
Supermetric Search

Richard Connora,∗, Lucia Vadicamob, Franco Alberto Cardilloc, Fausto
Rabittib

aDepartment of Computer and Information Sciences, University of Strathclyde, Glasgow,
United Kingdom

bInstitute of Information Science and Technologies (ISTI), CNR, Pisa, Italy
cInstitute of Computational Linguistics (ILC), CNR, Pisa, Italy

Abstract

Metric search is concerned with the efficient evaluation of queries in metric
spaces. In general, a large space of objects is arranged in such a way that, when
a further object is presented as a query, those objects most similar to the query
can be efficiently found. Most mechanisms rely upon the triangle inequality
property of the metric governing the space. The triangle inequality property is
equivalent to a finite embedding property, which states that any three points of
the space can be isometrically embedded in two-dimensional Euclidean space.
In this paper, we examine a class of semimetric space which is finitely four-
embeddable in three-dimensional Euclidean space. In mathematics this property
has been extensively studied and is generally known as the four-point property.
All spaces with the four-point property are metric spaces, but they also have
some stronger geometric guarantees. We coin the term supermetric1 space as,
in terms of metric search, they are significantly more tractable. Supermetric
spaces include all those governed by Euclidean, Cosine2, Jensen-Shannon and
Triangular distances, and are thus commonly used within many domains. In
previous work we have given a generic mathematical basis for the supermetric
property and shown how it can improve indexing performance for a given exact
search structure. Here we present a full investigation into its use within a
variety of different hyperplane partition indexing structures, and go on to show
some more of its flexibility by examining a search structure whose partition and
exclusion conditions are tailored, at each node, to suit the individual reference
points and data set present there. Among the results given, we show a new best
performance for exact search using a well-known benchmark.

∗Corresponding author
Email addresses: richard.connor@strath.ac.uk (Richard Connor),

lucia.vadicamo@isti.cnr.it (Lucia Vadicamo), francoalberto.cardillo@ilc.cnr.it
(Franco Alberto Cardillo), fausto.rabitti@isti.cnr.it (Fausto Rabitti)

1This term has previously been used in the domains of particle physics and evolutionary
biology as a pseudonym for the mathematical term ultra-metric, a concept of no interest in
metric search; we believe our concept is of sufficient importance to the domain to justify its
reuse with a different meaning.

2for the correct formulation of Cosine distance, see [1] for details

Preprint submitted to Information Systems September 22, 2017

Accepted refereed manuscript of: Connor R, Vadicamo L, Cardillo FA & Rabitti F (2019) Supermetric search. Information
Systems, 80, pp. 108-123. DOI: https://doi.org/10.1016/j.is.2018.01.002
© 2018, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.is.2018.01.002
http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords: Similarity Search, Metric Space, Supermetric Space, Metric
Indexing, Four-point Property, Hilbert Exclusion

1. Introduction

Within any metric space, any three objects can be used to construct a trian-
gle in 2D Euclidean space, where the objects are represented by the vertices of
the triangle and the edges preserve their distances in the original space. That
is, any metric space is isometrically three-embeddable in 2D Euclidean space.

Some metric spaces are also isometrically four-embeddable in 3D Euclidean
space, allowing the construction of a tetrahedron. We have previously shown
how these spaces have further geometric properties which can be used to improve
the performance of exact search, in particular for any search mechanism based
on hyperplane partitioning. This leads to the notion of a supermetric space
[2], a space which is also a metric space but with further geometric properties
which give stronger guarantees for search mechanisms. Furthermore, we have
given a rigorous and constructive mathematical basis for assessing whether a
proper metric space has the supermetric property, and showed how this property
allows the use of the Hilbert Exclusion mechanism in place of the less powerful
hyperbolic exclusion [1]. In [2], we also showed how the supermetric property
could, in principle, be used to construct arbitrary partitions within a 2D plane
into which many objects are projected, due to a lower-bound property which is
a corollary of the four-point property.

In this paper we extend initial work which appeared in [2] by taking the
investigation to its next stage. While we previously showed how the use of
the Hilbert Exclusion property gave a significant improvement in performance
when used in conjunction with a particular state-of-the-art hyperplane-based
indexing mechanism, the Distal Spatial Approximation Tree (DiSAT, [3]), we
now perform a full evaluation over its performance within a fully general context
of twelve different hyperplane tree indexing structures. The outcome is that a
simpler data structure is found to be the most efficient in this context, and
indeed gives a new best-published performance for threshold search over the
SISAP benchmark data sets [4]; to put this result in perspective, it requires only
around 40% of the number of distance calculations per query of the previous
state of the art given in [3].

Beyond these benchmark data sets, which in this context are relatively small
and tractable, we show the performance advantages hold in some larger data
sets, as dimensionality and object size increase, and also for a number of different
distance metrics.

Further, we begin to investigate more flexible use of the planar lower bound
property we first described in [2]. At the time of this publication we observed
that the property was more general than the Hilbert Exclusion property. Now
we are able to show a remarkably flexible use within a hyperplane tree built
over “real-world” data sets; the significance of such data is that it is typically
distributed in a non-uniform manner within the space. The non-uniformity

2

manifests differently with each choice of reference points, and this data structure
allows a different strategy to be used in each node, to maximise the advantage
which can be gained.

The rest of this paper is organised as follows. Section 2 sets the detailed
technical context for the work, including related work by ourselves and others.
Section 3 then explains a novel observation which is a consequence of the four-
point property: tetrahedral projection onto a plane, which gives an important
lower-bound property. In fact, it turns out that Hilbert Exclusion results as
a simple corollary of this more general property. In this section we discuss a
number of relatively deep results which are consequent to the property. Section
4 then fully defines a completely novel indexing structure which is only possible
to use in a supermetric space, where the hyperplane partition and consequent
exclusion mechanism are dynamically chosen according to the distribution of
data within each individual node of the tree.

Section 5 takes as its starting point the observation that the best indexing
techniques are likely to be different in the supermetric context, and gives a full
investigation of various hyperplane trees in order to determine the most suit-
able. Section 6 analyses the extra cost required to make use of the supermetric
properties for hyperplane indexing, which in fact is very small. Section 7 exam-
ines the use of the best data structures identified through their application to a
number of large and real-world data sets, in order to test their performance in
more general contexts.

Finally in Section 8 we give some conclusions and outline areas of further
work.

2. Preliminaries and Related Work

To set the context, we are interested in searching a (large) finite set of objects
S which is a subset of an infinite set U , where (U, d) is a metric space. A metric
space is an ordered pair (U, d), where U is a domain of objects and d is a
total distance function d : U × U → R, satisfying postulates of non-negativity,
identity, symmetry, and triangle inequality [5]. The general requirement is to
efficiently find members of S which are similar to an arbitrary member of U ,
where the distance function d gives the only way by which any two objects
may be compared - the bigger the distance d(x, y), the less similar the data
objects x, y ∈ U . There are many important practical examples captured by
this mathematical framework, see for example [6, 5]. Such spaces are typically
searched with reference to a query object q ∈ U . The simplest type of similarity
query is the range search query. A range search for some threshold t, based on
a query q ∈ U , has the solution set R = {s ∈ S| d(q, s) ≤ t}. Other forms of
search, for example nearest neighbor search (i.e. find the k closest objects to
a query), are also useful; here we are studying mostly properties of spaces in
general and restrict our attention to the scenario outlined.

Symbols and abbreviations used throughout this paper are summarized in
Table 1.

3

Notion Definition

(U, d) the data domain U and the metric distance d : U × U → R

S finite set of data objects, S ⊆ U

x, y, s generic data object, x, y, s ∈ S

q query object q ∈ U

t, ti threshold distances used in the range search, t, ti ∈ R

R solution set for a range query: R = {s ∈ S| d(q, s) ≤ t}

{p1, . . . , pn} set of n pivots, pi ∈ U

ℓ2 Euclidean distance: ℓ2(x, y) =
√∑n

i=1(xi − yi)2 for x, y ∈ R
n

ℓn2 n-dimensional Euclidean space, i.e. (Rn, ℓ2).

For example, ℓn2 = (Rn, ℓ2), ℓ
3
2 = (R3, ℓ2)

Isometric
3-embedding
in ℓ22

A metric space (U, d) is isometrically 3-embeddable in ℓ22 if for any
three points x1, x2, x3 ∈ U there exists a function f : U → ℓ22 such
that ℓ2(f(xi), f(xj)) = d(xi, xj), for i, j = 1, 2, 3

Isometric
4-embedding
in ℓ32

A metric space (U, d) is isometrically 4-embeddable in ℓ32 if for any
four points x1, x2, x3, x4 ∈ U there exists a function f : U → ℓ22 such
that ℓ2(f(xi), f(xj)) = d(xi, xj), for i, j = 1, 2, 3, 4

four-point
property

A metric space (U, d) has the four-point property if it is isometrically
4-embeddable in ℓ32

vw line between two points v, w ∈ R
n

Table 1: Notation used throughout this paper

2.1. Metric indexing

Typically, the distance function is too expensive or S is too large to allow an
exhaustive search, that is a sequential scan of the entire dataset. The retrieval
process is facilitated by using a metric index, one of a large family of data
structures used to preprocess the data in such a way as to minimise the time
required to retrieve the query result. This data structure can be expensive to
build, but this cost is amortized by saving I/O and distance evaluations over
several queries to the database. In general, the triangle inequality property
is exploited to determine subsets of S which do not need to be exhaustively
checked. Such avoidance is normally referred to as exclusion or space pruning.

For exact metric search, almost all indexing methods can be divided into
those which at each exclusion possibility use a single “pivot” point to give radius-
based exclusion, and those which use two reference points to give hyperplane-
based exclusion. Many variants of each have been proposed, including many
hybrids; [5], [7], and [8] give excellent surveys. In general the best choice seems
to depend on the particular context of metric and data.

Here our focus is particularly on mechanisms which use hyperplane-based
exclusion. The simplest such index structure is the Generalised Hyperplane
Tree (GHT) [9]. Others include Bisector trees [10] and variants on them (e.g.

4

Figure 1: In any metric space, two pivot points p1, p2 and any solution to a query q can be
isometrically embedded in ℓ22. The point q cannot be drawn in the same diagram. Given
its distance from p1 and p2, any solution in the original metric space must lie in the region
bounded by the four arcs shown. If the point s lies to the right of Vp1,p2 = {x ∈ S| d(x, p1) =
d(x, p2)}, there is therefore no requirement to search to the left of the hyperplane in the
original space. In general, when relying only on the triangle inequality, then half of the space
can be excluded from the search only if |d(q, p1)− d(q, p2)| > 2t.

Monotonous Bisector Trees [11] and Voronoi Trees [12]), the Metric Index [13],
and the Spatial Approximation Tree [14]. This last has various derivatives,
notably including the Dynamic SAT [15] and the Distal SAT (DiSAT) [3].

2.2. Metric Spaces and Finite Isometric Embeddings

An isometric embedding of one metric space (V, dv) in another (W,dw) can be
achieved when there exists a mapping function f : V → W such that dv(x, y) =
dw(f(x), f(y)), for all x, y ∈ V . A finite isometric embedding occurs whenever
this property is true for any finite selection of n points from V , in which case
the terminology used is that V is isometrically n-embeddable in W .

The idea of characterising a space metrically by means of “n-point rela-
tions” seems to have originated in the paper [16] published in 1892 by de Tilly,
a Belgian artillery officer. Some of the questions raised by de Tilly were an-
swered by some mathematicians of the late 19th century, and only in 1928 Karl
Menger [17] provided a first systematic development of abstract distance geom-
etry. The interest of the distance geometry is in all those of transformations of
sets for which the distance of two points is an invariant. So, as highlighted by
Blumenthal [18], “distance geometry may operate in any kind of space in which
a notion of “distance” is attached to any point-pair of the space”.

Isometric 3-embedding in ℓ22. The first observation to be made in this context
is that any metric space (U, d) is isometrically 3-embeddable in ℓ22, i.e. for any
three points x1, x2, x3 ∈ U there exists a mapping function f : (U, d) → (R2, ℓ2)
such that ℓ2 (f(xi), f(xj)) = d(xi, xj), for i, j = 1, 2, 3. This is apparent from
the triangle inequality property of a proper metric. In fact the two properties
are equivalent: for any semi-metric space which is isometrically 3-embeddable

5

in ℓ22, triangle inequality also holds. It is interesting to consider the standard
exclusion mechanisms of pivot-based exclusion and hyperplane-based exclusion
in the light of an isometric 3-embedding in ℓ22; Figure 1 for example shows a basis
for hyperplane exclusion using only this property rather than triangle inequality
explicitly.

Supermetric Spaces: Isometric 4-embedding in ℓ32. It turns out that many useful
metric spaces have a stronger property: they are isometrically 4-embeddable in
ℓ32, which means that for any four points in the space there exists an embedding
into (R3, ℓ2) that preserves all the

(

4

2

)

= 6 interpoint distances. In the math-
ematical literature, this has been referred to as the four-point property [18].
Wilson [19] shows various properties of such spaces, and Blumenthal [18] points
out that results given by Wilson, when combined with work by Menger [17],
generalise to show that some spaces have the n-point property : that is, any n
points can be isometrically embedded in a Euclidean (n− 1)-dimensional space.

We have studied such spaces in the context of metric indexing in [1], where
we develop in detail the following outcomes:

1. Any metric space which is isometrically embeddable in a Hilbert space3

has the n-point property, and so the four-point property as well.

2. Important spaces with the n-point property include, for any dimension,
spaces with the following metrics: Euclidean, Jensen-Shannon, Triangular,
and (a variant of) Cosine distances.

3. Important spaces which do not have the four-point property include those
with the metrics: Manhattan, Chebyshev, and Levenshtein distances.

4. However, for any metric space (U, d), the space (U, dα), 0 < α ≤ 1
2
does

have the four-point property.

In terms of practical impact on metric search, in [1] we show only how the
four-point property can be used to improve standard hyperplane partitioning.
We consider a situation where a subspace is divided according to which of two
selected reference points p1 and p2 is the closer. When relying only on triangle
inequality, that is in a metric space without the four-point property, then for a
query q and a query threshold t, the subspace associated with p1 can be excluded
from the search only if d(q, p1) − d(q, p2) > 2t. As the region defined by this
condition when projected onto the plane is a hyperbola (see Figure 1), we name
this Hyperbolic Exclusion4.

If the space in question has the four-point property, however, we show that,
for the same subspaces, there is no requirement to search that associated with

3A Hilbert space H can be thought of as a generalization of Euclidean space to any finite
or infinite number of dimensions. It is an inner vector space which is also a complete metric
space with respect to the distance function induced by the inner product. This means that it
has an inner product < ·, · >: H×H → C that induces a distance d(·, ·) = √

< ·, · > such that
every Cauchy sequence in (H, d) converges to a point in H (intuitively, there are no “points
missing” from H).

4In the literature, the Hyperbolic Exclusion is also referred to as Double-Pivot Distance
Constraint [5].

6

p1 whenever
d(q, p1)

2 − d(q, p2)
2

d(p1, p2)
> 2t;

this is a weaker condition and therefore allows, in general, more exclusion. We
name this condition Hilbert Exclusion.

A formula equivalent to

|d(q, p1)
2 − d(q, p2)

2|

2d(p1, p2)

has been used in the context of metric search also in [20, 21], in order to estimate
the distance between the point q and the hyperplane equidistant from p1 and
p2. This formula was derived using the cosine law and was applied only with
distances on metric space with the “semidefinite positive property” [20, 22], since
this property allows defining a notion of “angle” in a generic metric space. To
provide a bridge to our work, we observe that the semidefinite positive property
is equivalent to the n-point property for a finite semimetric space (see Chapter
IV, Section 43 of [18]).

In this paper, we examine a more general consequence of four-point em-
beddable spaces and show some interim results including new best-performance
search of SISAP data sets.

3. Tetrahedral Projection onto a Plane

In a supermetric space, any two reference points p1 and p2, and query point
q, and any solution to that query s where d(q, s) ≤ t, can all be embedded in 3D
Euclidean space. As such, they can be used to form the vertices of a tetrahedron.
It seems that, while simple metric search is based around the properties of a
triangle, there should be corresponding tetrahedral properties which give a new,
stronger, set of guarantees.

Assume that for some search context, points p1, p2 ∈ U are somehow selected
and a data structure is built for a finite set S ⊂ U where, for s ∈ S, the three
distances d(p1, p2), d(s, p1) and d(s, p2) are calculated during the build process
and used to guide the structuring of the data. At query time, for a query q,
the two distances d(q, p1) and d(q, p2) are calculated and may be used to make
some deduction relating to this structure.

This situation gives knowledge of two adjacent faces of the tetrahedron which
can be formed in three dimensions. Five of the six edge lengths have been
measured, and the final edge is upper-bounded by the value of t. Therefore, for
a point s to be a solution to the query, it must be possible to form a tetrahedron
with the five measured edge lengths, and a last edge of length t.

Figure 2 shows a situation where five edge lengths have been embedded in
3D space. The edge p1p2 is shared between the two facial triangles depicted.
However the distance d(s, q) is not known, and therefore neither is the angle be-
tween these triangles. The observation which gives rise to the results presented
here is that, if both triangles are now projected onto the same plane, which can

7

Figure 2: Two triangles with a common base in 3D space

Figure 3: Projection of the two triangles onto the same plane by rotation around p1p2. Note
that ℓ22(R(q), s) ≤ ℓ32(q, s), where R(q) is the point obtained by rotating q around the line
p1p2 until it is coplanar with s

be achieved by rotating one of them around the line p1p2 until it is coplanar
with the other, then for any case where the final edge of the tetrahedron (qs)
is less than the length t, then the length of this side in the resulting planar
tetrahedron is upper bounded by t, as illustrated in Figure 3.

Many such coplanar triangles can be depicted, representing many points
in a single space, in a single scatter plot as in Figure 4. This shows a set of
500 points, drawn from randomly generated 8-dimensional Euclidean space, and
plotted with respect to their distances from two fixed reference points p1 and p2.
The distance between the reference points is measured, and the reference points
are plotted on the X-axis symmetrically either side of the origin. For each point
in the rest of the set, the distances d(s, p1) and d(s, p2) are calculated, and used
to plot the unique corresponding point in a triangle above the X-axis, according
to these edge lengths. In this figure, in consideration with our observations over
Figure 3, it can be seen that, if any two points are separated by less that some
constant t in the original space, and thus also in the 3D embedding, then they
are also within t of each other in this scatter plot.

It is important to be aware, in this and the following figures, of the impor-
tance of the four-point property. The same diagram can of course be plotted for

8

Figure 4: Scatter diagram for 8-dimensional Euclidean Space. The distance δ between two
selected reference points p1 and p2 is measured, and an embedding function is chosen which
maps these to (0,−δ/2) and (0, δ/2) respectively. Other points si in the space are then
plotted to preserve the distances d(si, p1) and d(si, p2). For metric spaces with the four-point
property, the ℓ2 distance between the corresponding points in this diagram is a lower bound
on d(si, sj) in the original space. Hence, any point within t of a point s in the original space
cannot lie outside the circle of radius t centered around s in the scatter plot.

a simple metric space, but in this case no spatial relationship is implied between
any two points plotted: no matter how close two points are in the plot, there
is no implication for the distance between them in the original space. However
if the diagram is plotted for a metric with the four-point property, then the
distance between any two points on the plane is a lower bound on their distance
in the original space; two points that are further than t on the plot cannot
be within t of each other in the original space. This observation leads to an
arbitrarily large number of ways of partitioning the space and allowing these
partitions to excluded based on a query position, and has many potential uses
in metric indexing.

3.1. Indexes Based on Tetrahedral/Planar Projection

During construction of an index, the constructed 2D space can be arbitrarily
partitioned according to any rule based on the geometry of this plane, calculated
with respect to the distances d(si, p1), d(si, p2) and d(p1, p2). At query time,
if the query falls in any region of the plane that is further than the query
threshold t from any such partition, points within that partition cannot contain
any solution to the query. Since, as will be shown, different spaces give quite
different distributions of points within the plane, build-time partitions can be
chosen according to this distribution, rather than as a fixed attribute of an index
mechanism.

There is much potential for investigating partitions of this plane, and our
work is ongoing. The simplest such mechanism to consider is the application of
this concept to normal hyperplane partitioning. Suppose that a data set S is
simply divided according to which of the points p1 and p2 is the closer, which
corresponds in the scatter diagram to a split over the Y axis. Then at query

9

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

p
1

p
2

Hilbert Exclusion, 8 dimensions

X

a
lt

it
u

d
e
 f

ro
m

 l
in

e
 (

p
1
,
p

2
)

non−exclusive queries
exclusive queries, n = 340

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

p
1

p
2

Hyperbolic Exclusion, 8 dimensions

X

a
lt

it
u

d
e
 f

ro
m

 l
in

e
 (

p
1
,
p

2
)

non−exclusive queries
exclusive queries, n = 79

Figure 5: Scatter diagram for 8-dimensional Euclidean Space. The data is divided into two
subsets according to which side of Y-axis they lie. The solidly-coloured points are points that,
were they queries, would allow the semispace on the opposing side to be excluded from the
search since that semispace cannot contain a solution. We refer to these points as “exclusive
queries”. The other points are referred to as “non-exclusive queries” since they do not allow
the opposing semispace to be excluded from the search. The left-hand side illustrates use
of tetrahedral/planar projection, the right hand side illustrates use of the normal hyperbolic
condition.

time, if the corresponding plot position for the query is further than t from
the Y axis, no solutions can exist in the subset closer to the opposing reference
point. Figure 5 shows the same points, but now highlighted according to this
distinction. Those drawn in solid, either side of the Y-axis, are guaranteed to
be on the same side of the corresponding hyperplane partition in the original
space; therefore, if they were query points, the opposing semi-space would not
require to be searched. We refer to these points as “exclusive queries”. If the
same diagram is drawn for a simple metric space, a query point can be used
to exclude the opposing semi-space only according to a condition algebraically
derived from triangle inequality: |d(q, p1) − d(q, p2)| > 2t, which describes a
hyperbola with foci at the reference points and semi-major axis of the search
threshold. For the same data and search threshold, the difference in exclusion
capability is shown in Figure 5; of the 500 randomly selected queries, only
160 fail to exclude the opposing semi-space, whereas with normal hyperbolic
exclusion, the number is 421. The query threshold illustrated, 0.145, is chosen
to retrieve around one millionth of the space and is not therefore artificially
large.

As stated, this particular situation has been extensively investigated and is
fully reported in [1]. Here we will concentrate further on other properties of the
planar projection, of which the derivation of Hilbert exclusion turns out to be
a special case.

3.2. Partitions of the 2D Plane

For the purposes of this analysis only, for reasons of simplicity, we seek
to divide a data set into precisely two partitions. This is without reference
to details of any indexing structure which may use the concepts, although in

10

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

Hilbert Exclusion, 8 dimensions

X

a
lt

it
u

d
e
 f

ro
m

 l
in

e
 (

p
1
,
p

2
)

non−exclusive queries
exclusive queries, n = 330

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

Hyperbolic Exclusion, 8 dimensions

X

a
lt

it
u

d
e
 f

ro
m

 l
in

e
 (

p
1
,
p

2
)

non−exclusive queries
exclusive queries, n = 278

Figure 6: Scatter diagram for 8-dimensional Euclidean Space with widely separated reference
points. (The distance between reference points is such that the reference points themselves
do not appear on the plot).

all cases by implication there exists a simple binary partition tree structure
corresponding to the partitioning. In all cases the partition is defined in terms
of the 2D plane onto which all points are projected as described above.

3.3. Reference Point Separation

An important observation is that the shape of the 2D “point cloud”, upon
which effective exclusion depends, is not greatly affected by the choice of ref-
erence points. In comparison with normal Hyperbolic exclusion this is a huge
advantage. The hyperbola which bounds the effective queries, i.e. those which
can be used to exclude the opposing semispace, is defined only by the (fixed)
query radius, and the distance between the reference points, where the larger
the separation of the reference points, the better the exclusion. In the extreme
case where the separation is no larger than twice the query radius, which can
readily occur in high-dimensional space, it is impossible for any exclusions to
be made. This effect can be ameliorated by choosing widely separated reference
points, but in an unevenly distributed set this in itself can be dangerous: if one
point chosen is an outlier, then the point cloud will lie close to the other point,
and again no exclusions will be made. Finding two reference points which are
well separated, and where the rest of the points is evenly distributed between
them, is of course an intractable task in general.

Figures 6 and 7 show this effect. In these diagrams, the reference points have
been selected as the furthest, and nearest, respectively out of 1,000 sample pairs
of points drawn from the space. It can be seen that, when exclusion is based on
tetrahedral properties allowed from the four-point property, the exclusive power
remains fairly constant, as the size and shape of the point cloud is not greatly
affected. However, when the hyperbolic condition is used, the exclusive power
is hugely affected; in this case the query threshold is only slightly less than half
the separation of the reference points, and the resulting hyperbola diverges so
rapidly from the separating hyperplane that no exclusions are made from the
sample queries.

11

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

p
1

p
2

Hilbert Exclusion, 8 dimensions

X

a
lt

it
u

d
e
 f

ro
m

 l
in

e
 (

p
1
,
p

2
)

non−exclusive queries

exclusive queries, n = 311

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

p
1

p
2

Hyperbolic Exclusion, 8 dimensions

X

a
lt

it
u

d
e
 f

ro
m

 l
in

e
 (

p
1
,
p

2
)

non−exclusive queries
exclusive queries, n = 0

Figure 7: Scatter diagram for 8-dimensional Euclidean Space with close reference points. Note
from comparison of the left-hand graphs of this figure with Figure 6 that the separation of
the reference points has no apparent effect on the power of the four-point exclusion, whereas
normal metric exclusion becomes completely useless.

From Figure 6 it should also be noted that, no matter how far the reference
points are separated, the four-point property always gives a higher probability
of exclusions; in this case, although the separating lines do not appear visually
to be very different, the implied probability of exclusion in for the four-point
property is 0.66, against 0.56.

To allow most partition structures to perform well, a very large part of the
build cost is typically spent in the selection of good reference points and this
cost is largely avoidable with any such four-point strategy, as demonstrated
experimentally in Sections 5 and 4.

3.4. Arbitrary Partitions

Again we stress the fact that, given the strong lower bound condition on
the projected 2D plane, we can choose arbitrary geometric partitions of this
plane to structure the data. For randomly generated, evenly distributed points
there seems to be little to choose. However it is often the case that “real world”
data sets do not show the same properties as generated sets; in particular, they
tend to be much less evenly distributed, with significant numbers of clusters
and outliers. These factors can significantly affect the performance of indexing
mechanisms.

Figures 8, 9, 10 and 11 show a sample taken from the SISAP colors data
set with Euclidean distance applied, showing eight different partitions. Eight
different partitions of the plane have been arbitrarily selected and applied. The
query threshold illustrated is 0.052 corresponding to a query returning 0.001%
of the data.

In all cases, it can be noted that the partitions are even, leading to balanced
indexing structures. It is very likely that skewed partitions may perform better,
an aspect we have not yet investigated. However one important balanced par-
tition is illustrated on the left hand side of Figure 8, implying that a balanced
hyperplane tree can be efficiently constructed.

12

-0.2 -0.1 0 0.1 0.2

X

0

0.2

0.4

0.6

0.8

1

a
lt

it
u

d
e
 f

ro
m

 l
in

e
 (

p 1
,p

2
)

vertical -SISAP colors

p
1

p
2

non-exclusive queries

exclusive queries, n = 195

-0.2 -0.1 0 0.1 0.2

X

0

0.2

0.4

0.6

0.8

1

a
lt

it
u

d
e
 f

ro
m

 l
in

e
 (

p 1
,p

2
)

horizontal -SISAP colors

p
1

p
2

non-exclusive queries

exclusive queries, n = 342

Figure 8: Scatter diagrams dividing the plane equally in X and Y dimension, either can be
used for partitioning a hyperplane tree structure; in this case, the horizontal partition would
be more effective.

-0.2 -0.1 0 0.1 0.2

X

0

0.2

0.4

0.6

0.8

1

a
lt

it
u

d
e
 f

ro
m

 l
in

e
 (

p 1
,p

2
)

pcaFirstPrincComp -SISAP colors

p
1

p
2

non-exclusive queries

exclusive queries, n = 185

-0.2 -0.1 0 0.1 0.2

X

0

0.2

0.4

0.6

0.8

1

a
lt

it
u

d
e
 f

ro
m

 l
in

e
 (

p 1
,p

2
)

pcaSecondPrincComp -SISAP colors

p
1

p
2

non-exclusive queries

exclusive queries, n = 349

Figure 9: Hyperplane partitioning based on a hyperplane parallel to the first (left) and the
second (right) principal components.

-0.2 -0.1 0 0.1 0.2

X

0

0.2

0.4

0.6

0.8

1

a
lt

it
u

d
e
 f

ro
m

 l
in

e
 (

p 1
,p

2
)

LinearRegression (orthogonal) -SISAP colors

p
1

p
2

non-exclusive queries

exclusive queries, n = 318

-0.2 -0.1 0 0.1 0.2

X

0

0.2

0.4

0.6

0.8

1

a
lt

it
u

d
e
 f

ro
m

 l
in

e
 (

p 1
,p

2
)

LinearRegression (parallel) -SISAP colors

p
1

p
2

non-exclusive queries

exclusive queries, n = 297

Figure 10: Hyperplane partitioning based on a hyperplane orthogonal (left) or parallel (right)
to the best-fit line through data.

13

-0.2 -0.1 0 0.1 0.2

X

0

0.2

0.4

0.6

0.8

1

a
lt

it
u

d
e
 f

ro
m

 l
in

e
 (

p 1
,p

2
)

circle -SISAP colors

p
1

p
2

non-exclusive queries

exclusive queries, n = 267

-0.2 -0.1 0 0.1 0.2

X

0

0.2

0.4

0.6

0.8

1

a
lt

it
u

d
e
 f

ro
m

 l
in

e
 (

p 1
,p

2
)

farLeftDist -SISAP colors

p
1

p
2

non-exclusive queries

exclusive queries, n = 315

Figure 11: Two more binary partitions, based now on median distance from arbitrary points
in the plane (centre and top-left respectively); we have not yet found a use for these but
include the diagrams to make the point that any such partition may be used.

It can be seen that, in this case, partitioning the plane according to the
height of individual points above the X-axis is the more effective strategy. The
disadvantage with this is that a little more calculation is required to plot the
height of the point, rather than its offset from the Y-axis; however this is a very
minor effect when significantly more distance calculations can be avoided.

Figures 9 and 10 illustrate more techical analyses of the point cloud, using
Principle Component Analysis (PCA) and Linear Regression (LR) respectively.
Either technique can be used along one of two axes in a two-dimensional space as
illustrated. In Section 4 we explain in the orthogonal linear regression technique
in detail, and give experimental results showing its value as the best way to
construct a balanced search tree over this data.

Finally we give the illustrations in Figure 11 to make the points that any
partition of the plane can be used for this purpose. We have not yet found a
compelling use for either partition, however this would depend on the nature of
an individual non-uniform data set.

3.5. Balance

As already noted, any of the partitions shown above can be simply used to
bisect the data and thus produced a balanced indexing structure. These exam-
ples are all defined using a single real value with respect to the planar geometry.
This can be calculated for each object within the subset to be divided, and the
median can be found very efficiently using the QuickMedianSort algorithm; for
a random distribution of points, the practical cost of balancing a binary tree
at construction time appears similar to performing QuickSort once on all the
data. While balanced structures are often slower than unbalanced ones for rel-
atively small data sets, they become rapidly more desirable as the size of the
data increases, and again more so if it is too large to fit in main memory and
requires to be stored in backing store pages. The ability to balance the data
without reducing the effectiveness of the exclusion mechanism therefore seems
important.

14

One further area of investigation, not yet performed, would be the effect
of controlling the balance, which once again is arbitrarily possible simply by
selecting different offset values. In general this will increase the probability of
exclusion at cost of excluding smaller subsets of the data, and the effectiveness
will depend on the individual distributions of the different strategies.

4. The Linear Regression Tree

In this Section we revisit a key observation of Section 3, and in particular
Section 3.4, where we pointed out that any partition of the two-dimensional
projected plane may be used to form an indexing mechanism. Up to this point
we have restricted the use to simple Hilbert partitioning, where the data is
divided only according to the nearest reference point. Here, we demonstrate a
more flexible approach.

Figure 10 shows a scatter plot resulting from an arbitrary choice of reference
points for the SISAP colors data set. Although the pattern is not atypical,
observation shows that the individual distribution shape is significantly affected
by the choice of reference points and, more subtly, by the subset of data points
that is to be stored at a given tree node; although a high-dimensional space
implies that these would not necessarily have a strong regional identity, this
factor does visibly affect the relative mean distances to the reference points.

The partitions shown within the figure are based on the best-fit straight line
which can be plotted through the points in two dimensions. This is parallel
to the lines drawn in the right-hand figure. As this is calculated using the
least-mean-squares algorithm, it is reasonable to assume that the perpendicular
partition, shown in the left-hand diagram, will in general improve the spread of
the data points and thus form a better partition for indexing5.

To test this strategy, we define the Linear Regression Tree (LRT), which is a
binary tree built recursively over a dataset S as follows. We select two reference
points p1, p2 at each node. Each child node of the tree shares one reference
points with its parents, as done in the Monotonous Bisector Tree [11]. We used
the tetrahedral projection based on p1 and p2 to embed the data points onto a
2D plane, and we compute the best-fit line l through the projected points (or
a subset of them) using a least squares minimization. Then, we rotate the 2D
data points around the X-intercept of the line l, so that the new X-axis coincides
with the line l, and we split the data at the median X coordinate of the rotated
space.

Algorithm 1 and 3 give the simplest algorithms for constructing, and query-
ing a balanced version of the LRT.

We compute the best fitting line l through the points {(xi, yi)}
N
i=1 as the line

y = mx + b that best fits the sample in the sense that the sum of the squared

5As shown above, PCA seems to give a better spread than LR; for the moment we have
selected linear regression for the experiment due primarily to its simplicity of implementation,
we continue to investigate alternative strategies.

15

Input : A ⊂ S, p1 ∈ S
Output: Node: N = 〈p1, p2, δ, θ, h, Nleft, Nright〉 where

{p1, p2} ⊂ U, δ ∈ R, θ ∈ [0, 2π), h ∈ R, {Nleft, Nright} ⊂ Node
1 Select p2 from A;
2 if |A| > 2 then

3 A← Ar {p1, p2} ;

4 Ã←2Dproject(A, p1, p2);

5 (θ, h)←GetRotationAngle(Ã); // Calculate the rotation angle θ, and

the X-intercepts (h, 0), that minimize the squared errors of the

y-coordinates following the rotation transformation

6 RotatedPoints← ∅;

7 foreach s̃j in Ãi do

8 rj ← Rotate(s̃j , θ, h) ; // rj = (rj .x, rj .y) ∈ R
2

9 RotatedPoints← RotatedPoints ∪ {rj}

10 end

11 δ ← median{rj .x| rj ∈ RotatedPoints} ; // Find the median value of

the x-coordinate of the rotated points

12 Aleft ← {sj ∈ A| rj .x,< δ};
13 Aright ← {sj ∈ A| rj .x,≥ δ};
14 Nleft ← CreateNode(Aleft, p1);
15 Nright ← CreateNode(Aright, p1);
16 N ← 〈p1, p2, δ, θ, h, Nleft, Nright〉;

17 end

Algorithm 1: CreateNode (LRT balanced)

errors between the yi and the line values mxi + b is minimized. The fitting line
is easily computed as y − ȳ = m(x− x̄) where x̄ =

∑N

i=1 xi/N , ȳ =
∑N

i=1 yi/N ,
and

m =

∑N

i=1(xi − x̄)(yi − ȳ)
∑N

i=1(xi − x̄)2
. (1)

Then, we rotate the data points by angle θ = arctan(m) around the X-
intercept (h, 0), where h = x̄− ȳ/m:

rx = (x− h) cos(θ)− y sin(θ) (2)

ry = (x− h) sin(θ) + y cos(θ). (3)

Experimental evaluation of the resulting search index was performed using
exactly the same context as that described in Section 5, and all of the code used
is available from the same repository. Figures 12 and 13 give results for the
SISAP colors and nasa data sets respectively. For each data set, six different
indexing structures were tested. A balanced monotone hyperplane tree, an
unbalanced monotone hyperplane tree, and the Linear Regression Tree were
each tested with two different reference point selection strategies. These are:
“Rand” – random selection – and “Far” – in the monotone tree, one reference
point is handed down from an ancestor, and the second point is simply the one

16

Input : A ⊂ S, p1, p2 ∈ S
Output: Set Ã ⊂ R

2

1 Ã← ∅;
2 foreach sj in A do

3 Calculate the 2D embedded point s̃j as the apex of the triangle defined by
baseline (0,−d(p1, p2)/2)− (0, d(p1, p2)/2), with left side length d(sj , p1)
and right side d(sj , p2);

4 Ã← Ã ∪ {s̃j};

5 end

Algorithm 2: 2Dproject (2D projection of A based on p1, p2)

Input : q ∈ U, t ∈ R, N = 〈p1, p2, δ, θ, h, Nleft, Nright〉 ∈ Node
Output: Result set R = {s ∈ S| d(s, q) ≤ t}

1 R← ∅;
2 if d(q, p1) ≤ t then
3 R← R ∪ {p1};
4 end

5 if d(q, p2) ≤ t then
6 R← R ∪ {p2};
7 end

8 q̃ ← 2Dproject({q}, p1, p2);
9 rq = Rotate(q̃, θ, h);

10 if rq.x < δ − t then
11 R← R ∪Query(q,Nleft);
12 else

13 if rq.x > δ + t then
14 R← R ∪Query(q,Nright);
15 else

16 R← R ∪Query(q,Nleft);
17 R← R ∪Query(q,Nright);

18 end

19 end

Algorithm 3: Query

17

0.052 0.083 0.131

Threshold

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000
n

o
.

o
f

d
is

ta
n

c
e

 c
a

lc
u

la
ti

o
n

s

SISAP "colors" data set

MonPT-Balanced/ Far refs

LRT-Balanced/ Far refs

MonPT/ Far refs

0.052 0.083 0.131

Threshold

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

n
o

.
o

f
d

is
ta

n
c

e
 c

a
lc

u
la

ti
o

n
s

SISAP "colors" data set

MonPT-Balanced/ Rand refs

LRT-Balanced/ Rand refs

MonPT/ Rand refs

Figure 12: Colors –Monotone Tree (MonPT), Linear Regression Tree (LRT), and Balanced
Monotone Tree with two different reference point selection strategies

0.12 0.285 0.53

Threshold

1000

2000

3000

4000

5000

6000

7000

8000

n
o

.
o

f
d

is
ta

n
c

e
 c

a
lc

u
la

ti
o

n
s

SISAP "nasa" data set

MonPT-Balanced/ Far refs

LRT-Balanced/ Far refs

MonPT/ Far refs

0.12 0.285 0.53

Threshold

1000

2000

3000

4000

5000

6000

7000

8000

n
o

.
o

f
d

is
ta

n
c

e
 c

a
lc

u
la

ti
o

n
s

SISAP "nasa" data set

MonPT-Balanced/ Rand refs

LRT-Balanced/ Rand refs

MonPT/ Rand refs

Figure 13: Nasa –Monotone Tree (MonPT), Linear Regression Tree (LRT), and Balanced
Monotone Tree with two different reference point selection strategies

from within the data subset used to construct that node that is the furthest
distance from the ancestor node.

The fair comparison is of the two balanced trees, and it can be seen that the
Linear Regression Tree always outperforms the simple balanced tree.

The unbalanced tree however is always the best performer over this data
set. Reasons for this are not altogether clear. However we believe this is worth
reporting for sake of further investigation: in this domain, successful analysis
of these reasons should lead to the ability to mimic them and deterministically
produce a tree with still better performance.

In some of the further experiments performed in Section 7 we find that the
Linear Regression Tree performs best out of all the mechanisms tested. This
seems to be for large data sets which have significant non-uniformity, searching
with smaller thresholds.

5. Hyperplane Partition Indexes and the Four-Point Property

Having established the full generality of indexing in the supermetric domain,
we now return to the Hilbert Exclusion principle and investigate its application

18

over a range of hyperplane indexing structures. This is important in the light
of the preceding discussion as, having established that issues such as balance
and separation of reference points have quite different consequences, we need
to understand the best indexing structure for taking advantage of the increased
tractability. It is certainly not reasonable to assume that the best indexing
structures for metric spaces will also the the best for supermetric spaces.

The best recorded general performance for an exact-search partition-based
indexing structure, before the identification of using the four-point property
within an exclusion mechanism, derives from the Distal Spatial Approximation
Tree (DiSAT) [3]. This is therefore the obvious comparison to make between
using normal metric properties and the four-point property over a space which
has both properties; it allows the exactly same data structure to be measured
with the different exclusion algorithms and in this sense is a very fair comparison.
This comparison has been made in [1] and a significant improvement shown
for using the four-point property: for the SISAP benchmark data sets, at the
lower thresholds, typically around half the number of distance calculations are
required when the four-point property is used over the same search index.

However, given the observations above on the different relative importance
of the choice of reference point, it may be that the same data structure does
not give the best performance when used for a supermetric space; the main
differentiation between previous versions of the Spatial Approximation Tree
(SAT) index and the DiSAT is the choice of widely separated reference points
at higher levels of the tree, and it is therefore possible that different optimising
factors will occur within a supermetric space.

We therefore performed a thorough investigation on a number of differ-
ent exact-search hyperplane tree structures, taking each possible orthogonal
attribute separately and testing all possible combinations with both Hyperbolic
and Hilbert Exclusion strategies to determine the best data structure for use in
a supermetric space.

5.1. Partition Trees

The basic structure of a partition tree is a recursively defined, n-ary tree.
Each child of a parent node is governed by a single reference point, and every
element of the data set contained below any parent node is associated with
the child node whose reference point is closest to that element. The basic
construction of a partition tree is given in Algorithm 4.

Query of such a tree allows a number of exclusion possibilities. Most simply,
the distance from the query to each reference point is calculated; any partition
may be excluded if this distance is greater than the cover radius (cri) added to
the query threshold. In addition, for every partition, it may be excluded from
the search based on the relative distances of the query to every other reference
point, using the hyperplane exclusion principle. The basic query algorithm, not
using the four-point property, is given as Algorithm 5. This can be changed
to take advantage of the four-point property by the replacement of the inner
partition test (lines 14-18):

19

Input : Finite set of data objects S ⊆ U
Output: Node of arity n: N = 〈{p1, . . . , pn}, {N1, . . . , Nn}, {cr1, . . . , crn}〉

where pj ∈ S, Nj ∈ Node, crj ∈ R for all j from 1 to n

1 if |S| ≤ n then

2 N ← 〈S, ∅, ∅〉 //leaf node

3 else

4 select {p1, . . . , pn} from S;
5 foreach pi in {p1, . . . , pn} do
6 Si ←

{
s ∈ S r {p1, . . . , pn}| i = argminj=1,...,nd(s, pj)

}
;

7 cri ← mins∈Si
d(s, pi);

8 Nx ← CreateNode(Si);

9 end

10 N ← 〈{p1, . . . , pn}, {N1, . . . , Nn}, {cr1, . . . , crn}〉

11 end

Algorithm 4: CreateNode

Input : N = 〈{p1, . . . , pn}, {N1, . . . , Nn}, {cr1, . . . , crn}〉 ∈ Node, q ∈ U, t ∈ R

Output: set R = {r ∈ S| d(q, r) ≤ t})
1 R← ∅;
2 foreach pi in {p1, . . . , pn} do
3 di ← d(q, pi);
4 if di ≤ t then
5 R← R ∪ {pi}
6 end

7 end

8 if {N1, . . . , Nn} 6= ∅ then
9 Excs← ∅;

10 foreach pi in {p1, . . . , pn} do
11 if d(q, pi) ≥ cri + t then
12 Excs← Excs ∪ {i}
13 end

14 for pj ∈ {p1, . . . , pn}r pi do
15 if d(q, pi)− d(q, pj) > 2t then
16 Excs← Excs ∪ {i}
17 end

18 end

19 end

20 foreach i in {1, . . . , n}r Excs do

21 R← R ∪QueryNode(Ni)
22 end

23 end

Algorithm 5: QueryNode

20

d(q, pi)− d(q, pj) > 2t

is replaced by

d(q, pi)
2 − d(q, pj)

2

d(pi, pj)
> 2t

The extra required term, d(pi, pj) can be calculated at build time and stored
for a small extra space cost, explained in Section 6.

The many different types of tree we tested are differentiated by how the
reference set is chosen at each tree node. We tested a number of variants of
trees according to the following largely orthogonal principles:

Pure SAT property Each node of a purely-formed Spatial Approximation
Tree has the property that no values from within the data set are closer
to the “centre” node (the reference point in the parent node associated
with each child node) than they are to any of the reference points one
level down within the tree. This principle of construction allows further
exclusion possibilities, as during a query the maximum distance between
the query and any higher-level reference points may be passed recursively;
if this distance is greater than max(d(q, pj)), i 6= j then it may be used to
attempt to exclude Ni from the search.

Any serial selection of reference points requires, as each node is con-
structed, that any point closer to the centre node than any previously
selected reference point is added to the set of reference points. As pointed
out by the authors of [3] the construction has very different properties
depending on the order in which the contained set is considered.

Two variants of such “pure” SATs were tested; for sat pure, we considered
the data set of inclusion in the reference set in order of distance from the
centre node, and for sat distal pure we considered them in reverse order.
We also tried some hybrids but did not discover any interesting results, so
these are not reported.

For using the Hilbert Exclusion mechanism for trees with this pure SAT
property, the distances to ancestor nodes can still be used, but (i) all
distances need to be recursively passed, rather than just the maximum,
and (ii) at build time, all distances from each pi to all ancestors also
require to be calculated and stored. This is because the Hilbert exclusion
condition requires all three distances among any two reference points and
the query to be known. We tested both construction and query for any
extra cost associated with this extra information flow, and it was found
to be insignificant.

SAT construction Faster versions of SAT as reported in [3] do not maintain
the pure SAT property, but instead reuse the core reference point selection

21

algorithm (traversing S according to an imposed order and adding refer-
ence points whenever they are closer to the centre node than any existing
reference point), however this process is terminated according to the num-
ber of reference points selected. This is because the pure SAT algorithm,
applied to the distal ordering of values from the centre, leads to very wide,
shallow trees which do not lead to good performance when using Hyper-
bolic exclusion. The extra exclusion possibilities from using the parent
reference point distances are lost, but wider separation of reference points
was found to lead to more exclusions.

Therefore the extra factor of maximum branching factor is considered. We
considered two; sat distal fixed uses a fixed value of 4, found in [3] to
give good performance, and sat distal log uses a dynamic value selected
according to the data size, chosen not to exceed the natural logarithm of
the data size, thus reducing as the tree is descended.

Choice of the centre point for the head node, for best performance, is
described in [3] as being acheived by choice of an outlier, this giving the
SATout class of algorithm (sat global fixed and sat global log); we con-
firmed this result and therefore reused this strategy for all of our experi-
ments.

Finally, the SATglob class of tree uses a single ordering for consideration of
reference point selection, based on an ordering of the whole data set from
the centre node of the entire tree, rather than the centre of each node.

Non-SAT construction Finally, we considered a number of partition trees
(hpt *) where the choice of reference point was made independently of
their distances from the parent reference point. Three arities were chosen;
fixed and logarithmic as above, but also a binary version was constructed.
Two strategies for reference point selection were used to fill these arities:
random selection, and one using the FFT algorithm [23, 24].

5.2. Experimental Procedure

The above classification leads to the following set of tree structures used for
experiments: sat pure, sat distal pure, sat distal fixed, sat distal log,

sat global fixed, sat global log , hpt fft binary, hpt fft fixed, hpt fft log,

hpt random binary, hpt random fixed, hpt random log – each of these should
have a clear meaning given the above description. For each tree, both Hyper-
bolic and Hilbert exclusion mechanisms were tested, leading to a total of 24
different search indexes.

Each was tested against the SISAP benchmark data sets colors and nasa [4]
using Euclidean distance. For each test, three different query thresholds were
used as is standard for the SISAP benchmark sets. 10% of the data was ran-
domly removed to act as a query set.

Different distance metrics with the four-point property were also tested but
showed no significantly different results, so we report only Euclidean. Actual
threshold values used are as shown in Table 3.

22

Data Set # elements feature dim dist

SISAP Colors [4] 112,682 Color Histograms 112 ℓ2

SISAP Nasa [4, 25] 40,150 PCA-red. Color Histograms 20 ℓ2

Table 2: Data Sets Statistics

Data Set t0 (0.01%) t1 (0.1%) t2 (1%)

nasa 0.120 0.285 0.530

colors 0.052 0.083 0.131

Table 3: Experimental threshold values that return around 0.01%, 0.1% and 1% of the data
sets

For sake of space, we give only the main results: for each index, and each
data set, we give the number of distances per query at a single query threshold.

We also tested query times; in all cases the number of distances was directly
proportional to the query time, which is not surprising as all of the data sets
used fit comfortably within the main memory and this is by far the dominant
cost of the query. It is useful to confirm however that the extra administrative
cost associated with the Hilbert exclusion is negligible with respect to distance
costs.

All tests were executed in Java, using the same Java abstract tree construc-
tion and query classes, specialised only according to the reference point selection
strategy and query-time exclusion strategy. As a final semantic check, all results
were cross-checked against a serial (exhaustive) search to ensure consistency and
therefore correctness. All code used is available in a public repository6.

For each test, multiple tree builds were performed and mean values are
presented. For each build, the data was presented in randomised order, as the
order of selection during tree build can have a significant serendipitous effect
on performance. Tests were repeated until the standard error of the mean
was ≤ 1%, which implies that all of the differences reported are statistically
significant.

Results are shown in Figure 14 and 15.

5.3. Analysis

The most obvious conclusion is that the supermetric exclusion always gives
better performance; while this is actually a guarantee as shown in [1] the inter-
esting point is the magnitude of the improvement, which in some cases is quite
startling.

6https://bitbucket.org/richardconnor/metric-space-framework.git

23

SISAP colors

sa
t_

pu
re

sa
t_

di
st
al
_p

ur
e

sa
t_

di
st
al
_f

ix
ed

sa
t_

di
st
al
_l
og

sa
t_

gl
ob

al
_f

ix
ed

sa
t_

gl
ob

al
_l
og

hp
t_

fft
_b

in
ar

y

hp
t_

fft
_f

ix
ed

hp
t_

fft
_l
og

hp
t_

ra
nd

om
_b

in
ar

y

hp
t_

ra
nd

om
_f

ix
ed

 0

 5000

10000

15000

20000
A

v
e
ra

g
e
 n

u
m

b
e
r

o
f
d
is

ta
n
c
e
s
 p

e
r

q
u
e
ry

Hilbert Exclusion

Hyperbolic Exclusion

Figure 14: Partition Trees: SISAP colors at threshold t0

SISAP nasa

sa
t_

pu
re

sa
t_

di
st
al
_p

ur
e

sa
t_

di
st
al
_f

ix
ed

sa
t_

di
st
al
_l
og

sa
t_

gl
ob

al
_f

ix
ed

sa
t_

gl
ob

al
_l
og

hp
t_

fft
_b

in
ar

y

hp
t_

fft
_f

ix
ed

hp
t_

fft
_l
og

hp
t_

ra
nd

om
_b

in
ar

y

hp
t_

ra
nd

om
_f

ix
ed

 0

1000

2000

3000

4000

A
v
e

ra
g

e
 n

u
m

b
e
r

o
f
d
is

ta
n
c
e
s
 p

e
r

q
u
e
ry

Hilbert Exclusion

Hyperbolic Exclusion

Figure 15: Partition Trees: SISAP nasa at threshold t0

24

Although not quite the absolute best performance, the greatest improvement
is in the pure SAT indexes, both classic and distal variants which in fact seem
to give around the same performance. This is worthy of further study; as
mentioned, the shape of these trees is very different, the classic SAT giving
a relatively small branching factor against a very large branching factor at the
higher levels of the distal SAT. The inventors of the distal SAT compromised the
SAT property early on, presumably because performance was badly affected by
this property. Using the four-point property seems to overcome this. As these
data sets are relatively small there is no real advantage to a shallow tree, but
this may well be different with very large data.

The lack of variance for the four-point exclusion across all the different struc-
tures is also notable; this confirms our earlier hypothesis that the actual exclu-
sion power of the Hilbert mechanism is much less affected by the choice of
reference point, and certainly confirms that putting huge computational re-
sources into building expensive data structures may be far less worthwhile in
this context.

Finally, we note the best performance data structure considered here, the
log-sized hyperplane tree using the FFT algorithm to choose reference points.
Paradoxically, this is one of the simplest, and fastest, structures to construct.
It is likely that using a more sophisticated cluster-finding algorithm such as k-
means or k-medoids may perform a little better, although at much higher tree
build cost; given the rather small incremental improvement however of FFT over
random, we are not convinced that this would be worthwhile in many cases.

And as a last word: we note that the values of 1,704 distance measurements
per query achieved over the SISAP colors data set, and 171 measurements per
query over the nasa data set are, for the moment, new performance records
against this benchmark.

6. The Cost of Hilbert Exclusion

While it has been shown that Hilbert Exclusion performs better than Hy-
perbolic in run-time cost, there is an extra space cost involved as more infor-
mation is required: the distance between the reference points is required for the
query-time exclusion calculations, where it is not for the hyperbolic exclusion
calculation. It is thus important to assess the extra overhead in time and space.

In all cases, the choice of reference points is made during the building of
the index structure; therefore it is possible for the distances to be calculated at
build time and stored. Feasibly, they could instead be calculated at query time
if the storage overhead was relatively great compared with the extra query-time
cost; however here we show that it is not.

In the case of binary trees, the extra space overhead is a single distance value,
or 4 bytes7, per node. Even the leanest tree implementation will have a per-

7as the value is only used for additive arithmetic and is not critical for correctness, single
precision is sufficiently accurate

25

node space overhead much greater than this, although of course this depends on
the language and implementation tactics used. A modern JVM has a minimum
object overhead of 16 bytes, along with a further 32 bytes to store pointers
to two subtrees even before any other node information is considered, such as
object ids for the reference objects, cover radii, etc. Realistically the extra
overhead is likely to be much less than 10%; given the further invariant that
the number of internal tree nodes is less than one-half the number of data8,
and each data object is likely to be much bigger than a tree node, the space
overhead is minimal and unlikely to be significant in any realistic scenario.

For general hyperplane trees with more than two reference points the over-
head is potentially greater as all inter-reference point distances are required,
giving a theoretical O(n2) space cost. Pragmatically however the values of n
involved are fairly small; furthermore as we are dealing with proper distances we
only need store the upper triangular matrix, so the space overhead is

(

n

2

)

rather
than n2. For example, in [3] the authors observe that a DiSAT branching factor
of 4 gives optimal performance in some contexts; here we can replace the O(n2)
observation with a constant value of 6, i.e. 24 bytes per tree node. In the case
of a quadtree, the number of internal tree nodes will be less than approximately
a third of the data size, giving a maximum overhead of less than 8 bytes per
data object

Finally we consider the log-sized node strategy, where the number of refer-
ence points at each tree node is approximately the log of the volume of data
stored below the node. This leads to much bigger overhead at the root of the
tree; for example the root node of a tree for 1010 data objects has 23 reference
points, requiring 1KByte of overhead. However these trees are correspondingly
shallower, and the node size decreases rapidly as the tree extends downwards.
There is a recurrence relation to estimate the space overhead in bytes for a
balanced tree:

overhead(N) = 0, N ≤ 2

overhead(N) =

(

|p|

2

)

× 4 + |p| × overhead(N−|p|
|p|)

where |p| = ⌊logN⌋

When applied to any large size the overhead turns out to be only around one
byte per data object.

There is also clearly an extra run-time cost in construction, from the mea-
surement of extra distances. This is of much less concern; in any partition
strategy, for every node built, there is a requirement to measure the distances
between every data item below the level of that node against all of the refer-
ence points. Without further analysis it seems clear that the extra overhead of
measuring the distances among the nodes is relatively trivial.

Experimental evidence supports the notion that the extra overhead, in both

8for a monotone tree; less for other types

26

time and space, is insignificant, independent of the strategy used. We have
tried to detect significant differences in either construction time or space in the
large experiments described in Section 7, but in all cases the differences have
been hidden in the noise caused by the introduction of randomisation to the
construction process.

7. Spaces with Larger Scale and Higher Dimensionality

In this section we investigate extending the use of the supermetric property
to larger and higher-dimensional data sets. The purpose is to explore how
the behaviour of the mechanisms, which have been shown to give good results
over (relatively) small benchmark sets, alters with sets that are inherently more
difficult to index.

We perform three types of test to demonstrate these behaviours:

increasing dimensionality In these tests, we generate evenly-spaced points
within generated Euclidean spaces of increasing dimension and test Hy-
perbolic and Hilbert exclusion mechanisms for query performance. These
tests show the effect that increasing dimensionality has on the relative
performance; pragmatically we show that at the point where increasing
dimensionality starts to make search intractable, the use of Hilbert exclu-
sion gives an extra 2-3 dimensions for the same level of performance.

“real-world” high-dimensional data In these tests we use GIST represen-
tations of the MIR-Flickr [26] data set of one million images to perform a
near-duplicate search; these are large data comprising 480 floating-point
numbers, tested with various metrics. These tests show that the efficacy
of Hilbert exclusion does not seem to be affected by the choice of metric.

increasingly large data sets In these tests we use 80 dimensional MPEG-7
Edge Histogram data taken from the CoPhIR [27] images set . Tests are
made over increasingly large subsets (between 1 and 16 million images) to
show how the mechanisms scale as the data size increases.

7.1. Increasing Dimensions

For each dimension between 2 and 20 inclusive, evenly distributed Carte-
sian points were generated within the unit hypercube. For each dimension, a
Euclidean space of one million data points was generated, and one thousand
threshold queries were executed over each space. At each dimension a threshold
was selected with a radius calculated to give one-millionth of the volume of the
unit hypercube9.

9For dimension n, radius rn =
Γ(

n
2
+1)

π

n
2

, where Γ is Euler’s gamma function

27

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
ro

p
o

rt
io

n
 o

f
D

a
ta

 A
cc

e
ss

e
d

Dimension

Euclidean spaces of increasing dimension

hpt_random_log

hpt_fft_log

hpt_random_log - Hilbert

hpt_fft_log - Hilbert

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
ro

p
o

rt
io

n
 o

f
D

a
ta

 A
cc

e
ss

e
d

Dimension

Euclidean spaces of increasing dimension

hpt_random_log

hpt_fft_log

hpt_random_log - Hilbert

hpt_fft_log - Hilbert

Figure 16: The effect of increasing dimensions on the four HPT mechanisms. The right-hand
side is a magnified version of the left, allowing the very significant performance differences at
lower dimensions to be seen better.

After first confirming that the log-sized hyperplane partition tree is still the
most efficient index at all dimensions, measurements were made for four variants
to establish the added value of the Hilbert exclusion mechanism. Trees were
built using both random and FFT selection strategies for each node, and for
both of these variants, querying was performed with, and without, the Hilbert
exclusion mechanism. As previously noted, the same instance of the built data
structure can be used in either way, as long as the metric has the four-point
property. The figure recorded is the number of distance calculations required
per query over the data set; at each dimension, each experiment was repeated
until the standard error of the mean was less than 1%.

Figure 16 shows the outcomes. It can be seen that, across all dimensions,
the FFT variant is better than a random choice of reference points for either
exclusion mechanism, and more significantly for our purposes that the Hilbert
exclusion variant is substantially better than the Hyperbolic.

Most importantly perhaps is the observation that these two improvements
are almost orthogonal, and between around 8 and 12 dimensions the result is a

28

Metric IDIM Unit cost t1 t2 t3 t4 t5

Euclidean 14.3 0.0016 0.016 0.044 0.070 0.096 0.125

Cosine 15.5 0.0013 0.006 0.016 0.027 0.037 0.048

Jensen-Shannon 10.8 0.017 0.005 0.011 0.018 0.024 0.032

Triangular 12.1 0.0029 0.006 0.013 0.021 0.029 0.037

Table 4: GIST: IDIM, cost per distance measurement, and thresholds used

four-fold increase in performance.
The tree hpt fft log (FFT pivot selection) using the Hilbert exclusion

mechanism shows quite similar performance to the tree hpt random log (ran-
dom pivot selection) using the Hyperbolic exclusion mechanism; although sub-
ject to heuristics and uncertaintly, in our experiments the FFT-based choice
of reference points gives a build cost of around five times that of the hyper-
plane tree with randomly selected reference points, and indeed the latter is one
of the cheapest indexing mechanisms to build; if build time is an important
consideration, this could give the best compromise.

An alternative view of the results is to consider where the different lines
cross a given horizontal boundary in the chart. For example, if a particular
situation indicates that accessing no more than 2.5% of the data is required to
give sufficient performance, than this can be achieved with a data set whose
dimensionality is around 13 using FFT and Hilbert exclusion, whereas only
around 10 can be achieved, from the same indexing mechanism, without these.

7.2. MirFlickr/GIST and Near-Duplicate Detection

In these experiments we test a large data set for a real-world purpose, namely
the detection of near-duplicate images. In previous work we have shown the use
of the GIST characterisation gives the best tractable test for near-duplicate
image detection within large sets of images [28]; these tests are inherently ex-
pensive because of the data size, and efficient similarity search is important
to give tractability. Each GIST object10 comprises 480 dimensions of floating
point numbers, which using IEEE single-precision format gives an object size of
almost 2KBytes per object, i.e. just under 2GBytes per million images.

While the intrinsic dimensionality of these spaces is relatively high – around
10-15 depending on the metric – the required search thresholds are quite low,
therefore giving a nice example of spaces where metric search is particularly
appropriate for the task in hand.

We used the Mir-Flickr [26] set of one million images and generated GIST
representations. We have previously demonstrated the use of this collection as a
benchmark for near-duplicate image detection; the collection by chance contains

10using GIST parameters: 4 windows, 6 scales and 5 orientations per scale, taken from a
monochrome 255 × 255 image with no border

29

0%

1%

2%

3%

4%

5%

6%

7%

t1 t2 t3 t4 t5

P
ro

p
o

rt
io

n
 o

f
D

a
ta

 A
cc

e
ss

e
d

threshold

MirFlickr- GIST

euc - Hyperbolic

tri - Hyperbolic

jsd - Hyperbolic

cos - Hyperbolic

euc - Hilbert

tri - Hilbert

jsd - Hilbert

cos - Hilbert

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

t1 t2 t3 t4 t5

Im
p

ro
v

e
m

e
n

t

threshold

Improvement: Hilbert over Hyperbolic

euc

cos

jsd

tri

Figure 17: Four different metrics over GIST data at different thresholds, with and without
using Hilbert exclusion.

around 2,000 clusters of near-duplicate images which we have identified, allowing
both sensitivity and specificity to be accurately tested for different metrics and
thresholds [29]. The GIST representations can be used for this purpose with
any of Euclidean, Cosine, or Jensen-Shannon distances. A key aspect of such
classification functions with very large collections is their specificity, which must
be high to avoid very large numbers of false positives. All of these tests maintain
high specificity up to a sensitivity of around 50%; to test the efficiency gains
of the Hilbert Exclusion we therefore tested searches over the collection at five
different thresholds, representing for each metric sensitivity of 10% to 50%,
after which point a fast drop-off in specificity occurs. Table 4 gives, for each
metric, the intrinsic dimensionality, the mean cost per distance measurement in
milliseconds, and the thresholds used to search.

For each of the three metrics, the first 1,000 images were used as queries
against the remainder of the data. A log-sized hyperplane partition tree was
constructed, with reference points chosen using the FFT technique. These trees
were then tested with and without use of the Hilbert exclusion; in each test the
number of distance calculations and query time were noted. These were found

30

to be almost exactly directly proportional and so only the number of distance
calculations are presented, given as the mean proportion of the total data size
tested per query.

Figure 17 shows results from these experiments. It appears that the advan-
tage given by using the Hilbert exclusion mechanism is relatively independent
of the metric being considered. In all cases it is highly significant, giving a
performance improvement of 2.5 to 3 times for all metrics, even at the top end
of the thresholds tested.

7.3. Increasing Scale

In these experiments, we investigate how the advantages shown by the
Hilbert property are affected by the scale of the data. To measure this, we used
MPEG-7 Edge Histogram descriptors extracted from the CoPhIR [27] image
data set, using the first 80 dimensions of the raw data. We queried increasingly
large subsets of the data, ranging from one million to sixteen million images,
to test the scalability of the different search mechanisms. Results are reported
for Euclidean distance; we repeated the tests using other metrics and found no
interesting differences.

We sampled 109 randomly selected distances to measure IDIM and to choose
search thresholds; the IDIM of the data was measured as 7.5, and three thresh-
olds were selected to return 10−8, 10−7 and 10−6 of the data per query11; these
thresholds are small but this is appropriate as data becomes larger.

With relatively smaller threshold and larger data we did not make assump-
tions about which mechanisms of those tested earlier would perform best; we
tried them all, and report here the most interesting representative results. As
there is some anecdotal evidence that single-pivot strategies can be more ef-
fective that hyperplane partitions as thresholds decrease, we also included a
vantage point tree [30] in the tests. For each search structure, we performed
1,000 queries selected randomly from a different part of the set and measured
the number of distance calculations performed; we present these as a proportion
of the data access per query.

Figure 18 shows the outcomes. We present results for: log-sized hyperplane
trees, with Hilbert and Hyperbolic exclusion; monotone (binary, unbalanced)
hyperplane trees, again with Hilbert and Hyperbolic exclusion; a balanced van-
tage point tree, and a linear regression tree. Reference points for the log-sized
hyperplane trees are selected using FFT, and for the monotone binary trees by
simply selecting the furthest object from the inherited reference point.

For all mechanisms and thresholds, it can be seen that as the size of the
dataset increases, the proportion of data accessed decreases. The rate of this
decrease demonstrates scalability of the mechanism. The value of the Hilbert
exclusion is very marked, especially with the larger threshold values. It is inter-
esting to note that the vantage point tree performs very well with a very small
threshold, but is relatively much worse as the thresholds get larger. Although a

110.0196, 0.0834 and 0.1815 respectively

31

less marked effect, the log-sized hyperplane tree appears to scale slightly better
than the binary version. Finally, we note the best overall performance achieved
by the linear regression tree; this version is an early attempt at using the ex-
tra flexibility allowed by the stronger geometry of the supermetric space, and
demands further research.

8. Conclusions

We have presented a novel observation based on the four-point property
that is possessed by many useful distance metrics. We have shown how the
property that any four points from the original space may be embedded in ℓ32 as
a tetrahedron leads to further geometric guarantees, in particular we have shown
a lower-bound distance that can be calculated from knowledge of the sides of
two tetrahedral faces. We have shown a few examples of how metric indexes can
be constructed from this property, and have achieved new best performances for
Euclidean distance search over two of the SISAP benchmarks. Further we have
demonstrated that the advantages shown over the relatively small and tractable
benchmark sets extend to larger, less tractable spaces.

There are some new areas of investigation opened up by this work. Further
study of the use of different partition strategies used to fit the reference points
and data available at each node of an indexing structure should be worthwhile.
Given the supermetric properties, much more information is available during
tree construction than we have, so far, fully exploited. In particular, given
an analytic expression for the discarding rule, a term for the distance between
reference points, and various assumptions about the searching radius and the
distance of the query to the reference points it should be possible to maximise the
discarding power of the node. This would allow the construction of a controlled
balancing which will outperform any randomly unbalanced index structure. We
have not yet investigated the possibility of controlling the balance within n-ary
partition trees, or applying domain-specific partition strategies to them, which
seem to be the most promising avenues for achieving still better exact search
performance.

Finally, we are excited by the possibility of extending this work into higher
dimensions. In all but pathologically constructed cases, a space with the four-
point property also has the so-called n-point property: that is, any n+1 points
may be isometrically embedded in n-dimensional Euclidean space. We are cur-
rently investigating various geometric guarantees that can be determined in
arbitrarily high dimensions.

Acknowledgements

We would like to thank the anonymous referees for helpful comments on
an earlier version of this paper. We are particularly grateful to Dr. Fabrizio
Falchi for his help in accessing the CoPhIR data set. Richard Connor would
like to acknowledge support by the National Research Council of Italy (CNR)

32

0.000%

0.005%

0.010%

0.015%

0.020%

0.025%

1M 2M 4M 8M 16M

P
ro

p
o

rt
io

n
 o

f
D

a
ta

 A
cc

e
ss

e
d

Data size

CoPhIR- threshold 1

hpt_fft_log - Hyperbolic

hpt_fft_log - Hilbert

MonPT/Far refs - Hyperbolic

MonPT/Far refs - Hilbert

vpt

LRT

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

0.35%

0.40%

0.45%

1M 2M 4M 8M 16M

P
ro

p
o

rt
io

n
 o

f
D

a
ta

 A
cc

e
ss

e
d

Data size

CoPhIR- threshold 2

hpt_fft_log - Hyperbolic

hpt_fft_log - Hilbert

MonPT/Far refs - Hyperbolic

MonPT/Far refs - Hilbert

vpt

LRT

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

1M 2M 4M 8M 16M

P
ro

p
o

rt
io

n
 o

f
D

a
ta

 A
cc

e
ss

e
d

Data size

CoPhIR- threshold 3

hpt_fft_log - Hyperbolic

hpt_fft_log - Hilbert

MonPT/Far refs - Hyperbolic

MonPT/Far refs - Hilbert

vpt

LRT

Figure 18: Test over increasingly large subsets of CoPHIR images set. The proportion of
data access per query is reported for: log-sized hyperplane trees (hpt fft log), monotone
hyperplane trees (MonPT/Far refs), a vantage point tree (vpt) and our linear regression tree
(LRT).

33

for a Short-term Mobility Fellowship (STM) in June 2015, which funded a stay
at ISTI-CNR in Pisa during which this work was conceived. The work was
also partially funded by Smart News, “Social sensing for breaking news”, co-
funded by the Tuscany region under the FAR-FAS 2014 program, CUP CIPE
D58C15000270008.

References

[1] R. Connor, F. A. Cardillo, L. Vadicamo, F. Rabitti, Hilbert Exclu-
sion: Improved Metric Search Through Finite Isometric Embeddings,
ACM Transactions on Information Systems 35 (3) (2016) 17:1–17:27.
doi:10.1145/3001583.
URL http://doi.acm.org/10.1145/3001583

[2] R. Connor, L. Vadicamo, F. A. Cardillo, F. Rabitti, Supermetric Search
with the Four-Point Property, Springer International Publishing, Cham,
2016, pp. 51–64. doi:10.1007/978-3-319-46759-7 4.
URL http://dx.doi.org/10.1007/978-3-319-46759-7_4

[3] E. Chávez, V. Ludueña, N. Reyes, P. Roggero, Faster proximity search-
ing with the distal SAT, Information Systems 59 (2016) 15 – 47.
doi:http://dx.doi.org/10.1016/j.is.2015.10.014.

[4] K. Figueroa, G. Navarro, E. Chávez, Metric spaces library, Online
http://www. sisap. org.

[5] P. Zezula, G. Amato, V. Dohnal, M. Batko, Similarity search: the metric
space approach, Vol. 32 of Advances in Database Systems, Springer, 2006.

[6] E. Chávez, G. Navarro, Metric databases, in: L. C. Rivero, J. H. Doorn,
V. E. Ferraggine (Eds.), Encyclopedia of Database Technologies and Ap-
plications, Idea Group, 2005, pp. 366–371.

[7] E. Chávez, G. Navarro, R. Baeza-Yates, J. L. Marroqúın, Search-
ing in metric spaces, ACM Comput. Surv. 33 (3) (2001) 273–321.
doi:10.1145/502807.502808.
URL http://doi.acm.org/10.1145/502807.502808

[8] G. R. Hjaltason, H. Samet, Index-driven similarity search in metric spaces
(survey article), ACM Trans. Database Syst. 28 (4) (2003) 517–580.
doi:10.1145/958942.958948.
URL http://doi.acm.org/10.1145/958942.958948

[9] J. K. Uhlmann, Satisfying general proximity / similarity queries with
metric trees, Information Processing Letters 40 (4) (1991) 175 – 179.
doi:http://dx.doi.org/10.1016/0020-0190(91)90074-R.

[10] I. Kalantari, G. McDonald, A data structure and an algorithm for the
nearest point problem, IEEE Transactions on Software Engineering SE-
9 (5) (1983) 631–634. doi:10.1109/TSE.1983.235263.

34

[11] H. Noltemeier, K. Verbarg, C. Zirkelbach, Monotonous Bisector* Trees
— a tool for efficient partitioning of complex scenes of geometric ob-
jects, Springer Berlin Heidelberg, Berlin, Heidelberg, 1992, pp. 186–203.
doi:10.1007/3-540-55488-2 27.
URL http://dx.doi.org/10.1007/3-540-55488-2_27

[12] F. Dehne, H. Noltemeier, Voronoi trees and clustering problems, Informa-
tion Systems 12 (2) (1987) 171 – 175. doi:http://dx.doi.org/10.1016/0306-
4379(87)90041-X.
URL http://www.sciencedirect.com/science/article/pii/

030643798790041X

[13] D. Novak, M. Batko, P. Zezula, Metric index: An efficient and scalable
solution for precise and approximate similarity search, Information Sys-
tems 36 (4) (2011) 721 – 733, selected Papers from the 2nd Interna-
tional Workshop on Similarity Search and Applications {SISAP} 2009.
doi:http://dx.doi.org/10.1016/j.is.2010.10.002.

[14] G. Navarro, Searching in metric spaces by spatial approximation, The
VLDB Journal 11 (1) (2002) 28–46. doi:10.1007/s007780200060.

[15] G. Navarro, N. Reyes, String Processing and Information Retrieval: 9th
International Symposium, SPIRE 2002 Lisbon, Portugal, September 11–13,
2002 Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, Ch.
Fully Dynamic Spatial Approximation Trees, pp. 254–270. doi:10.1007/3-
540-45735-6 23.

[16] J. De Tilly, Essai de geometrie analytique generale, Memoires couronnes
et autresmemo ires publies par l’Academie Royale de Belgique, 47 (1892-
3),memoire 5.

[17] K. Menger, Untersuchungen ber allgemeine metrik, Mathematische An-
nalen 100 (1928) 75–163.
URL http://eudml.org/doc/159284

[18] L. M. Blumenthal, Theory and applications of distance geometry, Claren-
don Press, 1953.

[19] W. A. Wilson, A relation between metric and euclidean spaces, American
Journal of Mathematics 54 (3) (1932) 505–517.

[20] I. R. V. Pola, C. T. Jr., A. J. M. Traina, The nobh-tree: Improving in-
memory metric access methods by using metric hyperplanes with non-
overlapping nodes, Data & Knowledge Engineering 94, Part A (2014) 65 –
88. doi:http://dx.doi.org/10.1016/j.datak.2014.09.001.

[21] V. Mic, D. Novak, P. Zezula, Improving sketches for similarity search, in:
Proceedings of MEMICS 2015, 2015, pp. 45–57.

35

[22] I. J. Schoenberg, Metric spaces and completely monotone functions, Annals
of Mathematics 39 (4) (1938) 811–841.
URL http://www.jstor.org/stable/1968466

[23] S. Dasgupta, P. M. Long, Performance guarantees for hierarchical cluster-
ing, Journal of Computer and System Sciences 70 (4) (2005) 555 – 569, spe-
cial Issue on COLT 2002. doi:http://dx.doi.org/10.1016/j.jcss.2004.10.006.
URL http://www.sciencedirect.com/science/article/pii/

S0022000004001321

[24] T. F. Gonzalez, Clustering to minimize the maximum interclus-
ter distance, Theoretical Computer Science 38 (1985) 293 – 306.
doi:http://dx.doi.org/10.1016/0304-3975(85)90224-5.
URL http://www.sciencedirect.com/science/article/pii/

0304397585902245

[25] Nasa data set.
URL http://www.dimacs.rutgers.edu/Challenges/Sixth/software.

html#imagevectors

[26] M. J. Huiskes, M. S. Lew, The mir flickr retrieval evaluation, in: MIR
’08: Proceedings of the 2008 ACM International Conference on Multimedia
Information Retrieval, ACM, New York, NY, USA, 2008.

[27] P. Bolettieri, A. Esuli, F. Falchi, C. Lucchese, R. Perego, T. Piccioli, F. Ra-
bitti, CoPhIR: a test collection for content-based image retrieval, CoRR
abs/0905.4627v2.
URL http://cophir.isti.cnr.it

[28] R. Connor, F. A. Cardillo, Quantifying the specificity of near-duplicate
image classification functions, in: 11th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Applica-
tions, 2016.

[29] R. Connor, F. Cardillo, S. MacKenzie-Leigh, R. Moss, Identification of
mir-flickr near-duplicate images, in: 10th International Conference on Com-
puter Vision Theory and Applications, 2015.

[30] P. N. Yianilos, Data structures and algorithms for nearest neighbor search
in general metric spaces, in: Proceedings of the fourth annual ACM-SIAM
Symposium on Discrete algorithms, SODA ’93, Society for Industrial and
Applied Mathematics, 1993, pp. 311–321.

36

