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ABSTRACT
Big Data architectures allow to flexibly store and process
heterogeneous data, from multiple sources, in its original
format. The structure of those data, commonly supplied by
means of REST APIs, is continuously evolving, forcing data
analysts using it need to adapt their analytical processes
after each release. This gets more challenging when aiming
to perform an integrated or historical analysis of multiple
sources. To cope with such complexity, in this paper we
present the Big Data Integration ontology, the core construct
for a data governance protocol that systematically annotates
and integrates data from multiple sources in its original
format. To cope with syntactic evolution in the sources,
we present an algorithm that semi-automatically adapts the
ontology upon new releases. A functional evaluation on real-
world APIs is performed in order to validate our approach.

CCS Concepts
•Information systems→Mediators and data integra-
tion; Stream management; •Software and its engi-
neering → Software evolution;

Keywords
Modeling, Semi-Structured Data, Evolution, Stream Data,
Semantic Web

1. INTRODUCTION
Big Data ecosystems enable organizations to evolve their

decision making processes from classic stationary data anal-
ysis [2] (e.g., transactional) to include situational data [12]
(e.g., social networks). Situational data are commonly ob-
tained in the form of data streams supplied by third party
data providers (e.g., Twitter or Facebook), by means of web
services (or APIs). Those APIs offer a part of their data
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ecosystem at a certain price allowing external data analysts
to enrich their data pipelines with them. With the rise of the
RESTful architectural style for web services [17], providers
have flexible mechanisms to share such data, usually semi-
structured (i.e., JSON), over web protocols (e.g., HTTP).
However, such flexibility can be often a drawback for the
analysts on the other side. As opposite to other protocols
offering machine-readable contracts for the structure of the
provided data (e.g., SOAP), web services using REST do
not publish such information. Hence, analysts need to go
over the tedious task of carefully studying the documentation
and adapting their tools to the particular schema provided.
Besides the aforementioned complexity imposed by REST
APIs, there is a second challenge for data analysts. Data
providers are constantly evolving such endpoints1,2, hence
analysts need to continuously adapt the dependent tools to
such changes.

Providing an integrated view over such evolving and het-
erogeneous set of data sources is a challenging problem which
current Big Data technologies fail to address [1]. Take for
instance the λ-architecture [13], the most widespread frame-
work for Big Data systems. By dividing the processing
pipeline into the Speed and Batch layers, it enables to per-
form both real-time and historical data analysis. Even though
it enables to easily ingest, store and process situational data,
it lacks a component providing an integrated global view or
schema. To this end, in this paper we present an approach
that, in the context of a λ-architecture, enables data ana-
lysts to (a) integrate situational data coming from external
providers, as well as (b) smoothly facilitate the co-evolution
of data and analytical processes preserving backward com-
patibility. Following the many “V’s” Big Data definition, the
former concerns Variety while the latter concerns Variability.

Case Study.
As an exemplar use case take the H2020 SUPERSEDE

project3, which we will use as our reference example through-
out the paper. It aims to support decision-making in the
evolution and adaptation of software services and applica-
tions by exploiting monitored end-user feedback and runtime
data, with the overall goal of improving end-users’ quality
of experience (QoE). For the sake of this case study, we

1https://dev.twitter.com/ads/overview/recent-changes
2https://developers.facebook.com/docs/apps/changelog
3https://www.supersede.eu
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narrow the scope to monitored data related to video on de-
mand (VoD) and textual feedback from social networks (e.g.,
Twitter) in JSON format, as exemplified in Code 1.

{
" VoDmonitorId ": 12,
" timestamp ": 1475010424,
" bitrate ": 6,
" rebufferingTimes ": 2,
" lagRatio ": 75

}

{
" feedbackGatheringId ": 25,
"lang": "en",
" tweet ": "I continuosly see the loading symbol ",
" created_at ": 1475010415,
" hashtags ": ["# videoPlayer "],
"user": {

" id_str ": 12,
" screen_name ": "John"

}
}

Code 1: Sample events for VoD and Twitter
feedback monitors respectively

Assume that data analysts use a complex QoE metric
from the integrated analysis over VoD and Twitter monitors.
VoD monitors use lagRatio as a measure for the quality of
service, measuring the percentage of time a user is waiting
for a video. Second, we can quantify the satisfaction of a user
by extracting the sentiment from the tweet s/he has issued.
Hence, we defineQoE = (1−lagRatio/100)·sentiment(text)
yielding a bounded value between 0 and 1. For instance, the
tweet in Code 1 has a positive sentiment of 0.64, however
with the integrated analysis and a lag ratio of 75% we would
obtain a QoE score of 0.15, indicating a quality decrease.
Coming to the essence of our contribution, which involves

the management of evolution, assume now that Twitter
Search API5 upgrades from version 1.0 to 1.1. Even if Twitter
issues an announcement beforehand, and even if our feedback
monitor is adapted to the new version (e.g., renaming the
tweet attribute to text), still, all data analysts performing
integrated QoE analysis will see their processes crash as they
are not syntactically valid anymore, with the hassle of fixing
them to conform the new schema.

Given this setting, the problem is how to aid the data ana-
lyst in the presence of schema changes by (a) understanding
what parts of the data structure change and (b) adapting her
code to this change.

The problem is not straightforwardly addressable, despite
the valiant efforts of the research community. Previous work
on schema evolution has focused on software obtaining data
from relational views [11, 21]. Such approaches rely on the
capacity to veto changes affecting consumer applications.
Those techniques are not valid in our setting given the lack
of explicit schema information, as well as the impossibility
to prevent changes from third party data providers.
So, to address the problem, we introduce the Big Data

Integration ontology that (a) enables the isolation of analyti-
cal queries and applications from the technological details
imposed by the sources and (b) accommodates syntactic
evolution from the sources. The introduced ontology builds

4As measured by NLTK Text Classification (http://
text-processing.com/demo/sentiment)

5https://dev.twitter.com/rest/reference/get/search/
tweets

upon known ideas from ontology-based data access (OBDA)
research [19], and includes two layers in order to provide
analysts with an integrated and format-agnostic view of the
sources. We exploit this structure to handle the evolution of
source schema via semi-automated transformations on the
ontology upon service releases. Our approach is based on
well known Semantic Web technologies, specifically RDF,
which contrary to other schema definition languages (e.g.,
XSD) enable (a) reutilization of existing vocabularies, (b)
self-description of data, and (c) publishing such data on the
web [3]. Our contributions can be summarized as follows:

• We introduce a structured ontology, discussed in Sec-
tion 2, that allows to model and integrate situational
data from multiple data providers. As an add-on, we
take advantage of RDF’s nature to provide semantics
by means of Linked Data.

• We present a method that handles schema evolution
on the sources, see Section 3. In practice, we flexibly
accommodate source changes by only applying changes
to the ontology dismissing the need to change the ana-
lytical processes logic.

• We assess our method by performing a functional eval-
uation w.r.t. the results of RESTful API evolution
studies. The evaluation discussed in Section 4 reveals
that our approach is capable of semi-automatically
accomodating all structural changes concerning data
ingestion, which on average makes up 71.62% of the
changes occurring on widely used APIs.

Our discussion is complemented by reviewing related work
in Section 5 and open issues for future work in Section 6.

2. BIG DATA INTEGRATION ONTOLOGY
In this section, we present the Big Data Integration ontol-

ogy (BDI), the metadata artifact enabling to systematically
govern the data ingestion and analysis process. Its goal
is to model and integrate, in a machine-readable format,
semi-structured data while preserving data independence
regardless of the source formats or schema. To this end, it
is divided into two levels linked to each other by means of
mappings. The global level provides a unified schema for
querying as well as relevant metadata about the attributes,
while the source level deals with the physical details of each
data source.

2.1 Preliminaries
In this work, we present the BDI ontology as an instan-

tiation of the theoretical data integration (DI) framework
by Lenzerini [9]. Shortly, a DI system I is formalized as
a triple 〈G,S,M〉, which respectively represent the global
schema, the source schema and the mappings. S describes
the structure of the sources, while G provides an integrated
view on which queries will be posed. This is achieved through
M, a set of assertions qG ; qS or qS ; qG , being qG and qS
queries over G and S, respectively. The mappings follow the
local as view (LAV) approach when for each element s of S,
assertions are of the form s ; qG . Conversely, they follow
the global as view (GAV) approach when for each element g
of G, assertions are of the form g ; qS .
A BDI ontology O is defined as a 3-tuple 〈G,S,M〉 of

RDF graphs. The rationale behind the BDI ontology is
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to provide a metadata model to systematically annotate
ingested situational data (i.e., events) from the sources (i.e.,
by means of S), while allowing data analysts to query a
static integrated schema that creates an abstraction layer of
the underlying physical details (i.e., by means of G). The
key aspect is that it allows ingesting and storing data in its
original source format, given that S is an accurate abstraction
of the events, and relies on query rewriting techniques (i.e.,
by means ofM) to translate the queries to the corresponding
format. All this is possible, thanks to the extensibility of
RDF which enables to enrich G and S with the necessary
metadata such as constraints, data types or data formats.
Our approach (see Figure 1) introduces the figure of data

steward as an analogy to the database administrator in tra-
ditional relational settings. Aided by semi-automatic tech-
niques, s/he is responsible for (a) incorporating to S the
triple-based representation of the schema of newly incoming
events (Ei) produced by APIs, and (b) make such data avail-
able for data analysts to query (Qi) by creating mappings
from S to G. In the following sections we elaborate on each
level that compose O presenting their metadata model, as
well as their mapping to the case study.

Figure 1: High-level overview of our approach

2.2 Global Level
The global level G reflects the main domain concepts,

relationships among them and features of analysis (i.e., maps
to the role of a UML diagram in a machine-readable format).
Its purpose is similar to the global schema in I, and its
elements are defined in terms of the vocabulary users will use
when posing queries. The metadata model for G distinguishes
concepts from features. Concepts can be linked by means
of domain-specific object properties with rdfs:domain and
rdfs:range. The link between a concept and its set of
features is achieved via G:hasFeature. Additionally, we
enrich such constructs with new semantics to aid the data
management and analysis phases. In this paper, we narrow
the scope to two properties widely used in data integrity
management, namely integrity constraints and data types for
features. Such information can help to an easier development
of the processing logic by assuring data consistency.
Code 2 provides the triples that compose G in Turtle RDF

notation6. It contains the main metaclasses (using prefix
G7 as main namespace) which all features of analysis will
instantiate. Concepts and features can reuse existing vocab-
ularies by following the principles of the Linked Data (LD)
initiative. Additionally, we include elements for integrity
constraints and data types on features, respectively linked
using G:hasConstraint and G:hasDatatype. Following the
same LD philosophy, we reuse the rdfs:Datatype vocabu-

6https://www.w3.org/TR/turtle
7http://www.BDIOntology.com/global

lary to instantiate data types. With such design, we favor
the elements of G to be of any of the available types in XML
Schema (prefix xsd8). Finally, note that here we focus on
non-complex data types, however our model can be easily
extended to include complex types [6].
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix G: <http://www.BDIOntology.com/global/> .
<http://www.BDIOntology.com/global/> rdf:type owl:Ontology .

G:hasFeature rdf:type owl:AnnotationProperty .
G:hasConstraint rdf:type owl:AnnotationProperty .
G:hasDatatype rdf:type owl:AnnotationProperty .

G:IntegrityConstraint rdf:type owl:Class .
G:Feature rdf:type owl:Class ;

G:hasConstraint G:IntegrityConstraint ;
G:hasDatatype rdfs:Datatype .

G:Concept rdf:type owl:Class ;
G:hasFeature G:Feature .

Code 2: Metadata model for G in Turtle notation

Case Study.
Figure 2 depicts the instantiation of G in SUPERSEDE.

The color of the elements depicts instances of the data model
to the metadata model (i.e., rdf:type links). When possible
vocabularies are reused, namely https://www.w3.org/TR/
vocab-duv/ (prefix duv) for feedback elements as well as
http://dublincore.org/documents/dcmi-terms/ (prefix dct)
or http://schema.org/ (prefix sc). However, when no vo-
cabulary is available we define the custom SUPERSEDE
vocabulary (prefix sup). Regarding integrity constraints,
we provide three instantiations: sup:CurrentTimeIfEmpty
specifying a default value of the current date in the case of
missing value; sup:NotNull ensuring that the linked features
will always have a value and sup:Length-140 guaranteeing
that the length of the tweet is no longer than 140 characters.

2.3 Source Level
The source level S has the same purpose as the source

schema in I, to model the data ingested from the sources. By
maintaining certain properties describing the source format
we allow the modeling of semi-structured data. Code 3 de-
picts the metadata model for S in Turtle RDF notation (using
prefix S9 as main namespace). As done for other modeling
languages [15], we define the concept S:Event which models
different ingested types of event (e.g., a JSON document),
one for each API. To support historical analysis of stored
data, as well as API evolution, events can produce different
schema versions which in turn consist of, possibly shared,
sets of attributes. In the context of this paper, we focus on
the ingestion of JSON data, hence we define the concepts
S:EmbeddedObject, S:Array and S:Attribute with their re-
spective links. In addition, schema versions are enriched with
the physical format of the data source, leveraging on class
dcat:mediaType. Such class, as part of the Data Catalog
Vocabulary10, offers a wide range of data formats11 aiding
in the definition of the specific parsing mechanism.

8http://www.w3.org/2001/XMLSchema
9http://www.BDIOntology.com/source

10https://www.w3.org/TR/vocab-dcat
11https://www.iana.org/assignments/media-types/

media-types.xhtml
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Figure 2: Instantiation of G for the SUPERSEDE case study

@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix dct: <http://purl.org/dc/terms/> .
@prefix dcat: <http://www.w3.org/ns/dcat#> .
@prefix S: <http://www.BDIOntology.com/source/> .
<http://www.BDIOntology.com/source/> rdf:type owl:Ontology .

dct:format rdf:type owl:AnnotationProperty .
S:hasAttribute rdf:type owl:AnnotationProperty .
S:hasArray rdf:type owl:AnnotationProperty .
S:hasEmbeddedObject rdf:type owl:AnnotationProperty .

S:Attribute rdf:type owl:Class .
S:EmbeddedObject rdf:type owl:Class ;

S:hasEmbeddedObject S:EmbeddedObject ;
S:hasArray S:Array ;
S:hasAttribute S:Attribute .

S:Array rdf:type owl:Class ;
S:hasEmbeddedObject S:EmbeddedObject ;
S:hasArray S:Array ;
S:hasAttribute S:Attribute .

S:SchemaVersion rdf:type owl:Class ;
dct:format dcat:mediaType ;
S:hasEmbeddedObject S:EmbeddedObject ;
S:hasArray S:Array ;
S:hasAttribute S:Attribute .

S:Event rdf:type owl:Class ;
S:produces S:SchemaVersion .

Code 3: Metadata model for S in Turtle notation

As S is an accurate representation of the event’s structure,
we can leverage on schema languages, such as JSON Schema
[18], for its automatic construction. However, this is not
always available, thus in this paper we advocate for the
automatic construction of S on the basis of a reference sample
dataset (i.e., a JSON document). Algorithm 1 depicts the
recursive process of generating the triples describing such
schema. Its inputs are the source level to populate, the
sample dataset and the parent’s IRI. An IRI is a unique string
identifier of an element of the ontology that is expressed as
an absolute path from the root of the ontology to the element

on hand. Such last parameter is used to isolate attributes
from different events within the same namespace. In the
first iteration, the parent element is the event’s IRI, and in
successive recursive calls are the JSON keys for arrays or
embedded objects. For instance, the id_str key from Code
1 will be stored with the IRI sup:Twitter/user/id_str.

Algorithm 1 Extract JSON Recursively
Pre: S is the source level, J is the sample JSON dataset

and parent the parent’s node IRI in S
Post: S contains the triples representing the structure of

the contents of J as children of parent
1: function ExtractRec(S, J, parent)
2: for each (k, v) ∈ J do
3: IRI = parent+"/"+k
4: S ∪= 〈IRI, "rdf:type",getClass(J, k)〉
5: S ∪= 〈parent,getLink(J, k), IRI〉
6: if getClass(J, k) = JSONObject.class then
7: extractRec(S, J(k), IRI)
8: else if getClass(J, k) = JSONArray.class then
9: extractRec(S, J(k)[0], IRI)
10: end if
11: end for
12: return S
13: end function

Algorithm 1 makes use of the auxiliary functions getClass
and getLink. The purpose of the former is to return the
specific URIs for the JSON key on hand (S:EmbeddedObject,
S:Array or S:Attribute). Likewise, the purpose of the lat-
ter is to return the respective edge (S:hasEmbeddedObject,
S:hasArray or S:hasAttribute). Finally, note that we as-
sume arrays with uniform structures, thus when exploring
the elements of an array it is only necessary to check the first
one (see line 9). In Section 3.2 we further elaborate on the
fully automated construction of S for a new version release.



Figure 3: Instantiation of S for the SUPERSEDE case study

Case Study.
Figure 3 shows the instantiation of S in SUPERSEDE.

The two sources produce the events in Code 1. Elements
in S have been obtained using Algorithm 1, invoking it as
ExtractRec(∅, {...}, "sup:Twitter_API_Monitor") for the
Twitter monitor, and similarly for the VoD. We simplify IRIs
as V and T , respectively for VoD and Twitter monitors.

2.4 Mappings
In this subsection, we discuss how the mappings link the

different levels composing O. Our approach uses two types
of mappings, those linking JSON events with their triple-
based schema representation, and those linking the global
and source levels. On one hand, the former are implicitely
linked by the JSON keys and the IRIs, as constructed by
Algorithm 1, and thus we have an accurate one-to-one map-
ping. On the other hand, the latter consists of the triplets
present in M. In order to obtain clean semantics for the
mappings, we limit them to be in the form tS ; tG (i.e.,
triples 〈tS , S:mapsTo, tG〉), this allows to better accommo-
date source evolution. Note we restrict that each source
element will have a mapping to exactly one global element in
order to simplify the query rewriting process to unfolding [8].
To forestall any possible criticism, we would like to clarify
that constraining source elements to map to exactly one
global element is not overrestrictive or oversimiplistic, but
rather it provides clean semantics for our sources. What
would be problematic would be the inverse (constraining
global elements to single providers), but, as we show in the
following subsection, there is no such problem. With such
final construct, we can depict the complete metadata model
for O in Figure 4.

2.5 Querying Via the Ontology
As previously mentioned, queries will be issued to the

elements of G and rewritten (unfolding the mappings) to the
JSON events in a two-phase manner. Firstly, by issuing a
SPARQL query toM, elements in S that are associated to

Figure 4: Complete metadata model for O

the elements of G in the user query are devised. Note that
the SPARQL query is traversing a single path, and hence
has low complexity. Note that this first phase may require
the data analyst to resolve potential ambiguities. This is
due to the fact that a global feature may have many source
attributes from different events (see sc:Time in Figure 5).
The second phase consists of translating the query to an
specific programming language to parse the source format of
the event on hand (annotated with dcat:mediaType). Map-
pings between S and the events are depicted in the IRI
of attributes, yielding accurate one-to-one transformations.
Many proposals exist for ontology-based querying such as
Ontop [4], an OBDA system providing access to relational
databases through a domain ontology.

Case Study.
Figure 5 depicts the complete instantiation for O in SU-

PERSEDE. To ensure readability, internal classes are omit-
ted and only the core ones are shown. In SUPERSEDE,



Figure 5: Instantiation of O for the SUPERSEDE case study

monitors push data to Apache Kafka, a distributed mes-
sage queue that distinguishes incoming streams using top-
ics. A stream is assigned a topic for each combination
〈Event, SchemaV ersion〉. In Figure 6 we depict the QoE
integrated analysis (in the form of an SQL-like query) and
the unfolding to resolve it using the BDI ontology.

SELECT AVG((1-V.sup:LagRatio/100) *
sentiment(UF.dct:description))

FROM sup:VoDEvent V, duv:UserFeedback UF
WHERE V.sc:Time = today() && UF.sc:Time = today()

G M // S JSONParser // JSON

sup:LagRatio // sup:lagRatio // VoDStream("lagRatio")

sup:tweet // UFStream("tweet")

dct:description

00

sup:timestamp // VoDStream("timestamp")

sc:Time

33

// sup:created_at // UFStream("createdAt")

Figure 6: Example of SQL-like query and its 2-phase
unfolding process

3. HANDLING EVOLUTION
In this section, we present how the BDI ontology accomo-

dates evolution of situational data. Chapin et al. distinguish
between three main areas in software evolution: code, soft-
ware and customer-experienced functionality [5]. Specific
studies REST API evolution [10, 24] have concluded that

most of such changes occur in the code, and thus in the struc-
ture of incoming events. Our goal is to semi-automatically
adapt the BDI ontology to such evolution. To this end, in
the following subsections we present an algorithm to aid the
data steward to enrich the ontology upon new releases.

3.1 Releases
In Section 2.1, we discussed the role of the data steward as

the unique maintainer of the BDI ontology in order to make
data management tasks transparent to data analysts. Now,
the goal is to shield such analytical processes, implemented
on top of G, so that they do not crash upon new API version
releases. In other words, we need to adapt S to such schema
evolution in the events, so that G is not affected. To this end,
we introduce the notion of release, the construct indicating
which elements from the new event (Evt) will be used for
analysis and how do they link the global level. Formally, a
release R is defined as a 3-tuple 〈J,G, θ〉, where: J ⊂ Evt is
the set of source schema elements made available for analysis,
G ⊂ G is the set of global elements from O related to the
new release, and θ = J 7→ G is a bijective function mapping
the JSON elements with those in the global level.
R must be created by the data steward upon new releases.

Several approaches can aid this process, such as paris [22]
which uses probabilistic methods to align and match RDF
ontologies. In the following subsection, we discuss how R
serves as input to the algorithm that will automatically adapt
O, ensuring the correct functioning of queries.

Case Study.
For the case of Twitter feedback monitors, the release

R would be depicted as J = {created_at, lang, tweet,
hashtagText, id_str, feedbackGatheringId, screen_name},



G = {sc:Time, sc:Language, sc:name, dct:description,
sc:propertyID} and θ = { lang 7→ sc:Language, created_at
7→ sc:Time, feedbackGatheringId 7→ sc:propertyID, tweet
7→ dct:description }.

3.2 Release-based Ontology Evolution
As mentioned above, changes in the event’s elements re-

quire reacting in order to avoid queries to crash. Furthermore,
the ultimate goal is to provide such adaptation in an auto-
mated way dismissing the need of the developer’s interaction.
To this end, Algorithm 2 applies the necessary changes to
adapt the BDI ontology O w.r.t a new release R. It starts
registering the event endpoint, in case it is new (line 4), and
the new schema version to further link them (lines 7 and
8). Then, the JSON (R(J)) is used to create a triple-based
representation of its schema (calling Algorithm 1, in line 10).
With such, it is possible to iterate on its elements and check
their existence in the current source level O(S). Given the
way IRIs for attributes are constructed in Algorithm 1, we
can ensure that only attributes from the same event will be
reused within subsequent versions. This helps to maintain
a low growing rate of O(S), as well as avoiding potential
semantic differences that would cause mappings to different
global elements. Finally, by iterating on the partial function
(R(θ)) the mappings to the global level are generated (line
19). Note, the usage of the auxiliary method findIRI in line
17. Given a textual JSON key, it returns its fully qualified
IRI in the source level.

Algorithm 2 Adapt to Release
Pre: O BDI ontology, R new release, Evt event and V new

version
Post: O is adapted w.r.t R
1: function NewRelease(O, R, Evt, V )
2: Evturi = "S:Event/"+Evt
3: if Evturi /∈ O(S) then
4: O(S) ∪= 〈Evturi, "rdf:type", "S:Event"〉
5: end if
6: Vuri = "S:SchemaVersion/"+V
7: O(S) ∪= 〈Vuri, "rdf:type", "S:SchemaVersion"〉
8: O(S) ∪= 〈Evturi, "S:produces", Vuri〉
9: O(S) ∪= 〈Vuri, "dct:format", "dcat:appl/json"〉
10: Snew = extractRec(O(S), R(J), Vuri)
11: for each s ∈ Snew do
12: if s /∈ O(S) then
13: O(S) ∪= s
14: end if
15: end for
16: for each (j, g) ∈ R(θ) do
17: jiri = findIRI(j,Snew)
18: giri = "G:Feature/"+g
19: O(M) ∪= 〈jiri, "M:mapsTo", giri〉
20: end for
21: end function

Case Study.
Let us assume that the Twitter feedback monitor releases

a new simplified version of the schema in XML format (see
the sample XML event in Code 4).
The new release R can be depicted as J = {created_at,

locale, tweetText, feedbackGatheringId}, G = {sc:Time,
sc:Language, sc:name, dct:description, sc:propertyID},

θ = { locale 7→ sc:Language, created_at 7→ sc:Time,
tweetText 7→ dct:description, feedbackGatheringId 7→
sc:propertyID }. Figure 7 depicts the resulting BDI ontol-
ogy O after running Algorithm 2 with such input. In the
bottom left, we depict the old source level, while in the bot-
tom right the evolved one. In the top, we depict the global
level, which is not changed. Elements with the same color
depict edges of type S:mapsTo from the source to the global
level. Finally, for readability, URIs have been simplified and
do not strictly adhere to those generated in Algorithm 2.

<Twitter_API_Monitor_Simple>
<feedbackGatheringId>28</feedbackGatheringId>
<locale>en</locale>
<tweetText>I no longer see the loading symbol</tweetText>
<created_at>1475010425</created_at>

</Twitter_API_Monitor_Simple>

Code 4: XML event for the new Twitter version

4. EVALUATION
In this section, we present the evaluation results on our

approach. We provide a functional evaluation on evolution
management and discuss performance issues.

4.1 Functional Evaluation
In order to evaluate the functionalities provided by the

BDI ontology, we take the most recent study on structural
evolution patterns in REST API [24]. Such work distin-
guishes changes at 3 different levels, those in (a) API-level,
(b) method-level and (c) parameter-level. Our goal is to
demostrate that our approach can semi-automatically ac-
commodate such changes. To this end, it is necessary to
make a distinction between those changes occurring in the
data requests and those in the response. Throughout the
paper, we assumed the existence of a set of monitoring tools,
from now on we refer to them as monitors, in charge of
bridging the communication between the API providers and
the Big Data architecture [16]. Besides pulling data from
the API endpoints, they also enrich the response with addi-
tional information (e.g., the feedbackGatheringId attribute
in SUPERSEDE). All functionalities related to fetch data
from the API provider (e.g., authentication or HTTP query
parametrization) are delegated to them. With this in mind,
we provide the list of changes per level and indicate the com-
ponent responsible of it (i.e., either Monitor or BDI Ont.).
For those functionalities managed by the BDI ontology we
later discuss their specific rationale.

API-level Changes.
Those changes concern the whole of an API and it can

be observed either because a new endpoint is incorporated
(e.g., a new social network in the SUPERSEDE use case)
or to update all methods concerning one provider. Table 1
depicts the API-level change breakdown and the component
responsible to handle it.
Adding or changing a response format at API level consists

of, for each event from such provider, registering a new
release with this format. Regarding the deletion of a response
format, it does not require any action, due to the fact that
no further data on such format will arrive. However, in order
to preserve historic backwards compatibility, no elements
should be removed from O.



Figure 7: Old and evolved S for the SUPERSEDE case study, G does not change

API-level Change Monitor BDI Ont.
Add authentication model 3

Change resource URL 3

Change authentication model 3

Change rate limit 3

Delete response format 3

Add response format 3

Change response format 3

Table 1: API-level changes dealt by monitors or BDI
ontology

Method-level Changes.
Those changes concern modifications on the current version

of an operation. They occur either because a new functional-
ity is released or because existing functionalities are modified.
Table 2 summarizes the method-level change breakdown and
the component responsible to handle it.

Method-level Change Monitor BDI Ont.
Add error code 3

Change rate limit 3

Change authentication model 3

Change domain URL 3

Add method 3 3

Delete method 3 3

Change method name 3 3

Change response format 3

Table 2: Method-level changes dealt by monitors or
BDI ontology

Those changes have more overlapping with the monitors
due to the fact that new methods require changes in both
request and response. In the context of the BDI ontology,
each method is an instance of S:Event and thus, adding a
new one consists on declaring a new release and running Al-
gorithm 2. Renaming a method requires renaming the Event

instance. As before, a removal does not entail any action
with the goal of preserving backwards historic compatibility.

Parameter-level Changes.
Such changes are those concerning schema evolution and

are the most common on new API releases. Table 3 depicts
such changes and the component in charge of handling it.

Parameter-level Change Monitor BDI Ont.
Change rate limit 3

Change require type 3

Add parameter 3 3

Delete parameter 3 3

Rename response parameter 3

Change format or type 3

Table 3: Parameter-level changes dealt by monitors
or BDI ontology

Similarly to the previous level, some parameter-level changes
are managed by both monitors and the ontology. This is
caused by the ambiguity of the change statements, and hence
we might consider both URL query parameters and JSON
response parameters. Changing format of a parameter has
a different meaning as before, and here entails a change of
data type or structure. Any of the parameter-level changes
identified can be automatically handled by the same process
of creating a new release for the event on hand. Specifically,
the changes will be depicted in the release dataset R(J).

4.2 Industrial Applicability
After functionally validating that the BDI ontology can

handle all types of API evolution, next we aim to study how
these frequent changes occur in real-world APIs. For this
purpose we study the results from [10], a similar study as the
one in the previous subsection. In a nutshell, [10] presents 16
change patterns that frequently occur in the evolution of 5
widely used APIs. With such information, we can show the
number of API changes per API that could be accommodated



API Owner
#Changes
Monitor

#Changes
Ontology

#Changes
Monitor&Ontology

Partially
Accommodates

Fully
Accommodates

Google Calendar 0 24 23 48.94% 51.06%
Google Gadgets 2 6 30 78.95% 15.79%
Amazon MWS 22 36 14 19.44% 50%
Twitter API 27 0 25 48.08% 0%
Sina Weibo 35 3 56 59.57% 3.19%

Table 4: Number of changes per API and percentage of partially and fully accommodated changes by O

by the BDI ontology. We summarize the results in Table
4. As before, we distinguish between changes concerning
(a) the monitors, (b) the ontology and (c) both monitors
and ontology. This enables us to measure the percentage of
changes per API that can be partially accommodated by the
ontology (changes also concerning the monitors) and those
fully accommodated (changes only concerning the ontology).
Our results depict that for all studied APIs, the BDI

ontology could, on average, partially accommodate 48.84%
of changes and fully accommodate 22.77% of changes. In
other words, our semi-automatic approach enables to tackle
on average 71.62% of changes.

4.3 Performance Evaluation
In this final evaluation we are concerned with performance-

wise aspects of using the ontology. Particularly, we will study
its temporal growth w.r.t. the releases of a real-world API,
namely Wordpress REST API12. This analysis is of special
interest, considering that the size of the ontology may have
a direct impact on the cost of querying and maintaining it.

Methodology.
As a measure of growth, we count the number of triples in
S after each new release, as it is the most prone to changes.
Given the high complexity of such APIs we focus on a specific
method and study its structural changes, namely the GET
Posts API. By studying the changelog, we start from the
currently deprecated version 1 evolving it to the next major
version release 2. We further introduce 13 minor releases of
version 2. (the details of the analysis can be found in [14]).

Results.
The barcharts in Figure 8 depict the number of triples

added to S per version release. As version 1 is the first
occurrence of such endpoint, all elements must be added and
thus carries a big overhead. Version 2 is a major release
where few elements can be reused. Later, minor releases do
not have many schema changes, with few additions, deletions
or renames. Thus, the largest batch of triples per minor
release are edges of type S:hasAttribute. Each new version
needs to identify which attributes it provides even though
no change has been applied to it w.r.t. previous versions.
With such analysis we conclude that major version changes

entail a steep growth, however that is infrequent in the stud-
ied API. On the other hand, minor versions occur frequently
but the growth in terms of triples has a steady linear growth.
The red line depicts the cummulative number of triples af-
ter each release. For a practically stable amount of minor
release versions we obtain a linear, stable growth in S. This
guarantees that querying O for unfolding will not impose a

12https://wordpress.org/plugins/rest-api

big overhead, ensuring a good performance of our approach
across time. Nonetheless, other optimization techniques (e.g.,
caching) can be used to further reduce the query cost.

5. RELATED WORK
As we discussed in Section 1, in this paper we are concerned

with challenges related to Variety and Variability in Big Data
ecosystems. Thus, in this section we independently study
the related work for such research lines.

Governance of Big Data Ecosystems.
Lots of efforts are nowadays being put by the research com-

munity on the governance of Big Data ecosystems. Project
Constance [7] aims to cover the lack of semantics in data lakes.
Specifically, its metadata management system GEMMS [20]
creates a unified metamodel for raw data and allows querying
the data with rewriting methods such as ours. Our work
differs from Constance in the manner that we do not narrow
the scope to data lakes (e.g., batch analysis) but also to
real-time data in the forms of data streams. We additionally
adopt techniques to accommodate schema evolution. Other
approaches have also identified the need to propose a curated
data lake enriched with semantics [23]. However, matters on
streaming data and evolution are overlooked as before.

API and Database Evolution.
In previous sections, we have cited relevant works on REST-

ful API evolution [24, 10]. They provide a catalog of changes,
however they do not provide any approach to systematically
deal with them. Other similar works, such as [25], empirically
study API evolution aiming to detect its healthiness. If we
look for approaches that automatically deal with evolution,
we must shift the focus to the area of database schema evolu-
tion. Such works, however, are mostly focused on relational
databases [21, 11]. They apply view cloning to accommodate
changes while preserving old views. Such techniques rely on
the capability of vetoing certain changes that might affect the
overall integrity of the system. This is however an unrealistic
approach to adopt in our setting.

6. CONCLUSIONS AND FUTURE WORK
Our research aims at providing self-adapting capabilities

in the presence of evolution in Big Data ecosystems. In
this paper we have presented the building blocks to handle
schema evolution using a metadata-driven approach. The
presented algorithms aid data stewards to systematically
accommodate announced changes in the form of releases.
Our evaluation results show that a great number of changes
performed in real-world APIs could be semi-automatically
handled by the monitors and the ontology. There are many
interesting future directions. A prominent one is to extend

https://wordpress.org/plugins/rest-api


Figure 8: Growth in number of triples for S per release in Wordpress API

the ontology with richer constructs to semi-automatically
adapt to unanticipated schema evolution.
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