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Abstract

A fundamental assumption of Business Process Management (BPM) is that
redesign delivers refined and improved versions of business processes. This as-
sumption, however, does not necessarily hold, and any required compensatory
action may be delayed until a new round in the BPM life-cycle completes. Cur-
rent approaches to process redesign face this problem in one way or another,
which makes rapid process improvement a central research problem of BPM to-
day. In this paper, we address this problem by integrating concepts from process
execution with ideas from DevOps. More specifically, we develop a methodol-
ogy called AB-BPM that offers process improvement validation in two phases:
simulation and AB tests. Our simulation technique extracts decision probabili-
ties and metrics from the event log of an existing process version and generates
traces for the new process version based on this knowledge. The results of
simulation guide us towards AB testing where two versions (A and B) are oper-
ational in parallel and any new process instance is routed to one of them. The
routing decision is made at runtime on the basis of the achieved results for the
registered performance metrics of each version. Our routing algorithm provides
for ultimate convergence towards the best performing version, no matter if it
is the old or the new version. We demonstrate the efficacy of our methodology
and techniques by conducting an extensive evaluation based on both synthetic
and real-life data.
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1. Introduction

Various lifecycle approaches to Business Process Management (BPM) have
a common assumption that a process is incrementally improved in the redesign
phase [1, Ch.1]. While this assumption is hardly questioned in BPM research,
there is evidence from the field of AB testing that improvement concepts often do
not lead to actual improvements. For instance, work on business improvement
ideas found that 75 percent did not lead to improvement: half of them had no
impact while approximately a quarter turned out to be even harmful [2]. The
results are comparable to that of a study of the Microsoft website, in which
only one third of the ideas observed had a positive impact, while the remaining
had no or negative impact [3]. The same study also observed that customer
preferences were difficult to anticipate before deployment, and that customer
research did not predict customer behaviour accurately.

If incremental process improvement can only be achieved in a fraction of the
cases, there is a need to rapidly validate the assumed benefits. Unfortunately,
there are currently two major challenges for such an immediate validation. The
first one is methodological. Classical BPM lifecycle approaches build on a labour-
intensive analysis of the current process, which leads to the deployment of a re-
designed version. This new version is monitored in operation, and if it does not
meet performance objectives, it is made subject to analysis again. All this takes
time. The second challenge is architectural. Contemporary Business Process
Management Systems (BPMSs) enable quick deployment of process improve-
ments, but they do not offer support for validating improvement assumptions.
A performance comparison between the old and the new version may be biased
since contextual factors might have changed at the same time. How a rapid
validation of improvement assumptions can be integrated in the BPM lifecycle
and in BPMSs is an open research question.

We address this question by extending the business process lifecycle and pro-
viding techniques for these extensions. Our AB-BPM methodology integrates
business process execution concepts with the idea of AB testing from DevOps,
and supports the design of AB tests with simulation. The methodology and
supporting techniques as a whole provide support for validating improvement
assumptions inherent in new process versions.

AB testing compares two versions of a deployed product (e.g., a Web page)
by observing users’ responses to versions A and B, and determines which one
performs better [4]. We implement this technique in such a way that two versions
(A and B) of a process are operational in parallel and any new process instance
is routed to one of them. Through a series of experiments and observations, we
have developed an instance routing algorithm, LTAvgR, which is adapted to the
context of executing business processes. The routing decision is guided by the
observed performance metrics of each version at runtime.

To manage the risks of exposing even a few customers to clearly inferior
versions during AB tests, we propose a technique to simulate new versions of
business processes beforehand, using the execution logs and performance data
of the old version. For the purpose of this simulation, we devise a data struc-



ture, the Transition Simulation Tree (TST), which summarizes decisions and
performance metrics available in the event log of a process. The TST allows the
simulator to extrapolate historical observations from the existing version of a
process to the new version, with minimal assumptions about how the process is
implemented. The results of this simulation can be used for preliminary anal-
ysis of potential improvements, e.g., to rule out performing AB testing with a
clearly inferior new version. They can also help in the designing rewards and
configuring parameters of LTAuvgR.

In an earlier version of this work [5], we proposed the AB-BPM approach.
In this paper, we expand on this idea and show how it fits into a methodology
that provides validation support for process improvement assumption. We also
introduce a simulation technique that complements the AB testing approach.

The remainder of this paper starts with a discussion of the requirements and
prior work in Section 2. Section 3 describes the lifecycle, techniques, and the
framework that facilitate the AB-BPM methodology. In Section 4, we evaluate
our AB testing and simulation approach. In Section 5, we discuss the strengths
ans weaknesses of our approach, and finally draw conclusions in Section 6.

2. Background

This section discusses the background of our research. Section 2.1 identifies
requirements for rapid validation of process improvements. Section 2.2 discusses
in how far these requirements are addressed by prior research and outlines the
general idea of AB-BPM.

2.1. Requirements for Rapid Improvement Validation

“Actions speak louder than words” is a proverb that emphasizes the need
to take action once the right way to act is identified. Approaches to process
redesign follow exactly this idea when they suggest that a specific weakness
should be addressed by reusing an established heuristic [6]. The problem in this
context is that such approaches deny the uncertainty about the understanding
of the factors that influence process performance, and potentially ignore the
non-deterministic behaviour of the persons that engage in the process [7].

An improvement hypothesis is neither self-evident nor fully understood in
many cases, as highlighted by an anecdote of a leading European bank (EB).
The EB improved their loan approval process by cutting its turnaround time
down from one week to a few hours as a means to boost their business. What
happened though was a steep decline in customer satisfaction: customers with a
negative notice would complain that their application might have been declined
unjustifiably; customers with a positive notice would inquire whether their ap-
plication had been checked with due diligence. This anecdote emphasizes the
need to carefully test improvement hypotheses in practice because the customers
and the process participants might not act as anticipated by the process analyst.

Information systems such as BPMSs are prime candidates for supporting
the validation of improvement hypotheses. However, current BPMSs are not



designed for this purpose. Taking inspiration from existing work in the liter-
ature [2, 3, 7] and based on the arguments on risk mitigation, we identify a
list of requirements for supporting the validation of improvement hypotheses by
means of a BPMS. These include rapid validation, fair comparison, and rapid
adjustment.

R1 Rapid validation: If it is uncertain whether an improvement hypothesis
holds, the hypothesis should be tested immediately after deployment and
within a short time frame.

R2 Fair comparison: An ad-hoc comparison of old and new process version
is biased towards the specific conditions of the two time intervals [¢(n —
1),t(n)] and [t(n),t(n+1)], where ¢(n) symbolizes the point in time when
the old version was replaced with the new one. A fair comparison should
avoid biases resulting from the characteristics of different time intervals.

R3 Rapid adjustment: The units of analysis should be different versions of a
process model, an old and a new version in the simplest case. The system
should rapidly adjust the allocation of customers to the version that has
the best performance in the current context.

2.2. Prior Research

Prior research in the area of BPM and operations management proposes
various approaches for improving business processes. They identify various focal
points of analysis, but typically share the idea that the right analysis will yield
an actual improvement. Most of the approaches do not consider a potential
uncertainty of the improvement hypotheses. Here, we discuss some prominent
approaches for process improvement to illustrate this point.

There are essentially two broad approaches to process improvement in busi-
ness process management. First, business process re-engineering (BPR) offers a
methodology for redesigning processes from a clean slate [8, 9]. BPR promotes
radical changes that exploit new IT capabilities, overcoming the limitations of
the old process design, and indeed throwing away the old design. BPR hardly
discusses issues of uncertainty about the improvement hypothesis, but rather
points to various managerial, technological, and contextual factors [10]. Second,
approaches to business process improvement take a more cautious and more in-
cremental approach [11]. The BPM lifecycle integrates process improvement into
a continuous management approach [1]. This lifecycle puts a strong emphasis
on modeling and analysis before engaging with redesign, for instance by reusing
so-called best-practises [12, 13]. Once new process variants are implemented and
rolled out, they are monitored. In case of unsatisfactory performance, there will
be a new iteration to correct it. Extensions that enhance lifecycle phases inde-
pendently [14] run into the problem of long iterations inherent in the lifecycle.
The BPM lifecycle also assumes redesigns to be mostly driven towards fixing
issues, which means that an incremental improvement is assumed.

From the area of operations management, we refer to approaches to quality
management and lean management. Quality management as a neighbouring



discipline of BPM puts a strong emphasis on controlling process instances by
the help of inspection, statistical process control, and other approaches to qual-
ity assurance [15, 16]. Quality management shares an analytical focus in order
to identify root causes of insufficient quality, and then improve on them. Root
cause analysis acknowledges the fact that there can be several hypothetical
causes under investigation, from which the right one has to be singled out [1].
Lean management, invented for the Toyota Production System [17], also has an
analytical emphasis focusing on a broad interpretation of the term “waste” [18].
Several techniques can be used to identify waste, though mostly with an empha-
sis on qualitative analysis [19, 1]. The success of process improvement using lean
management is attributed, among others, to management support and commu-
nication [20]. Also, there is an implicit assumption that the right analysis leads
to the right redesign decisions.

Approaches from computer science, and software engineering more specifi-
cally, are more cautious about the need for testing. A prominent example in this
regard is DevOps [21], which aims to better integrate the processes of software
development (Dev) and operations (Ops). One DevOps practice is live testing,
where new versions of the software are tested in production with actual users
of the system. The most popular form of live testing is AB testing, where two
versions (A and B) are deployed side by side and both receive a share of the
production workload while being monitored closely. The versions in production
are monitored and their data is then used to draw conclusions about the ef-
fectiveness of one version over the other, for instance in the form of increased
revenue from higher click-through rates. So far, AB testing has mostly been
used for micro changes of websites, like changing the color of a button [4, 3].
The effectiveness of this technique is surveyed by Kohavi et al. for the user
interfaces of web applications [22, 3]. Testing techniques on Service Oriented
Architectures (SOAs), especially on regression testing and testing for violations
of quality of service [23, 24], can be useful in identifying issues that can only be
detected after deployment. However, unlike AB tests, these approaches do not
test whether changes lead to process improvements.

Beyond these more general approaches, there are several recent techniques
that may inform the requirements of rapid validation, fair comparison and rapid
adjustment. Rapid validation builds on the existence of a newly redesigned pro-
cess version. Typically, such new versions are created by an analyst. It is also
possible to automatically generate process versions by the help of the technique
presented in [25] and deploy them for validation. The validation might also
benefit from recent monitoring techniques such as [26, 27] or predictive analyt-
ics [28, 29, 30]. The quality of existing processes can be improved at runtime
by monitoring and dynamically adjusting service selection, resource allocation,
and relevant parameters [31]. Process simulation techniques can also be useful
for the validation task. Tools like BIMP! use parameters for modeling work-
load, resources, timings, branching probabilities, and other relevant metrics for
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Table 1: Support for requirements in prior research

Approach R1 R2 R3

Business Process Re-engineering (BPR) [8, 9] - - -

Process Improvement [11, 14] - - -

Quality Management [15, 16, 1] - - -

Lean Management [17, 18] - - -

Process Lifecycle [1, 14]  +/- - -

Monitoring and Predictive Analytics e.g. [26, 28, 29, 30] - - +
Process Simulation [32, 34] - - -

AB testing e.g. [21, 3] + + -

AB-BPM (this work) + + +

generating traces. Advanced simulation techniques can semi-automatically ex-
tract some of this information from the historical logs of a process and construct
models that can be used for simulation [32, 33] or prediction [34].

Table 1 summarizes the support of the requirements by prior research. In
this paper, we adopt the idea of AB testing on the process level in order to
address requirements R1- R3 in a suitable way. Our technique is called AB-BPM
and addresses the research gap related to the explicit testing of improvement
hypotheses in BPM-related research and the lack of an explicit consideration of
business processes in the works on AB testing in software engineering.

3. AB-BPM Approach and Methodology

In this section, we present the AB-BPM methodology and the technical
solutions that enable it. The first of these solutions is simulation, for which we
discuss how we extract decisions and metrics from the event log of a process and
use that to simulate new versions. Then we discuss the mapping of the instance
routing problem to algorithms from the literature. Based on an experiment, we
choose one algorithm and adapt it to the context of business processes. Finally,
we present our high-level framework, architecture, and implementation.

3.1. The AB-BPM Methodology

The AB-BPM methodology extends the redesign, implementation, and exe-
cution and monitoring phases of the business process life-cycle. This extension
aims to provide support for rapid validation of process improvement ideas. Fig. 1
summarizes this methodology.

First, the redesign goal and the Process Performance Indicators (PPIs) are
defined, followed by the design of the new version. Ideally this is followed by
simulating the new version, using data from the old version. Simulation provides
rapid feedback on the effect of the changes. However, it is not always possible
to have a meaningful simulation: that requires the models to be reasonably
similar to one another. If the models are too different (which is assessed in



the step “Compare versions” in Fig. 1), we advance to the AB testing stage
directly. If the models are similar enough for simulation, the simulation can
have satisfactory results or not. In the latter case, the new version is further
improved. It should be noted that simulation is always approximate, and the
fuzziness of the results should be taken into account in this decision. Once the
results are satisfactory, we advance to the AB testing stage. For AB testing, the
PPIs are summarized in a numerical value that acts as a feedback, or reward,
which helps the instance routing algorithm make routing decisions during AB
tests. Next, the new process version is deployed alongside the old version so that
they run simultaneously in production. Finally, AB tests are configured and
executed. The best performing version is automatically found by the instance
routing algorithm. If the old version was found to be better than the new
version, the new version is further improved and tested.
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Figure 1: The AB-BPM methodology for process improvement. Adapted from [35].

3.2. Trace Simulation

Simulating the new process version is a good first step towards not only
finding potential flaws in the version, but also realizing the design and config-
uration of the AB testing experiments. The simulation step in the AB-BPM
methodology should estimate the performance of the new process version with-
out making explicit assumptions about the workload, the customers, or the
resources. Insights from the execution of the old version can help us answer
how the new version would have performed under the same circumstances with
minimal explicit assumptions.

Process runs are stored in the form of event sequences, namely traces, where
events bear the information about activity executions (activity name, and other
attributes like timestamp, operating resource, etc.). Collections of traces are



Table 2: An example of event log

Case id Activity Name Cost Start Time End Time
a 100  01-01-2018 00:00  01-01-2018 01:00

b 50  01-01-2018 02:00 01-01-2018 04:00

1 c 150  01-01-2018 04:00  01-01-2018 05:00

b 25  01-01-2018 05:00  01-01-2018 05:10

c 75  01-01-2018 05:10  01-01-2018 05:25

a 150 01-01-2018 10:00  01-01-2018 12:00

2 d 50  01-01-2018 12:00 01-01-2018 13:00

c 100  01-01-2018 13:00  01-01-2018 14:00

called event logs [36, Ch. 2]. The sequence of activity names in a trace will
be henceforth called activity sequences. Table 2 shows a sample event log. We
say that {(a,b) is an activity sequence of the trace corresponding to case id 1.
We use decisions and metrics extracted from the traces of the old version of a
process and progressively generate traces of the new version.

8.2.1. Inferring Decisions and Metrics

We construct a Transition Simulation Tree (TST), a rooted tree data struc-
ture that summarizes decisions and metrics available in an event log. Figure 2
shows an example of TST constructed using the traces from Table 2.

The design of TST is motivated by two key observations. First, the decisions
and metrics depend on what activities were executed previously. For instance,
when a model allows for loops, the second iteration could on average be faster
than the first. Second, a new version of a process can produce traces that are
highly similar to the original process, but these traces may not match exactly.
For example, a re-sequencing of two activities on the new process model can
produce traces that never match with traces from the original version. The
TST allows us to find partially matching traces, and derive metrics from these
matches. Models such as Generalized Stochastic Petri-nets are not sufficient
because these models summarize and generalize the execution of the original
version [34], and finding adequate partial matches would be a challenge.

A node in the tree consists of an activity profile and a transition probability.
An activity profile is composed of the activity name and a collection of metrics
such as cost, duration, and waiting time. The metric collection contains raw
data extracted from the event log a process. Transition probability of a node
dictates whether the activity represented by the node can be followed by another
activity. In addition, edges in the tree have a Bayesian transition probability.
Given that a transition from a node is possible, the probability on a given
outgoing edge indicates the odds of transitioning to the respective child node.
These probabilities are based on the frequency of activities in traces extracted
from the event log a process.

Recurring sequences of activities in the log are combined in the tree by
adding metrics of the activity into the metric collection of the matching activity
profile. For example, in Fig. 2 all activity sequences from Table 2 can be found
as a path in the TST. Both of our traces start with activity a. Therefore, the



Table 3: Auxiliary table with activity profiles
in the TST of Fig. 2.

s (R)  —/—/
activity sequence:
[5 a, b, cbcb >1

Activity  Cost  Duration = Wait.time

, a 100 1 hr 0 min
I~ 150 2 hr 0 min
()

) 50 2 hr 1 hr

0 =
@ W=I[R,ab,cbc00000d-c000] b 25 10 min 0 min
Figure 2: Transition Simulation Tree (TST), 150 L hr 0 min
its prefix representation, and the longest pre- ¢ 75 15 min 0 min
100 1 hr 0 min

fix match.

d 50 1 hr 0 min

activity profile of this node contains metrics from both traces, i.e., cost of 100
from case id 1, and 150 from case id 2. In the traces, activity a is always followed
by b or d, and the proportion of traces that transition to b is the same as that
of d. Therefore, the transition probability of node a is set to 1, and those of the
corresponding edges are set to 0.5 each.

In addition to the TST, we store metrics in auxiliary tables as a fallback
mechanism. For each activity, the tables store all observed metrics from the
given log. Should the TST be insufficient for finding activity metrics, we can
perform a look-up on these tables and sample the desired metric. For example,
in Fig. 2 there are three distinct nodes for activity ¢ which contain cost metric
of 150, 75 and 100 respectively. In contrast, the auxiliary table contains all of
these values for activity ¢ regardless of the position of ¢ in the traces.

Traces that have been seen during the construction of the TST can always be
estimated by looking up the corresponding path in the tree. However, a process
model that differs from the source of the log or that contains loops can produce
an activity sequence that cannot be matched in the tree. In such cases, we
can find the longest prefix match between the activity sequence and the TST.
For example, the process model associated with Fig. 2 can produce an activity
sequence S = {a,b,c,b,c,b,cy. However, the TST only contains trace S’ =
{a,b,c,b,c). When a simulated process reaches a state of Spew = {a, b, ¢, b, ¢, b),
the metrics and transition for the last task, i.e., b in Spew, cannot be found
by parsing the TST. In this case, for Spew the longest prefix match would be
(b, ¢, by. We take this part from the TST and sample the metrics and transition
probability for activity b.

The longest matching prefix is found by searching for an exact rooted sub-
tree match using the pre-order list representation of trees [37]. The pre-order list
representation W is recursively defined as follows: W = [[,0] or W = [I, W, 0]
where [ is a node. On pre-order traversal, node [ is added to W until no child
nodes exist. On every backtracking step to the previous level, 0 is added to W.

Algorithm 1 outlines how pre-order lists can be used to estimate metrics
using the longest prefix match. Given the TST and an activity sequence as pre-
order lists, the algorithm iteratively finds a match from the tail of the activity
sequence and samples the metric. When a match can no longer be found, the



algorithm returns the last sampled metric. An example of longest prefix match
is highlighted in Fig. 2. In addition to sampling a metric, we can also find the
next activity to be executed by choosing a child of the last node in the longest
match. The choice is made according to the edge probabilities in the TST.

Algorithm 1: Activity metric estimation with longest prefix match

Input: W, W // prefix representation of TST and an activity sequence
1 forall ¢ in 2...len(W);) do
Wp = W [len(W)) —¢ :] // tail of the activity sequence
match = a match of Wy, in W using [37], selected at random
if match exists then
L metric = samples from last event in match

SV R V)

else
L return metric

8 return metric

The next activity and the metrics associated with an activity depend only
on the the last node in the longest match. Also, the number of nodes and edges
in the TST is finite. In this regard, the tree holds the Markov property, and
can be seen as a type of Markov chain. The TST also bears resemblance with
Frequency-enhanced Prime Event Structure (FPES) [38], where the event log is
represented as graph of nodes composed of activity labels and frequencies, and
edges contain occurrence probabilities. The TST does not encapsulate binary
relations like FPES, but it contains activity metrics and allows partial matching.
Partial matching for FPESs is discussed, e.g., in [39], but focusing on similarity
in general. The partial matching we propose here is subject to other criteria,
such as long connected chains. Finally, FPESs aggregate separate traces — which
we refrain from in the TST, to capture performance metrics in maximally tight
contexts.

8.2.2. Simulating New Versions

A simulator can generate traces of new process versions using the historical
event log of the old version. The simulator consists of two main parts - the
BPMS and the TST. Given the process model of the new version, the BPMS
can infer which activities can be performed next from the current state. The
BPMS uses the current activity sequence and these candidate activities to query
the TST for the next activity to execute, and the estimates for the activity. In
order to drive the execution using this mechanism, the process model is updated
with conditions on every outgoing flow of a gateway such that setting a variable
with the next activity will enable the appropriate outgoing flow.

Non-conforming logs can be found using the longest prefix match mechanism.
In cases where multiple matches are found, one can be chosen based on the depth
of the match in the TST, proximity to the end of a trace of the old version, or at
random. The heuristics for breaking ties depends on the goal of the simulation.
For instance, if we want to minimize the number of loops in simulated traces, a
match can be chosen based on proximity to the end of a trace.

10



During simulation, there can be many activities that can be executed from
the current state. We refer to these activities as candidate activities. New
process versions may be structured in such a way that the candidate activities
in the TST (the child nodes) and those in the process model of the new version
are different. To drive the execution in such cases, the transition probabilities
have to be adjusted to accommodate such differences. Algorithm 2 shows how
we make such adjustment.

Algorithm 2: Transition probability adjustment

Input: Crst, Chew, P // sets of candidate activities, and probability
allocation for new candidates

Chew = CTST\Cnew

Cabsent = Cnew\CTST

Ccommon = Cncw v CVTST

pra = Z{Pr(ac) ‘ T € Cabsent}

distribute prq to Ccommon in proportion to their existing probabilities
allocate p to Chew equally

normalize probabilities of Ccommon to scale of [0,1 — p]

return Cecommon U Chew

® N 0 oA W N F

First we find the common set of candidates between the new process model
and the TST. Transition probabilities for common candidates can be found in
the TST. Some candidates may be present in the TST, but not in the new model.
We extract probabilities of these candidates and distribute them to the common
candidates in proportion to their existing probabilities. In every simulation run,
we set aside a probability allocation p for candidates from the new model that
are not in the common candidates set, and divide p equally among them. Then,
we normalize the probabilities of the common set to the scale of [0,1—p]. If the
common candidate set is empty, then p is set to 1 and divided equally among
the candidates from the new model. Transition is made to one of the candidate
activities in the new model based on these probabilities.

For example, consider that we find the partial match shown in Fig. 2. The
matching node has a transition probability of 1, and the candidate activity set
{c} with the probability of 1 on the corresponding edge. If the new process
model has the candidate set of {c,e, f} and we set p = 0.2, the probability of
transitioning to ¢ is 0.8, e is 0.1, and f is 0.1.

The above mechanisms are not sufficient to derive metrics for new activities
introduced in the new process model. For those, estimates have to be provided
by the user during the simulation setup. These estimates are stored in the
auxiliary tables, and queried during simulation. If the tables do not contain
information about a new activity that is encountered during simulation, the
simulation run is aborted and the issue is recorded.

3.83. AB Testing

AB testing assesses the performance of the new version without making
any assumptions. This is accomplished by exposing the new version to real

11



customers through the production environment. For risk management, the AB-
BPM methodology advocates AB testing after simulation if possible. To further
minimize the risk of exposing users to a sub-optimal version, our AB testing
approach performs dynamic routing of user requests based on the observed
performance of process versions.

8.8.1. Instance Routing — a Multi-Armed Bandit Problem

In order to integrate concepts of process execution with AB testing, we have
to discuss how new instances are assigned to a specific version of the process.
Therefore, we need an instance router that distributes requests to versions in
such a way that any relevant PPI is maximized. The instance router also needs
to deal effectively with the issue that processes can be long-running, and that
PPI measurements can be delayed.

The PPI maximization can be mapped to the so-called multi-armed ban-
dit problem [40, 41]. The multi-armed bandit problem models a hypothetical
experiment where, given some slot machines with different payoff probability
distributions, a gambler has to decide on which machines to play. The objective
of the gambler is to maximize the total payoff during a sequence of plays. Since
the gamblers are unaware of the payoff distribution, they can approach the plays
with two strategies: exploring the payoffs by pulling different arms on the ma-
chines or exploiting the current knowledge by pulling arms that are known to
give good payoffs. The exploration strategy builds knowledge about the pay-
offs, and the exploitation strategy accumulates the payoffs. Multi-armed bandit
algorithms aim to find a balance between these strategies. If the performance
is affected by some context, this can be seen as the so-called contextual multi-
armed bandit problem, where the gambler sees context (typically represented as
a multi-dimensional feature vector) associated with the current iteration before
making the choice.

We model the routing algorithm as a multi-armed bandit problem by repre-
senting the process versions as the “arms”, and the PPI as “payoffs/rewards”.
The objective of the instance router is to find a good trade-off between explo-
ration and exploitation, possibly based on the context. To learn the performance
of a version in exploration, it sends some of the process instantiation requests
to either version. Based on the instance router’s experience, it can exploit its
knowledge to send more or even all request to the better-performing version.
The reward for the routing algorithm can be designed around a PPI like user
satisfaction. We discuss these topics in more detail below.

3.3.2. Instance Routing Algorithms & Selection

The multi-armed bandit problem has been explored in related literature.
LinUCB [42] is a contextual multi-armed bandit algorithm that has been em-
ployed to serve news articles to users with the objective to maximize the total
number of clicks. Thompson sampling [43] is one of the simplest approaches to
address multi-armed bandits. It is based on a Bayesian approach where arms
are chosen according to their probability of producing optimal rewards [44, 43].

12



Extensions of Thompson sampling can be used to solve the contextual multi-
armed bandit problem with linear rewards [41]. In this paper, we chose three
algorithms — see below — as candidates for process instance routing and in-
vestigate their effectiveness. We have selected these algorithms based on their
demonstrated benefits and simplicity. Other algorithms, such as e-greedy, e-first,
UCB, and EXP4 also address multi-armed bandit problems [40].

Since the goal for the routing algorithms is to maximize an aggregate value
of the PPI, as preparatory work, we have experimented with different routing
algorithms with different configurations to find the best performing algorithm.
We have compared the Thompson sampling technique [44, 43], its extension for
contextual bandits [41], LinUCB [42], and a baseline algorithm which uniformly
distributes requests to process versions regardless of context and rewards.

We designed an AB testing experiment in which the routing algorithms dy-
namically allocate requests at run-time to two very simple business process
versions, version A and version B. Based on the context (type of requests) these
versions return a user satisfaction score between 1 and 5. In addition, the ex-
ecution time of each process is set to 60 seconds. The key idea behind this
design was to have two processes that behave deterministically so that the rout-
ing algorithms are not affected by the randomness of rewards and delay times.
We devised six request types determining the context, which were embedded
in the requests forwarded by the routing algorithm to the process versions. In
our design, Version A produced a higher satisfaction score in five out of six
cases. However, in one case version B outperformed version A by a large mar-
gin. With this setup, we tested the algorithms by sending 500 requests with
embedded contextual information to at the rate of 1 request per second.

The experiment results showed that contextual bandits performed well, and
that LinUCB produced the highest cumulative satisfaction score throughout the
experiments. Therefore we have selected and adapted LinUCB for typical busi-
ness process scenarios. Our architecture is flexible enough that it can be easily
replaced by other algorithms.

3.8.8. Adapting the Routing Algorithm to Business Processes

As discussed above, we chose LinUCB as the starting point for our routing
algorithm. However, we observed that the algorithm can be derailed by process-
specific circumstances, such as the long delays before rewards. Long delays are
inherent to long-running processes, and not considered in AB testing solutions
for Web applications, where delays are measured in seconds or minutes. In
contrast, the real-world data which we use in the evaluation has one process
instance with an overall duration of more than 3 years.

This results in the following issue. Oftentimes overly long process completion
times correlate with problematic process instances, leading to negative rewards.
Thus, instances with short completion times can give an overly positive impres-
sion of a process version early on. If the algorithm receives too many positive
rewards from one version during the early stages of the AB test, the algorithm
is more likely to see that version as preferable. Such an early determination can
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Algorithm 3: Instance Routing with LTAvgR

Input: ae Ry, AeR, M eN
// « is the LinUCB’s tuning parameter; X\ and M are experimentation decay

and length
Output: arm id

1 fort=1,2 3 ..., Tdo // t is the request count
2 Observe features of all arms a € Ag : z4,a € R4

3 for a € A; do

a if a is new then

5 Aa < Ig, by < 0q // identity and zero matrices of dimension d X d,

L resp.

6 éa <« A;lba

7 Pt,a < é; Tt,a + th/ﬂ?;r’a A;l Tt,a

8 arm ajipuch = argm%xpt,a with ties broken arbritarily

aeAg

9 if t < M then // experimentation phase
10 Prexp < sample y from Exp(\) s.t. x =t
11 Choose arm at = alinuch OT Qalternate With probability prexp
12 Poll for reward 7t
13 Aagy — Aay + Ttyay xi’at
14 L ba, < ba, + TtTt,a;
15 else
16 L Choose arm at = ajinuch

introduce a bias in the evaluation. Thus, we need to ensure that the algorithm
gets enough samples from both versions.

We solve this issue by adopting the idea of a “warm-up” phase from Rein-
forcement Learning [45], during which we emphasize exploration over exploita-
tion. We sample the probability of exploration by using an exponential decay
function, acting as an injected perturbation that diminishes as the experiment
proceeds — the sample determines whether the algorithm follows the instance
routing algorithm’s decision or picks a version at random. We consider the
“warm-up” as the experimentation phase: after all instances started during the
experimentation phase are completed, no more rewards are collected and the
instance router stabilizes.

Finally, the original LinUCB algorithm makes its decision based on the sum-
mation of past rewards. We found out during the experiments that this can also
deceive the algorithm. Therefore, we have modified the LinUCB algorithm to
make its reward estimates on the basis of the average of past rewards rather
than their sum. We term our adapted instance routing algorithm Long-term
average router (LTAvgR). Algorithm 3 shows the pseudo code of LTAvgR.

8.8.4. Reward Design for Long Running Processes

Routing behaviour of LTAvgR is affected by the value of the reward, and
also by factors associated with time. Delay between instantiating a process and
receiving a reward, and the rate of receiving a reward vs. the rate of process
instantiation influences the reward estimates at any given time.

14



If we use duration of a process instance as the PPI, we need to be careful
in deriving rewards from the raw values. The raw value of duration is too fine-
grained to be meaningful as a reward because of two reasons. First, even minor
differences in duration can cause the instance router’s decision to fluctuate.
Second, it is implied that magnitude of difference in duration of two process
executions is the same as the difference in their quality. The effect of rewards
derived from small number of slow process instances can outweigh the effect
of rewards derived from others. Also, we will observe that good rewards come
early and bad rewards come late, which further exaggerates these problems if
the rewards are not well designed.

A good reward strategy should penalize poor performances, but the penalty
should not be so high that it overwhelms the estimates derived from the majority
of execution. The granularity of rewards should be chosen such that unnecessary
fluctuation is avoided but no meaningful information is lost. This is particularly
important in scenarios where the raw value of PPI (duration) for outliers can
be magnitudes higher than the average.

To establish a reward function for scenarios where duration is an indicator
of quality, we adopt the following strategy. Assume that we are AB-testing
P, the original version, vs. P7, the new version. We collect all instance du-
rations reported in the production data from executions of P! and compute
K > 1 quantiles ¢1,...,qx. We use these quantiles to partition the space of
possible durations into a set of K + 2 intervals T = {¢,¢1,...,tK,tK+1} Where
to =[0,90), tk+1 = [qK,+0), and ty, = [qx—1,qr) for 1 < k < K. Those inter-
vals split the range of possible durations for P7 as follows: ¢y contains the values
below the minimum, and ¢x 11 accounts for any duration beyond the maximum
recorded in the production data. The K intervals in-between are meant to clas-
sify the performance of P7. This strategy is illustrated as a step chart in Fig. 3
— every step in the chart represents a quantile.

The idea is to assign a reward of 1 when
the duration P’ achieves is lower than any
registered duration of P!, and decrease it by
a step of 2/K as long as the measured per- 3
formance falls into the following intervals. In £ -
order to counterbalance the disruptive effect <
of outliers which take have extremely long du- -4
rations, we establish a penalty value p (with ‘50 o Medn a1 ae 1
p = 4in Fig. 3) and define that the reward lin- Duration (sec)
early decreases from —1 to (—1—p) along ¢t
Finally, any duration beyond the last quantile Figure 3: Reward strategy
is assigned a reward of (—1 — p).

Formally, let r;(t) : RT — [0,..., K + 1] be a mapping function associating
a process instance duration ¢ to the respective interval tx € I by the index k.
That is, k7(t) = 0 if ¢ is in the range of g, k7(t) = 1 if ¢ is in the range of ¢1,
and so on. The reward function r; : R* — [—1 —p, 1] is defined over the set of
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intervals I as follows:

1— =)o if k(1) < K K
rit)=<-1—p- q:f% if k7(t) =K with kr(t) = 2 k- x., (t)
—1-p if k7(t) > K k=0

where x,, is the characteristic function of interval ¢;. The underlying idea is to
prefer the process demonstrating a shorter completion time to the slower ones
while accounting for the outliers.

Fig. 3 shows a reward strategy when we set K = 20 and p = 4. With this
configuration, our rewards are divided into 20 classes which incrementally differ
from each other by a value of 0.5, except for the last interval where the rewards
scale linearly. In this configuration, the slowest process instance is considered to
be worse than the average by a factor of 5, but the fastest process is considered
to be better than the average only by a factor of 1.

Many processes are long-running by design. To overcome the problem of
time dependence of rewards for such processes, we can either use PPIs that do
not use completion time (e.g., duration until some other activity is completed),
or lead indicators [30].

8.4. AB Testing Framework, Architecture, and Implementation

Fig. 4 shows the architecture of our AB testing framework. We designed the
architecture such that the two versions of the process model are deployed side by
side in the same execution engine. The instance router distributes the instance
creation requests as per its internal logic. All subsequent requests related to a
given process instance are routed to the version chosen initially for that instance.

An alternative design would be to run two full copies of the entire application
stack, one for each version, and using the instance router to distribute the
requests across the two stacks. However, the multi-armed bandit algorithms can
identify the superior version during the experimentation and alter the allocation
of requests to different versions. When a version is clearly superior to the other,
most of the requests are sent to the superior version. In such scenarios, the
application stack that hosts the inferior version is underutilized. If we run both
versions on the same stack, we can keep utilization of the system high, no matter
which version is superior.

Given this design choice, the process definitions, implementation, PPI collec-
tion, and the shared process execution engine are wrapped by a web application.
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Process execution data are stored in a shared database. Process instantiation,
metrics, and other operations are exposed using RESTful APIs. Upon receiving
a request, the instance router instantiates a particular version and receives an
identifier. Identifiers of the process instances for which rewards have not been
observed are stored in a queue. The instance router uses a polling mechanism
in parallel to retrieve PPI metrics from the server and update the rewards.

We implemented the architecture prototypically in Java and Python, in part
based on the Activiti BPMS. As outlined earlier, our framework is flexible in the
choice of the instance routing algorithm: we implemented and tested LTAvgR,
LinUCB, Thompson-sampling with and without linear rewards, and random
uniform distribution. The experiments reported in the following section are
run with the presented implementation with LTAvgR. We simulate the requests
from users by replaying process logs.

4. Evaluation

In this section, we present the methodology and the outcomes of our evalu-
ation of the proposed approach. We assess the AB-BPM methodology in terms
of simulating a new process version using the log of the original version, as well
as AB tests using the LTAvgR algorithm and find the best performing version.
We use three datasets: synthetic data (helicopter licensing process, HL), three
versions of a real-world loan approval process from a Dutch bank (Bank), and
five versions of a real-world building permit processes from five Dutch munic-
ipalities (Permit). On the third dataset, we only perform AB testing; on the
other two we both simulate and perform AB tests.

4.1. AB-BPM Methodology on Synthetic Processes — Helicopter Licensing

In this section, we demonstrate our approach using two example process
versions stemming from the domain of helicopter pilot licensing (HL). Version
A of the process sequentially schedules the activities based on the cost of per-
forming them. Based on the result (pass/fail), the process either schedules the
next activity or terminates. In this version, we expect that successful candi-
dates will pay more because of multiple scheduling costs. In contrast, version B
of the process schedules all such activities at the beginning, thus reducing the
scheduling costs. The processes are illustrated in Fig. 5. These processes have
as a result the final status of the license: either approved or rejected.

As PPI we simulate the user satisfaction, here calculated as a combination of
cost, completion time, and result of the process execution. Cost and processing
time of tasks were derived using rates from Australian Civil Aviation Safety Au-
thority (CASA) 2 and helicopter hiring rates from an Australian flight school.

2Civil Aviation (Fees) Regulations Amendment F2016L00400 https://www.legislation.
gov.au/Details/F2016C00882, Accessed: 03-01-2018
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Figure 5: Helicopter Licensing process versions

Success rates were derived using application statistics reported by CASA?. Note
that these success rates are different from the ones used in the original version
of this paper [5]. Table 4 shows the costs and processing times for both process
versions. Table 5 shows how user satisfaction scores from 1 (lowest) to 5 (high-
est) are derived. The basic rationale is, the shorter and cheaper, the better.
The score ranges from 1 to 3 if the outcome is negative, and from 3 to 5 if the
outcome is positive.

Table 4: Cost model of the activities, HL

Activity Cost ~ Min. processing time Max. processing time Success Rate
Schedule 25 1 day 1 day N/A
Eligibility Test 190 1 day 3 days 99.7%
Medical Exam 75 1 day 3 days 99.7%
Theory Test 455 2 weeks 5 weeks 72.1%
Practical Test 1145 1 week 2 weeks 33.2%
Approve 100 Immediate Immediate N/A
Reject 0 Immediate Immediate N/A

4.1.1. Simulation

We have designed the simulation experiments such that the TST is con-
structed from the log of Version A. This log is obtained by executing version A
in the BPMS with a workload of 1 request per second. For the execution, we
sped up time such that each day corresponds to 1 second. We also introduce
some non-determinism by sampling processing times for each activity using a
probability distribution function. The TST constructed from this log is used to
guide the simulation of version B. We set p = 0.5 as the probability allocation
for new activities during the simulation.

3CASA Annual report 2016-2017 https://www.casa.gov.au/sites/g/files/net351/f/
annual_report1617.pdf?7v=1508473202, Accessed: 15-01-2018,
Australia wide pass rates https://wuw.casa.gov.au/standard-page/
australia-wide-pass-rates, Accessed: 15-01-2018
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Fig. 6 shows the estimates of the cost and the duration for version B from
simulation. We can observe that version B has good potential for reduction of
mean cost and duration. However, the variance in measurements are high. Since
the new version introduces a possibly large number of unseen traces, we should
view these results with a degree of scepticism. The simulation was based on
probabilities extracted from version A, where the activities are strictly ordered.
Therefore, the simulation may not produce traces with proportions reflective of
production. In particular, simulation of version B may produce more traces for
rejected applications, which run with a shorter duration and lower cost. We can
use this simulation as a sanity check for the new process version and conclude
that the new version performs reasonably and provides some potential for im-
provement in cost and duration. Therefore, as per the AB-BPM methodology,
we can perform AB tests.

versionA{  f——| H| oo ;_D:'_¢
s T | [T ———

0 500 1000 1500 2000 0 10 20 30
Cost Duration (days)

Figure 6: Comparison of simulated metrics of HL Version B with real data of Version A

4.1.2. AB Testing with LTAvgR

We have designed the AB testing experiments such that the instance router
receives requests with embedded contexts at a rate of 1 request per second. The
length of AB test is set to 1000 requests, where the experimentation or “warm-
up” phase is set to M = 500 requests and decay to A = 150. Figure 7 shows the
cumulative request distribution throughout the AB test.

Despite the length of the experimentation phase and high value of A, the
instance router settles on a version after roughly 200 user requests. A post-hoc
analysis shows that the median user satisfaction across all cases was the same

c
Table 5: User satisfaction model, HL 'g 800 Version A o
o | - Version B o
2 600 -
Outcome Cost Duration Sat. g T
« 400 -
[0, 1990] < 5 weeks 5 5 7
Approved (1990, 0] < 5 weeks 4 3_200 -
[0, o0) > 5 weeks 3 Q =
c 0=
[0, 1890] < 5 weeks 3 ° S S S S S
. [0, 1890] > 5 weeks 2 N N © © S
Rejected (1890, 0] < 5 weeks 2 Total requests
(1890,00) > 5 weeks 1

Figure 7: Requests routing in HL AB tests
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Table 6: Analysis of HL Versions A and B by cases

Metric Outcome Version A Version B Overall

All 101 899 1000

Samples(N) Approved 25 214 239
Rejected 76 685 761

All 3 3 3

Median user satisfaction Approved 4 5 5
Rejected 2 3 3

All 1965 1625 1700

Median cost Approved 2065 1990 1990
Rejected 1965 1360 1360

All 32d 28 d 29 d

Median duration Approved 33d 32d 32d
Rejected 30d 20 d 22d

for both versions — but improved with version B if considering the approved
and rejected cases in isolation. The distributions of user satisfaction scores
also differed significantly (a Mann-Whitney test [46] resulted in U=25318, p-
value <107 two-tailed, n4=109, ng=891). The median delay of the rewards
was 36 seconds (corresponding to 36 days).

Table 6 shows the differences between the two versions. Version B is cheaper
overall, but it is only faster when applications are rejected. Most of the rejections
come at the late stage in version A — i.e. on the Practical Test. Since Practical
Tests can be done earlier on version B, we expect such improvements in real
execution. The instance router settles on Version B because it outperforms
Version A on average.

Version B was cheaper overall, but not as much as that suggested by the
simulation. Also, the median duration in AB tests was similar except for the re-
jected applications. This is the expected behavior, but the simulation suggested
stronger improvements. This is attributed to the fact that the simulation is not
aware of the decision logic internal to the process. The proportion of traces lead-
ing to rejection, especially from activities where success rate is good in reality,
was higher in the simulation than in the AB test.

4.1.3. Discussion

The quality of estimates from simulation depends on how much the traces
between process models can differ. Since the new version proposes an intuitive
change, we used this simulation as a sanity check. In complicated process mod-
els, domain experts should be aware of how much the new version differs from
the original before interpreting results of the simulation.

We used an evaluation based on synthetic processes in order to investigate
the efficacy of our methodology. We observe that our simulation approach can be
used as a sanity test for new process version. We also observe that our AB testing
approach leads to a rapid identification of the more rewarding process version,
which receives an increasing share of traffic. This observation is instrumental
with respect to the requirements R1 - R3, which demand rapid validation, fair
comparison, and rapid adjustment on the process level.
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Figure 8: Simulation of Bank process versions using TSTs created from their event log

4.2. Sitmulation and AB Tests with Real-World Process Versions — Banking

In this section we evaluate our simulation and AB Testing technique using
the loan application process models in banking (henceforth indicated as Bank)
extracted from the event logs of BPI Challenge 2017.* We use three subsets of
logs and treat them as versions. Version V1! is extracted from process variants
1, 2, 3, and 9, as outlined in the awarded winning academic report from BPIC
2017 [47]. V% is a version that is made up of traces of variant 6. V2 and V*
use the same set of activities. Finally, V3 is a version that is made up of traces
that have a fraud detection step. This version contains some activities that do
not exist in V! or V2; V3 has additional activities with the labels “W_Assess
potential fraud”, “O_Sent (Online only)”, “W_Handle leads” and “W_Personal
loan collection”.

One key observation from the log is that the activities can be suspended,
withdrawn, or aborted. During the construction of the TST, we summarize
these state changes by aggregating all idle times as wait time and all active
times as execution time, and then order the activities by their start time. The
process models were discovered using Inductive Miner [36, Ch. 7] with the
default noise filter of 0.2.

We start with the assumption that V! is deployed in production and that the
historical event log of V! is available. The hypothesis is that the new versions,
V2 and V3, are improvements over V. The following simulations and AB tests
compare V! with V2 and V3 respectively.

4.2.1. Simulation

First, we perform a sanity test on the simulation technique itself: using its
own historical event log as a basis to construct the TST, can the simulation
produce traces with similar duration estimates as that of the log? Figure 8
shows the results from simulation of 1,000 traces. We can observe that the
duration of simulated traces are similar to those from the historical event log.

Second, we simulate versions V2 and V3 using the TST derived from the
event log of version V. As outlined in Section 3.2.2 , p is defined as the prob-
ability allocated to candidate activities that are present in the process model,

4BPI Challenge 2017, including logs, reports, and process models:
https://www.win.tue.nl/bpi/doku.php?id=2017:challenge, Accessed: 15-01-2018
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Figure 9: Simulation of Bank process versions V2 and V3, both with TST from V1

but not in the TST. In this experiment, we vary p as p € {0,0.25,0.5,0.75,1}.
If multiple partial matches are found in the TST, we select one at random. Du-
ration estimates for new activities in V3 were extracted from the event log of
V3. Figure 9 shows the differences in duration of the 1,000 simulated traces for
each value of p and the traces from the event log of the respective process.

We observe that this simulation produces optimistic results — the duration
of simulated process instances are estimated to be less than the actual dura-
tion. The simulation does not necessarily produce the same distribution and
outliers seen in the log. This can be attributed to the differences in duration of
the new versions in production, which cannot be estimated using knowledge of
the original process. For example, the median execution and waiting times for
“W_Call after offers” activity is similar for all of versions. However, the min-
imum and maximums differ greatly. Minimum and maximum execution times
in V! are ~0 and ~26 days respectively. However, for V3, they are ~16 and
~80 days respectively. Another reason for the differences stems from the fact
that these versions run in different contexts — our versions are in fact variants
of the same process. Instances that need fraud detection, e.g., are served by a
different variant than other applications.

Simulation results, though fuzzy, show that the performance of V2 and V3
can be better than that of V'. In the following AB testing experiments, we
investigate whether these versions are faster in practice and whether the routing
algorithm can correctly identify the version that is faster.

4.2.2. AB Test

In this section, we compare duration of process versions V2 and V3 with
V! through AB tests. Since the implementation details were not available, we
have emulated the execution of process versions on the BPMS using the TST
constructed from their own event logs. In Section 4.2.1, we have shown that such
simulation produces results similar to that of the real execution. To ensure that
the polling mechanism of the instance router and the reward delays are similar
to that of a production environment, the PPI (duration) is made available only
after the duration of a simulated process instance has elapsed. This allows us
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to perform AB tests as if the implementation of the process were available.

As before, we sped up time such that 1
day in real time is equivalent to 1 second in
the emulation. User requests are sent to the
instance router at a rate of 1 request per sec-
ond. Also as before, the length of AB tests
is set to 1000 requests, the warm-up phase to
M = 500, and the exponential decay param-
eter is A = 150. We use quantile based re-

Vi

V2

V3

100
Duration (days)

150 200

ward strategy described in Section 3.3.4 with

K =20 and p = 4. The quantiles are derived

using the historical data of V1.
Figures 11 and 12 show request distribution, and the PPI observed by the
instance router over time during the AB tests. Figure 10 shows a box plot of
the duration of each process version extracted from the event logs of BPIC2017.
We can observe that V! is slower on average than V2 and V3, though only
marginally for V3. In our AB tests, the routing algorithm is incentivised to send
more requests to the version that is faster. These results show that the routing
algorithm correctly identifies and converges to the best performing version.
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4.8. Competitive AB Tests with Real-World Data — Building Permits

To further assess the applicability of our AB testing approach over real-
world data, we have analysed the data stemming from the five logs in the BPI
Challenge 2015,° herein identified as L', ..., L. Those logs contain the execu-
tion data of the building permit issuing processes in five Dutch municipalities.
The processes behind each log are based on the same legislation but reportedly
contain variations, which allow us to consider them as different versions of the
same main process.

The complexity of these process versions and the lack of contextual infor-
mation impedes us from creating accurate models for trace simulation. In the
following experiment, we simulate the situation where one version is in use,
when a new version is suggested and AB-tested in competition with the pre-
vious one. Better performance here is equated to shorter time to complete a
process instance. Subsequently, the version that won the first round competes
against the next version, and so on, until all versions have competed.

4.3.1. Ezxecution Time Simulation

Based on the insights from [48], we filtered the events to retain only those
activity instances that belong to a so-called “phase”, namely constituting the
core part of the process. We created TSTs for five process versions P!, ..., P®
from L', ..., L%, respectively.

The events in the logs signal the completion of an activity, and bear eight
timestamp fields. However, most of those attributes were missing or unreliable.
Therefore, we followed the approach of [48], and used solely the completion
time:timestamp attribute for each event. We computed the duration of every
activity as the difference between the timestamp of its completion and the pre-
ceding completion timestamp. We thus summarized the execution time and the
waiting time in a single metric, which we refer to as duration from here on.

We simulated the execution of the processes by sampling activity durations
of conforming logs from the TST. For fairness, in this experiment we simulate
only the logs that did not stem from the original processes. Say, we are AB-
testing P’ vs. P7; then we use the logs from Liest = {L',..., L5}\{L?, L7} with
1<i,7 <b5andi# j. However, we want to test how the event traces from Lyeg
behave on P? and P’ in terms of timing. Therefore, for every conforming trace,
we found a match in the TST, estimated the overall duration, and returned the
duration information only after the estimated time has elapsed. We discarded
all non-conforming traces, and did not perform partial matching on the TST.

4.3.2. Reward Strategy

The filtered BPIC 2015 dataset contains numerous outliers: while the median
duration for processes are 39-46 days, outliers take up to 1158 days, i.e., 3 years
and 63 days. In the following experiments, we use duration as the performance

5BPI Challenge 2015, including logs, reports, and process models:
https://www.win.tue.nl/bpi/doku.php?id=2015:challenge, Accessed: 20-03-2017
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Algorithm 4: Strategy for the selection of the best performing version
among {Pl,PQ,P3,P4,P5}.

Prest, < {P17P27P37P47P5}

Pt — original process version from Piest

Prest Ptcst\ {Pl}

repeat

PJ « alternative process version from Phest

Prest — Ptest\ {P]}

Ltest < {LY, ..., L°\{L?, L7}

P? « best version between P and PJ as per the AB test over Liest
until Ptest #* Q
return P!

o

© ® N o oo~ W N

[
=]

Table 7: Permit traces Table 8: Ratio of conforming traces in Permit
Log # of Traces Version Lt L? L3 t L’
Lt 1199 pt 1 0.928 0.949 0.974 0.928
L? 830 P2 0.913 1 0.928 0.982 0.938
L 1409 p3 0.901 0.812 1 0.975 0.886
Lt 1051 p* 0.873 0.731 0.913 1 0.829
L® 1155 pP® 0.897 0.929 0.944 0.979 1

metric and give higher rewards to faster process instances. We use the quantile-
based reward strategy described in Section 3.3.4 with K = 20 and p = 4.

4.3.8. Competition: Selecting the Best Version

To simulate the situation where an organization gradually designs new ver-
sions of a process model, we run a competition between the five discovered
process models. This competition is conducted as a set of pair-wise compar-
isons between versions, following the schema outlined in Algorithm 4. The idea
is to initially consider an original version of the process, P?, and a new version,
PJ. To determine if P7 achieves an actual improvement over P? while limiting
bias as discussed above, the execution of the processes is simulated by replaying
the traces in the logs from which P? and P7 were not derived. For instance, P!
and P? are evaluated on the basis of the traces in L3, L%, and L®. If, at the end
of a competition round, P? demonstrated an improvement over P?, then P? is
replaced with P7. Otherwise, P’ is maintained. At that stage, another process
version is compared to the winning version. The selection procedure continues
until all process versions have competed. During the competition, traces which
could not be replayed on the selected process version, i.e., were unfit, were dis-
carded and their performance was not considered. The number of compliant
traces still represents the vast majority, because the ratio of conforming traces
of all logs over models remained around 0.9, and always above 0.7 as shown in
Table 8. Also, the total number of traces per log is shown in Table 7.
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Figure 13: Request distribution for Permit over time

Table 9: Pair-wise performance comparison of Permit versions after the AB tests. Values for
the faster version are shown in bold.

Round 1 Round 2 Round 3 Round 4

Metric Pl p? P2 p3 P3 Pt P*  P°
No. of requests 559 440 423 575 263 729 735 261
Median duration 33.8 29.8 28.8 27 21 21.85 22.9 279
Mean duration 55.3 52.1 51.8 35.8 29.3 49.9 36.6 38.3

4.8.4. Analysis

Without loss of generality, we began the selection considering P! as the
process currently running on the production system, and progressively entering
P2 P3, P* and P® into the competition as described above. Once more, we
sped up the execution time such that one day in the trace was equated to one
second in the experiments. We set experimentation phase length to M = 1000,
and decay parameter A = 100.

The sequence of tests was: (1) P! vs. P2, P? wins. (2) P? vs. P3, P3 wins.
(3) P3 vs. P*, P3 wins. (4) P3 vs. P°, P? wins. We can observe that P? was
the best-performing version. In all tests, the instance router chose the version
with lower mean and median execution time.

Figure 13 shows the request distribution throughout the pair-wise tests. The
experimentation phase ends roughly after 1000 requests in all cases. We can
observe that occasionally the instance router decided to pick another version
some time during the post-experimentation phase. In some cases, the decision
made during the post-experimentation phase contradicted the decision during
the experimentation phase. In these scenarios, the instance router was able to
make the better decision only after all the delayed rewards were received.

In Table 9, we show the request distribution during the experimentation
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Figure 14: Estimated rewards during the Figure 15: PPI (duration) during the warm-
Permit experiment P! vs. P2 up phase of Permit, smoothed.

phase, and the performance metrics calculated using execution times of processes
instantiated during this phase. Considering the median and mean times in this
table confirms that the instance router using the LTAvgR algorithm made the
right decision in all cases.

For an in-depth view of the reward estimates (the average reward observed
by LTAvgR) and execution times, we depict in Figs. 14 and 15 how their values
changed during the experiment P! vs. P2. The effect that fast completion
leads to positive rewards is clearly visible in Fig. 14: shortly after the start
of the experiment, the reward estimates for both versions jump to more than
0.6. After some fluctuation, P! is preferred approximately from request 280
to request 811. This is also visible in Fig. 13, where we can observe that the
change in maximum of the two reward estimates leads to change in the request
distribution strategy.

Figure 15 shows the PPIs observed by the instance router in order. Better
PPIs, which lead to better rewards, are received early. However, worse PPIs
tend to accumulate near the end of the warm-up phase. At request 811, the
two estimated rewards are very close to each other — see Fig. 14. At this point,
P? collects actual rewards from longer durations than P! — see Fig. 15. These
longer durations result in negative rewards, which cause the reward estimate
of P? to fall below that of P'. This development leads to the change in the
decision of LTAvgR.

5. Discussion

In the following, we discuss relative strengths and limitations of the tech-
niques for simulation and AB testing proposed in this paper, as well as the
evaluation. We also highlight opportunities for future work.

5.1. Trace Simulation

Our simulation technique provides a high level idea of what might have
happened if the new version was executed instead of the old version under the
same circumstances with the same resources. If new versions are created in

27



response to expected changes in circumstances, we need to validate that these
new versions have a positive impact in the changed circumstances. In such
cases, our simulation technique is not appropriate. Our simulation approach
only addresses model-level changes in the new version. It cannot provide good
insights if the decision logic and activity implementations in the new version are
changed. Simulations can be successfully carried out using the partial matching
mechanism if the estimates for new activities are provided. However, the results
will be accurate only if there is a high degree of similarity between the types
of traces generated by two versions. Our approach does not execute activities,
so the actual differences in traces may only be observed after deployment. A
simulation approach that is aware of the data, the decision logic, and the types
of changes would be required for better results. Understanding these factors
and automatically assessing the quality of results from simulation are out of the
scope of this work.

Our simulation runs in the BPMS where the process engine knows what ac-
tivities can be executed next, but does not know which one exactly and for low
long. To guide the simulation, we need to know which activity can be executed
next, and which path in the BPMN model should be taken to execute that
activity. Candidate activities can be found by analysing the structure of the
process model, and they can be used to query the TST. However, to execute the
next activity suggested by the TST, the relevant outgoing flows of gateways in
the BPMN model must be activated. We accomplish this by setting up the out-
going flows with condition expressions that activate the relevant outgoing flow
when a custom variable is set to the name of the next activity. Deriving these
condition expressions is non-trivial in complicated processes with nested loops
and gateways. In our experiments, these conditions have been set manually.
Further research is required on automatically generating such conditions.

5.2. AB Testing

The design of our routing algorithm, LTAvgR, was informed by practical
observations of the limitations when applying existing algorithms in the process
execution context. As we have demonstrated, our approach addresses the key
requirements R1-R3. Our evaluation focused on the practical use of AB-BPM
and LTAvgR; theoretical analyses of the routing algorithm were out of the scope.
The in-depth analysis above showed how business-relevant PPI observations
have a direct influence on the routing decisions taken by LTAvgR.

We have used a multi-armed bandit algorithm with rewards derived from
a single PPI. In practice, however, multiple PPIs may need to be considered.
Furthermore, optimizing routing for one PPI can negatively affect other PPIs.
One key challenge in using multiple PPIs is that the reward delay for each PPI
can be different. Dealing with such scenarios may require improved collection
and reward update mechanisms, which we plan to explore in future work.

One limitation of our evaluation of AB-BPM so far is that they are based on
isolated environments with no real user interactions. Factors like effects from
the novelty of a process version were not considered. For example, in changing
the user interfaces and forms, we may observe that users behave differently
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when exposed to a new version. This issue may raise the question: where
does the change in version still pertain to the process, and where is it about
user interfaces? As in the case study using real-world building permit logs, we
expect to find some patterns unique to business processes when these factors
are accounted for. We believe that observations from real-world systems can
guide us towards designing a better instance routing algorithm, and identifying
best practices for performing AB tests on process versions.

In our case studies, the only PPI available to us was instance duration; aver-
age duration was assumed to be a good indicator of quality. If another PPI (e.g.
profit margin) is available at any time during execution, the instance router can
use that instead as a reward. Such PPIs may show multi-modal distribution
that cannot be summarized using the mean, as we have done in the LTAvgR
algorithm. We plan to investigate real-world cases with such performance char-
acteristics and devise solutions for them in future work.

5.8. Approach Comparison

In addition to the requirements outlined earlier, the three most relevant
dimensions for comparing the approaches are time, risk, and accuracy. Time
refers to the investment of time, but also the delay until the result is obtained.
Risk refers to exposing the user to a sub-optimal (potentially bad) version of a
process. Accuracy refers to the quality of the PPI results obtained. A qualitative
comparison of the two proposed approaches and the traditional evolution of
process versions through iterations of the lifecycle is shown in Fig. 16.

We argue that simulation poses no risk
(no exposure of users) and takes very little
time (relative to the duration of long-running AB Testing
processes). However, its accuracy is variable,
depending on the magnitude of differences
between the versions, and at this point not Simulation
overly reliable. As such, we argued through-
out the paper that it should be employed pri-
marily as a sanity check, and its results need /7 1
to be interpreted in the light of this low reli- )
ability. Traditional process evolution in con- R v
trast is slow, risky (because all users are tem- Risk
porarily exposed to a new version), and not o ]

. C . Figure 16: Qualitative comparison of
perfectly accurate (due to the time bias it in- process improvement approaches (po-
troduces, cf. Section 2.1). AB testing on the sitions on all three axes to be under-
other hand, achieves high accuracy, but also stood as indicative only).
takes time and incurs some risk. This risk is,
to a certain degree, mitigated by using a dynamic instance routing algorithm,
which switches to the better version as soon as the observations allow for it and
the experimentation phases out.

Though risk is managed in two incremental steps, there is a sizeable increase
of risk of exposure when switching from simulation to the experimentation phase
of AB tests. In future work, we plan to explore a middle ground between
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simulation and AB testing with the aim of reducing this risk while obtaining
accurate performance estimates.

6. Conclusion

Business process improvement ideas do not necessarily manifest in actual im-
provements. In this paper we proposed the AB-BPM methodology and frame-
work which can rapidly validate process improvement efforts, ensure fair com-
parison, and make process level adjustments in production environments. The
methodology is supported by the framework, which includes our simulation and
AB testing techniques, and the LTAvgR algorithm.

Our simulation technique extracts metrics and decision probabilities from the
event log of an old process version and uses them to generate traces of a new
version. Our AB testing approach uses an instance router that dynamically
selects process versions based on their historical performance in terms of the
chosen PPI. To this end, we proposed the LTAvgR algorithm and a reward
design that can cater for the specifics of business process execution.

We evaluated our approach and methodology exhaustively, using synthetic
and real-world data. Further, we analysed the framework’s performance on
real-world process versions by performing simulation and pair-wise AB tests on
them. The evaluation results showed that our simulation gives fuzzy but infor-
mative results if a new version is simulated. It also showed that the simulation
yielded accurate results if a process model is simulated using its own histori-
cal data — thus fulfilling a base assumption. Finally, our instance router with
the LTAvgR algorithm dynamically adjusted request distribution to favour the
better performing versions.

In future work, we aim to integrate our framework with approaches to bal-
ance multiple PPIs. We plan to consider user interaction, and run industrial
case studies where we apply our instance router to actual production systems.
In addition, we plan to explore solutions that provide a middle ground between
simulation and AB tests.
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