFP to con-
trol one business process at a time; as such, multiple processes
can be regarded by multiple independent EFP components. Al-
beit challenging, scaling the EFP component is in line with the
current research trends [23, 24], which propose, for example,
approaches to achieve distributed ML capabilities [25, 26]. Em-
pirical evidence [27] shows how ML approaches can efficiently
deal with big amounts of data in (near) real-time fashion.

So far, we have considered business processes in a generic
manner, without accounting for the organizations involved
in their execution. As a specific case, apart from intra-
organization business processes, we can distinguish inter-
organizational ones, which involve the collaboration among
multiple partners for their fulfillment. The presence of multiple
parties brings up the issue of privacy. Indeed, some organiza-
tions might not share information about their private processes,
thus limiting the visibility of their private events. In Section 5,
we explicitly consider this critical point while evaluating the
efficacy of the proposed approach.

4. Machine Learning Failure Prediction

The basic idea of our approach is the assumption that process
execution failures can be predicted based on events, and that
therefore it is possible to identify early deviations from the ex-
pected process behavior. In theory, rules could be put in place to
identify such deviations and react accordingly, whenever neces-
sary. However, the definition of rules has certain drawbacks:

• Creating rules is a task requiring expert (domain-specific)
knowledge and time, as expertise on the relationship be-
tween certain events is needed to formulate rules.

• Ensuring exhaustion of all possible rules is difficult. If
the expert is unaware of a certain relationship between an
event and the outcome of a process step, the missing rule
goes unnoticed.

4

event
sources

EBS

queue EFP queue

initiator

transition event

service

service

service

service

BPMS

result

prediction

Figure 2: Proposed System Architecture.

• Concept drift [28] is affecting manually created rules. If
relationships between events and failures change, existing
rules might become obsolete or wrong, and lead to mispre-
dictions (false positives or false negatives). This can only
be overcome by periodic reviews, which in turn require
expert knowledge and time.

In order to overcome these issues, we propose to use meth-
ods from the field of ML in order to automate the process of
predicting failures. Not only does this approach require sub-
stantially less expert knowledge and therefore facilitates solu-
tions with increased abstraction from the domain, but it also
promises to find relationships not yet discovered. Furthermore,
concept drift can be mitigated by methods well-established in
ML [28, 29].

In fact, the solution presented in this paper can co-exist with
expert-generated rules. For instance, present rules can support
the initial training phase, during which the ML model might
not produce meaningful output. After initial training, the ML
model can be used to subsequently verify whether present rules
are still valid, or have been made obsolete by concept drift.

4.1. Failure Prediction Component
The EFP component consists of two interacting systems. The

first system is responsible for the prediction itself: While a pro-
cess is executed by the BPMS, and events are populated through
the EBS, the EFP component is analyzing these events. Based
on this analysis, the EFP component might indicate that with a
certain probability, a failure is going to occur in a given future
process step (or at the end of the process). Should such a sit-
uation arise, the EFP component fires an event to notify event
queue subscribers, which can then prompt the user and evaluate
possible steps to mitigate the risk of a failure occurring. The
second subsystem is a training component. After each com-
pleted process execution, a trace of the recorded events (includ-
ing all executed steps) is used to train the prediction model,
increasing accuracy in subsequent runs. Nevertheless, since
the model is performing its predictions on an event stream, and
does not need to store the entire data set in-memory (only the
event trace of the current process execution), we classify our
methodology as an online learning approach.

At the core of our solution, a specially designed artificial
neural network (ANN) model is responsible for analyzing the
stream of incoming data in order to perform a failure predic-
tion. ANN models consist of interconnected layers of percep-
trons, each of which is aggregating input data, processing this
data using a so-called activation function, and passing the out-
put either to the next layer of neurons, or to the network output
in case of the last layer [30].

Event Stream

InputEvent

InputData

X̂

Input Layer Convolutional Layer

Recurrent Layer Output Layer

Neural Network

Figure 3: Schematic Representation of the Proposed ANN Model.

As it can be seen in Figure 3, our network consists of both
convolutional and recurrent layers. Convolutional layers are
layers of perceptrons aggregating input from neurons which
are semantically similar, and have proven useful, e.g., for fa-
cial recognition [31] or natural language processing [32]. In our
case, this aids to reduce the network’s sensibility to temporal se-
quences of events. Furthermore, the convolutional layers help
us to use different kinds of input in one ANN. Recurrent lay-
ers introduce circles into otherwise acyclical graphs of percep-
trons; in our case, we use Long Short-Term Memory (LSTM)
layers [33]. This adds state information to the network, which is
used to process temporal sequences of events. The combination
of both convolutional and recurrent layers combines the power
of both to support the training of temporal data while avoiding
excessive sensibility of the ANN.

For selecting the activation functions of our ANN, we have
followed work from [34], selecting the rectifier as the main ac-

5

tivation function. This function has the advantage of a lower
bound (cutoff), below which no activation occurs. It has been
presented in [35] and is, due to its effectiveness, an activation
function commonly used in recent years [34]. In contrast, both
the tanh function and the very similar sigmoid (logistic) curve
approach their lower bound but only reach it in infinity, i.e.,
some residual activation occurs, no matter how low the sum of
weighted inputs is. Due to the fact that our problem is a classi-
fication problem, it has a highly discrete nature, and is therefore
profiting from the cutoff of the rectifier function. However, ini-
tial experiments have shown that the first layer, i.e., the first
convolutional layer after the input layer, performed best using
the tanh activation function.

Compared to other ML models like decision trees, support
vector machines etc., ANNs have the disadvantage of being
rather black-boxed models. First, constructing an ANN and de-
ciding on its topology is a non-trivial task, often involving a lot
of exploration and experimentation. Second, the resulting rules
are not human-readable rules, but trained weights, resulting in a
mathematical model without clear semantics for the single neu-
rons. Nevertheless, neural networks, together with recurrent
layers and convolutional layers, are well-suited for processing
temporal data such as time series or event logs, maintaining an
internal state [30].

4.2. Input and Output Structure

As described before, the ANN model is presented with input
data both during training as well as during the actual predic-
tion phase. In the case of training, we also provide output data
(labels) to the network for supervised learning. The input data
consists of the type of event captured as well as the data associ-
ated with the event, if any. As described in Section 2.2, we dis-
tinguish between intrinsic events, stemming from the process
itself, and context events, stemming from the external context
of the process.

In our notation, we denote the types of process-intrinsic
events (i.e., the possible process steps) as Ifail, I0, I1, . . . , In,
where Ifail represents a failure in the current step, and the re-
maining symbols I0, . . . , In represent all possible process steps.
Context events, e.g., generated by sensors, are denoted as
C0,C1, . . . ,Cm.

We therefore define the input vector for the ANN as follows:

Input = [InputEvent, InputData] (1)
InputEvent = [Ifail, I0, I1, . . . , In,C0,C1, . . . ,Cm] (2)
InputData = [D0,D1, . . . ,Dk] (3)

where n and m are the number of intrinsic and context events,
respectively, known to the system. InputEvent is a binary vec-
tor consisting of one variable Ii for each intrinsic event type
in the process and one variable Ci for each context event type.
Depending on the type of the incoming event, either exactly
one variable Ii is 1 for the intrinsic event Ii, or exactly one
variable Ci is 1 for the context event type Ci in a given in-
put row; all other variables are 0. Furthermore, InputData
is a vector containing the data associated with the event, if

any. This data might include, for instance, the sensor read-
ing from a temperature sensor. The cardinality of InputData (k)
depends on the type of event, i.e., which one of the variables
Ifail, I0, I1, . . . , In,C0,C1, . . . ,Cm is 1.

The output of the ML model is a classification of what the
next step of the model will be (or whether it will be a failure).
The process steps contained in the process model correspond
to Ifail, I0, I1, . . . , In, therefore, the output is a vector giving, for
each process step, the probability that this process step will be
the next one. Note that for the sake of simplicity, we only re-
gard one execution branch of a collaboration or choreography
process. However, this does not limit the applicability of the
proposed model to multiple processes running in parallel. Fol-
lowing this, we formulate the following output vector structure:

Output = [Îfail, Î0, Î1, . . . , În] (4)

4.3. Formalization Model
In order to formally describe the underlying problem and our

approach, we introduce a model for reasoning about the pre-
dictions of process outcomes. To this end, we build upon the
model of probabilistic automata (PAs) [36, 37]. A PA is a gener-
alization of a non-deterministic finite automaton (NFA), where
instead of a membership function determining which states can
be reached with which input, these binary values are substi-
tuted by probabilities. Formally, a PA consists of the following
attributes [36]:

• A finite set of states Q.

• A finite set of input symbols Σ.

• A transition matrix P.

• An initial state1 q0 ∈ Σ.

• A set of states F ⊂ Q which are defined as final states.

In our model, the set of states Q is the set of process steps, in-
cluding the failure state qfail, representing a failure in a business
process. For the set of input symbols Σ, we use the set of input
and context events read by the predictor. Our initial state q0 is
the start state of the business process. The set of final states F
is equal to the set of end states of the business process at hand.
By definition, the failure state is also a final state, i.e., qfail ∈ F.

The transition (stochastic or probability) matrix P determines
the probability for the automaton to enter another state, given a
current state and an input. A common notation in the definition
of PA is p j(qi, x) ∈ P, denoting the probability for the PA, with
the current state qi and given the input x to enter state q j [37].
Naturally, the sum of the probabilities for all subsequent states
of a state qi and an event s is 1, since it is certain that some state
must be reached: ∑

j

p j(qi, x) = 1 (5)

1Note that some literature uses a distribution vector for determining the
initial state [37] instead of a fixed single state q0. We use a single initial state,
since the process model can be assumed to have a fixed initial state, and this
simplifies the definition without reducing expressive power.

6

In our model, the probability matrix P is not a fixed matrix.
Instead, whenever a prediction of the following step is required,
the previously described ANN is invoked, yielding probability
values for all possible next steps. In other words, a row of the
transition matrix is returned, as seen in (4).

We now define that, at any point in time during the execu-
tion of a process, there is an event trace T , which consists of all
recorded events (including intrinsic events, i.e., state changes,
and context events). We argue that the current process step is
deducible from this event trace by merely searching for the last
recorded intrinsic event indicating a process step, and define
that step as qi. In order to predict the subsequent process steps
to deduce whether a failure might occur, we are interested in the
probabilities for the process to continue with a certain step qi+1.
As discussed, instead of a fixed transition matrix to determine
the probable next step qi+1, we use the ANN which returns, for
each possible step q ∈ Q, the probability for this step. We de-
note the application of the ANN model onto a given step trace T
as X̂(T).

4.4. Probability Traversal

Following the previous definitions, we describe the further
processing of predictions by the predictor component. We have
already defined an event trace T , which denotes the already-
recorded (historic) events and stems from a running process in-
stance. We invoke the previously discussed ANN onto T , yield-
ing a row vector out of the transition matrix; we call this vector
PT :

PT = X̂(T) (6)

For each step q ∈ Q (corresponding to the states of the PA),
PT (q) yields the probability of the process to continue with this
step q. This probability for a single step is called step probabil-
ity. The sum of all step probabilities for a given event trace T
is 1, since some step, possibly qfail, is certainly going to be the
subsequent one.

For instance, Figure 4 shows a trace of events T , containing
the events A → B → C. The probability vector PT has been
used by invoking the ANN classifier PT = X̂(T). The values
for PT are shown in Table 1.

Table 1: Values of the Probability Vector PT , for all Elements with Non-zero
Probability, with T = A → B → C, Corresponding to the Example Shown in
Figure 4.

q PT (q)
D 0.803
E 0.010
qfail 0.187
Σ 1.000

Similarly, this traversal is also performed for subsequent
steps. For instance, Table 2 shows the resulting probability vec-
tor for the trace T → D.

In this manner, we traverse the entire space of possible sub-
sequent steps, and for each possible step q, re-evaluate all fol-
lowing possible steps. This traversal is done until an end step is

A B C

D 0.803

E 0.010

E 0.187

G 0.005

E 0.995

failure

failure

time
history (past) prediction (future)

execution trace T
probability

PT (·)
probability
PT→D(x)

Figure 4: Example Tree for the Trace A → B → C, Showing Possible Subse-
quent Events, Including Failures, and their Step Probability. Elements E and G
are Defined as Final States.

Table 2: Values of the Probability Vector PT→T ′ , for all Elements with Non-
zero Probability, with T = A → B → C and T ′ = D, Corresponding to the
Example Shown in Figure 4.

q PT→T ′ (q)
G 0.005
qfail 0.995
Σ 1.000

reached, at which point the traversed trace is recorded, together
with its total probability and its outcome.

The total probability is the conditional probability of a given
trace T to be followed by the future step sequence T ′, and is
denoted as P (T → T ′). The outcome defined as Ω (T ′) de-
notes how the sequence T ′ ends, and is either end, for an or-
derly finished process, or fail, if a failure occurred, i.e., if qfail
was reached. The probability P is defined as follows:

P (T) = 1 (7)
P (T → T ′) = P (T) · P (T ′) (8)
P (T ′ → q) = P (T ′) · P (q) (9)

P (q) = PT (q) (10)

In (7), we define the total probability of the original event
trace T as 1, since the event trace has already been recorded,
and thus its occurrence is certain. In (8), the total probability of
the event trace T followed by an event sequence T ′ is defined as
the product of the total of probability of T and the (partial) total
probability of T ′. Finally, (9) and (10) define that the partial
total probability of T ′ is the product of its elements: (9) defines
that the partial total probability of a sequence followed by an
element is the product of the respective probability, and (10)
defines that the partial total probability of a single element is its
step probability.

Naturally, the sum of the total probabilities of all possible
event sequences following a given trace T is 1, since some
event sequence, possibly one where the outcome is a failure,
will eventually be the resulting sequence of the process.

To formalize our traversal, we define the traverse function of
an event sequence T , which aggregates the results yielded by

7

Table 3: Sequence, Probabilities and Outcomes Resulting from the Tree in Fig-
ure 4, with T = A→ B→ C.

T’ P (T → T ′) Ω (T’)
D→ qfail 0.799 fail
qfail 0.187 fail
E 0.010 end
D→ G 0.004 end
Σ 1.000

X̂(·):
traverse(T) =

⋃
q∈Q

visit(T → q) (11)

where visit(·) is the function generating a set of resulting se-
quences, based on this event sequence T → q. The function
visit(·) is defined as follows:

visit(T → q) =

T → q, if q ∈ F
traverse(T → q) otherwise

(12)

As we can see, the visit function, upon encountering a non-
final element q, invokes the traverse function again using the
concatenation of T and q, i.e., T → q. This makes traverse
a recursive function. Table 3 shows the resulting sequences of
the example process, together with their probabilities and out-
comes.

Putting the definitions together, the predictor component can,
at any given point in time during the execution of a process,
use the trace of already-recorded events T , and by invoking
traverse(T), build a list of possible future event sequences,
along with their probabilities P and outcomes Ω .

4.5. Search Space Optimization
For large process models, the search space defined by the re-

cursive function traverse can become too large to be processed
in an online matter, i.e., during the process execution. If the
processing time increases, the outcomes might not be predicted
in time. To mitigate this, we propose several ways of limiting
the search space of the recursive algorithm.

Process Model Correlation Since the underlying predictor
uses an ANN model to predict subsequent events (includ-
ing steps) in a process, the result of this prediction might
include events which are not possible in the current state.
For instance, if there is no control flow relation between
steps C and D in the example shown in Figure 4, and the
last event in the recorded event sequence is C, D is not a
possible subsequent event, and this part of the tree does
not need to be explored. With a naı̈ve search, however,
the classifier could predict this impossible sequence, and
it could even be predicted as the most likely sequence. This
is especially the case during the phase of initial training, or
in unusual or novel event sequences. The reason for this
behavior is the fact that the classifier itself does not take
into account the process model being executed. Therefore,
we introduce a stopping condition for the traversal. This
condition filters out event combinations that are not possi-
ble according to the underlying process model.

Probability Limit In a similar manner as with the previ-
ously discussed event sequences not possible according
to the process model, we also disregard highly unlikely
events. Our solution introduces a probability parameter
MIN PROBABILITY which is applied to the total probabil-
ity of the entire path. In other words, a possible event
branch is not traversed further if its (partial) total proba-
bility is below a threshold.

Depth and Breadth Limit In addition to a minimum prob-
ability, we introduce the parameters MAX DEPTH and
MAX BREADTH defining the upper bound for depth and
breadth within our search. Limiting the search depth is
based on the fact that predicting events which are too dis-
tant in the future may become decreasingly meaningful.
Limiting the search depth numerically is working together
with limiting the probability to reduce the search space.

The limits represent hyper-parameters of our solution and are
used to maintain a certain upper bound on the traversal runtime.
The primary goal of this bound is to avoid infinite traversal in
processes with cycles (e.g., loops).

Algorithm 1 shows a consolidated, algorithmic form of all
the calculations described above. While the main function, Re-
curse, contains the main (recursive) logic, the first function,
Traverse, shows the initial call for Recurse. The Recurse func-
tion takes two parameters: T , which is the process trace which
is assumed as already known, and Pcurr, which determines the
total probability until the current step, as defined in (7)-(10).
Naturally, Traverse initializes this total probability with 1, be-
cause the actually recorded history of steps has already hap-
pened, and therefore has a probability of 1, as defined in (7).
Lines 4 and 5 represent the depth and probability limits, re-
spectively. Lines 6 and 7 initialize local variables. Line 9 calls
the ANN in order to obtain a vector of probability values for
each possible subsequent step. This vector is sorted in line 10
by probability.

The loop from line 11 to line 29 iterates over the n most likely
subsequent steps, where n = MAX BREADTH (ensured by line 14,
the breadth limit), and checks whether they are an end state, a
failed state, or a normal process step. For end states, lines 16-
19 add an element to the result vector. Similarly, lines 21-24 do
the same for a failure.

5. Evaluation

This section presents an empirical assessment of the pro-
posed approach following the single-case mechanism experi-
ments validation method [12]. The evaluation was conducted on
two different data sets: (i) a real-world data set from the finance
domain, and (ii) a simulated data set of a realistic distributed
manufacturing process. Both data sets were pre-processed and
used to train and assess the performance of the ML models in
detecting failures. The conducted experiments prove the appli-
cability and feasibility of combining EBS and distributed busi-
ness processes in a real-world scenario.

8

1 Function Traverse (T)
Data: T contains the event trace from the currently running process
Result: List of all possible process outcomes, starting from the last captured event, along with their probability values

2 return Recurse(T , 1.0);

3 Function Recurse (T , Pcurr)
Data: T contains an event trace T = [T0, . . . ,Ti] that is assumed to be already fixed
Data: Pcurr is the total probability of the current event trace
Result: List of all possible further process traces, starting from Ti, along with their probabilities

4 if |T | > MAX DEPTH then return []; // Depth Limit

5 if Pcurr < MIN PROBABILITY then return []; // Probability Limit

6 Result← [];
7 Breadth← 0;

8 // Fetch predictions from ANN classifier by feeding it to the event trace

9 Pred← GetPredictionsFromClassifier(T);
10 sort Pred by probability descending;

11 foreach e ∈ Pred do
12 NextStep← e;
13 NextStepProbability← Pred[e];

14 if ++Breadth > MAX BREADTH then continue; // Breadth Limit

15 if e is end state then
16 Trace← T ⊕ e ; // ⊕ is the concatenation operator

17 Probability← Pcurr · NextStepProbability;
18 Outcome← End state e reached;
19 add < Trace,Probability,Outcome > to Result;
20 else if e is failure then
21 Trace← T ⊕ failure ; // ⊕ is the concatenation operator

22 Probability← Pcurr · NextStepProbability;
23 Outcome← Failure in e;
24 add < Trace,Probability,Outcome > to Result;
25 else
26 NextPossibilities← Recurse([T, e], Pcurr · NextStepProbability);
27 add NextPossibilities to Result;
28 end
29 end
30 return Result;

Algorithm 1: Algorithm for Bounded Traversal.

Section 5.1.1 discusses the selection of the two data sets used
for our evaluation. Afterwards, Sections 5.1.2 and 5.1.3 show
how the data sets were pre-processed, and Section 5.1.4 de-
scribes the mechanisms necessary for enriching the data sets
with faults and failures. Finally, Section 5.2 presents the exper-
iments performed and gives an overview of the results.

5.1. Data Sets
In order to conduct experiments to evaluate the feasibility

of our approach, we explored various data sets of different do-
mains, and studied their usability and suitability for the evalua-
tion of our approach.

5.1.1. Explored Sources of Data Sets
The search for an appropriate data set for the experiments

was conducted with respect to the following criteria: Whether
the data set is (i) publicly available to the research community,
(ii) event-based, (iii) correlated with business process models
(i.e., events are correlated with process tasks and instances),

(iv) well-documented, (v) contains context events and (vi) fail-
ures, and (vii) stems from an inter-organizational process. Note
that unless a data set that satisfies all the criteria is found, a
compromise over the criteria must be considered for the data
set selection.

A multitude of data sources have been examined from either
projects, research challenges or other public data sources. In
particular, data sets from the BPI Challenge2 and the Kaggle
Competition3 were taken into account. Platforms for competi-
tions in the domain of data science and ML, such as Kaggle,
are naturally a valuable source for test data. Public directo-
ries for data sets are also available4. Often, these data sets are
community-created5. However, due to the fact that we aim at

2https://www.win.tue.nl/bpi/doku.php?id=2017:challenge
3https://www.kaggle.com/
4https://www.springboard.com/blog/

free-public-data-sets-data-science-project/
5https://github.com/caesar0301/awesome-public-datasets

9

https://www.win.tue.nl/bpi/doku.php?id=2017:challenge
https://www.kaggle.com/
https://www.springboard.com/blog/free-public-data-sets-data-science-project/
https://www.springboard.com/blog/free-public-data-sets-data-science-project/
https://github.com/caesar0301/awesome-public-datasets

considering context events, i.e., events not directly related to the
core business process, the set of usable data sets is significantly
narrowed.

In the following, we briefly show the most promising data
set candidates and discuss our selection. We have identified a
number of possible data sets such as the data from Bosch Pro-
duction Line Performance6. In the underlying scenario of this
data set, parts move through the production lines of a manufac-
turer. While this happens, features are measured and recorded.
The data set has been anonymized with respect to the names of
the features. For each measurement, the part is evaluated, and if
it fails quality control, this is recorded and the part is dismissed.
The data set is highly imbalanced with regard to the actual class
(i.e., failures or passes), and contains a very high number of fea-
tures (> 12, 000). While this data set has the advantage of being
rather large, the drawback is that no related business processes
are defined. Furthermore, due to the per-part nature of the data,
no business process can be mined as neither a stream of events,
nor temporal correlation between measurements are available.

Another prediction-centered data set stems from the Trans-
port and Logistics Case Study (Cargo 2000)7 . The latter in-
cludes events related to messages sent within Cargo 2000 [38]
(now known as Cargo iQ8). As shipments travel through seg-
ments of their transport (e.g., transfers between flights, air-
lines), their routes are recorded. This data set has been sani-
tized with respect to erroneous or incomplete messages. The
business process related to this data set has been already used
in research [39] and might have been relevant to our approach.
However, despite the inter-organizational context, the provided
data set as well as the corresponding process are solely related
to the freight forwarding company and not to the entire pro-
cess collaboration. Neither the private processes of the other
involved organizations nor their respective data are available.
Further, as the data set has been sanitized, it is difficult to iden-
tify failures to predict.

A third candidate for our evaluation was the Commodity
Flow Survey (CFS) data set9. It contains data about 4.5 million
shipments. The data describes various attributes of the ship-
ments, e.g., the source and destination of the shipment, type
of commodity, whether or not the shipment requires temper-
ature control during transportation, value, weight, modes of
transportation, or hazardous materials. However, similar to the
Bosch data set, it consists of a series of single, independent en-
tities. From this, it is difficult to create an actual event stream,
since no temporal relation is given between the data entries.

Finally, the fourth candidate is taken from the BPI Challenge
data sets. From this collection, various data sets have already
been used in research, e.g., [40, 41]. We regard the BPI Chal-
lenge 2017 data set10. It consists of an event log stemming from
a Netherlands-based financial institute issuing personal loans to

6https://www.kaggle.com/c/bosch-production-line-performance
7http://s-cube-network.eu/c2k/
8http://www.iata.org/whatwedo/workgroups/Pages/

cargo2000.aspx
9https://www.census.gov/econ/cfs/pums.html

10https://data.4tu.nl/repository/uuid:

5f3067df-f10b-45da-b98b-86ae4c7a310b

Table 4: Evaluation of Data Sets, Fulfillment (+), No Fulfillment (-), and Partial
Fulfillment (+/-) of Criteria: (i) Publicly Available, (ii) Event-based, (iii) Cor-
related with Business Process, (iv) Documented, (v) Containing Context Events
and (vi) Failures, and (vii) Inter-Organizational.

(i) (ii) (iii) (iv) (v) (vi) (vii)
Bosch + + - + - + -

Cargo 2000 + + + + - - +/-
CFS + + - + - - -

BPIC 2017 + + + + - - -

applicants. The process from which the data stems is not ex-
plicitly defined in the data set, but can be mined using a process
miner; e.g., ProM [42].

Table 4 summarizes the comparison of the data sets with re-
spect to the specified criteria. Overall, no data set satisfies all
criteria, but the Cargo 2000 and the BPI Challenge 2017 rep-
resent good candidates. The Cargo 2000 data set has (+/-) for
criteria (vii) because despite the claim of supporting distributed
processes, only data of one single organization process is pro-
vided. This puts it on the same level as the BPI Challenge data
set. Overall, we have selected the BPI Challenge 2017 data set,
as it satisfies most of the aforementioned requirements, with
exceptions related to (iv) no explicit context events and (v) fail-
ures are provided in the data set, and (vii) it is not based on a
distributed business process. We tackle the two first limitations
by enriching the data set, albeit without compromising its rele-
vance for real-world scenarios. A detailed description is given
in Section 5.1.2. For the third limitation, we decided to address
the issue by using a synthetic data set generated from an artifi-
cial, but realistic process collaboration. It was inspired by the
CFS and the Cargo 2000 data sets. Details about its generation
are given in Section 5.1.3. To conclude, we have opted for two
data sets: (i) one from a real-world data source (BPI Challenge
2017) to prove the applicability of the approach, and (ii) an ar-
tificial data set to show its feasibility in a distributed setting.

5.1.2. Real-World Data Set Pre-Processing
Due to the limitations of the real-world BPI Challenge 2017

data set with regards to criteria (v) and (vi), data pre-processing
is required. The main pre-processing involves the fact that the
data set is an event log of a business process, and thus contains
solely process-intrinsic events (i.e., no context events). Also,
for our approach, the corresponding business process models
are required. However, as no process model is provided along
with the event log, applying data mining techniques is neces-
sary. As described before, the data log is taken from the ap-
plication process for personal loans from a Netherlands-based
financial institution. The log consists of three different types
of events: application state changes, which have event names
starting with A , offer state changes, starting with O , and work-
flow events, starting with W . An application within the process
may contain one or more offers. One of the offers occurring
within an application may be accepted. In this case, the entire
application process is finished. However, if no offer is accepted,
the application process is canceled. The application and offer
events represent this process. The process events represent the

10

https://www.kaggle.com/c/bosch-production-line-performance
http://s-cube-network.eu/c2k/
http://www.iata.org/whatwedo/workgroups/Pages/cargo2000.aspx
http://www.iata.org/whatwedo/workgroups/Pages/cargo2000.aspx
https://www.census.gov/econ/cfs/pums.html
https://data.4tu.nl/repository/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://data.4tu.nl/repository/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b

A_Create
Application

A_Complete

A_Validating A_Denied

A_Incom-
plete

A_Pending

A_Cancelled

A_AcceptedA_ConceptA_Submitted

Figure 5: Process Model Mined from Real-World Data Set.

necessary actions to be taken within the financial institution.
Since the core business process is the application for loans,

we selected all application events (A) as process events. All re-
maining events (O and W) were used as context events. From
the application events, we created a business process by using
the Inductive Miner technique [43]. Using this technique is
common in the field of process mining, and guarantees a cer-
tain level of rediscoverability [44]. We used the ProM tool11

for process mining. The resulting process model is shown in
Figure 5. Furthermore, failure injection was also necessary to
measure the accuracy of the prediction. Details about failure
injection will be presented in Section 5.1.4.

5.1.3. Synthetic Data Set Pre-Processing
As described in detail in Section 5.1.1, in addition to our first,

real-world data set, we use a second, synthetic data set. We
opted for the generation of an artificial but realistic process col-
laboration. Data generation was inspired by the aforementioned
CFS data set. This data set contains information on domestic
freight shipments in different domains such as manufacturing
and wholesale. Data include type, origin, destination, transport
mode and other shipment attributes. The data set, however, in-
cludes one single event type rather than a stream of different
event types, with neither time stamps nor correlation to process
tasks or partners (no cases nor traces). Therefore, we have de-
fined a collaborative process example of a supply chain scenario
where goods are ordered, manufactured and shipped to the end
client [45]. Process models details and description can be found
in supplementary material12. The scenario involves six process
partners, i.e., a bulk buyer, a manufacturer, two suppliers, a spe-
cial carrier and a middleman.

For each process partner, private and public tasks as well
as interactions (through message exchanges) were defined. For
each interaction, an XML template specifying the data elements
to be exchanged has been created. The latter ensures consis-
tency of data instances for the simulation. Indeed, within one

11http://promtools.org/
12http://gruppe.wst.univie.ac.at/projects/crisp/index.

php?t=ebsdbpm1

execution of the entire process collaboration, the data required
by one partner task might depend on the output or data of an-
other partner task. Therefore, it is important that the generated
data is consistent, even though it is produced randomly. For
instance, the delivery date of an item by the carrier must not
exceed the delivery deadline specified by the bulk buyer and
transmitted to the manufacturer. In total, the collaboration con-
tains 48 tasks distributed over the partners, of which 15 are in-
teractions. Also, 20 data instances of message templates have
been generated.

The process collaboration was simulated using the Cloud
Process Execution Engine (CPEE) [46] in a distributed way,
where each process partner was executed separately on a dif-
ferent CPEE instance. The CPEE was chosen because it pro-
vides an efficient, flexible and lightweight way of executing
distributed workflows, while its modularity allows us to collect
the events. An asynchronous correlation mechanism was im-
plemented, which correlates the messages of different partners.
To this purpose, a global instance identifier has been defined
and exchanged through messages. The latter is primordial for
process partners to correlate a received message with the corre-
spondent process instance. We also distinguish between a pro-
cess instance and a collaboration instance. While the former
represents the instance of one single process, the latter refers to
one execution of the entire collaborative process.

For example, Figure 6 describes an example of two interact-
ing processes, a banana provider and a supermarket. Each pro-
cess is executed multiple times and each instance of the banana
provider process must be correlated with the corresponding in-
stance of the supermarket process. The instance identifiers ID1
and ID2 are specified in all message exchanges to ensure that
data of one partner instance will be consumed by the right part-
ner instance. A correlator (not shown in the figure) associates a
message with the corresponding process and task instance (e.g.,
a message 5 tons banana order with task receive order of in-
stance id ID1). The latter can be centralized or distributed.

The CPEE enables an easy collection of events including
control and data flow as well as transactional information about
the tasks, e.g., information about a task finishing or aborting.

11

http://promtools.org/
http://gruppe.wst.univie.ac.at/projects/crisp/index.php?t=ebsdbpm1
http://gruppe.wst.univie.ac.at/projects/crisp/index.php?t=ebsdbpm1

ship
bananas

order
bananas

receive
bananas

quality
check

prepare
bananas

receive
order dispose

 of bananas

Banana Provider Supermarket
sell

bananas

ship
bananas

order
bananas

receive
bananas

quality
check

prepare
bananas

receive
order

sell
bananas

ship
bananas

order
bananas

receive
bananas

quality
check

prepare
bananas

receive
order

dispose of
bananas

Process InstancesProcess Instances
ID1: order 5 tons of bananas, quality check succeeded

ID2 : order 3 tons of bananas, quality check failed

ID1: receive order 5 tons of bananas

ID2 : receive order 3 tons of bananas

 Interaction task Private task Public task

ID1

ID2

Figure 6: Collaborative Process Instances Used in the Synthetic Data Set.

1 <log xmlns="http://www.xes-standard.org/" xes.version="2.0" xes.
features="nested-attributes">

2 <extension name="Time" prefix="time" uri="http://www.xes-standard.
org/time.xesext"/>

3 <extension name="Concept" prefix="concept"uri="http://www.xes-
standard.org/concept.xesext"/>

4 <extension name="Organizational" prefix="org"uri="http://www.xes-
standard.org/org.xesext"/>

5 <extension name="Lifecycle" prefix="lifecycle" uri="http://www.xes-
standard.org/lifecycle.xesext"/>

6
7 <trace xmlns="http://www.xes-standard.org/">
8 <string key="concept:name" value="Instance 487"/>
9 <event>

10 <string key="concept:name" value="order banana"/>
11 <string key="concept:instance" value="http://cpee.org/~demo/corr/

corr.php"/>
12 <string key="id:id" value="a4"/>
13 <string key="lifecycle:transition" value="complete"/>
14 <list key="data_received">
15 <string key="result">
16 <order_banana>
17 <id>m11_1</id>
18 <quantity>2000 tons</quantity>
19 <delivery_deadline>2016-12-30<delivery_deadline>
20 <date>2016-12-18<date>
21 <address>California<address>
22 </order_banana>
23 </string>
24 </list>
25 <date key="time:timestamp" value="2016-12-15T15:58:37+01:00"/>
26 </event>
27 </trace>
28 </log>

Listing 1: Example of an XES Event Log.

All events are stored in an Extensible Event Stream (XES)
file [47]. The mechanism used to collect execution data
from the CPEE also allows an easy collection and integra-
tion of events sent by a context event provider other than the
CPEE [48]. This can be important for the prediction, as some
process tasks might depend on a context event provider, e.g.,
sensor sources external to the CPEE. With respect to the previ-
ous example, Listing 1 shows an example of an event of type
order banana from the automatically generated XES file. The
full XES file can be found in supplementary material12.

As a first step, we consider that all events are visible to all
partners and therefore it is possible to analyze the entire XES

file. Then we consider a more restricted view, where a partner
can only see the data which it is allowed to see (its process,
the public tasks of other partners and the interactions). The
second scenario allows to consider the privacy aspects within a
collaboration.

5.1.4. Fault Injection
As both selected data sets do not provide readily-available,

explicit failures, modifications to the data sets are necessary.
For the synthetic data set, we perform failure injection as de-
scribed in this section. We have identified the following three
major fault types to be injected into the synthetic data set.

Step-indicated faults For this type of faults, the process shows
a sequence of steps which is characteristic for the given
fault. For instance, a fault may cause an XOR gateway to
proceed with a different process step than it would, had the
fault not occurred.

Event-indicated faults Faults manifesting themselves only
through certain events, but not through different process
steps executed. For instance, a sensor measuring the tem-
perature of a container of bananas may sense the viola-
tion of certain temperature limits and fire an event. In our
model, this corresponds to a context event being fired dur-
ing the process execution.

Data-indicated faults Certain faults are only indicated by the
actual data associated with certain events. Considering the
previous example, a temperature sensor may be recording
temperature as events, regardless of whether a limit has
been exceeded or not. In this case, the firing of the event
itself does not correspond to a fault on its own. In fact,
its associated data (the container temperature) is the deter-
mining factor of whether a fault has occurred.

It is noteworthy that these three types of faults exhibit an
increasing level of difficulty for ML systems. While step-
indicated faults can be detected by observing the executed steps
(intrinsic events), event-indicated faults are harder to detect,

12

0 2 4 6 8 10 12 14 16
0.00

0.25

0.50

0.75

1.00

Steps

Predicted Failure Probability

Figure 7: An Example of an Execution Timeline: The Error Occurred at
Step 12, and the Predictor Immediately Determined an Imminent Failure for
Step 16.

because context events must be captured (i.e., selected as at-
tributes for an ML model) and associated with the process
model under execution. Finally, data-indicated faults require
inspection of the data associated with events to detect an er-
ror and predict a failure. Naturally, for the detection of step-
indicated faults, context events are not necessary, because only
intrinsic events (representing business process step transitions)
are taken into account. Nevertheless, since step-indicated faults
are possible in reality, we also inject this type of faults, in order
to gain insight into the system’s reaction.

We inject faults randomly, using a given fault injection rate.
This rate is varying, and part of our parameter sensitivity anal-
ysis in the later parts of this paper. We randomly select one
of the three aforementioned fault types when injecting a fault.
According to fixed fault-error-failure combinations, we add or
change the corresponding events to reflect the errors, and mea-
sure the system’s ability to properly predict failures stemming
from these errors. Following this, we feed the event streams
with injected faults through the ML predictor component, and,
for each injected fault, record whether and at which point in
time the failure is predicted. Figure 7 shows an example of such
an evaluation run, showing that the injection of a fault which is
exposed as an error at step 12 is detected by the predictor. The
predictor then changes from indicating almost certain success
(0.0276) to almost certain failure (0.9980).

The real-world data set did not require such an amount of
pre-processing. In the BPI Challenge 2017 data set, around
35% of all loan application processes ended with the process
step A Cancelled (as mined from the event log). This means
that the application was cancelled, e.g., because of missing in-
formation or withdrawal by the applicant. Since this represents
a failure to finalize the loan, we defined this state as a failure, in
other words, all loan processes ending in this state were treated
as failed. No further injection was required for the real-world
data set.

5.2. Experiments

The goal of our evaluation is to show that deploying our EFP
component to the two selected data sets indeed yields useful

prediction results. As described in Section 6, the approach pre-
sented in the paper at hand is novel in integrating external data
sources and a common data format, while using an approach
based on ML and taking into account the visibility of event data
in an inter-organizational settings. Since a reference baseline to
compare our results to is not available, we perform extensive
experimentation to show the feasibility and applicability of our
approach, and to motivate and provide a baseline for future re-
search.

Our experiments all involve running an instance of our EFP
component, feeding the evaluation data sets into it, and record-
ing its performance in predicting the failure for probabilities.
For initial experimentation and tuning, we use a fixed split of
70 : 30 between training and test sets. The final results shown
in this work, however, were obtained using 10-fold cross val-
idation. The results of the 10 runs of the cross validation are
averaged, with their standard deviation provided together with
the arithmetic mean [49]. This is a widely accepted standard
procedure in the evaluation of prediction solutions.

We derive confusion matrix metrics, i.e., True Positive (TP),
True Negative (TN), False Positive (FP), and False Nega-
tive (FN) [50]. In our evaluation, positive denotes the presence
of failure, and negative denotes the absence of a failure in an
event trace. From these values, we derive three metrics: pre-
cision, recall, and the Matthews correlation coefficient (MCC).
All three are common metrics for evaluating binary classifica-
tion algorithms [51–53].

The definitions of precision and recall are shown in (13)
and (14), respectively. Precision determines the fraction of
correctly-classified positive (failure-containing) instances, rel-
ative to all positively classified instances (“Out of all fail clas-
sifications, how many instances actually contain a failure?”).
Recall determines the fraction of correctly-classified positive
instances, relative to all actually positive instances (“Out of all
actual failures, how many instances are marked as fail?”).

The MCC is an application of the Pearson correlation coeffi-
cient. We use a variant of the MCC deriving the values directly
from the confusion matrix, as shown in (15) – this representa-
tion is equivalent to the original defined in [52]. An MCC of 1
denotes total positive correlation, an MCC of 0 indicates no cor-
relation, and an MCC of −1 denotes total negative correlation.
The value of the MCC determines the measure of linear depen-
dence between the actual outcome (failure or success) and the
prediction. While precision and recall give a good classification
performance overview, the MCC provides balance between the
positive and negative class instances.

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(15)

Our first experiment aims at verifying the overall perfor-
mance of our approach. For this, we use the real-world data

13

Table 5: Confusion Matrix for Evaluation Using Real-World Data Set (Mean
Values for 10-fold Cross Validation, all σ < 0.4)

Classification
Positive Negative Σ

Actual Positive 1051.14 28.04 1079.18
Class Negative 153.76 1917.95 2071.71

Σ 1204.90 1945.99 3150.89

Table 6: Key Metrics for Evaluation Using Real-World Data Set (Mean Values
for 10-fold Cross Validation)

Metric Mean σ

Precision 0.873 0.344
Recall 0.971 0.307
MCC 0.879 0.331

set described in Section 5.1.2 as input for our EFP component.
The resulting confusion matrix is shown in Table 5, and the
mean values of the metrics are summarized in Table 6.

The results show a precision of 0.873, a recall of 0.971 and
an MCC of 0.879. It is also noteworthy that the standard de-
viation (σ) is relatively low. This, together with the cross-
validation performed, shows that the classifier resulting from
the ML model training performs steadily across the entire real-
world data set, and that the performance is not dependent on
which one of the partitions was used for training, and which
one was used for testing.

In the second part of our experimentation, we seek to deter-
mine the impact of the amount of data available for prediction.
In other words, we are interested in how much the visibility
of private events impacts the performance. This requires using
the synthetic data set. Since within this data set, we inject fail-
ures with a given rate, we are interested in the impact of this
injection rate parameter on the results. We therefore analyze
the sensitivity to this parameter in order to avoid bias stemming
from parameter choice.

We show the results for precision, recall and MCC in four dif-
ferent scenarios. In the global scenario, events from all process
partners are available to the EFP component (this corresponds
to having all events marked as public events). In contrast, the
local scenario only provides the EFP component with events
from a single partner. This represents the privacy scenario from
the use case described in Section 5.1.3. From these two sce-
narios, we derive two further scenarios, leaving out the con-
text events, providing a baseline to compare the results to. All
values are provided together with their standard deviations σ,
marked using error bars. The results for precision are shown in
Figure 8, recall is shown in Figure 9, and the results for MCC
are shown in Figure 10. The intuition that less available data
decreases classification performance is clearly visible. Never-
theless, the data gives insights into the amount of performance
decrease caused by only using the data from a specific part-
ner in the evaluation, and also provides a comparison of results
between scenarios with context (global and local) and without
context events (no context). The biggest drop in performance is
seen for recall at a fault rate of 0.10, where the local scenario
reduces the recall value from 0.972 to 0.299. Removing con-
text events generally decreases precision and recall and there-

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Fault Injection Rate

Precision

Global Local

Global: No Context Local: No Context

Figure 8: Classifier Precision Using Synthetic Data Set, over Varying Fault
Rates.

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Fault Injection Rate

Recall

Global Local

Global: No Context Local: No Context

Figure 9: Classifier Recall Using Synthetic Data Set, over Varying Fault Rates.

fore also the MCC, except for the corner cases of very low fault
rates (where both no context scenarios have better recall values
than local), and very high fault rates (where both no context
scenarios have better precision values than local). In any case,
the global scenario shows significantly better results than local
and no context across the entire evaluation domain.

Furthermore, analyzing the impact of varying fault injection
rates in the synthetic data set, we see that while precision and
recall generally increase with a higher amount of faults, the
MCC shows a sweet spot around 0.50, for all three executed
scenarios. This knowledge, however, has no universal applica-
tion, since the fault rate is highly domain-specific. Comparing
this data to the real-world data set, however, shows that the re-
sults at the fault rate of the real-world data set (35%) yields
results comparable to the global scenario (since the real-world
data set only allows this scenario).

14

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Fault Injection Rate

MCC

Global Local

Global: No Context Local: No Context

Figure 10: Classifier MCC Using Synthetic Data Set, over Varying Fault Rates.

5.2.1. Discussion, Implications and Limitations
Generally, we observe an increase in both precision and re-

call for an increasing fault rate. While it is difficult to determine
a reason for certain performance metrics when ANNs are in-
volved, we suspect that the types of processes used in the data
set cause a high failure rate to be easier for ANNs to process
than low failure rates. The global scenario generally shows bet-
ter recall than precision, i.e., a low number of FNs. In con-
trast, the local scenario shows higher precision values than re-
call, especially for low fault rates. We suspect that the inter-
organizational structure of the process involved in the synthetic
data set benefits an accurate detection of inherent faults, in-
creasing the precision. This, in turn, comes at the cost of a
lower recall.

The no context scenarios aim at giving a baseline for our ap-
proach by not taking into account context events at all. We
can observe this scenario to be superior to local for high fault
rates (> 0.75) with regard to precision, and for low fault rates
(< 0.20) with regard to recall. These figures represent some
noise that context events can add that distort the prediction for
those extreme cases of fault rates. The MCC, which aims to find
a one-metric balance between many possible metrics to com-
pare classifiers, however, is consistently higher for local than
for no context, and the highest for global. From these results,
we conclude that considering context events clearly yields dras-
tic improvements in precision, recall and MCC values.

It is worth pointing out that the distinction between intrin-
sic and context events is made on a conceptual level in this
approach, but the evaluated data sets do not fully reflect this
distinction. This stems from the fact that, as described in detail
in Section 5.1.1, finding a data set stemming from a real-world
source and containing proper context events proved to be diffi-
cult, and at the same time, while the synthetic data set contains
both intrinsic and context events, both are generated, so the dis-
tinction might indeed seem blurred. Furthermore, the failures
in the real-world data set were generated by treating a certain
event (A Cancelled) as a failure. This selection poses a lim-

itation to our evaluation, since the processes described in the
data set might have also failed in other ways, not generating
those events. Nevertheless, we regard those measures as nec-
essary for the evaluation of our approach, and the experiments
confirm that using context events as an additional data source
in predicting failures is viable.

Finally, we note that while our approach does not require ex-
perts to create rule-based failure prediction models, since ML
is used, it still requires certain expert input: (i) The creation
of a suitable ML model still requires human intervention for
selecting ML models and tuning parameters, (ii) the inclusion
of certain data sources as external events also requires expert
knowledge. However, we argue that the area of expertise re-
quired is different. While for creating a rule-based prediction
model, experts in the given domain are necessary, in our case,
the required knowledge is more abstract, as skills in ML are
required, and domain-specific knowledge is less relevant.

5.2.2. Evaluation Result Summary
The proposed approach yields satisfactory results for predict-

ing failures in business processes. The resulting metrics show
a precision of 0.873 (σ = 0.014), a recall of 0.971 (σ = 0.008)
and an MCC of 0.879 (σ = 0.012). In the second part of our
evaluation, we analyze the performance when facing a scenario
where multiple process partners collaborate, but do not share
all of their events, which is possible in situations where privacy
aspects prevent a business process partner from sharing inter-
nal events. We observe that the impact on the performance is
measurable, and, depending on the metric and fault rate, can de-
crease the prediction performance from around 0.972 to 0.299
at a fault rate of 0.10.

It is noteworthy that this is a parameterizable approach, i.e.,
the exact learning model differs from domain to domain. There-
fore, while our approach reduces the necessary expert knowl-
edge required to create failure prediction models, there is still
the need for an expert to tune the learning parameters to achieve
satisfactory results. Nevertheless, our approach can provide a
flexible and generic methodology of predicting failures in busi-
ness process execution.

6. Related Work

The usage of events in BPM has gained some attention in
recent years, with a focus on fields like complex event pro-
cessing (CEP) for business processes, business process intelli-
gence (BPI), and business activity monitoring (BAM) [54, 55].
Some work has been done in the area of failure prediction and
fault tolerance, as will be discussed in more detail below13.
Nonetheless, only few approaches consider the execution con-
text of BPM, thus exploiting the presence of context events in
combination with those generated by the BPM execution.

Integration of BPMS and EBS. The integration of BPMS
and EBS has led to the development of new integrated solution

13A more extensive discussion of event-based BPM can be found in [55, 56].

15

aimed to perform several key tasks: distribution, control, mon-
itor, and predictive analysis for business processes.

Event-based BPM relies on the principle of event-driven ar-
chitectures (EDAs), which describe an architectural style with
event-driven components and communication [57]. EDAs re-
semble technical aspects of publish-subscribe middlewares [7],
especially regarding the decoupling of components, and the
pushing of events [58]. In event-based BPM, an EDA allows
to communicate events between different process stakeholders,
components, and process steps, and therefore to control and
change business processes during runtime and design time [16].
In the process of distributing the execution of BPMS, e.g. [59],
several works, e.g., [60], [61], exploit the decoupling properties
of publish-subscribe systems, to allow the distributed execution
of business processes. The very idea is to exploit the loosely
coupled and distributed nature of publish/subscribe systems.
The BPMS becomes an event sink as well as an event source,
thus generating and consuming process-related events [56, 62].

Importantly, the BPMS can be controlled by an EBS through
events [54]. In an early approach to use events in BPM, von
Ammon et al. [63] present a basic reference model to control
processes. Event types from BPMN 1.1 are supported, which
includes exception events. The main focus of this work is on
a generic approach to use events to control a process instance,
hence the authors do not discuss how exception events could be
generated or how to derive failures from events. An example
for the usage of CEP in order to adapt a business process in-
stance is presented by Hermosillo et al. [21]. The authors pro-
pose to adapt a process at runtime based on predefined, event-
based rules, which makes the approach rather inflexible. The
main contribution of this work is a language to define these
rules and when and how to apply them; nevertheless, there is
no discussion on the nature of the events and how to identify a
critical event if it has not been specified in a rule. A related ap-
proach has been presented for scientific workflows [22]. Here,
event messages are emitted by distributed agents for workflow
execution control. Only events explicitly generated by agents
are taken into account, i.e., context events are not explicitly re-
garded. Reactions to events are done based on predefined rules.

Several authors have proposed event-driven monitoring ap-
proaches, e.g., [39, 64, 65]. For instance, Feldman et al. [39]
show an effective example of event-based prediction. In their
use case, real-time monitoring data is used to anticipate issues
of cargo shipments. The prediction model relies on a simple
stochastic approach, thus it is able of discovering only direct re-
lations between system state and predicted outcome. More so-
phisticated approaches for prediction can be investigated, like
Schwegmann et al. [65] do. The authors combine real-time
event monitoring with predictions of future process behavior.
The resulting model allows the usage of a number of ML-based
predictors, similarly to our approach.

Our work combines a BPMS with an EBS aiming to monitor
the execution of BPM and perform predictive analysis. We are
not interested in discovering complex events, but rather in pro-
cessing the huge amount of BPM-related data to predict the fu-
ture system evolution. Indeed, similarly to the work by Schweg-
mann et al. [65], we rely on an ML approach to predict failures.

However, differently from all previously discussed work, we
augment the events generated by the BPMS running the busi-
ness processes with context-related events; the latter can en-
compass events generated by IoT devices (e.g., temperature or
position sensors) placed in the real-world execution environ-
ment of the business process. By distinguishing between intrin-
sic and context events, we strengthen separation of concerns.
This, in turn, allows for a better reuse of the shared context
among multiple business processes.

Failures and Their Prediction. Apart from the approaches
discussed so far, which focus on generic process adaptation and
BAM, there is also a number of approaches explicitly aiming at
fault tolerance for business process executions. From a tech-
nical point of view, different strategies how to make service
compositions fault-tolerant have been proposed [66]. Fan et
al. [67] introduce a fault tolerance strategy for service composi-
tions which includes failure detection. However, the detection
is done by comparing an expected result with the actual out-
come of a service composition. Hence, the approach is rather
inflexible and requires modeling of the expected results; an ac-
tual failure prediction is not carried out. Events are generally
not taken into account, only the outcome of a service composi-
tion is assessed. In addition, a large number of approaches to
tolerate non-functional faults (e.g., delays) in service composi-
tions have been proposed, e.g., with a focus on recovery mech-
anisms [68]. For instance, Leitner et al. [69] use ML techniques
to predict performance faults. In an earlier approach, Canfora
et al. [70] propose to re-plan service compositions during run-
time based on the actual QoS. The approaches discussed in this
paragraph focus on the technical level of service compositions,
not taking into account context events as observed in the work
at hand, but rather aiming at failures arising from the execution
of software-based process steps.

Failure prediction for business processes is also partially re-
lated to the field of anomaly detection in process executions.
For instance, Bezerra et al. [11] use process mining in order to
classify anomalous and normal instances of a particular process
model. The outcome of this anomaly detection is an ex post
analysis whether something uncommon did happen. Also, the
approach does not implicitly take into account events. Instead,
process logs are mined. Hence, only anomalous process steps
are taken into account, while we argue that context events actu-
ally may precede such steps at runtime.

To grasp the complex relation among system components
and to discover early symptoms of failures to come, several
works rely on ML techniques, e.g., [10, 71–75]. Abu-Samah
et al. [74] rely on Bayesian networks; as a drawback, this ap-
proach requires to be complemented with the extraction and
validation of system patterns, which may involve expert opin-
ions or elicitations on several levels. Leontjeva et al. [73] ad-
dress the problem of predicting the (positive or negative) out-
come of an on-going business process by analyzing event logs
using a Hidden Markov Model. As such, the solution assumes
the Markovian property, therefore it cannot easily take into ac-
count long-term dependencies among events and outcome, like
we do. An approach based on Hidden Semi-Markov Mod-
els, which loosen the Markovian property, has been presented

16

in [75]. Pika et al. [19] provide a solution based on statisti-
cal analysis aimed to identify the risk of deadline overruns of
processes. A more flexible solution is proposed in [10], where
Kang et al. aim at the detection of abnormal process termi-
nation, and, similarly to our work, the authors apply ML to
achieve real-time fault detection. However, the authors focus
on process-intrinsic knowledge, while context events are not
taken into account. In the end, their approach compares the
actual process execution with the expected process execution.
Nevertheless, this work comes closest to the work at hand. Al-
though focused on process events only, an interesting approach
is proposed by Teinemaa et al. [72]; it jointly exploits unstruc-
tured (free-text) and structured data to predict the process out-
come. Even though we do not consider unstructured data, our
approach could embed the principles presented in [72].

Grambow et al. [76] provide an approach to event-based ex-
ception handling for processes. Importantly, the authors focus
on software engineering processes, not on business processes
in general. Their approach to identify critical events is based
on the event-condition-action pattern, which makes it neces-
sary to define events and conditions to handle them. While
the authors claim that their approach is able to take into ac-
count unanticipated conditions, it remains unclear how this is
achieved. Events are related to process activities and artifacts,
while context event sources are not regarded. In a more special-
ized approach, Pika et al. [77] aim at process risk management
through the analysis of event logs. Since the authors focus on
risk management aspects, their work exceeds the work at hand
in terms of prediction of a process outcome: While we focus on
failure prediction, Pika et al. also predict pre-defined possible
process outcomes, e.g., timeliness of single process steps. To
identify risks, process models are annotated with guards, while
in our approach, we do not require such prearrangements. We
refer to [78] for an extensive survey on online failure predic-
tion methods. As shown in [79], different prediction techniques
differ in terms of accuracy and ability to capture specific phe-
nomena. Hence Metzger et al. have proposed and evaluated
the idea of combining several techniques, so to achieve better
performance. This is surely an interesting idea, which could
become part of our future work.

Other works move in the direction of identifying root causes
of failures. Conforti et al. [80] propose another approach aim-
ing at process risk management based on the analysis of event
logs. The goal of the authors is to minimize risks by identi-
fying potential risks (e.g., timeliness, reputation, cost) during
the scheduling of work items. An ML approach is applied on
process-related events, thus neglecting context event sources.
Examples for root cause analysis based on event data and using
ML have been proposed before [42, 81]. While we do not focus
on root cause analysis for process faults, this could be another
interesting direction for future work.

Context-awareness. Context-awareness helps to improve
decision-making processes by introducing new information that
can better describe the execution conditions of a business pro-
cess. Albeit the importance of context information, only few
works considers them explicitly, e.g., [17, 18, 21]. In [17],
the authors investigate the most commonly used kind of con-

text information employed so far (but not in the field of BPM).
The authors conclude by assessing that performing adaptation
in response to changing execution condition, captured by con-
text information, may be very beneficial to software systems.
A similar idea results from the work in [21], which relies on
events to control the BPM process execution. Nevertheless, the
latter proposes a rule-based approach which may not be flexible
enough with regard to previously unknown context information.
Conversely, we leverage on the flexibility of ML approaches to
work in presence of concept drifts [28].

In [18], Böhmer and Rinderle-Ma provide a runtime ap-
proach to anomaly detection which also takes into account
the context of a process, including time- and resource-related
events. The main goal of the authors is to identify malicious
attacks on process executions. The authors base their approach
on an explicit set of expected execution events and their like-
lihoods of occurrence. In contrast, our approach only regards
the expected execution events in an implicit way, thus leading
to higher flexibility. Also, the approach presented by Böhmer
and Rinderle-Ma focuses on a predefined set of event sources,
while we allow the integration of arbitrary sources, through the
concept of context events.

In summary, the approach presented in this paper is novel
since it proposes an integrated solution which takes into ac-
count the following key points which have not yet been fully
regarded in the existing literature. First, most related work fo-
cuses on event logs. While a number of existing approaches
claim that arbitrary events or events from the IoT could be
taken into account, this is not explicitly foreseen. Through in-
tegrating external data sources and a common data format (i.e.,
the XES format) into our solution, we are able to achieve this.
Second, the current state-of-the-art in failure prediction mostly
depends on pre-defined rules or conditions when a particular
failure will arise. Through the application of a ML-based ap-
proach, our solution is more flexible, however still needs a train-
ing set where particular process instances are labeled as failing
(or not). Third, we do not restrict our approach to a particular
goal, such as monitoring, process adaptation, or risk manage-
ment, but aim at generic failure prediction. Fourth, to the best of
our knowledge, there is currently no discussion on how the vis-
ibility of event data in inter-organizational settings influences
predictions of process outcomes. We conduct such an analysis
as part of our evaluation in Section 5.

7. Conclusion

In contrast to traditional BPM solutions, where the toolset
for managing BPM systems is focused on centralized, intra-
organizational processes, today’s business processes are highly
distributed, with inter-organizational stakeholders and decen-
tralized architectures, calling for novel methodologies of de-
tecting and responding to unforeseen events and failures. In this
article, we discuss the need for such methodologies, and present
an approach for employing event-based error detection and fail-
ure prediction for business processes. We evaluate our approach
using two data sets. The first data set is a real-world business
process data set from the finance domain. The second data set

17

is a synthetic data set, stemming from a choreography model
involving several partners collaborating in a common business
process. We demonstrate that the implemented failure predic-
tion component is capable of detecting upcoming failures. In
the real-world data set experiments, the failure prediction com-
ponent exhibits a precision of 0.873, a recall of 0.971 and an
MCC of 0.879, with relatively low standard deviations.

The results of the presented work provide a promising and
motivating base for further research in the field of integrat-
ing BPMS and EBS. While the need for expert knowledge is
not completely eliminated, the presented approach requires less
domain-specific expert knowledge than the usage of a fixed set
of rules, both in setup and in rule maintenance. The neces-
sary expert knowledge is shifted from the domain itself to tasks
within the domain of ML, e.g., feature selection.

Several future research directions can be identified, includ-
ing the investigation of efficient online learning techniques and
the transition to a real production system. Due to the complex
and hidden relations among events, the automatic selection of
data sources represents a critical task for accurate failure pre-
dictions. Furthermore, the aspect of scalability has only been
covered briefly in our approach, and remains an important fac-
tor, since the cost of time and computing power necessary to
perform the prediction may play a role in certain scenarios.
Sensitivity analysis, for instance for the search space limiting
parameters, would be interesting. Another promising direction
of research is the further identification and integration of mod-
ern event sources such as IoT or smarter cities. Furthermore, a
production system might bring up the need for self-adaptation
to mitigate, for example, the negative impacts of concept drifts.

Acknowledgment

The original idea to this work is a result of the GI-Dagstuhl
Seminar 16341 “Integrating Process-Oriented and Event-Based
Systems”.

This work is partially supported by the Commission of the
European Union within the CREMA H2020-RIA project (Grant
agreement no. 637066) and by the Vienna Science and Technol-
ogy Fund (WWTF) through project ICT15-072.

References

[1] M. Weske, Business Process Management: Concepts, Languages, Archi-
tectures, 2nd Edition, Springer, 2012.

[2] R. Breu, S. Dustdar, J. Eder, C. Huemer, G. Kappel, J. Köpke, P. Langer,
J. Mangler, J. Mendling, G. Neumann, S. Rinderle-Ma, S. Schulte,
S. Sobernig, B. Weber, Towards Living Inter-Organizational Processes,
in: Conference on Business Informatics (CBI), IEEE, 2013, pp. 363–366.

[3] S. Schulte, P. Hoenisch, C. Hochreiner, S. Dustdar, M. Klusch,
D. Schuller, Towards Process Support for Cloud Manufacturing, in: Inter-
national Enterprise Distributed Object Computing Conference (EDOC),
IEEE, 2014, pp. 142–149.

[4] S. Rohjans, C. Dänekas, M. Uslar, Requirements for Smart Grid ICT
Architectures, in: 3rd IEEE PES Innovative Smart Grid Technologies
(ISGT) Europe Conference, IEEE, 2012, pp. 1–8.

[5] G. Mühl, L. Fiege, P. Pietzuch, Distributed Event-Based Systems,
Springer, 2006.

[6] M. zur Muehlen, R. Shapiro, Business Process Analytics, in: J. vom
Brocke, M. Rosemann (Eds.), Handbook on Business Process Manage-
ment Vol. 2, Strategic Alignment, Governance, People and Culture, 2nd
Edition, Springer, 2015, pp. 243–263.

[7] P. T. Eugster, P. A. Felber, R. Guerraoui, A.-M. Kermarrec, The many
faces of publish/subscribe, ACM Computing Surveys 35 (2) (2003) 114–
131.

[8] L. Atzori, A. Iera, G. Morabito, The Internet of Things: A survey, Com-
puter Networks 54 (2010) 2787–2805.

[9] S. Li, L. D. Xu, S. Zhao, The Internet of Things: A Survey, Information
Systems Frontier 17 (2) (2015) 243–259.

[10] B. Kang, D. Kim, S.-H. Kang, Real-time business process monitoring
method for prediction of abnormal termination using knni-based lof pre-
diction, Expert Systems with Applications 39 (5) (2012) 6061–6068.

[11] F. Bezerra, J. Wainer, W. M. P. van der Aalst, Anomaly Detection Using
Process Mining, in: International Workshop on Business Process Mod-
eling, Development and Support (BPMDS), Vol. 29 of LNBIP, Springer,
2009, pp. 149–161.

[12] R. Wieringa, Design Science Methodology for Information Systems and
Software Engineering, Springer, 2014.

[13] A. P. Barros, M. Dumas, P. Oaks, Standards for Web Service Choreog-
raphy and Orchestration: Status and Perspectives, in: Workshop on Web
Service Choreography and Orchestration for Business Process Manage-
ment (WSCOBPM), Springer, 2005, pp. 61–74.

[14] W. Fdhila, C. Indiono, S. Rinderle-Ma, M. Reichert, Dealing with change
in process choreographies: Design and implementation of propagation
algorithms, Information Systems 49 (2015) 1–24.

[15] F. Koetter, M. Kochanowski, A model-driven approach for event-based
business process monitoring, Information Systems and e-Business Man-
agement 13 (1) (2015) 5–36.

[16] R. von Ammon, Event-Driven Business Process Management, in: L. Liu,
M. T. Özsu (Eds.), Encyclopedia of Database Systems, Springer, 2009,
pp. 1068–1071.

[17] F. Tang, M. Guo, M. Dong, M. Li, H. Guan, Towards context-aware work-
flow management for ubiquitous computing, in: International Conference
on Embedded Software and Systems (ICESS), IEEE, 2008, pp. 221–228.

[18] K. Böhmer, S. Rinderle-Ma, Multi-perspective Anomaly Detection in
Business Process Execution Events, in: On the Move to Meaningful In-
ternet Systems (OTM) Conferences: Confederated International Confer-
ences: CoopIS, C&TC, and ODBASE 2016, Springer, 2016, pp. 80–98.

[19] A. Pika, W. M. P. van der Aalst, C. J. Fidge, A. H. M. ter Hofstede, M. T.
Wynn, Predicting deadline transgressions using event logs, in: Interna-
tional Conference on Business Process Management Workshops (BPM),
Springer, 2013, pp. 211–216.

[20] A. Avižienis, J.-C. Laprie, B. Randell, C. E. Landwehr, Basic Concepts
and Taxonomy of Dependable and Secure Computing, IEEE Transactions
on Dependable and Secure Computing 1 (2004) 11–33.

[21] G. Hermosillo, L. Seinturier, L. Duchien, Creating Context-Adaptive
Business Processes, in: International Conference on Service-Oriented
Computing (ICSOC), Springer, 2010, pp. 228–242.

[22] Z. Zhao, A. Paschke, Event-driven scientific workflow execution, in:
International Conference on Business Process Management (BPM),
Springer, 2012, pp. 390–401.

[23] G. Bello-Orgaz, J. J. Jung, D. Camacho, Social big data: Recent achieve-
ments and new challenges, Information Fusion 28 (2016) 45–59.

[24] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, B.-Y. Su, Scaling distributed machine learning with
the parameter server, in: Symposium on Operating Systems Design and
Implementation (OSDI), no. 10.4, 2014, pp. 583–598.

[25] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, M. I.
Jordan, Mlbase: A distributed machine-learning system, in: Conference
on Innovative Data Systems Research (CIDR), Vol. 1, 2013, pp. 1–7.

[26] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen, et al., Mllib: Machine learn-
ing in apache spark, Journal of Machine Learning Research 17 (1) (2016)
1235–1241.

[27] C. Mayer, R. Mayer, M. Abdo, Streamlearner: Distributed incremental
machine learning on event streams: Grand challenge, in: International
Conference on Distributed and Event-based Systems (DEBS), ACM,
2017, pp. 298–303.

[28] G. Widmer, M. Kubat, Learning in the presence of concept drift and hid-

18

den contexts, Machine learning 23 (1) (1996) 69–101.
[29] R. Klinkenberg, T. Joachims, Detecting concept drift with support vector

machines, in: Seventeenth International Conference on Machine Learning
(ICML), Morgan Kaufmann, 2000, pp. 487–494.

[30] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd Edition,
Prentice Hall PTR, 1998.

[31] M. Matsugu, K. Mori, Y. Mitari, Y. Kaneda, Subject independent facial
expression recognition with robust face detection using a convolutional
neural network, Neural Networks 16 (5) (2003) 555–559.

[32] R. Collobert, J. Weston, A unified architecture for natural language pro-
cessing: Deep neural networks with multitask learning, in: International
Conference on Machine Learning (ICML), ACM, 2008, pp. 160–167.

[33] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Com-
puting 9 (8) (1997) 1735–1780.

[34] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015)
436–444.

[35] R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, H. S.
Seung, Digital selection and analogue amplification coexist in a cortex-
inspired silicon circuit, Nature 405 (6789) (2000) 947–951.

[36] M. O. Rabin, Probabilistic automata, Information and Control 6 (3)
(1963) 230 – 245.

[37] A. Salomaa, I. N. Sneddon, Theory of Automata, Pergamon Press
Reprint, 1969.

[38] R. Cesana, Cargo 2000 phase 3 specification, IATA/Cargo.
[39] Z. Feldman, F. Fournier, R. Franklin, A. Metzger, Proactive event pro-

cessing in action: A case study on the proactive management of transport
processes (industry article), in: International Conference on Distributed
Event-based Systems, DEBS ’13, ACM, 2013, pp. 97–106.

[40] R. Conforti, M. La Rosa, A. H. ter Hofstede, Filtering out infrequent be-
havior from business process event logs, IEEE Transactions on Knowl-
edge and Data Engineering 29 (2) (2017) 300–314.

[41] J. Evermann, J.-R. Rehse, P. Fettke, Predicting process behaviour using
deep learning, Decision Support Systems.

[42] A. Rozinat, W. M. P. van der Aalst, Decision Mining in ProM, Springer,
2006, pp. 420–425.

[43] S. J. J. Leemans, D. Fahland, W. M. P. van der Aalst, Discovering Block-
Structured Process Models from Event Logs - A Constructive Approach,
Springer, 2013, pp. 311–329.

[44] S. Hernández, S. J. van Zelst, J. Ezpeleta, W. M. van der Aalst, Handling
big (ger) logs: Connecting prom 6 to apache hadoop, in: BPM (Demos),
2015, pp. 80–84.

[45] W. Fdhila, S. Rinderle-Ma, D. Knuplesch, M. Reichert, Change and com-
pliance in collaborative processes, in: IEEE International Conference on
Services Computing (SCC), IEEE Computer Society, 2015, pp. 162–169.

[46] G. Stürmer, J. Mangler, E. Schikuta, Building a modular service oriented
workflow engine, in: IEEE International Conference on Service-Oriented
Computing and Applications (SOCA), 2009, pp. 1–4.

[47] IEEE standard for extensible event stream (xes) for achieving interoper-
ability in event logs and event streams, IEEE Std 1849-2016 (2016) 1–50.

[48] F. Stertz, S. Rinderle-Ma, T. Hildebrandt, J. Mangler, Testing processes
with service invocation: Advanced logging in CPEE, in: International
Conference on Service-Oriented Computing (ICSOC), Springer, 2016.

[49] R. Kohavi, A Study of Cross-Validation and Bootstrap for Accuracy Esti-
mation and Model Selection, in: International Joint Conference on Artifi-
cial Intelligence – Volume 2, 1995, pp. 1137–1143.

[50] C. D. Manning, P. Raghavan, H. Schütze, Introduction to Information
Retrieval, Cambridge University Press, 2008.

[51] M. Sokolova, N. Japkowicz, S. Szpakowicz, Beyond Accuracy, F-Score
and ROC: A Family of Discriminant Measures for Performance Evalua-
tion, Springer, 2006, pp. 1015–1021.

[52] B. Matthews, Comparison of the predicted and observed secondary struc-
ture of t4 phage lysozyme, Biochimica et Biophysica Acta (BBA) - Pro-
tein Structure 405 (2) (1975) 442 – 451.

[53] D. M. Powers, Evaluation: from precision, recall and f-measure to roc,
informedness, markedness and correlation, Journal of Machine Learning
Technologies 2 (1) (2011) 37–63.

[54] C. Janiesch, M. Matzner, O. Müller, Beyond process monitoring: a proof-
of-concept of event-driven business activity management, Business Pro-
cess Management Journal 18 (4) (2012) 625–643.

[55] J. Krumeich, B. Weis, D. Werth, P. Loos, Event-Driven Business Process
Management: where are we now?, Business Process Management Journal

20 (4) (2014) 615–633.
[56] S. Schulte, C. Janiesch, S. Venugopal, I. Weber, P. Hoenisch, Elastic Busi-

ness Process Management: State of the Art and Open Challenges for BPM
in the Cloud, Future Generation Computer Systems 46 (2015) 36–50.

[57] D. Luckham, The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems, Addison-Wesley Profes-
sional, 2002.

[58] A. P. Buchmann, S. Appel, T. Freudenreich, S. Frischbier, P. E. Guer-
rero, From Calls to Events: Architecting Future BPM Systems, in: Inter-
national Conference on Business Process Management (BPM), Springer,
2012, pp. 17–32.

[59] G. Li, V. Muthusamy, H.-A. Jacobsen, A distributed service-oriented ar-
chitecture for business process execution, ACM Transactions on the Web
4 (1) (2010) 2:1–2:33.

[60] M. Sadoghi, M. Jergler, H. A. Jacobsen, R. Hull, R. Vaculn, Safe distri-
bution and parallel execution of data-centric workflows over the publish/-
subscribe abstraction, IEEE Transactions on Knowledge and Data Engi-
neering 27 (10) (2015) 2824–2838.

[61] M. Jergler, M. Sadoghi, H.-A. Jacobsen, Geo-distribution of flexible busi-
ness processes over publish/subscribe paradigm, in: International Middle-
ware Conference, Middleware ’16, ACM, 2016, pp. 15:1–15:13.

[62] O. Etzion, P. Niblett, Event Processing in Action, Manning Publications,
2010.

[63] R. von Ammon, C. Emmersberger, F. Springer, C. Wolff, Event-driven
business process management and its practical application taking the ex-
ample of dhl 412 (2008) 8.

[64] C. D. Francescomarino, M. Dumas, F. M. Maggi, I. Teinemaa, Clustering-
based predictive process monitoring, IEEE Transactions on Services
Computing PP (99) (2017) 1–1.

[65] B. Schwegmann, M. Matzner, C. Janiesch, A Method and Tool for Pre-
dictive Event-Driven Process Analytics, in: 11. Internationale Tagung
Wirtschaftsinformatik, 2013, pp. 721–735.

[66] Z. Zheng, M. R. Lyu, Selecting an Optimal Fault Tolerance Strategy for
Reliable Service-Oriented Systems with Local and Global Constraints,
IEEE Transactions on Computer 64 (2015) 219–232.

[67] G. Fan, H. Yu, L. Chen, D. Liu, A Petri Net-Based Byzantine Fault Di-
agnosis Method for Service Composition, in: International Conference
on Computer Software and Applications (COMPSAC), IEEE Computer
Society, 2012, pp. 42–51.

[68] L. Console, M. Fugini, At your service: Service Engineering in the Infor-
mation Society Technologies Program, MIT Press, 2008.

[69] P. Leitner, W. Hummer, S. Dustdar, Cost-based optimization of service
compositions, IEEE Transactions on Services Computing 6 (2) (2013)
239–251.

[70] G. Canfora, M. Di Penta, R. Esposito, M. L. Villani, QoS-Aware Replan-
ning of Composite Web Services, in: International Conference on Web
Services (ICWS), IEEE Computer Society, 2005, pp. 121–129.

[71] W. Yoo, A. Sim, K. Wu, Machine learning based job status prediction in
scientific clusters, in: 2016 SAI Computing Conference (SAI), 2016, pp.
44–53.

[72] I. Teinemaa, M. Dumas, F. M. Maggi, C. Di Francescomarino, Predic-
tive Business Process Monitoring with Structured and Unstructured Data,
Springer, Cham, 2016, pp. 401–417.

[73] A. Leontjeva, R. Conforti, C. Di Francescomarino, M. Dumas, F. M.
Maggi, Complex Symbolic Sequence Encodings for Predictive Monitor-
ing of Business Processes, Springer, 2015, pp. 297–313.

[74] A. Abu-Samah, M. Shahzad, E. Zamai, Bayesian based methodology for
the extraction and validation of time bound failure signatures for online
failure prediction, Reliability Engineering & System Safety 167 (Supple-
ment C) (2017) 616 – 628, special Section: Applications of Probabilistic
Graphical Models in Dependability, Diagnosis and Prognosis.

[75] F. Salfner, M. Malek, Using hidden semi-markov models for effective
online failure prediction, in: International Symposium on Reliable Dis-
tributed Systems (SRDS), 2007, pp. 161–174.

[76] G. Grambow, R. Oberhauser, M. Reichert, Event-Driven Exception Han-
dling for Software Engineering Processes, in: Business Process Manage-
ment Workshops – Part I, 2012, pp. 414–426.

[77] A. Pika, W. M. P. van der Aalst, M. T. Wynn, C. J. Fidge, A. H. M. ter
Hofstede, Evaluating and predicting overall process risk using event logs,
Information Sciences 352–353 (2016) 98–120.

[78] F. Salfner, M. Lenk, M. Malek, A survey of online failure prediction meth-

19

ods, ACM Computing Surveys 42 (3) (2010) 10:1–10:42.
[79] A. Metzger, P. Leitner, D. Ivanovi, E. Schmieders, R. Franklin, M. Carro,

S. Dustdar, K. Pohl, Comparing and combining predictive business pro-
cess monitoring techniques, IEEE Transactions on Systems, Man, and
Cybernetics: Systems 45 (2) (2015) 276–290.

[80] R. Conforti, M. de Leoni, M. La Rosa, W. M. P. van der Aalst, A. H. M. ter
Hofstede, A recommendation system for predicting risks across multiple
business process instances, Decision Support Systems 69 (2015) 1 – 19.

[81] S. Suriadi, C. Ouyang, W. M. P. van der Aalst, A. H. M. ter Hofstede,
Root Cause Analysis with Enriched Process Logs, Springer, 2013, pp.
174–186.

20

	1 Introduction
	2 Fundamentals and Motivation
	2.1 Process Collaborations
	2.2 Event Streams
	2.3 Faults, Errors and Failures

	3 Solution Overview
	4 Machine Learning Failure Prediction
	4.1 Failure Prediction Component
	4.2 Input and Output Structure
	4.3 Formalization Model
	4.4 Probability Traversal
	4.5 Search Space Optimization

	5 Evaluation
	5.1 Data Sets
	5.1.1 Explored Sources of Data Sets
	5.1.2 Real-World Data Set Pre-Processing
	5.1.3 Synthetic Data Set Pre-Processing
	5.1.4 Fault Injection

	5.2 Experiments
	5.2.1 Discussion, Implications and Limitations
	5.2.2 Evaluation Result Summary

	6 Related Work
	7 Conclusion

