
ar
X

iv
:1

81
2.

11
24

9v
1

 [
cs

.D
S]

 2
8

D
ec

 2
01

8

A Compact Representation for Trips over Networks

built on self-indexes✩

Nieves R. Brisaboaa, Antonio Fariña∗,a, Daniil Galaktionova, M. Andrea
Rodriguezb

aUniversity of A Coruña, Database Laboratory, Spain.
bUniversity of Concepción, Department of Computer Science, Chile.

Millennium Institute for Foundational Research on Data, Chile

Abstract

Representing the movements of objects (trips) over a network in a com-
pact way while retaining the capability of exploiting such data effectively is an
important challenge of real applications. We present a new Compact Trip Rep-
resentation (CTR) that handles the spatio-temporal data associated with users’
trips over transportation networks. Depending on the network and types of
queries, nodes in the network can represent intersections, stops, or even street
segments.

CTR represents separately sequences of nodes and the time instants when
users traverse these nodes. The spatial component is handled with a data struc-
ture based on the well-known Compressed Suffix Array (CSA), which provides
both a compact representation and interesting indexing capabilities. The tem-
poral component is self-indexed with either a Hu-Tucker-shaped Wavelet-tree
or a Wavelet Matrix that solve range-interval queries efficiently. We show how
CTR can solve relevant counting-based spatial, temporal, and spatio-temporal
queries over large sets of trips. Experimental results show the space require-
ments (around 50-70% of the space needed by a compact non-indexed baseline)
and query efficiency (most queries are solved in the range of 1-1000 microsec-
onds) of CTR.

Key words: Trips on networks, counting queries, self-index, compression

✩Funded in part by European Union’s Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie grant agreement No 690941 (project BIRDS). The Spanish
group is also partially funded by Xunta de Galicia/FEDER-UE [CSI: ED431G/01 and GRC:
ED431C 2017/58]; by MINECO-AEI/FEDER-UE [Datos 4.0: TIN2016-78011-C4-1-R; Ve-
locity: TIN2016-77158-C4-3-R; and ETOME-RDFD3: TIN2015-69951-R]; and by MINECO-
CDTI/FEDER-UE [CIEN: LPS-BIGGER IDI-20141259 and INNTERCONECTA: uForest
ITC-20161074]. M. A. Rodŕıguez is partially funded by Fondecyt [1170497] and and by the
Millennium Institute for Foundational Research on Data.

✩✩An early partial version of this article appeared in Proc SPIRE’16 [1].
∗Corresponding author
Email addresses: brisaboa@udc.es (Nieves R. Brisaboa), fari@udc.es (Antonio Fariña),

d.galaktionov@udc.es (Daniil Galaktionov), andrea@udec.cl (M. Andrea Rodriguez)

Preprint submitted to Information Systems January 1, 2019

http://arxiv.org/abs/1812.11249v1

1. Introduction

Due to the current advances in sensor networks, wireless technologies, and
RFID-enabled ubiquitous computing, data about moving-objects (also referred
to as trajectories) is an example of massive data relevant in many real applica-
tions. Think in the notion of Smart Cities, where the implementation of new
technologies in public transportation systems has become more widespread all
around the world in the last decades. For instance, nowadays many cities -from
London to Santiago- provide the users of the public transportation with smart-
cards that help in making the payment to access buses or subways an easier
task. Even though smartcards may only collect data when users enter to the
transportation system, it is possible to derive the users’ trip (when they en-
ter and leave the system) using historical data and transportation models [2].
When having this data, counting or aggregate queries of trajectories become
useful tools for traffic monitoring, road planning, and road navigation systems.

New technologies and devices generate a huge amount of highly detailed,
real-time data. Several research exists about moving-object databases (MODs) [3–
6] and indexing structures [7–13]. They, however, have addressed typical spatio-
temporal queries such as time slice or time interval queries that retrieve trajec-
tories or objects that were in a spatial region at a time instant or during a time
interval. They were not specially designed to answer queries that are based
on counting, such as the number of distinct trips, which are more meaningful
queries for public-transportation or traffic administrators. This problem was
recently highlighted in [14], where authors describe an approximate query pro-
cessing of aggregate queries that count the number of distinct trajectories within
a region. In this work, we concentrate on counting-based queries on a network,
which includes the number of trips starting or ending at some time instant in
specific stops (nodes) or the top-k most used stops of a network during a given
time interval.

The work in this paper proposes a new structure named Compact Trip Rep-
resentation (CTR) that answers counting-based queries and uses compact self-
indexed data structures to represent the large amount of trips in a compact
space. CTR combines two well-known data structures. The first one, initially
designed for the representation of strings, is Sadakane’s Compressed Suffix Ar-
ray (CSA) [15]. The second one is the Wavelet Tree [16] (WT). To make the
use of the CSA possible, we define a trip or trajectory of a moving object over a
network as the temporally-ordered sequence of the nodes the trip traverses. An
integer ID is assigned to each node such that a trip is a string with the IDs of
the nodes. Note that this representation avoids the cost of storing coordinates
to represent the locations users pass through during a trip. It is just enough
to identify the stops or nodes and when necessary to map these nodes to geo-
graphic locations. Then a CSA, over the concatenation of these strings (trips),
is built with some adaptations for this context. In addition, we discretize the
time in periods of fixed duration (i.e. timeline split into 5-minute intervals) and
each time segment is identified by an integer ID. In this way, it is possible
to store the times when trips reach each node by associating the correspond-
ing time ID with each node in each trip. The sequence of times for all the
nodes within a trip is self-indexed with a WT to efficiently answer temporal and
spatio-temporal queries.

We experimentally tested our proposal using two sets of data represent-

2

ing trips over two different real public transportation systems. Our results
are promising because the representation uses around 50% of its original size
and answers most of our spatial, temporal, and spatio-temporal queries within
1−1000 microseconds. In addition, since CTR implicitly keeps all the original
trajectories in a compact and self-indexed way, it would permit us to extend its
functionality with additional operations that could benefit from the indexed ac-
cess provided both by the underlying CSA and WT structures. No experimental
comparisons with classical spatial or spatio-temporal indexing structures were
possible, because none of them were designed to answer the types of queries in
this work. Our approach can be considered as a proof of concept that opens
new application domains for the use of well-known compact data structures
such as the CSA and the WT, creating a new strategy for exploiting trajectories
represented in a self-indexed way.

The organization of this paper is as follows. Section 2 reviews previous works
on trip representations. It also presents CSA and WT upon which we develop
our proposal. We pay special attention to show the internals of those structures
and discuss also their properties and functionality. Then, in Section 2.3.2, we
also present the wavelet matrix (WM) and show how to create a Hu-Tucker-
shaped WT (WTHT). These are the two variants of WT we use to represent
temporal data. In Section 3, we present the main counting-based queries that
are of interest for a transportation network. In Section 4, we present CTR and
show how to reorganize a dataset of trips to allow a CSA to handle the spatial
data and a WT-based structure to manage the temporal data. Section 5 shows
how CTR represents the spatial component and how spatial queries are dealt
with. In Section 6, we focus on how to represent the temporal component of
trips and how to answer temporal queries. We also include a brief comparison of
the space/time trade-off of WM and WTHT. In Section 7, we show how spatio-
temporal queries are solved by CTR, and Section 8 includes our experimental
results. Finally, conclusions and future work are discussed in Section 9.

2. Previous Work

2.1. Models of trajectory and types of queries

There is a large amount of work on data models for moving-object data [3–
6, 17–20]. Basically, a moving-object data model represents the continuous
change of the location of an object over time, what is called the trajectory of
the object.

Moving-object data is an example of big data that differ in the representa-
tion of location, contextual or environmental information where the movement
takes place, the time dimension that can be continuous or discrete, and the
level of abstraction or granularity on which the trajectories are described [21].
A common classification of trajectories distinguishes free from network-based
trajectories. Free trajectories or Euclidean trajectories are a sequence of GPS
points represented by an ad-hoc data type of moving points [17–19]. Network-
based trajectories are a temporal ordered sequence of locations on networks.
This trajectory model includes a data type for representing networks and for
representing the relative location of static and moving points on the network [22].
In a recent work, network-matched trajectories are defined to avoid the need of
a mobile map at the moving-object side [23].

3

The definition of trajectories at an abstract level must be materialized in an
internal representation with access methods for query processing. An early and
broad classification of spatial-temporal queries for historical positions of moving
objects [8] identifies coordinate- and trajectory-based queries. Coordinate-based
queries include the well-known time-slice, time-interval and nearest-neighbor
queries. Examples are find objects or trajectories in a region at a particular
time instant or during some time interval. Another important example of range-
based queries is find the k-closest objects with respect to a given point at a given
time instant. Trajectory-based queries involve topology of trajectories (e.g.,
overlap and disjoint) and information (e.g., speed, area, and heading) that can
be derived from the combination of time and space. An example of such queries
would be find objects or trajectories that satisfy a spatial predicate (eg., leave
or enter a region) at a particular time instant or time interval. There also
exist combined queries addressing information of particular objects: Where was
object X at a particular time instant or time interval?. In all previous queries,
the results are individual trajectories that satisfy the query constraints.

When dealing with large datasets of trajectories we can find scenarios where
answering counting based or aggregated queries are typically of concern. This
is for example the case of network management applications, those for mobil-
ity analysis, or when there are privacy issues that prevent us from revealing
the original individual trajectories. In this context, we can further distinguish
range- from trajectory-based queries. Range queries impose constraints in terms
of a spatial location and temporal interval. Examples of these queries are to
retrieve the number of distinct trajectories that intersect a spatial region or spa-
tial location (stop) at a given time instant or time interval, retrieve the number
of distinct trajectories that start at a particular location (stop) or in a region
and/or end in another particular location of region, retrieve the number of tra-
jectories that follow a path, and retrieve the top-k locations (stops) or regions
with the larger number of trajectories that intersect at a given time instant
or time interval. Trajectory-based queries require not only to use the spatio-
temporal points of trajectories but also the sequence of these points. Examples
of such queries are to find the number of trajectories that are heading (not
necessarily ending at) to a spatial location during a time interval, find the des-
tination of trajectories that are passing through a region during a time interval,
find the number of starting locations of trajectories that go or pass through a
region during a time interval.

2.2. Trajectory indexing

Many data structures have been proposed to support efficient query capabil-
ities on collections of trajectories. We refer to [7, Chapter 4] for a comprehensive
and up-to-date survey on data management techniques for trajectories of mov-
ing objects. We can broadly classify these data structures into two groups: those
that index trajectories in free space and those that index trajectories that are
constrained to a network.

In free space, it is common to see spatial indexes that extend the R-Tree
index [24] beyond a simple 3D R-Tree where the time is one of the dimensions.
Two examples of such indexes can be found in [8] where the authors present
two fundamental variations of the R-Tree: the STR-Tree and the TB-Tree.
Both indexes modify the classical construction algorithm for the R-Tree, where
the nodes are not only grouped by the spatial distance among the indexed

4

objects, but also by the trajectories they belong to. In the MV3R-tree [9], the
construction takes into account temporal information of the moving objects,
adapting ideas from the Historical R-Tree [25]. Another interesting approach is
described in [26], where the authors split trajectories of moving objects across
partitions of space, indexing each partition separately. This improves query
efficiency, as only the partitions that intersect a query region are accessed.

R-Tree adaptations can also be useful when the trajectories are constrained
to a network. They exploit the constraints imposed by the topology of the
network to optimize the data structure. This is the case of the FNR-tree [10],
which consists of a 2D R-Tree to index the segments of the trajectories over
the network, and a forest of 1D R-Trees used to index the time interval when
each trajectory is moving through each segment of the network. The MON-
Tree [11] can be seen as an improvement over the FNR-Tree, saving considerable
space by indexing MBRs of larger network elements (edge segments or entire
roads) and reducing the number of disk accesses at query time. Both indexes
are outperformed by the TMN-Tree [27] in query time, which indexes whole
trajectories of moving objects with a 2D R∗-Tree and indexing the temporal
component with a B+-Tree, which proves to be more efficient for that application
than the R-Tree.

PARINET is another interesting alternative to represent trajectories con-
strained to a network [12]. It partitions trajectories into segments from an
underlying road network using a complex cost model to minimize the number
of disk accesses at query time. It takes into account the spatial relations among
the indexed network elements, as well as some statistics of the data to index.
Then it adds a temporal B+-tree to index the trajectory segments from each
road. Those indexes permit PARINET to filter out candidate trajectory seg-
ments matching time constraints at query time. The same ideas were used in
TRIFL [28], where the cost model is adapted for flash storage.

All previous data structures were designed to answer spatio-temporal queries,
where the space, in particular geographic coordinates, and time are the main
filtering criteria. Examples of such queries are: retrieve trajectories that crossed
a region within a time interval, retrieve trajectories that intersect, or retrieve
the k-best connected trajectories (i.e., the most similar trajectories in terms of
a distance function). Yet, they could not easily support queries such as the
number of trips starting in X and ending at Y. A recent work in [14] proposes a
method to compute the approximate number of distinct trajectories that cross
a region. Note that computing aggregate queries of trajectories in the hierarchi-
cal structure of classical spatio-temporal indices is usually done by aggregating
the information maintained in index nodes at the higher levels to avoid access-
ing the raw spatio-temporal data. However, for a trajectory aggregate query,
maintaining the statistical trajectory information on index nodes does not work
because what matters for these queries is to determine the number of distinct
trajectories in a spatio-temporal query region.

The application of data compression techniques has been explored in the
context of massive data about trajectories. The work by Meratnia and de By [29]
adapts a classical simplification algorithm by Douglas and Peucker to reduce the
number of points in a curve and, in consequence, the space used to represent
trajectories. Potamias et al. [30] use concepts, such as speed and orientation, to
improve compression. It is also possible [31] to compress a trajectory in a way

5

that the maximum error at query time is deterministic, although the method
greatly depends on the distance function to be used.

In [32–34], they focus mainly on how to represent trajectories constrained to
networks, and in how to gather the location of one or more given moving objects
from those trajectories. Yet, these works are out of our scope as they would
poorly support queries oriented to exploit the data about the network usage
such as those that compute the number of trips with a specific spatio-temporal
pattern (e.g. Count the trips starting at stop X and ending at stop Y in working
days between 7:00 and 9:00).

A recent work [35] proposed an indexing structure called NETTRA to an-
swer strict and approximate path queries that can be implemented in standard
SQL using B+-trees and self-JOIN operations. For each trajectory, NETTRA
represents the sequence of adjacent network edges touched by the trajectory
as entries in a table with four columns: id, entering and leaving time, and a
hash value of the entire path up to and including the edge itself. Using the
hash value for the first and last edge on a query path, NETTRA determines
whether the trajectory followed a specific path between these edges. Also for
strict path queries, Koide et al. [36] proposed a spatio-temporal index structure
called SNT-Index that is based on the integration of a FM-index [37] to store
spatial information with a forest of B+trees that stores temporal information.
To the best of our knowledge, this makes up the first technique using compact
data structures to handle spatial data in this scenario. Yet, in our opinion, strict
path queries have little interest in the context of exploiting data to analyze the
usage of a transportation network.

Unlike previous works, we designed an in-memory representation, that tar-
gets at solving counting-based queries, and is completely based on the use of
compact data structures (discussed in the next section) to make it successful
not only in time but also in space needs. Since CTR keeps data in a compressed
way, it will permit to handle larger sets of trajectories entirely in memory and
consequently to avoid costly disk accesses.

2.3. Underlying Compact Structures of CTR

CTR relies on two components: one to handle the spatial information and
another to represent temporal information. The spatial component is based on
the well-known a Compressed Suffix Array (CSA) [15]. The temporal component
can be implemented with either a Wavelet Tree (WT) [16] or a Wavelet Matrix
(WM) [38]. The latter is a variant ofWT that performs better when representing
sequences built on a large alphabet as we see below.

2.3.1. Sadakane’s Compressed Suffix Array (CSA)

Given a sequence S[1, n] built over an alphabet Σ of length σ, the suffix
array A[1, n] built on S [39] is a permutation of [1, n] of all the suffixes S[i, n]
so that S[A[i], n] ≺ S[A[i + 1], n] for all 1 ≤ i < n, being ≺ the lexicographic
ordering. Because A contains all the suffixes of S in lexicographic order, this
structure permits to search for any pattern P [1,m] in time O(m log n) by simply
binary searching the range A[l, r] that contains pointers to all the positions in
S where P occurs.

To reduce the space needs of A, Sadakane’s CSA [15] uses another permu-
tation Ψ[1, n] defined in [40]. For each position j in S pointed from A[i] = j,

6

Ψ[i] gives the position z such that A[z] points to j + 1. There is a special
case when A[i] = n, in this case Ψ[i] gives the position z such that A[z] = 1.
In addition, we could set up a vocabulary array V [1, σ′], (σ′ ≤ σ) with all the
different symbols from Σ that appear in S, and a bitmap D[1, n] aligned to
Ψ so that D[i] ← 1 if i = 1 or if S[A[i]] 6= S[A[i − 1] (D[i] ← 0; other-
wise). Basically, a 1 in D marks the beginning of a range of suffixes pointed
from A such that the first symbol of those suffixes coincides. That is, if the
ith and (i+ 1)

th
one in D occur in D[l] and D[r] respectively, we will have

V [rank1(D, l)] = V [rank1(D, x)] ∀x ∈ [l, r − 1]. Note that rank1(D, i) returns
the number of 1s in D[1, i] and can be computed in constant time using o(n)
extra bits [41, 42].

By using Ψ, D, and V , it is possible to simulate a binary search for the
interval A[l, r] where a given pattern P occurs ([l, r] ← bsearch(P)) with-
out keeping A nor S. Note that, the symbol S[A[i]] pointed by A[i] can be
obtained as V [rank1(D, i)], and we can obtain the following symbol from the
source sequence S[A[i] + 1] as V [rank1(D,Ψ[i])], S[A[i] + 2] can be obtained
as V [rank1(D,Ψ[Ψ[i]])], and so on. Therefore, CSA replaces S, and it does not
need A anymore to perform searches.

However, in principle, Ψ would have the same space requirements as A.
Fortunately, Ψ is highly compressible. It was shown to be formed by σ sub-
sequences of increasing values [40] so that it can be compressed to around the
zero-order entropy of S [15] and, by using δ-codes to represent the differential
values, its space needs are nH0 + O(n log log σ) bits. In [43], they showed that
Ψ can be split into nHk + σk (for any k) runs of consecutive values so that the
differences within those runs are always 1. This permitted to combine δ-coding
of gaps with run-length encoding (of 1-runs) yielding higher-order compression
of Ψ. In addition, to maintain fast random access to Ψ, absolute samples at
regular intervals (every tΨ entries) are kept. Parameter tΨ implies a space/time
trade-off. Larger values lead to better compression of Ψ but slow down access
time to non-sampled Ψ[i] values.

In [44], authors adapted Sadakane’s CSA to deal with large (integer-based)
alphabets and created the integer-based CSA (iCSA). They also showed that,
in their scenario (natural language text indexing), the best compression of Ψ
was obtained by combining differential encoding of runs with Huffman and run-
length encoding.

2.3.2. The Wavelet Tree (WT)

Given a sequence S[1, n] built on an alphabet Σ with σ symbols that are
encoded with a fixed-length binary code [0, σ), a WT [16] built over S is a
balanced binary tree where leaves are labeled with the different symbols in S,
and each internal node v contains a bitvector Bv. The bitvector in the root
node contains the first bit from the codes of all the n symbols in S. Then
symbols whose code starts with a 0 are assigned to the left child, and those
with codes starting with a 1 are assigned to the right child. In the second level,
the bitvectors contain the second bits of the codes of their assigned symbols.
This applies recursively for every node, until a leaf node is reached. Leaf nodes
can only contain one kind of symbol. The height of the tree is log σ, and since
the bitvectors of each level contain n bits, the overall size of all the bitvectors
is n log σ bits. To calculate the total size of the WT we also need to take into
account the space needed to store pointers from each symbol to its corresponding

7

tree node which is O(σ logn) bits. In addition, as we see below the WT reduces
the general problem of solving access(i), rankc(i), and selectc(i) operations to
the problem of computing access, rank and select on the bitvectors. Therefore,
additional structures to efficiently support those operations add up to o(n log σ)
space. The overall size of theWT is n log σ(1+o(1)) + O(σ logn). Figure 1.(left)
shows a WT built on the sequence S = 〈3 2 7 7 0 1 4 3 7 6 3 2 5 5 3〉 assuming we
use a 3-bit binary encoding for the symbols in Σ = [0..7]. Shaded areas are not
included in the WT but help us to see the subsequences handled by the children
of a given node.

3 2 7 7 0 1 4 3 7 6 3 2 5 5 3

0 0 1 1 0 0 1 0 1 1 0 0 1 1 0

3 2 0 1 3 3 2 3

1 1 0 0 1 1 1 1

7 7 4 7 6 5 5

1 1 0 1 1 0 0

3 2 3 3 2 3

1 0 1 1 0 1

0 1

0 1

4 5 5

0 1 1

7 7 7 6

1 1 1 0

0 1 2 2 3 3 3 3 4 5 5 6 7 7 7

v

v
0

v
01

S

v
1

3 2 7 7 0 1 4 3 7 6 3 2 5 5 3

0 0 1 1 0 0 1 0 1 1 0 0 1 1 0B
1

3 2 0 1 3 3 2 3 7 7 4 7 6 5 5

1 1 0 0 1 1 1 1 1 1 0 1 1 0 0B
2

0 1 4 5 5 3 2 3 3 2 3 7 7 7 6

0 1 0 1 1 1 0 1 1 0 1 1 1 1 0B
3

3 2 7 7 0 1 4 3 7 6 3 2 5 5 3

0 0 1 1 0 0 1 0 1 1 0 0 1 1 0

l
0

3 2 0 1 3 3 2 3 7 7 4 7 6 5 5

1 1 0 0 1 1 1 1 1 1 0 1 1 0 0

l
1

0 1 4 5 5 3 2 3 3 2 3 7 7 7 6

0 1 0 1 1 1 0 1 1 0 1 1 1 1 0

l
2

3 2 7 7 0 1 4 3 7 6 3 2 5 5 3

0 0 1 1 0 0 1 0 1 1 0 0 1 1 0B
1

3 2 0 1 3 3 2 3 7 7 4 7 6 5 5

1 1 0 0 1 1 1 1 1 1 0 1 1 0 0B
2

0 1 4 5 5 3 2 3 3 2 3 7 7 7 6

0 1 0 1 1 1 0 1 1 0 1 1 1 1 0B
3

3 2 7 7 0 1 4 3 7 6 3 2 5 5 3

0 0 1 1 0 0 1 0 1 1 0 0 1 1 0B
1

3 2 0 1 3 3 2 3 7 7 4 7 6 5 5

1 1 0 0 1 1 1 1 1 1 0 1 1 0 0B
2

0 1 4 5 5 3 2 3 3 2 3 7 7 7 6

0 1 0 1 1 1 0 1 1 0 1 1 1 1 0B
3

S

z
1
=8

z
2
=5

Figure 1: WT (left) and WM (right) for sequence S = 〈3 2 7 7 0 1 4 3 7 6 3 2 5 5 3〉. Shaded areas
are neither included in the WT nor in the WM.

Among others, the WT permits to answer the following queries in O(log σ)
time:

• access(i) returns S[i].

• rankc(i) returns the number of occurrences of symbol c in S[1, i].

• selectc(i) returns the position of the i-th occurrence of symbol c in S.

• count(i, j, α, β) described in [45], returns the number of occurences in
S[i, j] of the symbols between α and β.

To solve access(i) and rankc(i) operations we traverse the WT from the root
until we reach a leaf. In the case of rankc(i) we descend the tree taking into
account the encoding of c = c1c2... in each level. Being B the bitmap in the
root node, if c1 = 0 we move to the left child and set i← rank0(i); otherwise we
move to the right child and set i ← rank1(i). We proceed recursively until we
reach a leaf where we return i. access(i) is solved similarly, but at each level,
we either move left or right depending on if B[i] = 0 or B[i] = 1 respectively.
The leaf where we arrive corresponds to the symbol c = S[i] which is returned.
To solve selectc(i) we traverse the tree from the leaf corresponding to symbol c
until the root. At level j, we look at the value of the j-th bit of the encoding
of c (cj). If cj = 0 we set i ← select0(Bj−1) (where Bj−1 is the bitmap of the
parent of the current node), otherwise we set i← select1(Bj−1). Then we move
to level j − 1 and proceed recursively until the root, where the final value of i
is returned.

In this work we are also interested in operation count(i, j, α, β) that allow us
to count the number of occurrences of all the symbols c ∈ [α, β] within S[i, j].
Assuming the encodings of the symbols c ∈ [α, β] form also a contiguous range

8

this can be solved in O(log σ) [38, 45]. The idea is to traverse the tree from
the root and descend through the nodes that cover the leaves in [α, β]. At
each node v (whose bitmap is Bv and range Bv[i, j] is considered), that covers
symbols in range [a, b] we check whether [a, b] ⊆ [α, β]. In that case we sum
j − i+ 1 occurrences. If both ranges are disjoint we found a node not covering
the range [α, β] and stop the traversal. Similarly, if range [i, j] becomes empty
traversal stops on that branch. Otherwise, we recursively descend from node
v to their children vl and vr where we map the interval Bv[i, j] into Bvl [il, jl]
and Bvr [ir, jr] with rank0 operation. In practice, il ← rank0(i − 1) + 1, jl ←
rank0(j) and ir ← i − il + 1, jr ← j − jl. For more details and pseudocodes
see [38, 45, 46]. In Figure 1.(left) we can see the nodes (v, v0, and v01) that
must be traversed, and the ranges within the bitmaps in those nodes, to solve
count(5, 10, 3, 7). Therefore, we want to compute the number of occurrences of
symbols between 3 and 7 that occur within S[5, 10]. We start in the root node
v, where Bv[5, 10] contains 3 zeroes and 3 ones. We compute il = rank0(4) +
1 = 3, jl = rank0(10) = 5, and ir = 5 − 3 + 1 = 3, jr = 10 − 5 = 5. At
this point we could move to v1, but we can see that all the encodings of the
symbols 4, 5, 6, 7 start by 1 and they are covered by v1. Therefore, we report
ir − il + 1 = 3 occurrences of symbols in range [4, 7] and no further processing
is done in the subtree whose root is v1. However, we descent to v0 since 0s in
Bv[5, 10] could belong to any symbol in range [0, 3], and we have to track only
occurrences of symbol 3. We check Bv0 [3, 5] and compute il = rank0(3) + 1 =
1, jl = rank0(5) = 2, and ir = 3 − 1 + 1 = 3, jr = 5 − 2 = 3. Since the
second bit of the encoding of symbol 3 is a 1 (as for symbol 2), we can discard
descending on the left child of v0 and move only to its right child v01 where
we are interested in the range Bv01 [3, 3]. Since v01 covers both symbols 2 and
3, and the third bit of the encoding of 2 is a zero whereas it is a one for 3,
we do only need to count the number of ones in Bv01 [3, 3]. After computing
il = rank0(2)+ 1 = 2, jl = rank0(3) = 1, and ir = 3− 2+ 1 = 2, jr = 3− 1 = 2,
we report jr − ir + 1 = 1 occurrence of symbol 3. Therefore, we conclude
count(5, 10, 3, 7) = 3 + 1 = 4.

One way of reducing the space needs of a WT consists in compressing its
bitvectors [47]. Among others (i.e. Golynski et al. [48] which is better theo-
retically), Raman el al. technique [49] (RRR) is, in practice, one of the best
choices. The overall size of the WT becomes nH0(S) + o(n log σ) + O(σ logn),
whereas operations still require O(log σ) time.

Another way of compressing a WT is to use a prefix-free variable-length en-
coding for the symbols. For example, Huffman [50] code can be used to build
a Huffman-Shaped WT [51], where the tree is not balanced anymore. The size
reduces to n(H0(S) + 1) + o(n(H0(S) + 1)) +O(σ logn),1 and average time be-
comes O(H0(S)) for rank, access, and select (worst-case time is still O(log σ)
[52]). By using compressed bitvectors [38] space can be reduced even further to
nH0(S)+o(n(H0(S)+1))+O(σ log n). Unfortunately, the Huffman codes given
to adjacent symbols are no longer contiguous, and it is not possible to give a
O(log σ) bound for count(i, j, α, β) anymore, even if the code is canonical. Hu-
Tucker codes [53] can be used instead.2 Compression degrades slightly with

1O(σ logn) term includes both the tree pointers and the size of the Huffman model.
2Hu-Tucker [53] is an optimal prefix code that preserves the order of the input vocabulary.

9

respect to using Huffman coding,3 but the codes for adjacent symbols are lexi-
cographically contiguous. This permits to solve count efficiently. The size of a
Hu-Tucker-shaped WT (WTHT) can be bounded to n(H0(S)+2)+o(n(H0(S)+
1)) +O(σ log n) and can be reduced to nH0(S) + o(n(H0(S) + 1)) +O(σ logn)
by using compressed bitvectors as well.

The Wavelet Matrix (WM). For large alphabets, the size of the WT is affected
by the term O(σ logn). A pointerless WT [57] permits to remove4 that term
by concatenating all the bitmaps level-wise and computing the values of the
pointers during the WT traversals. The operations on a pointerless WT have
the same time complexity but become slower in practice.

By reorganizing the nodes in each level of a pointerless WT, the Wavelet
Matrix (WM) [38] obtains the same space requirements (n log σ(1 + o(1)) bits),
yet its performance is very close to that of the regular WT with pointers. Fig-
ure 1.(right) shows an example.

As in the WT, the i-th level stores the i-th bits of the encoded symbols. A
single bitvector Bi is kept for each level. In the first level, B1 stores the 1-st bit
of the encoding of the symbols in the order of the original sequence S. From
there on, at level i, symbols are reordered according to the (i−1)-th bit of their
encoding; that is, according to the bit they had in the previous level. Those
symbols whose encoding had a zero at position i − 1 must be arranged before
those that had a one. After that, the relative order from the previous level is
maintained. That is, if a symbol α occurred before other symbol β, and the
(i− 1)-th bit of their encoding coincides, then α will precede β at level i.

If we simply keep the number of zeros at each level (zl ← rank0(Bl, n)), we
can easily see that the k-th zero at level i − 1 is mapped at position k within
Bi, whereas the j-th one at level i − 1 is mapped at position zl + j within
Bi. This avoids the need for pointers and permits to retain the same time
complexity of the WT operations. For implementation details see [38, 58]. For
example to solve access(S, 8), we see that B1[8] = 0 and rank0(B1, 8) = 5. We
move to the next level where we check position 5; we see that B2[5] = 1 and
rank1(B2, 5) = 3. We move to next level and check position 3+ z2 = 3+5 = 8,
where we finally see B3[8] = 1. Therefore, we have decoded the bits 011 that
correspond to symbol 3 = access(S, 8).

To reduce the space needs of WM we could use compressed bitvectors as
for WTs. Space needs become nH0(S) + o(n log σ) bits. Yet, compressing the
WM by giving either a Huffman or Hu-Tucker shape is not possible as the re-
ordering of the WM could lead to the existence of holes in the structure that
would ruin the process of tracking symbols during traversals. To overcome this
issue an optimal Huffman-based coding was specifically developed for wavelet
matrices [38, 59]. This allows to obtain space similar to that of a pointerless
Huffman-shaped WT but faster rank, select, and access operations. Unfortu-

This means that the lexicographic order of the output variable-length binary codes is the same
as the order of the input symbols.

3Being Lh and Lht the average codeword length of Huffman coding and Hu-Tucker codes
respectively, it holds: H0 ≤ Lh ≤ H0 + 1 and H0 ≤ Lht ≤ H0 + 2 (see [54] (pages 122-123),
or [55, 56]).

4In a pointerless Huffman-shaped WT a term O(σ log logn) still remains due to the need
of storing the canonical Huffman model.

10

nately, since the encodings of consecutive symbols do not form a contiguous
range, count(i, j, α, β) is no longer supported in O(log σ) time and computing
rankc(S, j)− rankc(S, i) + 1 is required for each c in [α, β].

As indicated before, since in CTR we need efficient support for count op-
eration, we will try (see Section 6) the Hu-Tucker-shaped WT as well as the
uncompressed WM. In addition, we will couple them with both uncompressed
and RRR compressed bitvectors.

3. Counting-based queries

In transportation systems, new technologies such as automatic fare collection
(e.g., smartcards) and automatic passenger counting have made possible to gen-
erate a huge amount of highly detailed, real-time data useful to define measures
that characterize a transportation network. This data is particularly useful be-
cause it actually consists of real trips, combining implicitly the service offered by
a public transportation system with the demand for the system. When having
this data, it is not the data about individual trajectories but measures of the
use of the network what matters for traffic monitoring and road planning tasks.
Examples of useful measures are accessibility and centrality indicators, referred
to how easy is to reach locations or how important certain stops are within a
network [60–63]. All these measures are based on some kind of counting queries
that determine the number of distinct trips that occur within a spatial and/or
temporal window.

Among other types of queries, in this work we focus on the following counting
queries, which to the best of our knowledge have not been addressed by previous
proposals. In general terms, we define two general queries, number-of-trips
queries and top-k queries, upon which we apply spatial, temporal or spatio-
temporal constraint when useful.

(a) Number-of-trips queries. This is a general type of queries that counts
the number of distinct trips. When applying spatial, temporal or spatio-
temporal constraints, it can specialized in the following queries:

1. Pure spatial queries:

- Number of trips starting at node X (starts-with-x).

- Number of trips ending at node X (ends-with-x).

- Number of trips starting at X and ending at Y (from-x-to-y).

- Number of trips using or passing through node X (uses-x)

2. Spatio-temporal queries:

- Number of trips starting at node X during time interval [t1, t2] (starts-with-x).

- Number of trips ending at node X during the time interval [t1, t2] (ends-with-x).

- Number of trips starting at X and ending at Y occurring during time
interval [t1, t2] (from-x-to-y). This type of queries is further classified
into: (i) from-x-to-y with strong semantics (from-x-to-y-strong),
which considers trips that completely occur within interval [t1, t2]. (ii)
from-x-to-y with weak semantics (from-x-to-y-weak), which consid-
ers trips whose life time overlap [t1, t2].

- Number of trips using node X during the time interval [t1, t2] (uses-x).

11

3. Pure temporal queries:

- Number of trips starting during the time interval [t1, t2] (starts-t).

- Total usage of network stops during the time interval [t1, t2] (uses-t).

- Number of trips performed during the time interval [t1, t2] (trips-t).

(b) Top-k queries. In this type of queries we want to retrieve the k nodes with
the highest number of trips. In this case, depending on having a temporal
constraint or not we include the following queries:

1. Pure spatial Top-k queries:

- Top-k most used nodes (top-k) that returns the nodes with the largest
number of trips passing through.

- Top-k most used nodes to start a trip (top-k-starts) that returns the
nodes with the largest number of trips that start at that node.

2. Spatio-temporal Top-k queries:

- Top-k most used nodes during time interval [t1, t2](top-k) that returns
the nodes with the largest number of trips passing through within time
interval [t1, t2].

- Top-k most used nodes to start a trip during time interval [t1, t2](top-k-starts)
that returns the nodes with the largest number of trips starting there
within time interval [t1, t2] at that node.

4. Compact Trip Representation (CTR)

If we consider a network N with σs nodes, we can see a dataset of trips T
over N as a set of z trips, where for each trip Ti, we represent a list with the li
temporary-ordered nodes it traverses and the corresponding timestamps: T =
{〈(si1, s

i
2, . . . , s

i
li
), (ti1, t

i
2, . . . , t

i
li
)〉}, i ∈ [1, z], sij ∈ [1, σs], and tix ≤ tiy, ∀x < y.

Note that every node in the network can be identified with an integer ID (si1)
and that, if we are interested in analyzing the usage patterns of the network, we
will probably be interested in discretizing time into time intervals (i.e. 5-min,
30-min intervals). Therefore, we will have σt different time intervals that can
also be identified with an integer ID (tij ∈ [0, σt)).

The size of the time interval is a parameter for the time-discretizing process
that can be adjusted to fit the required precision in each domain. For example,
in a public transportation network where we could have data including five years
of trips, one possibility would be to divide that five-years period into 10-minute
intervals hence obtaining a vocabulary of roughly σt = 5× 365× 24× 60/10 =
262, 800 different intervals. Other possibility would be to use cyclically annual
10-minute periods resulting in σt = 262, 800/5 = 52, 560. However, in public
transportation networks, queries such as “Number of trips using the stop X
on May 10 between 9:15 and 10:00” may be not as useful as queries such as
“Number of trips using stop X on Sundays between 9:15 and 10:00”. For this
reason, CTR can adapt how the time component is encoded depending on the
queries that the system must answer.

Example 4.1. Figure 2 shows a network that contains σs = 10 nodes num-
bered from 1 to 10. Over that network we have six trips (z = 6), and, for

12

1 2 3

46

10

5

7 8

9

1 2 3

46

10

5

7
8

9

08:00 08:15 08:25

08:25 08:35 08:40

08:10

08:30

08:40 08:50

08:50

09:10

09:15

09:15

Figure 2: A set of trips over a network with 10 nodes.

each of them, we indicate the sequence of nodes it traverses and the time when
the trip goes through those nodes. If we discretize time into 5-minute inter-
vals, starting at 08:00h, and ending at 9:20h, we will have have σt = 16 dif-
ferent time intervals. Any timestamp within interval [08 :00 , 08 :05) will be
assigned time-code 0, those within [08 :05 , 08 :10) code 1, and so on until times
within [09 :15 , 09 :20) that are given time-code 15. Therefore, our dataset of
trips will be: T : {〈(1,2,3), (5 , 7 , 8)〉, 〈(2,3,10,6), (10 , 13 , 14 , 15)〉, 〈(1,2,3),
(0 , 3 , 5)〉, 〈(2,3,10,4,7), (2 , 4 , 6 , 8 , 10)〉, 〈(3,10,5), (9 , 11 , 12)〉, 〈(9,8,7),
(12 , 14 , 15)〉}, where bold numbers indicate node IDs and slanted ones indicate
times.

In CTR we represent both the spatial and the temporal component of the
trips using well-known self-indexing structures in order to provide both a com-
pact representation and the ability to perform fast indexed searches at query
time. In Section 5 we focus on the spatial component and discuss how we
adapted CSA to deal with trips. We also show how we support spatial queries.
Then, in Section 6 we show that the times, which are kept aligned with the
spatial component of the trips, can be handled with a WT-based representa-
tion. Actually we study two alternatives (a WTHT and a WM) and show how
temporal and spatio-temporal (Section 7) queries are supported by CTR.

5. Spatial component of CTR

We use a CSA to represent the spatial component of our dataset of trips
within CTR. Yet, we perform some preprocessing on T before building a CSA

on it. Initially, we sort the trips by their first node (si1), then by the last node
(sili), then by the starting time (ti1), and finally, by its second node (si2), third

node (si3), and successive nodes (sij , 3 < j ≤ li). Note that the start time (ti1)
of the trip does not belong to the spatial component, but it is nevertheless used
for the sorting.5

Following with Example 4.1, after sorting the trips in T with the crite-
ria above, our sorted dataset T s would look like: T s: {〈(1,2,3), (0 , 3 , 5)〉,
〈(1,2,3), (5 , 7 , 8)〉, 〈(2,3,10,6), (10 , 13 , 14 , 15)〉, 〈(2,3,10,4,7), (2 , 4 , 6 , 8 , 10)〉,
〈(3,10,5), (9 , 11 , 12)〉, 〈(9,8,7), (12 , 14 , 15)〉}. Note that (2,3,10,6) appears
before (2,3,10,4,7) because during the sorting process we compare (2,6, 2 ,3,10,6)
with (2,7, 10 ,3,10,4,7); that is, we compare the starting nodes (2 and 2) and
then the ending nodes (6 and 7). If needed (not in this example) we would have

5This initial sorting of the trips will allow us to answer some useful queries very efficiently
(i.e., count trips starting at X and ending at Y).

13

also compared the slanted values (2 and 10) that are the starting times of the
trips, and finally the rest of nodes (3,10,6 and 3,10,4,7). Similarly, the two
trips containing nodes (1,2,3) are sorted by the starting times (0 and 5).

In a second step, we enlarge all the trips T s
i , 1 ≤ i < z with a fictitious

terminator-node $i whose timestamp is set to that of the initial node of the
trip. We choose terminators such that $i ≺ $j , ∀i < j; that is the lexicographic
value of $i is smaller for smaller i values. In addition, the lexicographic value
of any terminator must be lower than the ID of any node in a trip. Therefore,
an enlarged trip T s

i would become T ′

i = 〈(si1, s
i
2, . . . , s

i
li
, $i), (t

i
1, t

i
2, . . . , t

i
li
, ti

1
)〉.

The next step involves concatenating the spatial component of all the en-
larged trips and to add an extra trailing terminator $0 to create a sequence
S[1, n]. $0 must be lexicographically smaller than any other entry in S (then it
also holds $0 ≺ $i ∀i ∈ [1, z]). In the top part of Figure 3, we can see array S for
the running example, as well as the corresponding time-IDs that are regarded
in sequence Icode (I shows the original times).

Finally, we build a CSA on top of S to obtain a self-indexed representation
of the spatial component in CTR. Figure 3 depicts the structures Ψ and D used
by CTR built over S. There is also a vocabulary V containing a $ symbol and
the different node IDs in lexicographic order.

Note that the use of different values $i as terminators ensures that our sorting
criteria are kept even if we follow the standard suffix-sort procedure6 required
to build suffix array A during the creation of CSA. Yet, when we finish that
process, we can replace all those $i terminators by a unique $. This is the reason
why there is only one $ symbol in V .

Although they are not needed in CTR, we show also suffix array A and Ψ’
for clarity reasons in Figure 3. Ψ′ contains the first entries of Ψ from a regular
CSA, whereas we introduced a small variation in CTR for entries Ψ[1, z + 1].
For example, A[8] = 1 points to the first node of the first trip S[1]. Ψ[8] = 10
and A[10] = 2 point to the second node. Ψ[10] = 14 and A[14] = 3 point to
the third node. Ψ[14] = 2 and A[2] = 4 point to the ending $1 of the first trip.
Therefore, in the standard CSA, Ψ′[2] = 9 and A[9] = 5 point to the first node
of the second trip. However, in CTR, Ψ[2] = 8 and A[8] = 1 point to the first
node of the first trip. With this small change, subsequent applications of Ψ
will allow us to cyclically traverse the nodes of the trip instead of accessing the
following entries of S.

Another interesting property arises from the use of a cyclical Ψ on trips,
and from using trip terminators. Since the first entries in Ψ[2, z+1] correspond
the $ symbols that mark the end of each trip in S (remember that Ψ[1] cor-
responds the $0), we can see that the jth node of the ith trip can be obtained
as V [rank1(D,Ψj[i + 1])], (where Ψ3[x] = Ψ[Ψ[Ψ[x]]]). This property makes it
very simple to find starting nodes for any trip. For example, if we focus on the
shaded area Ψ[2, 7], we can find the ending terminator $4 of the fourth trip at
the 5th position (because the first $0 corresponds to the final $ at S[28]). There-
fore, its starting node can be found as V [rank1(D,Ψ[4 + 1])]. Since Ψ[5] = 12
and rank1(D, 12) = 3, the starting node is V [3] = 2. For illustration purposes
note that it would correspond to S[A[12]]. By applying Ψ again, the next node
of that trip would be obtained by computing Ψ[12] = 16, rank1(D, 16) = 4, and

6Suffix S[i, n] is compared with suffix S[j, n].

14

��� � � ��� ������

�
�� � � �

� � � � �
� � � �� � �

� � � �� 	

� � � 	 � �
 � � �� �� �� �� �	 �� �� �
 �� ��

� �
	 � �� � �

� � �
 �
�

�� �� �� �� �	 �� �� �
 ��

� � �� �� �� �� � 	
	��������

�� � � � � � � � � � �� � � � � �� 	
 � � �� � � � �
 �

� � � 	 � �
 � � �� �� �� �� �	 �� �� �
 �� �� �� �� �� �� �	 �� �� �
 ��

	

�� � �� ���� ������� � � � � � �� � �
 � � � 	 � �� �� �� �� �	 �� � �	

	� � � � �
 � � �� �� �� �� �	 �� �� �
 �� �� �� �� �� �� �	 �� �� �
 ��

��

��

� � � �
 � �� �� �	 �� � 	 � � �� � �� �� �� �	 ��

�� 	 � �� �� �� �
 � � � � �	 � �
 �� �� �� �

� � � 	 � �
 � � �� �� �� �� �	 �� �� �
 �� ��

� �� �� �� �� �� �	 �� �� ��

�� �� �� �� �	 �� �� �
 ��

� �

� � � �� �� �
 �� �� �� �	 �� �� �� � � �� �
 �� �� � 	 �
 �� �	 �� �� ��

�

����

�����

�����

� � � � 	 � �
 � � ���

� � � 	 � �
 � � �� ��

���

��

��

��

��

��

��

��

��

��

��

��

��

��

��

	�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

	�

��

��

� � � � �
 � � �� �� �� �� �	 �� �� �
 �� ��

� ��

��

��

	�

��

��

��

��

��

	�

��

��

��

��

��

��

��

��

�� �� �� �� �	 �� �� �
 ��

Figure 3: Structures involved in the creation of a CTR.

accessing V [4] = 3 (that is, we have obtained V [rank1(D,Ψ[Ψ[4+1]])] = 3, and
so on.

Regarding the space requirements of the CSA in CTR, we can expect to
obtain a good compressibility due to the structure of the network, and the fact
that trips that start in a given node or simply those going through that node
will probably share the same sequence of “next” nodes. This will lead us to
obtaining many runs in Ψ [43], and consequently, good compression.

5.1. Dealing with Spatial Queries

With the structure described for representing the spatial component of the
trips, the following queries can be solved.

• Number of trips starting at node X (starts-with-x). Because Ψ was cycli-
cally built in such a way that every $ symbol is followed by the first node of
its trip, this query is solved by [l, r] ← bsearch($X) over the CSA, which
results on a binary search for the pattern $X over the section Ψ[2, z+ 1] cor-
responding to $ symbols. Then r− l+1 gives the number of trips starting at
X .

• Number of trips ending at node X (ends-with-x). In a similar way to the
previous query, this one can be answered with bsearch(X$).

• Number of trips starting at X and ending at Y (from-x-to-y). Combining
both ideas from above, and thanks to the cyclical construction of Ψ, this query
is solved using bsearch(Y $X).

• Number of trips using node X (uses-x). Even though we could solve this
query with bsearch(X), it is more efficient to solve it by directly operating on
D. Assuming that X is at position p in the vocabulary V of CTR (V [p] = X),
its total frequency is obtained by occsX ← select1(D, p + 1) − select1(D, p).
If p is the last entry in V , we set occsX ← n+ 1− select1(D, p).

• Top-k most used nodes (top-k). We provide two possible solutions for this
query named: sequential and binary-partition approaches.

15

– To return the k most used nodes using sequential approach (top-k-seq).
The idea is to apply select1 operation sequentially for every node from 2
to |V | to compute the frequency of each node and to return the k nodes
with highest frequency. We use a min-heap that is initialized with the
first k nodes, and for every node s from k + 1 to |V |, we compare its
frequency with that of the minimum node (the root) from the heap. In
case the frequency of s is higher, the root of the heap is replaced by s and
then moved down to comply with the heap ordering. At the end of the
process, the heap will contain the top-k most used nodes 〈p1 , p2, . . . , pk〉,
which can be sorted with the heapsort algorithm if needed. Finally, we
return 〈V [p1], V [p2], . . . , V [pk]〉. Note that this approach always performs
|V | select1 operations on D.

– The binary-partition (top-k-bin) approach takes advantage of a skewed
distribution of frequency of the nodes that trips traverse. Working over
D and V , we recursively split D into two segments after each iteration.
If possible, we leave the same number of different nodes in each side
of the partition. Initially, we start considering the range in D[l, r] ←
D[select1(D, 2), n] = D[z + 2, n] which corresponds to the nodes that
appear in V from positions i = 2 to j = |V |.7 We use a priority queue
that is initialized as Q ← (〈i, j〉, 〈l, r〉). Then, assuming m = i + j−i+1

2
and q = select1(D,m), we create two partitions D[l, q − 1] and D[q, r],
which correspond respectively to the nodes in V [i,m − 1] and V [m, j].
These segments created after the partitioning step are pushed into Q.
The pseudocode can be found in Figure 4.

The priority of each segment in Q is directly the size of its range in D
(r − l + 1). When a segment extracted from Q represents the instance
of only one node ((〈i, j〉, 〈l, r〉), with i = j), that node is returned as a
result of the top-k algorithm (we return V [i]). The algorithm stops when
the first k nodes are found.

For example, when searching for the top-1 most used nodes in the exam-
ple from Figure 3, Q is initialized with the segment [8, 28], corresponding
to nodes from 1 to 10 (positions from 2 to 11 in V). Note that the en-
tries of D from 1 to 7 and V [1] represent the $ symbol. Since it is not
an actual node, it must be skipped. Then [8, 28] is split producing the
segments [8, 20] for nodes 1 to 5 (V [2, 6]) and [21, 28] for nodes 6 to 10
(V [7, 11]). After three more iterations, we extract (〈3, 3〉, 〈14, 18〉), hence
obtaining the segment [14, 18] for the single node 3 (position 4 in V),
concluding that the Top-1 most used node is 3 = V [4] with a frequency
equal to 5 = 18− 14.

• Top-k most used nodes to start a trip (top-k-starts). Both top-k ap-
proaches above can be adapted for answering top-k-starts. However, unlike
its simpler variant, it requires performing bsearch($X) over Ψ (rather than a
select on D) at each iteration, hence increasing the temporal complexity of
the operation.

7We skip the $ at the first entry of V and its corresponding entries in D; that is,
D[1, select1(D, 2) − 1].

16

GetTopK most used nodes (k):
(l.1) Q ← new PriorityQueue();
(l.2) Q.push(〈2, |V |〉, 〈select1(D, 2), n〉);

(l.3) current k ← 0;
(l.4) while current k < k:
(l.5) (〈i, j〉, 〈l, r〉) ← Q.pop();
(l.6) if i = j:
(l.7) topK[current k] ← V [i];
(l.8) current k ← current k + 1;
(l.9) else:

(l.10) m ← i+ j−i+1

2
;

(l.11) q ← select1(D,m+ 1);
(l.12) Q.push(〈i,m− 1〉, 〈l, q − 1〉);
(l.13) Q.push(〈m, j〉, 〈q, r〉);
(l.14)return topK;

Figure 4: Algorithm Top-k most used nodes using binary-partition approach.

The implementation of the linear approach is straightforward. The binary-
partition approach differs slightly from the algorithm in Figure 4: in (l.2) we
insert (〈2, |V |〉, 〈2, z+1〉) intoQ, and we replace (l.11) with [x, y] ← bsearch($V [m]);
q ← x.

5.2. Implementation details

In our implementation of CSA, we used the iCSA8 from [44] briefly discussed
in Section 2.3.1. Yet, we introduced some small modifications:

• The construction of the Suffix Array A is done with SA-IS algorithm [64].9

In comparison with the qsufsort algorithm10 [65] used in the original iCSA,
it achieves a linear time construction and a lower extra working space.

• In iCSA, they used a plain representation for bitvector D and additional
structures to support rank1 in constant time using (0.375×n bits). With
that structure, they could solve select in O(log n) time (yet they did not
actually needed solving select in iCSA). In our CSA, we have used the
SDArray from [66] to represent D. It provides a very good compression
for sparse bitvectors, as well as constant-time select operation.

• In [44], bsearch operation was implemented with a simple binary search
over Ψ rather than using the backward-search optimization proposed in
the original CSA [15]. In our experiments, we used backward search since
it led to a much lower performance degradation at query time when a
sparse sampling of Ψ was used.

6. Temporal component of CTR

In this section we focus on the temporal component associated with each
node of the enlarged trips T ′

i in our dataset. Recall that in Figure 3, sequence

8http://vios.dc.fi.udc.es/indexing
9https://sites.google.com/site/yuta256/sais

10 http://www.larsson.dogma.net/research.html

17

http://vios.dc.fi.udc.es/indexing
 https://sites.google.com/site/yuta256/sais
http://www.larsson.dogma.net/research.html

I contains the time associated with each node in a trip, and Icode a possible
encoding of times. In CTR we focus on the values in Icode, yet, since S is
not kept anymore in CTR, we reorganize the values in Icode to keep them
aligned with Ψ rather than with S. Those values are represented within array
IcodeΨ in Figure 3. For example, we can see that IcodeΨ[4] corresponds with
Icode[A[4]] = 10, IcodeΨ[15] corresponds with Icode[A[15]] = 8, and so on.

Aiming at having a compact representation of IcodeΨ while permitting fast
access and resolution of range-based queries (that we could use to search for trips
within a given time interval), we have considered two WT-based alternatives
from the ones presented in Section 2.3.2:

Icode<

<

B
1

1 8 9 13 12 17 25 10 11 14 15 16 18 2 3 26 27 28 22 6 4 5 7 23 24 19 20 21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

0 0 5 10 2 9 12 0 5 3 7 2 10 5 8 4 9 13 8 12 15 10 15 14 12 6 11 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

0 0 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1

B
2

0 0 5 2 0 5 3 7 2 5 4 6 10 9 12 10 8 9 13 8 12 15 10 15 14 12 11 14

0 0 1 0 0 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 0 1 1 1 0 1

B
3

0 0 2 0 3 2 10 9 10 8 9 8 10 11 5 5 7 5 4 6 12 13 12 15 15 14 12 14

0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 1 1 0 1

B
4

0 0 0 9 8 9 8 5 5 5 4 12 13 12 12 2 3 2 10 10 10 11 7 6 15 15 14 14

0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0

z
1
=12

z
2
=14

z
3
=15

Sym code

0 0000

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

B
in
a
ry
e
n
co
d
in
g

Icode<

< 1 8 9 13 12 17 25 10 11 14 15 16 18 2 3 26 27 28 22 6 4 5 7 23 24 19 20 21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

0 0 5 10 2 9 12 0 5 3 7 2 10 5 8 4 9 13 8 12 15 10 15 14 12 6 11 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 1 0 1 1

0 0 5 2 9 0 5 3 7 2 5 8 4 9 8 6 10 12 10 13 12 15 10 15 14 12 11 14

0 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1

0 0 2 0 3 2 4 5 9 5 7 5 8 9 8 6 10 12 10 12 10 12 11 13 15 15 14 14

0 0 1 0 1 1 1 0 1 0 0 0 1 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0

0 0 0 2 3 2 4 5 5 7 5 6 9 8 9 8 10 10 10 11 12 12 12 13 14 14 15 15

0 1 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 0 1 1

2 2 3 4 5 5 5 7 6 8 8 9 9 10 10 10 11 13 14 14

0 1 1 0

3 4 6 7

Sym code

0 000

2 0010

3 00110

4 00111

5 0100

6 01010

7 01011

8 0110

9 0111

10 1000

11 1001

12 101

13 1100

14 1101

15 111

H
u

-T
u

ck
e

r
co

d
in

g

Figure 5: Balanced WM (top) and Hu-Tucker-shaped WT (bottom) for the times within
IcodeΨ in Figure 3.

• A Wavelet Tree [16] using variable-length Hu-Tucker codes [53] (WTHT).
Recall this is theWT variant that permits to compress the original symbols
with variable-length codes and still supports count operation in O(log(σt))
time. Since Hu-Tucker coding assigns shorter codes to the most frequent
symbols, the compression of our WTHT is highly dependent of the distri-
bution of frequencies of the values in IcodeΨ. Yet, if our trips represent
movements of single users in a transportation network, we could expect to
observe two or more periods corresponding to rush hours within a single
day. This would lead to obtaining a skewed distribution of the frequen-
cies for the symbols in IcodeΨ, and consequently, we could expect to have
better compression than if we used a balanced WT. The expected number
of bits of our WTHT is nH0(Icode

Ψ).

18

• A balanced Wavelet Matrix (WM) [38]. As we showed in Section 2.3.2 the
WM is typically the most compact uncompressed variant of WT and it is
faster than a pointerless WT. This is the reason why we chose a balanced
WM instead of a balanced WT as this second alternative. Recall that,
IcodeΨ contains n symbols, and each symbol can be encoded with log σt

bits, hence the balanced WM will be a matrix of n log σt bits.

In Figure 5, we show both the WM and the WTHT built on top of IcodeΨ

from Figure 3. The binary code-assignment to the source symbols in [1, σt]
and that obtained after applying Hu-Tucker encoding algorithm [53] are also
included in the figure.

6.1. Dealing with Temporal queries

With either one of the described alternatives (WTHT or WM) to represent
time intervals we can answer the following pure temporal queries:

• Number of trips starting during the time interval [t1, t2] (starts-t). Since
we keep the starting time of each trip within IcodeΨ[1, z], we can efficiently
solve this query by simply computing count(1, z, t1, t2).

• Total usage of network stops during the time interval [t1, t2] (uses-t). This
query can be seem as the sum of the number of trips that traversed each
network node during [t1, t2]. We can solve this query by computing count(z+
1, n, t1, t2).

• Number of trips performed during the time interval [t1, t2] (trips-t). This is
also an interesting query that permits to know the actual network usage during
a time interval. To solve this query we could compute trips-t by subtracting
the number of trips that started after t2 (starts-t (t2 + 1, σt − 1)) and the
number of trips that ended before t1 (ends-t (0, t1−1)) from the total number
of trips (z). However, recall that IcodeΨ[1, z] has the starting time of each
trip, but we do not keep their ending time. We could solve ends-t (0, t1−1) by
taking the first node (X) of each trip starting before t1, then applying Ψ until
reaching the ending node (Y), and finally getting the ending time of that trip
associated to node Y . However, this would be rather inefficient. A possible
solution to efficiently solve ends-t (0, t1 − 1), would require to increment our
temporal component, in parallel with IcodeΨ[1, z], with another WT-based
representation of the ending times for our z trips. This would permit to
report the number of trips ending before t1 as count′(1, z, 0, t1−1), but would
increase the overall size of CTR. Yet, note that even without keeping ending-
times, we could provide rather accurate estimations of trips-t for a system
administrator. For example, using uses-t to compute the number of times
each trip went through any node during the time interval [t1, t2], and dividing
that value by the average nodes per trip. Another good estimation can also
be obtained with starts-t(t1, t2).

6.2. Implementation details

We include here details regarding how we tune our WTHT and WM. As
we discussed in Section 2.3.2, both WTHT and WM are built over bitvectors

19

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

N
u
m
b
e
r

o
f

t
r
i
p
s

x

1
0
3

5-min intervals within each hour of day

Time distributions tested

51000

uniform
skewed

very skewed

Figure 6: Time distributions used. The y-axis indicates the number of passengers per each
5-min interval.

that require support for rank and select operations. In our implementations we
included two alternative bitvector representations avaliable at libcds library:11

• A plain bitvector based on [42] named RG with additional structures to
support rank in constant time (select in logaritmic time). RG includes
a sampling parameter (factor) that we set to value 32. In this case, our
bitvector RG uses n(1 + 1/32) bits. That is, we tune RG to use a sparse
sampling.

• A compressed RRR bitvector [49]. The RRR implementation includes
a sampling parameter that we tune to values 32, 64, and 128. Higher
sampling values achieve better compression.

In advance, when presenting results for WTHT and WM we will consider
the four bitvector configurations above. Regarding our implementations of WM

and WTHT, note that we reused the same implementation of WM from [38], and
we created our custom WTHT implementation, paying special focus at solving
count efficiently.

6.3. Comparing the space/time trade-off of WM and WTHT

In order to compare the efficiency of our WTHT (that uses variable-length
codes and supports count efficiently) with a balanced WM alternative under dif-
ferent time distributions (recall that this WM is time distribution invariant), we
run some experiments that evaluate the average time to execute count operation
on both representations.

We used a dataset of generated trips (Refer to Section 8.1 for the details
about Madrid dataset) and we generated three kinds of time distributions for
our evaluation. We refer to them as: uniform, skewed and very skewed. They
are shown in Figure 6. According to the total number of passengers in a day, in
the uniform distribution 51,000 passengers use the network for each 5-minute
interval. We also generated a skewed distribution for the time interval frequen-
cies in an effort to model the usage of a public transportation network in a
regular working day, where the starting time of a trip is generated according to
the following rules:

11https://github.com/fclaude/libcds

20

https://github.com/fclaude/libcds

• With 30% of probability, a trip occurs during a morning rush hour.

• With 45% of probability, a trip occurs in an evening rush hour.

• With 5% of probability, a trip occurs during lunch rush hour.

• The remaining 20% of probability is associated to unclassified trips, start-
ing at a random hour of the day, which may also fall into one of the three
previous periods discussed.

In the very skewed distribution we increase the rush-hour probabilities with 40%
for the morning rush hour, 50% for the evening rush hour, 8% for lunch period
and only 2% of random movements.

Then we built the WTHT and the WM considering two different granularities
for the discretization of times: five-minute and thirty-minute intervals. Then, we
generated 10,000 random intervals of times [t1, t2] over the whole time sequence
of the dataset considering interval widths of five minutes, one hour, and six
hours. Finally, we run 10,000 count(z + 2, n, t1, t2) queries (we show average
times) from each query set over the six configurations of WTHT and WM (2
different granularities for the time discretization and 3 datasets).

In Figure 7, we show the results of our experiments. In the upper part of the
figure, we include the results for WTHT and WM built over the times assuming
uniform frequency distribution. In the middle part we assume times follow a
the skewed distribution, and in the bottom of the figure we show results when
considering a very skewed distribution. Moreover, figures in the left column
show results for our structures considering that a 5-minute granularity is cho-
sen for the discretization of times, whereas figures on the right column assume
time granularity is 30 minutes. For each scenario we include plots wtht:5-min,
wtht:1-hour, and wtht:6-hour for WTHT (range width for count is respec-
tively 5-minutes, 1-hour, and 6-hours). We also present those plots for WM

(wm:5-min, wm:1-hour, and wm:6-hour).
The baseline used for the space usage (x-axis) is the size of an array of

fixed-length time-interval IDs represented with the least number of bits needed
(12 bits and 9 bits respectively for 5-minute and 30-minute granularity, see
Section 8.1).

When times are uniformly distributed, our WTHT can only exploit the re-
dundancy introduced by the $ symbols. This fact permits WTHT to obtain
only a minimal compression (around 96−98% of the baseline) when using a RG
(plain) bitvector, whereasWM uses more space than the baseline (around 104%).
Recall that for each plot we present four points corresponding (left-to-right) to
RRR128, RRR64, RRR32, and RG bitvectors. When using compressed bitvec-
tors (RRR), WM becomes the best choice. It is both more compact (bitvectors
in WM are more compressible) and faster than WTHT. In any case, using RRR
clearly slows down queries.

A skewed distribution favors the compression for a statistical coder like
Hu-Tucker, which explains the higher compression obtained. However, it also
slightly increases the query times, especially in the wider one-hour and six-hours
query sets. This happens because the probability of having a query that forces
to descend completely up to the leaves of the WTHT increases.

21

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 70 75 80 85 90 95 100 105

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

time granularity=5 min (uniform time distrib)

wtht:5-min
wtht:1-hour
wtht:6-hour

wm:5-min
wm:1-hour
wm:6-hour

 1

 1.5

 2

 2.5

 3

 70 75 80 85 90 95 100 105

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

time granularity=30 min (uniform time distrib)

wtht:5-min
wtht:1-hour
wtht:6-hour

wm:5-min
wm:1-hour
wm:6-hour

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 70 75 80 85 90 95 100 105

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

time granularity=5 min (skewed time distrib)

wtht:5-min
wtht:1-hour
wtht:6-hour

wm:5-min
wm:1-hour
wm:6-hour

 1

 1.5

 2

 2.5

 3

 70 75 80 85 90 95 100 105

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

time granularity=30 min (skewed time distrib)

wtht:5-min
wtht:1-hour
wtht:6-hour

wm:5-min
wm:1-hour
wm:6-hour

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 70 75 80 85 90 95 100 105

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

time granularity=5 min (very skewed time distrib)

wtht:5-min
wtht:1-hour
wtht:6-hour

wm:5-min
wm:1-hour
wm:6-hour

 1

 1.5

 2

 2.5

 3

 70 75 80 85 90 95 100 105

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

time granularity=30 min (very skewed time distrib)

wtht:5-min
wtht:1-hour
wtht:6-hour

wm:5-min
wm:1-hour
wm:6-hour

Figure 7: Space/time trade-offs for count queries depending on the time distribution: uniform
(top), skewed (middle), and very skewed (bottom). Time granularity for the time index is 5
minutes (left) or 30 minutes (right).

For a very skewed distribution, the gap in compression between WTHT and
WM increases clearly (around 5 percentage points), whereas query times remain
similar to those in the previous scenario.

As a conclusion of the experiments discussed in this section, we have shown
that the distribution of the sequence of times can be exploited by our WTHT to
achieve a better compression and even improved query times than the balanced
WM counterpart.

7. Dealing with Spatio-temporal queries

Apart from the pure spatial and temporal queries discussed in the previous
sections, we can combine both the self-indexed spatial and temporal components
from CTR to answer spatio-temporal queries. The idea is to restrict spatial
queries to a time interval [t1, t2]. An example of this type of query is to return
the number of trips starting at node X that occurred between t1 and t2, which
we can solve by first finding the range in the CSA of the trips starting in X
and then relying on the count operation in the WTHT (or WM). The following

22

spatio-temporal queries can be solved by CTR:

• Number of trips starting at node X during time interval [t1, t2] (starts-with-x).
Recall that in the time sequence we also included timestamps associated with
the area of $-symbols in Ψ. Particularly, for each $, we keep the time of the
first node of its trip. Therefore, we can perform [l, r] ← bsearch($X) as in
a regular spatial query to find the range Ψ[l, r] ([l, r] ⊆ [2, z + 1]) that corre-
sponds to $ symbols that end a trip which started at node X . Then, since the
time sequence IcodeΨ (represented with either a WTHT or WM) is aligned
with Ψ, we can filter out those trips that started within [t1, t2] performing
operation count(l, r, t1, t2). In Figure 8 (steps 1© and 2©) we can see the steps
involved.

Figure 8: Trips staring at, ending at, or using node X during time interval [t1, t2].

• Number of trips ending at node X during the time interval [t1, t2] (ends-with-x).
As above, we initially perform the spatial query [l, r] ← bsearch(X$) to ob-
tain the range in Ψ that corresponds to the pattern X$ (trips ending at node
X). Then, we use count(l, r, t1, t2) operation to count how many of those trips
match the temporal constraint. See steps 3© and 4© in Figure 8.

• Number of trips using node X during the time interval [t1, t2] (uses-x). As
in the corresponding spatial query, the range [l, r] in Ψ is obtained with two
select1 operations on D. Finally, count(l, r, t1, t2) finds the occurrences within
the time interval [t1, t2]. See steps 5© and 6© in Figure 8.

���

�

���

� �� �

� �

���

���

������������	
�����������������

�� ��
���
�� ��

��

�

�

���

�
��������	
���������

� �

� �
� �

���

���

����������������������������

���

�� ��

�

�

�

�

�����������������������	

��� � ���� ��� �!�

���������������

�� ��

�

�

����

Figure 9: Trips staring at X and ending at Y during time interval [t1, t2].

• Number of trips starting at X and ending at Y occurring during time interval
[t1, t2] (from-x-to-y). We consider two different semantics. A query with
strong semantics will obtain trips that start and end within [t1, t2]. Whereas,

23

a query with weak semantics will obtain trips whose time intervals overlap
[t1, t2] and, therefore, they could actually start before t1 or end after t2.

In Figure 9, we show the step-by-step process to solve this type of queries. As
in a spatial query, we start by searching for the range [l, r]← bsearch(Y $X)
in Ψ corresponding to trips starting at Y and ending at X (step- 1©). Next,
due to our sorting of trips, the range for Y $X in Ψ[l, r] can be mapped to a
continuous range [α, β] of the same size in the $XY region of Ψ. We compute
α← Ψ[l], β ← α+ r− l (step- 2©). Furthermore, note that the range for $XY
preserves the same order as that for Y $X .

At this point, since IcodeΨ was aligned with Ψ, we could check ending-time
constraints within IcodeΨ[l, r] and starting-time constraints within IcodeΨ[α, β]
(recall we keep starting times associated with the corresponding $ of each
trip). Note also that, due to our sorting (by starting-node, ending-node,
starting-time,. . .) the times in IcodeΨ[α, β] are increasing (all of them corre-
spond to trips with the same starting-node X and ending-node Y). Therefore,
we can find the continuous subrange [α′, β′] ⊆ [α, β] corresponding to trips
that start within [t1, t2] (step- 3©). We refer to this operation as countLR
in Figure 9. Thus, assuming that IcodeΨ[α, β] are increasing, [α′, β′] ←
countLR(α, β, t1, t2) would report the positions [α′, β′] ⊆ [α, β] such that
α′ = argminx(Icode

Ψ[x] ≥ t1) and β′ = argmaxx(Icode
Ψ[x] ≤ t2).

Using a WT, a simple way to implement countLR consists in performing two
binary searches within [α, β] to find [α′, β′], where at each step we would use
access operation. This would cost O(log n log σ). Yet, we could also regard
on count operation to obtain a more efficient and also rather straightforward
implementation of countLR so that we set α′ ← count(α, β,−1, t1 − 1) and
β′ ← α′ + count(α, β, t1, t2). It costs O(log σ).

– Strong semantics (from-x-to-y-strong). Note that the subrange [α′, β′]
(containing trips starting within [t1, t2]) has a matching subrange [l′, r′] ⊆
[l, r] (step- 4©), where some of the ending times of these trips will fall in-
side [t1, t2] (this allows us to check the ending time constraint). By
performing count(l′, r′, t1, t2] we get the final result (step- 5©). To sum
up, answering this query requires: one bsearch over Ψ (to find [l, r]), one
access to Ψ to obtain α (β ← α + r − l), one countLR to find [α′, β′],
and one count (to count the valid ending times in [l′, r′]).

– Weak semantics (from-x-to-y-weak). The size of [α′, β′] is already a
partial answer. To get the final result, we need to add also the occur-
rences of those trips starting before t1 that end at t1 or later. To do
so, if l < l′, we need to compute count(l, l′ − 1, t1, σt). This gives us
the number of time instants in the range [l, l′) of IcodeΨ that fall inside
[t1, σt]. That is, ending times equal or after t1.

• Top-k most used nodes during time interval [t1, t2] (top-k). Both the sequen-
tial and binary-partition approaches discussed in Section 5.1 can easily be
extended to support this query. The idea is that, when we add a node ei-
ther to the min-heap or priority-queue respectively, we compute its frequency
within time interval [t1, t2] (using count operation) rather than using its over-
all frequency.

24

– In the sequential approach (top-k-seq), given a node whose correspond-
ing range in Ψ is D[l, r], we compute its frequency using count(l, r, t1, t2)
instead of simply using r − l + 1. The rest of the process is exactly as
discussed for the pure spatial top-k-seq query.

– In the binary-partition approach (top-k-bin), we have to consider the
priority of a given segment as the number of trips covered by that seg-
ment that occurred during [t1, t2]. Again, given a segment [l, r] in Ψ we
compute that priority as prl ← count(l, r, t1, t2) instead of prl ← r− l+1.
Apart from that, the only modifications that we must consider over the
pure spatial top-k-bin algorithm in Figure 4 are: we replace (l.2) by
prl ← count(select1(D, 2), n, t1, t2); Q.push(〈2, |V |〉, 〈select1(D, 2), n〉, prl),

and we replace (l.12) and (l.13) respectively by Q.push(〈i,m− 1〉, 〈l, q−
1〉, count(l, q − 1, t1, t2)) and Q.push(〈m, j〉, 〈q, r〉, count(q, r, t1, t2)).

• Top-k most used nodes to start a trip during time interval [t1, t2](top-k-starts).
Following the same guidelines discussed above for top-k, adapting the sequen-
tial and binary-partition solutions for the spatial top-k-starts to include
temporal constraints is straightforward.

8. Experimental evaluation

We have run experiments to evaluate both the space requirement and per-
formance at query time of CTR when dealing with spatial, temporal and spatio-
temporal queries over two different datasets (Porto and Madrid) that are de-
scribed in Section 8.1.

We have used several configurations of CTR by tuning both its spatial and
temporal components. In the spatial part, we set the Ψ sampling parameter
(tΨ) to the values tΨ = {32, 128, 512}. For the temporal component, we have
tested both the balanced WM, and the Hu-Tucker-shaped WT (WTHT) using
the same bitvector configurations discussed in Section 6.3. That is, using either
a plain bitvector RG with a sparse sampling (RG32), or a RRR bitvector with
sampling parameter ∈ {32, 64, 128} (RRR32, RRR64, and RRR128).

8.1. Experimental datasets

We used two different datasets of trips in our experiments:

• Madrid dataset: Using GTFS12 data from the public transportation
network of Madrid,13 we generated a dataset of synthetic trips combin-
ing the subway network with the Spanish commuter rail system (called
cercańıas). In total, there are 313 different stations/nodes from 23 lines.

We generated 10 million trips with lengths varying from 2 to 31 nodes
traversed. Those lengths follow a binomial distribution. The average
length of the trips is 11.81 nodes.

In the generation of a trip of length l, we randomly choose a starting node
from a line, and the starting direction. Then, we follow that line until

12GTFS is a well-known specification for representing an urban transportation network. See
https://developers.google.com/transit/gtfs/reference?hl=en

13Data from the EMT corporation at https://www.emtmadrid.es/movilidad20/googlet.html

25

https://developers.google.com/transit/gtfs/reference?hl=en
https://www.emtmadrid.es/movilidad20/googlet.html

we reach a switching node. At this node, we decide whether to follow
the current line or to switch to a new line. We allow only up to four
line switches for a given trip, and use fixed probability values to decide
whether to switch line or not. Such probability is 0.5, 0.1, 0.05, and 0.02
respectively for the first, second, third, and fourth line switch in a trip.
We also avoid revisiting nodes in the same trip. The generation process
ends when l nodes have been added to the trip, or a dead end is reached.

As a baseline, the plain representation of the generated trips using a 9-bit
integer (⌈log2 314⌉ = 9) for every node-ID (and $ separator) would require
137.47 MiB.

We also generated synthetic times for those trips following the same rules
used to create the time distribution named skewed in Figure 6, so most
of the trip timestamps belong to rush hours. Yet, instead of using only
regular working days, we distinguished four kinds of days in a week: reg-
ular working days; Fridays and holiday eves; Saturdays; and Sundays and
holidays. We also assume that there are two kinds of weeks related to high
and low season periods. Therefore, a time interval may belong to eight
types of day. When discretized at five-minute intervals we obtain 2,304
distinct time intervals, while when we use thirty-minute intervals we ob-
tain 384. In the former case, our baseline for the generated times using 12
bits per time-ID would occupy 183.30 MiB. In the latter one, each time-ID
requires 9 bits and the temporal baseline requires 137.47 MiB.

• Porto dataset: We downloaded a collection of 1,710,671 trajectories from
the city of Porto corresponding to taxi trips during a full year (from July 1,
2013 to June 30, 2014), provided by [67].14 Among other fields those data
include, for each taxi ride, a list of GPS coordinates and times gathered
every 15 seconds of the trip. We adapted such data to our needs by using
a map matching algorithm provided by the Graphhopper library,15 and
OpenStreetMap cartography.16 This permitted us to figure out the streets
that trips were passing through. Finally, trips were encoded as a sequence
of identifiers corresponding to adjacent stretches of street (that is, basic
street segments with no intersections) the trip traversed, each one of them
tagged with a timestamp.

After filtering incomplete matches, 1,617,774 trips, built over 59,618 dis-
tinct street segments, were used for the dataset. Due to the nature of the
network and the trips, the average number of street segments per trip is
64.74; that is, the length of the trips is longer than in Madrid dataset.
Since we needed 16 = ⌈log2 59,618⌉ bits to represent each segment in a
trip, the total size of our plain spatial baseline is 202.85 MiB.

For the temporal part, we considered only one kind of day. Therefore,
when we sample those 24 hours into five-minute intervals, we obtain 288
distinct time intervals that are given a 9-bit time-ID. Consequently the
overall size of the temporal baseline becomes 114.10 MiB. However, if we

14Description at http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html . Down-
load at https://archive.ics.uci.edu/ml/machine-learning-databases/00339/train.csv.zip

15https://github.com/graphhopper/map-matching
16http://www.openstreetmap.org/

26

http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html
https://archive.ics.uci.edu/ml/machine-learning-databases/00339/train.csv.zip
https://github.com/graphhopper/map-matching
http://www.openstreetmap.org/

 1000

 10000

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

N
u
m
b
e
r

o
f

t
r
i
p
s

5-min intervals within each hour of day

real-time Porto (30-min)
real-time Porto (5-min)

Figure 10: Real time distribution from Porto. The y-axis (in log-scale) indicates the average
number of passengers per day for each time interval considering both 5-min and 30-min time
intervals.

split those 24 hours into thirty-minute intervals, only 48 time intervals
arise. In this case, each time-ID needs only 6 bits and the total size of the
temporal baseline is 76.07 MiB. The average number of daily passengers
for each time interval is shown in Figure 10.

8.2. Space Requirements of CTR

We show the compression obtained by CTR when built on our two test
datasets. Compression is shown as the percentage of the size of the plain base-
lines discussed above. Using different configurations of CTR, we will show the
compression of the spatial component (CSA), that of the temporal component
(WTHT and WM), and finally the overall compression of CTR.

tΨ
32 128 512

Madrid 41.32% 26.80% 23.06%
Porto 23.66% 15.49% 13.37%

Table 1: Compression of CSA with respect to the spatial baseline.

Results regarding the compression obtained by CSA are given in Table 1.
The compression ratio is calculated over a plain spatial-only (stop-IDs or street-
segment-IDs in each case) representation. In a rather dense configuration of CSA
with tΨ = 32 we obtain compression ratios around 41% and 23% for Madrid and
Porto datasets respectively. Those results are interesting from the simple point
that the baseline representations were only using respectively 9-bits per node
(Madrid) and 16-bits per segment (Porto). As expected, compression improves
as we increase the Ψ sampling parameter tΨ. We show that by tuning CSA in a
more sparse setup we can almost halve the space needs of using tΨ = 32. Yet,
the resulting CSA would become much slower as we will see in the next section.
In general, we can see that CSA obtains better compression in Porto than in
Madrid. This is probably due to the longer and more predictable trips. Note
that is not common to arrive at an intersection having more than two valid
street links where to navigate to.

In Table 2, we focus on the space needed by the temporal component of
CTR. In this case we show the compression ratios obtained by WTHT and

27

Type of bitvector in WM/WTHT

RG32 RRR32 RRR64 RRR128

Madrid (WTHT, 5-min) 91.33% 80.89% 76.90% 74.90%
Madrid (WM, 5-min) 103.13% 86.03% 80.61% 77.88%
Madrid (WTHT, 30-min) 92.30% 78.90% 74.66% 72.52%
Madrid (WM, 30-min) 103.14% 83.32% 77.90% 75.18%
Porto (WTHT, 5-min) 93.52% 102.61% 98.27% 96.11%
Porto (WM, 5-min) 103.13% 106.88% 101.41% 98.66%
Porto (WTHT, 30-min) 96.00% 103.78% 99.08% 96.74%
Porto (WM, 30-min) 103.12% 107.00% 101.50% 98.75%

Table 2: Compression of WM and WTHT with respect to the temporal baseline.

WM considering that time is either discretized into 5-min or 30-min intervals.
Recall that the size of the plain baseline representations differs depending on
the discretization period. Both WTHT and WM were tuned by using bitvector
representations RG32, RRR32, RRR64, and RRR128.

It is interesting to see that in the synthetic dataset from Madrid, RRR
bitvectors always lead to a better compression than the plain RG, while in the
real dataset from Porto that is never the case. In some cases RRR does not
compress the times at all. Consequently, for Porto dataset, the faster plain RG
bitvectors are probably the best choice. In Madrid dataset, we can see an actual
space/time trade-off: RRR obtains better compression but will be slower (as
we will see in the next section).

To understand why RRR is much more effective in Madrid than in Porto,
recall that the values in Icodes are aligned to the suffix Array (A). Recall
also that, within the range in A corresponding to each node X , suffixes are
sorted by ending node, then by starting time, and finally by the remaining
nodes. Therefore, at least all the trips that start in node X and end in the
same node Y are sorted by time, and consequently, the corresponding range in
Icodes keeps non-decreasing values. We have measured the number of times
that the “starting-time” component was used during the suffix-sort step from
the construction of CTR. We obtained that, for Madrid, it was used 42, 051, 591
times, while for Porto, it was only used 1, 313, 269 times (note that this is not the
number of repeated trips from X to Y , but the number of times the “starting-
times” were actually compared during suffix-sort). Since the number of entries
in Icodes is rather similar in both datasets (around 128×106 in Madrid, and
106×106 in Porto) we could expect that the sequence of Icodes is much more
regular in Madrid than in Porto. Consequently, this could explain why RRR
performs much better in Madrid than in Porto.

Type of bitvector in WM/WTHT Type of bitvector in WM/WTHT

RG32 RRR32 RRR64 RRR128 RG32 RRR32 RRR64 RRR128

Madrid (WTHT, 5-min) 69.90% 63.93% 61.65% 60.51% 62.07% 56.10% 53.82% 52.68%
Madrid (WM, 5-min) 76.64% 66.87% 63.77% 62.21% 68.81% 59.04% 55.94% 54.38%
Madrid (WTHT, 30-min) 66.81% 60.11% 57.99% 56.92% 57.68% 50.98% 48.86% 47.79%
Madrid (WM, 30-min) 72.23% 62.32% 59.61% 58.25% 63.10% 53.19% 50.48% 49.12%
Porto (WTHT, 5-min) 48.81% 52.08% 50.52% 49.74% 42.22% 45.49% 43.93% 43.15%
Porto (WM, 5-min) 52.27% 53.62% 51.65% 50.66% 45.68% 47.03% 45.06% 44.07%
Porto (WTHT, 30-min) 43.39% 45.51% 44.23% 43.59% 35.91% 38.03% 36.75% 36.11%
Porto (WM, 30-min) 45.33% 46.39% 44.89% 44.14% 37.85% 38.91% 37.41% 36.66%

tΨ = 32 tΨ = 512

Table 3: Overall Compression of CTR including different configurations for both the spatial
and temporal components.

Finally, in Table 3, we show the overall compression ratios of CTR. We use

28

the same configurations for WTHT and WM as in Table 2, and both the most
dense and sparse tuning of CSA (tΨ = 32 and tΨ = 512 respectively). For
Madrid dataset, the pair (node,timestamp) is represented with 9 + 9 = 18 bits
in our baseline representation when time is discretized into 30-minute intervals,
and with 9 + 12 = 21 when we use 5-minute intervals. In the case of Porto
dataset, when using 30-minute intervals, each pair (node,timestamp) from the
baseline requires 16+9 = 25 bits. If discretization considers 5-minute intervals,
the baseline requires 16 + 6 = 22 bits. We can see that the overall compression
of CTR in Madrid dataset ranges between 76% and 50%. Also we show that
Porto dataset is much more compressible, obtaining compression ratios from
around 50% to 35%.

8.3. Performance at query time

Through this section, we evaluate the time performance of CTR when solving
spatial, temporal, and spatio-temporal queries. We have randomly generated
10,000 query patterns from our two datasets for each type of query. Each
time measurement presented below is the average execution time of 10,000 runs
using the corresponding query patterns, except for the top-k queries where we
perform 100 runs of the top-k algorithms with k = {10, 100}.

Our test machine has an Intel(R) Core(tm) i5-4690@3.50GHzCPU (4 cores/4
siblings) and 8GB of DDR3 RAM. It runs Ubuntu Linux 16.04 (Kernel 4.4.0-
21-generic). The compiler used was g++ version 5.4.0 and we set compiler
optimization flags to −O9. All our experiments run in a single core and time
measures refer to CPU user-time.

During the generation of query patterns, for those queries involving only one
node X from the network, we have randomly chosen X 10,000 times from the
available network nodes. This is the case of the query patters used both for
the spatial queries starts-with-x, ends-with-x, and uses-x or the spatio-
temporal starts-with-x, ends-with-x, and uses-x. In the case of the spatial
from-x-to-y and the spatio-temporal from-x-to-y-strong, and from-x-to-y-weak
the pair of network nodes 〈X,Y 〉 that compose our query patterns were gener-
ated by randomly choosing 10,000 trips and then extracting the initial X and
ending Y nodes of those trips.

Moreover, we also generated the time intervals [t1, t2] required for the spatio-
temporal queries. Considering the different available time-IDs, we chose a ran-
dom starting instant t1 and then randomly generated the width of that interval
from five minutes to two hours. Note that if we discretized time into 5-minute
intervals and interval-width = 59 minutes, our time interval [t1, t2] would con-
tain exactly 12 time IDs (t2 ← t1 + 11). However, if time was discretized into
30-minute intervals, [t1, t2] would contain only 2 time IDs (t2 ← t1 + 1). We
followed the same procedure to gather the query patterns used for the pure
temporal queries uses-t and starts-t.

8.3.1. Space/time trade-off when dealing with spatial queries

In Figures 11 and 12, we show the performance of CTR at solving spatial
queries for Madrid and Porto datasets respectively. Note that all these queries
can be answered using only the CSA component of CTR. Therefore, the size of
the temporal component is not considered here and compression values (x-axis)
refer only to the size of CSA with respect to the spatial baseline as in Table 1.

29

We show the average query time (in µs) depending on the space used by CSA

with three different sampling configurations (tΨ = {512, 128, 32}).
Results show that the queries that involve searching in the $ region of Ψ,

such as starts-with-x or from-x-to-y are considerably slower than queries
ends-with-x and uses-x due to the large size of that region. Recall there is
one $ for every trip.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 22 24 26 28 30 32 34 36 38 40 42

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

starts-with-x
ends-with-x
from-x-to-y

uses-x

 1

 10

 100

 1000

 10000

 22 24 26 28 30 32 34 36 38 40 42

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

top-10-starts-seq
top-100-starts-seq

top-10-starts
top-100-starts

top-10-seq
top-100-seq

top-10
top-100

1600

1700

1800

1900

26.5 27

(zoom)

Figure 11: Spatial queries (left) and spatial top-k queries (right) for Madrid.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

13 14 16 18 20 22 24

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

starts-with-x
ends-with-x
from-x-to-y

uses-x

 10

 100

 1000

 10000

 100000

 1e+06

13 14 16 18 20 22 24

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

top-10-starts-seq
top-100-starts-seq

top-10-starts
top-100-starts

top-10-seq
top-100-seq

top-10
top-100

2.6x10
5

2.7x10
5

15.4 15.5

(zoom)

Figure 12: Spatial queries (left) and spatial top-k queries (right) for Porto.

In both datasets, we can see that uses-x (solved using select on D rather
than bsearch on Ψ) is the fastest query. On average, it takes only around 10ns
per query. Except in the most sparse configuration of CSA, queries ends-with-x,
starts-with-x, and from-x-to-y require typically less than 10µs. This basi-
cally shows the cost of performing bsearch on a compressed Ψ. In the most
sparse setup, times for starts-with-x and from-x-to-y are always better in
Madrid than in Porto dataset, and ends-with-x draws rather identical times.
With the densest configuration (tΨ = 32), ends-with-x and from-x-to-y

are respectively around 10-20% fastest in Madrid dataset (ends-with-x takes
4.05µs and 4.51µs respectively, and from-x-to-y takes 4.54µs and 5.66µs).
However, starts-with-x performs around 20% faster in Porto dataset (2.28µs
vs 2.90µs).

Focusing on top-k queries, we can see huge differences between top-k-starts

and the rest of the top-k queries, as the former needs to perform bsearch over
the compressed Ψ instead of a select on D.

We can also see that due to the small number of stops in Madrid dataset,
it is always more efficient to use the sequential version of top-k-starts and
top-k algorithms. This is also because a rather uniform frequency among nodes
increases the number of insertions in the priority queue (i) of the binary algo-

30

rithm needed for retrieving the first k nodes (i ≈ |V |). Moreover, note that
for the sequential algorithm i is at most |V |, whereas for the binary-partition
counterpart it could become up to 2|V | − 1.

However, in Porto dataset, where nodes follow a biased distribution (some
streets are far more used than others by taxis), and whose vocabulary is 190
times larger than that of Madrid’s, the binary-partition version of top-k-starts
and top-k algorithms is clearly faster than the sequential counterpart (top-k-seq
and top-k-starts-seq). Note that in Madrid dataset, top-100 returns 32%
of the nodes (hence sequential processing worths it) whereas in Porto dataset
less than 0.2% of the nodes are returned.

The gap between top-10-seq and top-100-seq that we can clearly appreci-
ate in Madrid dataset is due to the cost of the insertion of nodes in the min-heap.
However, the gap between the binary top-10 and top-100 is mainly related to
the number of iterations performed until the binary-partition algorithm gathers
the first 10 and 100 nodes returned respectively. The same discussion applies
for top-k-starts queries.

8.3.2. Space/time trade-off when performing temporal queries

In this section we focus on the performance of the temporal component of
CTR. We use the same configurations as in Table 2 for WM and WTHT, and
show the space/time trade-offs obtained when solving pure temporal queries.
Figures 13 and 14 present the results obtained at uses-t and starts-t queries
for Madrid and Porto datasets respectively. Note that, in this case, since the
CSA is not actually needed to solve temporal queries, we do not include its size
within the compression values (x-axis).

We can see that when running uses-t queries, both WTHT and WM obtain
rather similar times (requiring less than 4µs to perform a count operation in
all cases) and that those times improve as the height of the structure decreases.
We can see that in the highest WTHT and WM, corresponding to using 5-min
intervals in Madrid dataset, uses-t requires less than 3.5µs. Then, when using
30-min intervals, the time required to solve uses-t is always below 2.3µs (yet
WM performs faster than WTHT here), and those times are similar to the ones
obtained for Porto dataset when using 5-min intervals. And finally, the best
query times (below 1.2µs) are obtained for Porto dataset with 30-min intervals.

Regarding starts-t, recall that it also performs a count operation, but
within a smaller range ([1, z]) in comparison with the range [z + 1, n] where
count is performed for uses-t. We can see that, whereas WM obtains similar
times to those of uses-t query, starts-t performs clearly faster than uses-t

over WTHT.
As a final note, recall that in Madrid dataset, bitvector RG always needs

more space than RRR counterparts whereas in Porto dataset (as discussed in
Section 8.2) RG obtains the best space values when using 5-min intervals and
still requires less space than RRR32 when using 30-min intervals. This is the
reason why while plots for Madrid dataset are decreasing from left to right, in
Porto dataset the first point (RG) in the left figures (5-min intervals), and the
third point (RG) in the right figures (30-min intervals) require less space than
the others (RRR) and are also typically faster.

31

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 70 75 80 85 90 95 100 105

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WTHT: 5-minute intervals

uses-t
starts-t

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 70 75 80 85 90 95 100 105

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WM: 5-minute intervals

uses-t
starts-t

 0

 0.5

 1

 1.5

 2

 70 75 80 85 90 95 100 105

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WTHT: 30-minute intervals

uses-t
starts-t

 0

 0.5

 1

 1.5

 2

 70 75 80 85 90 95 100 105

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WM: 30-minute intervals

uses-t
starts-t

Figure 13: Pure temporal queries for Madrid. CTR uses either a WTHT (left) or a WM (right).
Time granularity is 5 minutes (top) or 30 minutes (bottom).

 0

 0.5

 1

 1.5

 2

 92 94 96 98 100 102 104 106 108

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WTHT: 5-minute intervals

uses-t
starts-t

 0

 0.5

 1

 1.5

 2

 92 94 96 98 100 102 104 106 108

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WM: 5-minute intervals

uses-t
starts-t

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 92 94 96 98 100 102 104 106 108

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WTHT: 30-minute intervals

uses-t
starts-t

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 92 94 96 98 100 102 104 106 108

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WM: 30-minute intervals

uses-t
starts-t

Figure 14: Pure temporal queries for Porto. CTR uses either a WTHT (left) or a WM (right).
Time granularity is 5 minutes (top) or 30 minutes (bottom).

8.3.3. Space/time trade-off when performing spatio-temporal queries

In Figures 15 and 16 we show the space/time tradeoff obtained by CTR when
dealing with spatio-temporal queries. Recall that this type of queries require
both using the CSA, to exploit indexed access to the nodes in the trips, and
the temporal component of CTR to handle temporal constraints. In this case,
the space values showed in the figures include both the size of CSA and that of

32

either WM or WTHT. Therefore, we also show the overall space needs of CTR.
In the case of CSA we have set tΨ = 32 (a fixed dense sampling), and for WM

and WTHT we used again the same configurations as in the previous sections
obtained by varying the bitvectors and the temporal discretization.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 60 62 64 66 68 70 72 74 76 78

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WTHT: 5-minute intervals

starts-with-x
ends-with-x

from-x-to-y-strong
from-x-to-y-weak

uses-x

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 60 62 64 66 68 70 72 74 76 78

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WM: 5-minute intervals

starts-with-x
ends-with-x

from-x-to-y-strong
from-x-to-y-weak

uses-x

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 56 58 60 62 64 66 68 70 72 74

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WTHT: 30-minute intervals

starts-with-x
ends-with-x

from-x-to-y-strong
from-x-to-y-weak

uses-x

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 56 58 60 62 64 66 68 70 72 74

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WM: 30-minute intervals

starts-with-x
ends-with-x

from-x-to-y-strong
from-x-to-y-weak

uses-x

Figure 15: Spatio-temporal queries for Madrid. CTR uses either a WTHT (left) or a WM

(right). Time granularity is 5 minutes (top) or 30 minutes (bottom).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 48 49 50 51 52 53 54

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WTHT: 5-minute intervals

starts-with-x
ends-with-x

from-x-to-y-strong
from-x-to-y-weak

uses-x

 0

 2

 4

 6

 8

 10

 12

 14

 16

 48 49 50 51 52 53 54

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WM: 5-minute intervals

starts-with-x
ends-with-x

from-x-to-y-strong
from-x-to-y-weak

uses-x

 0

 2

 4

 6

 8

 10

 12

 14

 43 43.5 44 44.5 45 45.5 46 46.5 47

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WTHT: 30-minute intervals

starts-with-x
ends-with-x

from-x-to-y-strong
from-x-to-y-weak

uses-x

 0

 2

 4

 6

 8

 10

 12

 14

 43 43.5 44 44.5 45 45.5 46 46.5 47

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WM: 30-minute intervals

starts-with-x
ends-with-x

from-x-to-y-strong
from-x-to-y-weak

uses-x

Figure 16: Spatio-temporal queries for Porto. CTR uses a fixed tΨ = 32 for CSA, and either
a WTHT (left) or a WM (right). Time granularity is 5 minutes (top) or 30 minutes (bottom).

For queries starts-with-x, ends-with-x, and uses-x we can see typically
small differences between using WM or WTHT. In Madrid dataset, WM over-

33

comes WTHT being 2-30% faster in these types of queries. However, in Porto
dataset WTHT is slightly faster (from 1 to 25%) than its WM counterpart.

For queries from-x-to-y-strong and from-x-to-y-weak we can see a big
gap between the times reported by WTHT and WM. This gap arises because in
WM we have used exactly the countLR operation discussed in Section 7 that is
implemented with two calls to the count operation from the WM.17 However,
in our implementation of WTHT we have engineered an improved version of
countLR where, during the execution of count, we also report α′ and β′, hence
avoiding two calls to count.

Finally, we also include results for top-k and top-k-starts queries in
Figures 17 and 18. As explained in Section 8.3.1, the sequential approach is
preferred when the frequency distribution of nodes is rather uniform (Madrid
dataset). Otherwise, the binary-partition counterpart outperforms it. The need
for applying a temporal constraint simply accentuates this effect in comparison
with the corresponding pure spatial queries.

8.4. Discussion: solving queries on CTR Vs Pre-computing counters

Along this section we have focused our experiments on using CTR to answer
our set of queries. However, all those queries could somehow be pre-computed
in such a way that the could be solved faster at the cost of dealing with ad-
ditional supporting structures. For example, all the spatial queries could be
pre-computed with tables that store for each node, or pair of nodes, the corre-
sponding counters. In any case, all those tables would occupy less than 2MB. In
the case of spatio-temporal queries, we could create a straightforward structure
where, for each node, we used a sparse array to keep the counters for each time
instant. These would permit us to solve time interval queries by summing up
the counters matching the temporal constraint of the query. We have imple-
mented those structures for queries starts-with-x, ends-with-x, and uses-x

for Madrid and Porto datasets when using 5-minute intervals. In all cases the
pre-computed structure for each query occupies around 20MB and permits us to
answer those queries from 1 to 2 orders of magnitude faster than CTR. Finally,
we also created a simple pre-computed structure to handle the spatio-temporal
query from-x-to-y. We used a sparse array that, for each pair 〈X,Y 〉, keeps
a counter for all those trajectories that started at ts and ended at te.

18 In this
case, the resulting structure roughly occupies from 130 to 160 MB in memory.
That is, around 40-50% the size of our plain baseline, which is approximately
the same space required by CTR. Again times are roughly from 3 to 50 times
faster than in CTR.

We have seen above that a simple and straightforward implementation of
additional pre-computed structures can handle most of the queries proposed
in this work and improve the query times obtained with a solution based on
compact data structures such as CTR. Yet, CTR still owns some advantages:
i) CTR actually keeps all the trips implicitly in a compressed and self-indexed
way. Therefore, it avoids the need of storing them apart for the case in which we
had to support further queries. ii) In some management scenarios, not all the

17For WM we used exactly the same implementation in [38] and simply added the new
operation countLR that calls the underlying count from the WM.

18Source code at https://github.com/dgalaktionov/compact-trip-representation/blob/master/src/buildFacade.h

34

https://github.com/dgalaktionov/compact-trip-representation/blob/master/src/buildFacade.h

200

500

1000

5000

 60 62 64 66 68 70 72 74 76 78

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WTHT: 5-minute intervals

top-10-starts-seq
top-100-starts-seq

top-10-starts
top-100-starts

top-10-seq
top-100-seq

top-10
top-100

200

500

1000

5000

 60 62 64 66 68 70 72 74 76 78

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WM: 5-minute intervals

top-10-starts-seq
top-100-starts-seq

top-10-starts
top-100-starts

top-10-seq
top-100-seq

top-10
top-100

200

500

1000

5000

 56 58 60 62 64 66 68 70 72 74

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WTHT: 30-minute intervals

top-10-starts-seq
top-100-starts-seq

top-10-starts
top-100-starts

top-10-seq
top-100-seq

top-10
top-100

200

500

1000

5000

 56 58 60 62 64 66 68 70 72 74

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WM: 30-minute intervals

top-10-starts-seq
top-100-starts-seq

top-10-starts
top-100-starts

top-10-seq
top-100-seq

top-10
top-100

Figure 17: Spatio-temporal top-k and top-k-starts queries for Madrid. CTR uses either a
WTHT (left) or a WM (right). Time granularity is 5 minutes (top) or 30 minutes (bottom).

 1000

 10000

 100000

 48 49 50 51 52 53 54

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WTHT: 5-minute intervals

top-10-starts-seq
top-100-starts-seq

top-10-starts
top-100-starts

top-10-seq
top-100-seq

top-10
top-100

 1000

 10000

 100000

 48 49 50 51 52 53 54

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WM: 5-minute intervals

top-10-starts-seq
top-100-starts-seq

top-10-starts
top-100-starts

top-10-seq
top-100-seq

top-10
top-100

 1000

 10000

 100000

 43 43.5 44 44.5 45 45.5 46 46.5 47

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WTHT: 30-minute intervals

top-10-starts-seq
top-100-starts-seq

top-10-starts
top-100-starts

top-10-seq
top-100-seq

top-10
top-100

 1000

 10000

 100000

 43 43.5 44 44.5 45 45.5 46 46.5 47

t
i
m
e

(

µs
e
c
/
p
a
t
t
e
r
n
)

space (% of baseline)

WM: 30-minute intervals

top-10-starts-seq
top-100-starts-seq

top-10-starts
top-100-starts

top-10-seq
top-100-seq

top-10
top-100

Figure 18: Spatio-temporal top-k and top-k-starts queries for Porto. CTR uses a fixed
tΨ = 32 for CSA, and either a WTHT (left) or a WM (right). Time granularity is 5 minutes
(top) or 30 minutes (bottom).

queries can be pre-computed. For example, some indicators in the context of
transportation networks require “counting the number of trips that went through
two nodes X and Y ”. Using CTR we could relay on the underlying CSA to
efficiently locate the ranges corresponding to X and Y and apply Ψ to extract
the original trips to check if they contain Y . Other queries such as “Count how

35

many of the trips from X to Y passed through Z” could be solved similarly by
initially locating the range corresponding to Y $Z and then applying Ψ to check
if those trips between X and Y contain Z.

9. Conclusions and future work

With the installation of better user-tracking mechanisms in public trans-
portation networks, or the fact that a simple app installed in a mobile phone
permits us to track user movements, the problem of storing user trips to fi-
nally support network analysis operations has been gaining increasing interest
in multiple scenarios. For example, we could consider a network management
administration, a taxi company, services like Uber, Cabify, Car2go, or simply
end-user applications.

With enough data of vehicle trips from a significant amount of drivers over
the network composed of the streets in a city, it would be possible to infer traffic
rules by examining turns that nobody takes, their usual driving speed across
the network, congestion points at a given time, and other useful information.
Also, a taxi company (or similar services) could benefit from knowing the city
areas where it is more probable that a user would start a trip, the average time
to go from one area to another, etc. This also applies for the administrators of
public transportation networks including buses, trains, subway, etc.

We have presented CTR and showed that it is a powerful tool to represent
user trips. Actually, we have used CTR to handle user trips from two different
scenarios: the network of subway and local trains from Madrid, and taxi trips
from Porto. CTR uses compact data structures to store both the nodes traversed
(spatial component) by an user during a trip and the corresponding timestamps
(temporal component). This permits us not only to reduce the amount of data
to store but also to efficiently perform spatial, temporal, and spatio-temporal
queries that can help us to analyze the actual usage of the network.

In particular, we used the well-known CSA to represent the spatial com-
ponent of the trips. For Madrid dataset, the size of CSA is around 20-40%
the size of the source data. Porto dataset is still more compressible and CSA

requires only around 13-24% the space of the original data. This structure is
enough to solve typical spatial queries within microseconds and top-k queries in
milliseconds. For the temporal component, we used two WT-based structures.
We adapted the existing balanced WM and we created a Hu-Tucker-shaped WT

(WTHT) that permits to exploit a biased distribution of times to gain compres-
sion. These structures obtained only a moderate improvement in compression
with respect to a plain representation of times (compression ratio from 70 to
105%), but they provided indexed access to the temporal data, and consequently
allowed us to support temporal queries very efficiently. Finally, we have also
shown that the overall CTR, including both CSA and either WTHT or WM,
permits also to efficiently solve spatio-temporal queries (within microseconds);
that is, spatial queries constrained to a time period. The overall compression
obtained by CTR is around 55-75% in Madrid dataset and around 43-54% in
Porto dataset.

We have presented CTR as a proof of concept development, and we have
shown how to solve different types of queries. Yet, based on the underlying
data-structures, CTR is flexible enough to allow us to increase its functionality.
As future work, we are interested in exploiting the underlying network topology

36

to obtain a more compact representation of the trips in CTR. In this promising
line [68, 69] we are working on a succinct representation for the context of
public transportation networks. Also, we want to explore ways to improve the
compression of the temporal component of CTR. We consider that an inverted-
index based representation can be promising.

References

References

[1] N. R. Brisaboa, A. Fariña, D. Galaktionov H., M. A. Rodŕıguez, Compact
trip representation over networks, in: Proc. 23th International Symposium
on String Processing and Information Retrieval (SPIRE), LNCS 9954, 2016,
pp. 240–253.

[2] M. A. Munizaga, C. Palma, Estimation of a disaggregate multimodal pub-
lic transport Origin–Destination matrix from passive smartcard data from
Santiago, Chile, Transportation Research Part C: Emerging Technologies
24 (2012) 9–18. doi:10.1016/j.trc.2012.01.007.

[3] R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen, N. Lorentzos,
E. Nardelli, M. Schneider, J. R. R. Viqueira, Chapter 4: Spatio-temporal
models and languages: An approach based on data types, in: Spatio-
Temporal Databases: The CHOROCHRONOS Approach, LNCS 2520,
2003, pp. 117–176.

[4] S. Spaccapietra, Editorial: Spatio-Temporal Data Models and Languages,
GeoInformatica 5 (1) (2001) 5–9. doi:10.1023/A:1011403703806.

[5] L. Forlizzi, R. H. Güting, E. Nardelli, M. Schneider, A data model and
data structures for moving objects databases, in: Proc. ACM SIGMOD
International Conference on Management of Data (SIGMOD), 2000, pp.
319–330. doi:10.1145/342009.335426.

[6] M. Erwig, R. H. Güting, M. Schneider, M. Vazirgiannis, Spatio-
Temporal Data Types: An Approach to Modeling and Querying
Moving Objects in Databases, GeoInformatica 3 (3) (1999) 269–296.
doi:10.1023/A:1009805532638.

[7] N. Pelekis, Y. Theodoridis, Mobility Data Management and Exploration,
Springer, 2014. doi:10.1007/978-1-4939-0392-4.

[8] D. Pfoser, C. S. Jensen, Y. Theodoridis, Novel Approaches in Query Pro-
cessing for Moving Object Trajectories, in: Proc. 26th International Con-
ference on Very Large Data Bases (VLDB), 2000, pp. 395–406.

[9] Y. Tao, D. Papadias, MV3R-Tree: A Spatio-Temporal Access Method for
Timestamp and Interval Queries, in: Proc. 27th International Conference
on Very Large Data Bases (VLDB), 2001, pp. 431–440.

[10] E. Frentzos, Indexing Objects Moving on Fixed Networks, in: Proc. 8th In-
ternational Symposium on Spatial and Temporal Databases (SSTD), 2003,
pp. 289–305.

37

http://dx.doi.org/10.1016/j.trc.2012.01.007
http://dx.doi.org/10.1023/A:1011403703806
http://dx.doi.org/10.1145/342009.335426
http://dx.doi.org/10.1023/A:1009805532638
http://dx.doi.org/10.1007/978-1-4939-0392-4

[11] V. T. de Almeida, R. H. Güting, Indexing the Trajectories of
Moving Objects in Networks, GeoInformatica 9 (1) (2005) 33–60.
doi:10.1007/s10707-004-5621-7.

[12] I. Sandu Popa, K. Zeitouni, V. Oria, D. Barth, S. Vial, Indexing In-
network Trajectory Flows, The VLDB Journal 20 (5) (2011) 643–669.
doi:10.1007/s00778-011-0236-8.

[13] P. Cudré-Mauroux, E. Wu, S. Madden, TrajStore: An Adaptive Storage
System for Very Large Trajectory Data Sets, in: Proc. 26th International
Conference on Data Engineering (ICDE), 2010, pp. 109–120.

[14] Y. Li, C. Chow, K. Deng, M. Yuan, J. Zeng, J. Zhang, Q. Yang, Z. Zhang,
Sampling big trajectory data, in: Proc. 24th ACM International Conference
on Information and Knowledge Management (CIKM), 2015, pp. 941–950.

[15] K. Sadakane, New text indexing functionalities of the compressed suffix
arrays, Journal of Algorithms 48 (2) (2003) 294–313.

[16] R. Grossi, A. Gupta, J. S. Vitter, High-order entropy-compressed text,
in: Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2003, pp. 841–850.

[17] O. Wolfson, B. Xu, S. Chamberlain, L. Jiang, Moving objects databases:
Issues and solutions, in: Proc. 10th International Conference on Scientific
and Statistical Database Management (SSDBM), 1998, pp. 111–122.

[18] A. P. Sistla, O. Wolfson, S. Chamberlain, S. Dao, Modeling and querying
moving objects, in: Proc. 13th International Conference on Data Engineer-
ing (ICDE), 1997, pp. 422–432.

[19] R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen, N. A. Lorentzos,
M. Schneider, M. Vazirgiannis, A foundation for representing and querying
moving objects, ACM Transactions on Database Systems 25 (1) (2000)
1–42. doi:10.1145/352958.352963.

[20] R. H. Güting, M. Schneider, Moving Objects Databases, Morgan Kauf-
mann, 2005.

[21] M. L. Damiani, H. Issa, R. H. Güting, F. Valdés, Symbolic trajecto-
ries and application challenges, SIGSPATIAL Special 7 (1) (2015) 51–58.
doi:10.1145/2782759.2782768.

[22] R. H. Güting, V. Teixeira de Almeida, Z. Ding, Modeling and querying
moving objects in networks, The VLDB Journal 15 (2) (2006) 165–190.
doi:10.1007/s00778-005-0152-x.

[23] Z. Ding, B. Yang, R. H. Güting, Y. Li, Network-matched trajectory-
based moving-object database: Models and applications, IEEE
Trans. Intelligent Transportation Systems 16 (4) (2015) 1918–1928.
doi:10.1109/TITS.2014.2383494.

[24] A. Guttman, R-trees: A dynamic index structure for spatial searching, in:
Proc. ACM SIGMOD International Conference on Management of Data
(SIGMOD), 1984, pp. 47–57.

38

http://dx.doi.org/10.1007/s10707-004-5621-7
http://dx.doi.org/10.1007/s00778-011-0236-8
http://dx.doi.org/10.1145/352958.352963
http://dx.doi.org/10.1145/2782759.2782768
http://dx.doi.org/10.1007/s00778-005-0152-x
http://dx.doi.org/10.1109/TITS.2014.2383494

[25] M. A. Nascimento, J. R. Silva, Towards historical R-trees, in: Proc. ACM
symposium on Applied Computing (SAC), ACM, 1998, pp. 235–240.

[26] V. P. Chakka, A. Everspaugh, J. M. Patel, Indexing large trajectory data
sets with SETI, in: Proc. 1st Conference on Innovative Data Systems Re-
search (CIDR), 2003, pp. 1–12.

[27] J.-W. Chang, M.-S. Song, J.-H. Um, TMN-tree: new trajectory index struc-
ture for moving objects in spatial networks, in: Proc. 10th International
Conference on Computer and Information Technology (CIT), 2010, pp.
1633–1638. doi:10.1109/CIT.2010.289.

[28] D. H. T. That, I. S. Popa, K. Zeitouni, TRIFL: A generic trajectory index
for flash storage, ACM Transactions on Spatial Algorithms and Systems
1 (2) (2015) 6. doi:10.1145/2786758.

[29] N. Meratnia, R. A. de By, Spatiotemporal compression techniques for mov-
ing point objects, in: Proc. 9th International Conference on Extending
Database Technology (EDBT), LNCS 2992, 2004, pp. 765–782.

[30] M. Potamias, K. Patroumpas, T. Sellis, Sampling Trajectory Streams with
Spatiotemporal Criteria, in: Proc. 18th International Conference on Scien-
tific and Statistical Database Management (SSDBM), 2006, pp. 275–284.
doi:10.1109/SSDBM.2006.45.

[31] H. Cao, O. Wolfson, G. Trajcevski, Spatio-temporal data reduction with
deterministic error bounds, The VLDB Journal 15 (3) (2006) 211–228.
doi:10.1007/s00778-005-0163-7.

[32] K.-F. Richter, F. Schmid, P. Laube, Semantic Trajectory Compression:
Representing Urban Movement in a Nutshell, Journal of Spatial Informa-
tion Science 4 (1) (2012) 3–30. doi:10.5311/JOSIS.2012.4.62.

[33] G. Kellaris, N. Pelekis, Y. Theodoridis, Map-matched Trajectory Com-
pression, Journal of Systems and Software 86 (6) (2013) 1566–1579.
doi:10.1016/j.jss.2013.01.071.

[34] S. Funke, R. Schirrmeister, S. Skilevic, S. Storandt, Compass-based navi-
gation in street networks, in: Proc. 14th International Symposium on Web
and Wireless Geographical Information Systems (W2GIS), LNCS 9080,
2015, pp. 71–88.

[35] B. Krogh, N. Pelekis, Y. Theodoridis, K. Torp, Path-based queries on tra-
jectory data, in: Proc. 22nd ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems (SIGSPATIAL), 2014, pp.
341–350.

[36] S. Koide, Y. Tadokoro, T. Yoshimura, SNT-index: Spatio-temporal index
for vehicular trajectories on a road network based on substring match-
ing, in: Proc. 1st International ACM SIGSPATIAL Workshop on Smart
Cities and Urban Analytics (UrbanGIS@SIGSPATIAL), 2015, pp. 1–8.
doi:10.1145/2835022.2835023.

39

http://dx.doi.org/10.1109/CIT.2010.289
http://dx.doi.org/10.1145/2786758
http://dx.doi.org/10.1109/SSDBM.2006.45
http://dx.doi.org/10.1007/s00778-005-0163-7
http://dx.doi.org/10.5311/JOSIS.2012.4.62
http://dx.doi.org/10.1016/j.jss.2013.01.071
http://dx.doi.org/10.1145/2835022.2835023

[37] P. Ferragina, G. Manzini, Opportunistic data structures with applications,
in: Proc. 41st IEEE Symposium on Foundations of Computer Science
(FOCS), 2000, pp. 390–398.

[38] F. Claude, G. Navarro, A. Ordóñez, The wavelet matrix: An efficient
wavelet tree for large alphabets, Information Systems 47 (2015) 15–32.

[39] U. Manber, G. Myers, Suffix arrays: a new method for on-line
string searches, SIAM Journal on Computing 22 (5) (1993) 935–948.
doi:10.1137/0222058.

[40] R. Grossi, J. S. Vitter, Compressed suffix arrays and suffix trees with ap-
plications to text indexing and string matching, in: Proc. 32nd ACM Sym-
posium on Theory of Computing (STOC), 2000, pp. 397–406.

[41] G. Jacobson, Space-efficient static trees and graphs, in: Proc. 30th IEEE
Symposium on Foundations of Computer Science (FOCS), 1989, pp. 549–
554.

[42] I. Munro, Tables, in: Proc. 16th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), LNCS 1180,
1996, pp. 37–42.

[43] G. Navarro, V. Mäkinen, Compressed Full-text Indexes, ACM Computing
Surveys 39 (1) (2007) article 2. doi:10.1145/1216370.1216372.

[44] A. Fariña, N. R. Brisaboa, G. Navarro, F. Claude, Á. S. Places,
E. Rodŕıguez, Word-based Self-Indexes for Natural Language Text,
ACM Transactions on Information Systems 30 (1) (2012) article 1:.
doi:10.1145/2094072.2094073.

[45] T. Gagie, G. Navarro, S. J. Puglisi, New algorithms on wavelet trees and
applications to information retrieval, Theoretical Computer Science 426
(2012) 25–41.

[46] G. Navarro, Compact Data Structures – A practical approach, Cambridge
University Press, 2016.

[47] G. Navarro, Wavelet trees for All, Journal of Discrete Algorithms 25 (2014)
2–20. doi:10.1016/j.jda.2013.07.004.

[48] A. Golynski, R. Grossi, A. Gupta, R. Raman, S. S. Rao, On the size of suc-
cinct indices, in: Proc. 15th Annual European Symposium on Algorithms
(ESA), LNCS 4698, 2007, pp. 371–382.

[49] R. Raman, V. Raman, S. S. Rao, Succinct indexable dictionaries with ap-
plications to encoding k-ary trees and multisets, in: Proc. 13th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2002, pp. 233–
242.

[50] D. A. Huffman, A method for the construction of minimum-
redundancy codes, Proceedings of the IRE 40 (9) (1952) 1098–1101.
doi:10.1109/JRPROC.1952.273898.

40

http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1145/1216370.1216372
http://dx.doi.org/10.1145/2094072.2094073
http://dx.doi.org/10.1016/j.jda.2013.07.004
http://dx.doi.org/10.1109/JRPROC.1952.273898

[51] P. Ferragina, R. González, G. Navarro, R. Venturini, Compressed text in-
dexes: From theory to practice, Journal of Experimental Algorithmics 13
(2009) 1–12.

[52] J. Barbay, G. Navarro, On compressing permutations and adap-
tive sorting, Theoretical Computer Science 513 (2013) 109–123.
doi:10.1016/j.tcs.2013.10.019.

[53] T. C. Hu, A. C. Tucker, Optimal computer search trees and variable-length
alphabetical codes, SIAM Journal on Applied Mathematics 21 (4) (1971)
514–532. doi:10.1137/0121057.

[54] T. M. Cover, J. A. Thomas, Elements of Information Theory (Wiley Se-
ries in Telecommunications and Signal Processing), 2nd Edition, Wiley-
Interscience, 2006.

[55] Y. Horibe, An improved bound for weight-balanced tree, Information and
Control 34 (2) (1977) 148–151. doi:10.1016/S0019-9958(77)80011-9.

[56] E. N. Gilbert, E. F. Moore, Variable-length binary encod-
ings, Bell System Technical Journal 38 (4) (1959) 933–967.
doi:10.1002/j.1538-7305.1959.tb01583.x.

[57] F. Claude, G. Navarro, Practical rank/select queries over arbitrary se-
quences, in: Proc. 15th International Symposium on String Processing and
Information Retrieval (SPIRE), LNCS 5280, 2008, pp. 176–187.

[58] A. Ordóñez, Statistical and repetition-based compressed data structures,
Ph.D. thesis, Department of Computer Science, University of A Coruña
(2016).

[59] A. Fariña, T. Gagie, G. Manzini, G. Navarro, A. Ordóñez, Efficient and
Compact Representations of Some Non-canonical Prefix-Free Codes, LNCS
9954, 2016, pp. 50–60.

[60] C. Morency, M. Trépanier, B. Agard, Measuring transit use variabil-
ity with smart-card data, Transport Policy 14 (3) (2007) 193–203.
doi:10.1016/j.tranpol.2007.01.001.

[61] A. El-Geneidy, D. Levinson, Place rank: Valuing spatial inter-
actions, Networks and Spatial Economics 11 (4) (2011) 643–659.
doi:10.1007/s11067-011-9153-z.

[62] G. Wang, Y. Zhong, C.-P. Teo, Q. Liu, Flow-based accessibility measure-
ment: The place rank approach, Transportation Research Part C: Emerging
Technologies 56 (2015) 335–345. doi:10.1016/j.trc.2015.04.017.

[63] R. Guimerà, S. Mossa, A. Turtschi, L. A. N. Amaral, The worldwide air
transportation network: Anomalous centrality, community structure, and
cities’ global roles, Proc. National Academy of Sciences 102 (22) (2005)
7794–7799. doi:10.1073/pnas.0407994102.

[64] G. Nong, S. Zhang, W. H. Chan, Two efficient algorithms for linear time
suffix array construction, IEEE Transactions on Computers 60 (10) (2011)
1471–1484.

41

http://dx.doi.org/10.1016/j.tcs.2013.10.019
http://dx.doi.org/10.1137/0121057
http://dx.doi.org/10.1016/S0019-9958(77)80011-9
http://dx.doi.org/10.1002/j.1538-7305.1959.tb01583.x
http://dx.doi.org/10.1016/j.tranpol.2007.01.001
http://dx.doi.org/10.1007/s11067-011-9153-z
http://dx.doi.org/10.1016/j.trc.2015.04.017
http://dx.doi.org/10.1073/pnas.0407994102

[65] N. J. Larsson, K. Sadakane, Faster suffix sorting, Theoretical Computer
Science 387 (3) (2007) 258–272. doi:10.1016/j.tcs.2007.07.017.

[66] D. Okanohara, K. Sadakane, Practical entropy-compressed rank/select dic-
tionary, in: Proc. 9th Workshop on Algorithm Engineering and Experi-
ments (ALENEX), 2007, pp. 60–70. doi:10.1137/1.9781611972870.6.

[67] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, L. Damas,
Predicting taxi–passenger demand using streaming data, IEEE Transac-
tions on Intelligent Transportation Systems 14 (3) (2013) 1393–1402.

[68] Y. Han, W. Sun, B. Zheng, Compress: A comprehensive framework of
trajectory compression in road networks, ACM Transactions on Database
Systems 42 (2) (2017) 11:1–11:49. doi:10.1145/3015457.

[69] S. Koide, Y. Tadokoro, C. Xiao, Y. Ishikawa, Cinct: Compression and
retrieval for massive vehicular trajectories via relative movement labeling,
in: Proc. 34th IEEE International Conference on Data Engineering (ICDE),
2018.

42

http://dx.doi.org/10.1016/j.tcs.2007.07.017
http://dx.doi.org/10.1137/1.9781611972870.6
http://dx.doi.org/10.1145/3015457

	1 Introduction
	2 Previous Work
	2.1 Models of trajectory and types of queries
	2.2 Trajectory indexing
	2.3 Underlying Compact Structures of CTR
	2.3.1 Sadakane's Compressed Suffix Array (CSA)
	2.3.2 The Wavelet Tree (WT)

	3 Counting-based queries
	4 Compact Trip Representation (CTR)
	5 Spatial component of CTR
	5.1 Dealing with Spatial Queries
	5.2 Implementation details

	6 Temporal component of CTR
	6.1 Dealing with Temporal queries
	6.2 Implementation details
	6.3 Comparing the space/time trade-off of WM and WTHT

	7 Dealing with Spatio-temporal queries
	8 Experimental evaluation
	8.1 Experimental datasets
	8.2 Space Requirements of CTR
	8.3 Performance at query time
	8.3.1 Space/time trade-off when dealing with spatial queries
	8.3.2 Space/time trade-off when performing temporal queries
	8.3.3 Space/time trade-off when performing spatio-temporal queries

	8.4 Discussion: solving queries on CTR Vs Pre-computing counters

	9 Conclusions and future work

