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Highlights

• SQL nulls are commonly interpreted as non-repeating
marked nulls, but even simple queries may produce
answers that break this interpretation

• The class of queries preserving the Codd interpreta-
tion of SQL nulls cannot be captured syntactically

• Sufficient syntactic restrictions for preservation can
be obtained by leveraging NOT NULL constraints
on the database schema
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On the Codd Semantics of SQL Nulls

Paolo Guagliardoa, Leonid Libkina

aSchool of Informatics, University of Edinburgh

Abstract

Theoretical models used in database research often have subtle differences with those occurring in practice. One particular
mismatch that is usually neglected concerns the use of marked nulls to represent missing values in theoretical models
of incompleteness, while in an SQL database these are all denoted by the same syntactic NULL object. It is commonly
argued that results obtained in the model with marked nulls carry over to SQL, because SQL nulls can be interpreted
as Codd nulls, which are simply marked nulls that do not repeat. This argument, however, does not take into account
that even simple queries may produce answers where distinct occurrences of NULL do in fact denote the same unknown
value. For such queries, interpreting SQL nulls as Codd nulls would incorrectly change the semantics of query answers.

To use results about Codd nulls for real-life SQL queries, we need to understand which queries preserve the Codd
interpretation of SQL nulls. We show, however, that the class of relational algebra queries preserving Codd interpretation
is not recursively enumerable, which necessitates looking for sufficient conditions for such preservation. Those can be
obtained by exploiting the information provided by NOT NULL constraints on the database schema. We devise mild
syntactic restrictions on queries that guarantee preservation, do not limit the full expressiveness of queries on databases
without nulls, and can be checked efficiently.

Keywords: SQL, null, semantics, relational database

1. Introduction

Query evaluation is a fundamental task in data man-
agement, and very often it must be performed on databases
with incomplete information. This is especially true in ap-
plications such as data integration [1, 2], data exchange [3]
and ontology-based data access [4, 5] that rely on the stan-
dard tools of existing relational database technology, in
particular SQL, in order to take advantage of its efficiency.
Much theoretical research on query answering and its ap-
plications uses well established models of incompleteness;
however, there is an important mismatch between theoret-
ical models and real-life SQL, which has an impact on the
semantics of query answers.

Theoretical research traditionally adopts a model of in-
completeness where missing values in a database are rep-
resented by marked (also called naive or labeled) nulls. In
SQL, on the other hand, missing values are all represented
by the same syntactic object: the ill-famed NULL. To rec-
oncile the two approaches, there is a standard argument in
the literature: SQL nulls are modeled by Codd nulls, i.e.,
non-repeating marked nulls. Then each occurrence of NULL
is interpreted as a fresh marked null that does not appear
anywhere else in the database, e.g., as shown in Figure 1.

Do Codd nulls properly model SQL nulls? Sometimes
(e.g., in [6]) it is argued that they are different, but this as-
sumes a special type of query evaluation, called naive [7],

Email addresses: pguaglia@inf.ed.ac.uk (Paolo Guagliardo),
libkin@inf.ed.ac.uk (Leonid Libkin)
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Figure 1: SQL nulls are interpreted as Codd nulls.

under which marked nulls are simply viewed as new con-
stants, e.g., ⊥1 = ⊥1 but ⊥1 6= ⊥2. Under naive evalua-
tion, on the database D′ in Figure 1, the relational alge-
bra query σA=A(R) will produce {⊥1}. However, the same
query in SQL, SELECT * FROM R WHERE A=A, returns the
empty set on the database D in Figure 1. The reason for
this is that, in SQL, comparisons involving nulls evaluate
to the truth value unknown, even if a null is compared with
itself. This mismatch, however, is easily fixed by simply
using the same comparison semantics for Codd nulls: ev-
ery condition x = y or x 6= y evaluates to unknown if x or
y is a null. In fact, we do not even need SQL’s three-valued
logic: the same evaluation strategy can be captured using
only the usual Boolean logic with true and false [8].

So, is this sufficient to reconcile the mismatch between
Codd nulls and SQL nulls? The answer is still negative,
because we have not taken into account the role of queries.
If SQL nulls are to be interpreted as Codd nulls, this inter-
pretation should apply to input databases as well as query

Preprint submitted to Information Systems August 13, 2018
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Figure 2: Preservation of Codd semantics for SQL nulls.

answers, which are incomplete databases themselves. To
explain this point, let codd(D) be the result of replacing
SQL nulls, in the database D, by distinct marked nulls, as
shown in Figure 1. Technically, codd(D) is the set of such
databases, because we can choose distinct marked nulls
arbitrarily (e.g., {⊥3, ⊥4} instead of {⊥1,⊥2} for the da-
tabase D′ in Figure 1), but these databases are all isomor-
phic. To ensure that Codd nulls faithfully represent SQL
nulls for a query Q, the condition in Figure 2 must be en-
forced. Intuitively, the diagram says the following: take an
SQL database D, and compute the answer to Q on it, i.e.,
Q(D). Now take some D′ ∈ codd(D) and compute Q(D′);
then Q(D′) must be in codd

(
Q(D)

)
, i.e., there must be a

way of assigning Codd nulls to SQL nulls in Q(D) that will
result in Q(D′).

Does this condition hold for queries in some sufficiently
expressive language like relational algebra? Unfortunately,
the answer is negative, even for very simple queries. Take
for example the database D and its Codd interpretation D′

shown in Figure 1, and consider the queryQ that computes
the Cartesian product of R and S. Then, we have

Q(D)

A B

NULL 0
NULL NULL

Q(D′)

A B

⊥1 0
⊥1 ⊥2

and since ⊥1 is repeated in Q(D), we cannot obtain Q(D′)
from Q(D) by replacing SQL nulls with Codd nulls.

The culprit in this example is that the query, evaluated
on the Codd interpretation of the original SQL database,
produces an answer that is not a Codd table, as it contains
repeated nulls. While in this specific example it is easy to
detect such an undesirable behavior, we show that in gen-
eral the class of relational algebra queries that transform
SQL databases into Codd databases is not recursively enu-
merable, and so it is impossible to capture it by a syntactic
fragment of the language.

Due to the lack of an effective syntax for queries that
preserve Codd semantics in answers, we can only hope for
sufficient conditions, that is, finding reasonable syntactic
fragments that guarantee this property. However, simply
choosing a subset of relational algebra operations will not
give us a useful restriction: as we saw, one of the problem-
atic constructs is Cartesian product, and we obviously do
not want a fragment that precludes joins. Thus, we must

look for a more refined solution.
The idea here is to consider database schemas with NOT

NULL constraints, which are very common in practice: base
relations in real SQL databases will almost always have a
PRIMARY KEY declared on them, and this implies NOT NULL.
We then exploit these constraints to come up with mild re-
strictions on queries, which have the following properties:

• they guarantee the preservation of Codd semantics
of SQL nulls in query answers on all databases;

• they can be checked efficiently; and

• they do not restrict the expressiveness of relational
algebra queries on databases without nulls, where all
attributes are declared as NOT NULL.

Organization. The paper is structured as follows:

• In Section 2 we introduce an underlying data model
based on bags, and define the syntax and semantics
of the query language we work with.

• In Section 3 we formally define the notion of preser-
vation of Codd semantics in query answers and show
that the class of queries having this property is not
recursively enumerable.

• In Section 4 we devise syntactic restrictions on the
syntax tree of queries to ensure preservation of Codd
semantics, and we show that these are easy to check.

• In Section 5 we show that adding some operations to
the query language may result in milder restrictions,
which allow one to recognize more queries preserving
Codd semantics.

• In Section 5 we study the preservation of Codd se-
mantics for queries that are interpreted under set se-
mantics, i.e., when duplicate rows in tables are not
allowed.

• In Section 7 we conclude by summarizing the lessons
learned and pointing out future research directions.

This paper is a revised and extended version of [9]. In
addition to including the proofs, here we strengthen the
main results of [9] by relaxing the conditions that ensure
preservation of Codd semantics in query answers. Further-
more, we investigate the case of queries interpreted under
set semantics, which is prominent in the literature. These
new results are not a straightforward consequence of those
in [9] and require some non-trivial additional work.

2. Preliminaries

A bag (or multiset) is an unordered collection of objects,
where the same object – unlike in a set – can occur multiple
times. The multiplicity (i.e., number of occurrences) of an
element e in a bag B is denoted by #(e,B), and we write

3
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e ∈k B for #(e,B) = k. We also use the notation e ∈ B to
indicate that e ∈k B for some k > 0, and we write e 6∈ B
for e ∈0 B (i.e., e does not occur in B). For two bags B
and B′, we say that B is contained in B′, written B ⊆ B′,
if #(e,B) ≤ #(e,B′) for every e ∈ B. The bag operations
of union ∪, intersection ∩ and difference − are defined as
follows:

B ∪B′ def
==

{
e, . . . , e︸ ︷︷ ︸
m+n times

∣∣ e ∈m B, e ∈n B′
}

;

B ∩B′ def
==

{
e, . . . , e︸ ︷︷ ︸

min(m,n) times

∣∣ e ∈m B, e ∈n B′
}

;

B −B′ def
==

{
e, . . . , e︸ ︷︷ ︸
m´n times

∣∣ e ∈m B, e ∈n B′
}
.

where ´ is the monus operator: m ´ n = max(0,m − n).
Observe that union and intersection are commutative and
associative, while difference is not.

For a bag B, duplicate elimination ε returns a new bag
consisting of a single occurrence of each element in B; i.e.,
ε(B) is the bag such that, for any element e,

#
(
e, ε(B)

)
=

{
1 if e ∈ B ,

0 otherwise .

2.1. Data model

We consider two countably infinite and disjoint sets of
names and values, and refer to any finite (sub)set of names
as a signature. A record is a function from some signature
to values, and a table is a bag of records that are all of the
same signature. The signature of a record r is denoted by
sig(r), and likewise for tables.

The projection of a record r on a subset α of its signa-
ture is the restriction of r on α, denoted by πα(r). For two
records r and s of disjoint signatures, the product of r with
s, denoted by r× s, is the record over sig(r)∪ sig(s) whose
projections on sig(r) and sig(s) are r and s, respectively.
Observe that product is commutative and associative. For
a record r, given N ∈ sig(r) and N ′ 6∈ sig(r), we define the
following renaming operation:

ρN→N ′(r)
def
== πsig(r)−N (r)× {N ′ 7→ r(N)} .

The operations on records described above extend nat-
urally to tables:

πα(T )
def
==

{
s, . . . , s︸ ︷︷ ︸
k times

∣∣∣ k =
∑

r∈T
πα(r)=s

#(r, T )
}

;

T × T ′ def
==

{
r × s, . . . , r × s︸ ︷︷ ︸

m·n times

∣∣ r ∈m T, s ∈n T ′
}

;

ρN→N ′(T )
def
==

{
r′, . . . , r′︸ ︷︷ ︸
k times

| r ∈k T, r′ = ρN→N ′(r)
}
.

The bag operations ∪, ∩ and − can be applied to tables
of the same signature, which ensures the result is a table.
Duplicate elimination ε applies without restrictions.

2.2. Schemas and incomplete databases

A (relational) schema consists of a signature of relation
names and a function sig that maps each relation name R
to a signature sig(R), whose elements are called the attri-
butes of R. A database D associates each relation name R
(of a given schema) with a table JRKD over sig(R).

Databases are populated with two kinds of values: con-
stants and nulls, which come from countably infinite and
disjoint sets Const and Null, respectively. We assume that
Null contains the special value N for SQL’s NULL; all other
elements of Null will be denoted by ⊥, with sub- or super-
scripts. We denote the sets of constants and nulls that oc-
cur in a database D by Const(D) and Null(D), respectively,
and we say that D is complete if Null(D) = ∅.

A database D is called a naive database if N 6∈ Null(D),
and an SQL database if Null(D) ⊆ {N}. In other words, the
special value N cannot appear in naive databases, while it is
the only value allowed for denoting nulls in SQL databases.
This terminology extends naturally to tables.

A Codd database (resp., Codd table) is a naive database
(resp., naive table) in which nulls do not repeat, i.e., there
can be at most one occurrence of each element from Null.
Note that a Codd database is a set of Codd tables, but the
converse need not hold.

2.3. Query language

We use relational algebra (RA) for bags, whose syntax
is defined by the grammar in Figure 3. This consists of two
main syntactic constructs, expressions E and conditions θ,
whose semantics is given in Figure 4.

A term t is either a name or a value, and its semantics
JtKr is given w.r.t. a record r: if t is a name in sig(r), then
JtKr = r(t); else, if t is a value, JtKr = t; otherwise, JtKr is
undefined.

Atomic conditions are equality/inequality comparisons
between terms, and tests that determine whether a term is
null or constant; complex conditions are constructed from
atomic ones by means of conjunction and disjunction. We
do not use explicit negation, as this can be propagated all
the way down to atoms.

The signature of a condition θ, denoted by sig(θ), is the
set of names appearing in it. Its semantics JθKr is defined
w.r.t. a record r such that sig(θ) ⊆ sig(r): it can be either t
(true) or f (false), as determined by the rules in Figure 4b.

For a table T and a condition θ s.t. sig(θ) ⊆ sig(T ), we
can then define the following selection operation:

σθ(T )
def
==

{
r, . . . , r︸ ︷︷ ︸
k times

| r ∈k T, JθKr = t
}

Atomic RA expressions are simply names (of base rela-
tions in the schema), and complex ones are constructed by
means of the usual operations of projection π, selection σ,
Cartesian product ×, union ∪, difference −, intersection ∩,
renaming ρ, and duplicate elimination ε. The signature of
an expression is defined inductively as follows:

sig(R) is given for any relation name R

4
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(a) Expressions

E := N (relation name)

| E × E (product)

| E ∪ E (union)

| E ∩ E (intersection)

| E − E (difference)

| πα(E) (projection)

| σθ(E) (selection)

| ε(E) (duplicate elimination)

| ρN→N (E) (renaming)

(b) Conditions

θ := t = t (equality)

| t 6= t (inequality)

| null(t) (null test)

| const(t) (constant test)

| θ ∧ θ (conjunction)

| θ ∨ θ (disjunction)

N := name ; α := signature

t := name | value

Figure 3: Syntax of Relational Algebra

sig(E1 × E2) = sig(E1) ∪ sig(E2)

sig(E1 op E2) = sig(E1) for op ∈ {∪,∩,−}
sig
(
πα(E)

)
= α

sig
(
σθ(E)

)
= sig

(
ε(E)

)
= sig(E)

sig
(
ρA→B(E)

)
=
(
sig(E)− {A}

)
∪ {B}

Whether an expression is well-defined w.r.t. a schema
is inductively determined as follows:

• an atomic expression R is well-defined if R is a rela-
tion name in the schema;

• E1×E2 is well-defined if E1 and E2 are well-defined
and sig(E1) is disjoint with sig(E2);

• E1 opE2, for op∈{∩,∪,−}, is well-defined if E1 and
E2 are well-defined and sig(E1) = sig(E2);

• πα(E) is well-defined if E is well-defined and sig(α) ⊆
sig(E);

• σθ(E) is well-defined if E is well-defined and sig(θ) ⊆
sig(E);

• ε(E) is well-defined if E is well-defined;

• ρA→B(E) is well-defined if E is well-defined and A ∈
sig(E) and B 6∈ sig(E)− {A};

The RA queries over a given schema are all of the RA
expressions that are well-defined w.r.t. that schema. Their
semantics is given with respect to a database D (over the
same schema) as shown in Figure 4a.

This language captures the basic fragment of SQL [8]:
SELECT [DISTINCT]-FROM-WHERE queries, with (correlated)
subqueries preceded by possibly negated IN and EXISTS,
combined by UNION, INTERSECT and EXCEPT, with or with-
out the ALL modifier.

3. Codd Interpretation of SQL Nulls

Differently from naive databases, where nulls are ele-
ments of Null, missing values in SQL are all denoted by the

special symbol N. To reconcile this mismatch, the occur-
rences of N in an SQL database are typically interpreted as
non-repeating elements of Null. That is, an SQL database
is seen as a Codd database where each occurrence of N is
replaced by a fresh distinct marked null. Obviously, these
nulls can be chosen arbitrarily as long as they do not re-
peat, so an SQL database may admit infinitely many Codd
interpretations in general.

To make this notion more precise, given a record r, we
denote by sql(r) the record r′ over sig(r) such that

r′(A) =

{
r(A) if r(A) ∈ Const ,

N otherwise ,

for every A ∈ sig(r). We also denote by sql−1(r) the preim-
age of r under sql, that is:

sql−1(r) =
{
s | s is a record such that sql(s) = r

}
.

The properties below follow easily from the definitions:

Lemma 1. Let r be a record. Then,

a) for every α ⊆ sig(r),

sql
(
πα(r)

)
= πα

(
sql(r)

)
;

b) for every A ∈ sig(r) and B 6∈
(
sig(r)− {A}

)
,

sql
(
ρA→B(r)

)
= ρA→B

(
sql(r)

)
;

c) for every record s such that sig(s) ∩ sig(r) = ∅,

sql(r × s) = sql(r)× sql(s) ;

d) for every selection condition θ s.t. sig(θ) ⊆ sig(r),

JθKr = JθKsql(r) .

These notions are extended to tables and databases as
follows. For a table T , sql(T ) is the table over sig(T ) such
that, for every record r,

#
(
r, sql(T )

)
=
∑

s∈sql−1(r)

#(s, T ) ;

5
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(a) Expressions

JRKD is given for any base relation name R

JE1 op E2KD def
== JE1KD op JE2KD for op ∈ {×,∪,∩,−}

Jπα(E)KD def
== πα

(
JEKD

)

Jσθ(E)KD def
== σθ

(
JEKD

)

Jε(E)KD def
== ε

(
JEKD

)

JρN→N ′(E)KD def
== ρN→N ′

(
JEKD

)

(b) Conditions

Jt1 = t2Kr = t ⇐⇒ Jt1Kr = Jt2Kr ∈ Const

Jt1 6= t2Kr = t ⇐⇒ Jt1 = t2Kr 6= t

Jnull(t)Kr = t ⇐⇒ JtKr ∈ Null

Jconst(t)Kr = t ⇐⇒ JtKr ∈ Const

Jθ1 ∧ θ2Kr = t ⇐⇒ Jθ1Kr = Jθ2Kr = t

Jθ1 ∨ θ2Kr = t ⇐⇒ Jθ1Kr = t or Jθ2Kr = t

Figure 4: Semantics of Relational Algebra

sql−1(T ) is the set of all tables T ′ such that sql(T ′) = T .
For a database D, sql(D) is the SQL database of the

same schema as D such that JRKsql(D) = sql
(
JRKD

)
for ev-

ery relation name R. As with records and tables, sql−1(D)
denotes the set of all databases D′ such that sql(D′) = D.
Then, for an SQL database D, we define codd(D) as the set
of all Codd databases in sql−1(D). Note that, even though
this set may be infinite, all of its elements are isomorphic.
So, with some abuse of terminology, we speak of the Codd
interpretation of an SQL database, which is unique up to
renaming of nulls.

If SQL nulls are interpreted as Codd nulls, this should
apply to input databases as well as query answers. Given
a query Q, for every SQL database D there should always
be a way of assigning Codd nulls to SQL nulls in JQKD so
as to obtain JQKD′ , where D′ is the Codd interpretation of
D. In other words, the Codd interpretation of JQKD must
be isomorphic to JQKD′ .

This requirement was shown in the diagram in the in-
troduction – where Q(D) denotes JQKD – and it is formally
defined below.

Definition 1. A query Q preserves Codd semantics if for
every SQL database D it holds that

JQKD′ ∈ codd
(
JQKD

)
, (1)

where D′ is the Codd interpretation of D.

The above definition can be equivalently formulated as
follows: a query Q preserves Codd semantics if, for every
Codd database D, it holds that

sql
(
JQKD

)
= JQKsql(D) (1a)

and

JQKD is a Codd table. (1b)

These two requirements are in fact independent of one
another, as the following example shows.

Example 1. Consider a schema with two unary relation
names R and S over attribute A, and the Codd database D
where

JRKD =
A

⊥1

0

; JSKD =
A

⊥2

Then, sql(D) is the SQL database D′ such that

JRKD′ =
A

N
0

; JSKD′ =
A

N

Now, take the queries Q1 = R×ρA→B(S) and Q2 = R−S,
whose answers on D and D′ are as follows:

JQ1KD =
A B

⊥1 ⊥2

0 ⊥2

; JQ1KD′ =
A B

N N
0 N

JQ2KD =
A

⊥1

0

; JQ2KD′ =
A

0

Thus, w.r.t. D, Q1 satisfies (1a) but not (1b), since JQ1KD
contains multiple occurrences of the same null, namely ⊥2.
On the other hand, Q2 satisfies (1b) but not (1a), because
JQ2KD′ 6= sql

(
JQ2KD

)
.

A natural question at this point is whether we can syn-
tactically capture the class of RA queries that satisfy both
(1a) and (1b) for every Codd database. Unfortunately, the
answer is no.

Proposition 1. For every schema with at least one binary
relation symbol, the set of RA queries that preserve Codd
semantics is not recursively enumerable.

Proof. To prove this, we can show that the set of preserv-
ing queries is not recursive, by reduction from the undecid-
ability of emptiness of relational algebra expressions; since
the complement of the set is clearly r.e. (by simultaneous
enumeration of queries and databases), the result follows.

For now assume that the schema contains three binary
relations, R,S, and E. We know that Cartesian product
R × S does not preserve Codd semantics. Now, given an
arbitrary relational algebra query Q over E, consider its

6
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extension QR,S over all three relations defined as follows: if
Q produces nonempty result on E, output R×S, otherwise
output the empty table. This can be expressed as

πR,S
(
π∅(Q)× (R× S)

)
,

where πR,S means projecting on all attributes of R and
S. Due to the above observation, QR,S preserves Codd
semantics if and only if Q always produces the empty set.
Since the latter is well known to be undecidable [10, 11],
it implies that, for the schema with relations R,S,E, pre-
serving Codd semantics is undecidable.

We now explain how to encode R,S,E in one binary
relation. First we encode them in a ternary relation T .
For this, assume three new constants r, s, e and add to
T tuples (r, a, b) for every (a, b) ∈ R and likewise (s, c, d)
and (e, u, v) for (c, d) ∈ S and (u, v) ∈ E. In addition,
add a tuple (r, s, e). This tuple can be recognized as the
only one whose components are precisely the elements of
the first column: this is a condition that one easily checks
in first-order logic and hence in relational algebra. Once
we have a first-order query selecting this tuple, we can
extract R,S,E from T . Since there is a first-order query
that checks whether T properly encodes three relations
(i.e., there exists a tuple whose elements are precisely the
elements that occur in the first column and nowhere else),
then the previous proof applies.

Finally we show how to encode T in a binary relation
B. Then for each tuple (a, b, c) in T , create a new constant
ı for its id and add tuples (ı, b), (c, ı), (ı, a), (a, ı), and (ı, ı)
to B. Then one can check, using a first-order query, if B is
a code for T . Indeed, one needs to look for all elements ı for
which (ı, ı) ∈ B, and see if the only remaining tuples that
use ı are of the form (ı, b), (c, ı), (ı, a), (a, ı). Since in tuples
(a, b, c) ∈ T we have a 6= b and a 6= c, there is a simple
way to decode the triple (a, b, c) from them, again using
a first-order query, as all of a, b, c can be unambiguously
identified. Thus, the construction that uses the schema
with relations R,S,E can be done using a single binary
relation B, which proves the proposition.

In light of the negative result above, we should look for
syntactic restrictions that provide sufficient conditions for
the preservation of Codd semantics. This is what we do in
the next section.

4. Queries Preserving Codd Semantics

Since the set of RA queries that preserve Codd seman-
tics cannot be captured syntactically, we can only hope for
syntactic restrictions that are sufficient to guarantee this
property. However, simply choosing a subset of relational
algebra operations would be too restrictive to be useful: as
we have seen in the examples, Cartesian product is one of
the operations causing problems with the preservation of
Codd semantics, and we certainly do not want a fragment
that forbids joins altogether.

This suggests that, in order to come up with useful re-
strictions, we need some additional information beyond the
query itself. Real databases typically must satisfy some in-
tegrity constraints, and when it comes to incomplete SQL
databases the most basic form of constraints is to declare
some of the attributes in the schema as NOT NULL. The use
of this kind of constraints is extremely common in prac-
tice, as each base table in a real-life SQL database almost
always has a subset of its attributes declared as PRIMARY

KEY, which implies NOT NULL.
We model NOT NULL constraints as follows: the signa-

ture sig(R) of each base relation R is partitioned into two
sets n-sig(R) and c-sig(R) of nullable and non-nullable at-
tributes, so that πc-sig(R)(JRKD) contains only elements of
Const, for every database D. That is, nulls are not allowed
as values of the attributes in c-sig(R), while there is no re-
striction on the values of the attributes in n-sig(R). Below,
we extend these notions to queries.

Definition 2. The set n-sig(Q) of nullable attributes of an
RA query Q is inductively defined as follows:

n-sig(R) is given for every relation name R

n-sig
(
Q1 opQ2

) def
== n-sig(Q1) ∪ n-sig(Q2) for op ∈ {×,∪}

n-sig
(
Q1 ∩Q2

) def
== n-sig(Q1) ∩ n-sig(Q2)

n-sig
(
Q1 −Q2

) def
== n-sig(Q1)

n-sig
(
πα(Q)

) def
== n-sig(Q) ∩ α

n-sig
(
σθ(Q)

) def
== n-sig

(
ε(Q)

) def
== n-sig(Q)

n-sig
(
ρA→B(Q)

) def
== n-sig(Q)[A/B]

where n-sig(Q)[A/B] is obtained by replacing A with B in
n-sig(Q). We also define c-sig(Q) = sig(Q)− n-sig(Q), and
we say that Q is non-nullable if n-sig(Q) = ∅.

From the above definition we immediately obtain:

Proposition 2. For every RA query Q and every database
D, πc-sig(Q)

(
JQKD

)
consists only of elements of Const.

That is, independently of the data, the answer to a query
Q can only have null values for the attributes in n-sig(Q).

To explain the restrictions that ensure preservation of
Codd semantics, we need two additional definitions.

Definition 3. The syntax tree of an RA query Q is a bi-
nary (ordered) tree constructed as follows:

• Each relation symbol R is a single node labeled R.

• For each unary operation symbol op1, the syntax tree
of op1(Q) has root labeled op1 and the syntax tree
of Q rooted at its single child.

• For each binary operation symbol op2, the syntax
tree of Q op2 Q

′ has root labeled op2 and the syntax
trees of Q and Q′ rooted at its left child and right
child, respectively.
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Note that each node in the syntax tree of Q defines a sub-
query of Q, so we can associate properties of such queries
with properties of syntax tree nodes.

The base of a query Q, denoted by base(Q), is the set of
relation names that appear in it (i.e., the set of its atomic
subexpressions).

Definition 4. A node in the syntax tree of a query satis-
fies:

NNC (non-nullable child)
if one of its children is non-nullable;

NNA (non-nullable ancestor or self)
if either itself or one of its ancestors is non-nullable;

DJN (disjoint nullable attributes)
if its children have no common nullable attributes;

DJB (disjoint bases)
if its children have bases with no relation names in
common.

We now state the main result.

Theorem 1. Let Q be an RA query whose syntax tree is
such that:

a) each ε node satisfies NNC;

b) each ∩ and − node satisfies DJN;

c) each × node satisfies NNA;

d) each ∪ node satisfies NNC or DJB or NNA.

Then, Q preserves Codd semantics.

These conditions do not restrict the full expressiveness
of relational algebra on databases without nulls: when all
attributes in the schema are non-nullable, every query is
such, hence the restrictions are trivially satisfied.

Corollary 1. On database schemas without nullable at-
tributes, every relational algebra query satisfies the condi-
tions of Theorem 1.

Also, the restrictions are easy to check:

Proposition 3. Deciding whether an RA query satisfies
the conditions of Theorem 1 can be done in linear time
w.r.t. the number of nodes in its syntax tree.

Proof. Let n be the number of nodes in the syntax tree of
the query, and proceed as follows:

1. Compute the base and the nullable attributes of each
node. This step requires visiting all nodes in the tree
and so its cost is n.

2. Mark all ε and ∪ nodes satisfying NNC, all ∩ and −
nodes satisfying DJN, all ∪ nodes satisfying DJB, all
σ, π, ρ nodes, and all leaves. Since for each node we
visit up to two child nodes, this step costs 2n.

3. Mark all ∪ and × nodes in each subtree with a non-
nullable root. This step can be carried out by visiting
all nodes once, independently of how many of them
are non-nullable, so its cost is n.

4. The query satisfies the conditions of Theorem 1 iff
all nodes in the resulting tree are marked. This can
be checked in one more pass, so the cost of this step
is n.

The time required by the above algorithm is O(n).

Below we give an example query that satisfies the con-
ditions of Theorem 1.

Example 2. Consider the following RA query
(
ρB→C(R∪S)−ρD→A

(
ε(T )

))
∪πA,C

(
σA=1∨B=C(R×T )

)

whose syntax tree is shown in Figure 5. To the left of each
node we indicate the corresponding signature, where non-
nullable attributes are underlined. For the leaves, this in-
formation is provided by the schema.

On the left side of the tree, the innermost ∪ node satis-
fies DJB (but not NNC), the ε node satisfies NNC and so it is
non-nullable, and the − node satisfies DJN as its children
have no nullable attributes in common.

On the right side of the tree, the × node satisfies NNA

because its ancestor π is non-nullable, which also ensures
that the root node ∪ satisfies NNC (but not DJB). Thus, the
query preserves Codd semantics.

In what follows, we will outline the main intuition and
ideas behind the conditions of Theorem 1, and develop the
technical results needed to provide its formal proof.

If a query is non-nullable, then it trivially satisfies (1b),
because the answer to it will not contain nulls for any da-
tabase. However, there are non-nullable queries for which
(1a) does not hold: for instance, πA

(
ε(R)

)
when R has at-

tributes A and B, of which only A is non-nullable. Hence,
non-nullability must be used more carefully, on the sub-
queries of Q.

Duplicate elimination, intersection and difference may
cause problems with (1a). What these operations have in
common is that they match nulls syntactically, i.e., as if
they were constants. Now, while SQL nulls are all syntac-
tically the same, this is not the case for Codd nulls, so for
these operations it makes a difference which model of nulls
we use. Indeed, replacing nulls with N before or after each
of these operations is applied may give different results, as
shown in Figure 6.

On the other hand, the remaining operations are not af-
fected: projection, renaming, union and Cartesian product
do not rely on any kind of value matching, and nulls in se-
lection conditions are not compared syntactically. Indeed,
the sql transformation commutes with projection, selection
and renaming, and it distributes over union and Cartesian
product, on all input tables (not necessarily Codd or even
naive) for which each of these operations is well defined,
but without further restrictions.
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∪{A,C} |= NNC

−{A,C} |= DJN

ρB→C{A,C}

∪{A,B} |= DJB

R{A,B} S{A,B}

ρD→A{A,C}

ε{C,D} |= NNC

T{C,D}

πA,C{A,C}

σA=1∨B=C{A,B,C,D}

×{A,B,C,D} |= NNA

R{A,B} T{C,D}

Figure 5: Annotated syntax tree of the query of Example 2.

sql


ε




A

⊥1

⊥2





 = sql




A

⊥1

⊥2


 =

A

N
N

6= A

N
= ε




A

N
N


 = ε


sql




A

⊥1

⊥2







sql

(
A

⊥1

∩ A

⊥2

)
= sql(∅) = ∅ 6= A

N
=

A

N
∩ A

N
= sql

(
A

⊥1

)
∩ sql

(
A

⊥2

)

sql

(
A

⊥1

− A

⊥2

)
= sql

(
A

⊥1

)
=

A

N
6= ∅ =

A

N
− A

N
= sql

(
A

⊥1

)
− sql

(
A

⊥2

)

Figure 6: In general, sql does not commute with ε and it does not distribute over ∩ and −.

Lemma 2. Let T be a table. Then,

a) sql
(
πα(T )

)
= πα

(
sql(T )

)
for every α ⊆ sig(T );

b) sql
(
σθ(T )

)
=σθ

(
sql(T )

)
for every selection condition

θ such that sig(θ) ⊆ sig(T );

c) sql
(
ρA→B(T )

)
= ρA→B

(
sql(T )

)
for every A ∈ sig(T )

and B 6∈
(
sig(T )− {A}

)
.

Lemma 3. Let T1 and T2 be tables. Then,

a) sql(T1 ∪ T2) = sql(T1) ∪ sql(T2) whenever T1 and T2
have the same signature;

b) sql(T1 × T2) = sql(T1)× sql(T2) whenever T1 and T2
have disjoint signatures.

The proofs of these lemmas are given in the appendix.

In light of the above, w.r.t. (1a), we only need to take
care of ε, − and ∩. It is obvious from the definitions that ε

commutes with sql on complete tables (i.e., tables without
nulls). In particular, we have that

sql
(
ε(T )

)
= ε
(
sql(T )

)
= ε(T )

for every table T such that Null(T ) = ∅. For queries, the
NNC condition then ensures that the input table of each ε
operation is indeed complete.

Below, we provide a sufficient condition on tables that
guarantees that sql distributes over intersection and differ-
ence.

Lemma 4. Let T1 and T2 be tables with the same signa-
ture. Assume that, for every attribute A, there do not exist
records r1 and r2 such that ri ∈ Ti and ri(A) ∈ Null, for
i = 1, 2. Then, all of the following hold:

a) sql(T1 − T2) = sql(T1)− sql(T2);

b) sql(T1 ∩ T2) = sql(T1) ∩ sql(T2) = T1 ∩ T2.

The proof of the above lemma is given in the appendix.
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Requiring NNC for each ε, ∩ and − subquery, as we did
in [9], is enough to ensure that the overall query satisfies
(1a). Intuitively, if at least one of the input subqueries to
each of these operations is non-nullable, then no syntactic
matching of nulls can occur, because one of the operands
(the only one for ε) will not have nulls at all. As a matter of
fact, for ∩ and −, NNC is a special case of DJN, which only
requires that the input subqueries do not share nullable
attributes, and it suffices for the tables produced by such
subqueries to satisfy the assumptions of Lemma 4.

Proposition 4. Every RA query whose syntax tree satis-
fies conditions a) and b) of Theorem 1 satisfies (1a) on all
databases (not only Codd ones).

Proof. Let Q be an RA query whose syntax tree is such
that every ∩ and − node satisfies DJN, and every ε node
satisfies NNC. Let D be a database and let D′ = sql(D).
By induction on the structure of Q, we will show that
JQKD′ = sql(JQKD).

Base: Q is a relation name R. Then, obviously, JRKD′ =
sql(JRKD) since D′ = sql(D).

Induction:

• Q is ε(Q1)

Since Q satisfies NNC, Q1 is non-nullable and so JQ1KD
is complete. By the induction hypothesis, sql(JQ1KD) =
JQ1KD′ and, as JQ1KD is complete, this implies JQ1KD =
JQ1KD′ . In turn, we have Jε(Q1)KD′ = Jε(Q1)KD and, as
Jε(Q1)KD is complete, Jε(Q1)KD′ = sql

(
Jε(Q1)KD

)
.

• Q is op1(Q1) for op1 ∈ {πα, σθ, ρA→B}
By applying (†) the semantics of op1 in queries, (††) the
induction hypothesis, and (‡) Lemma 2, we obtain:

Jop1(Q1)KD′ (†)
= op1(JQ1KD′)

(††)
= op1

(
sql(JQ1KD)

)

(‡)
= sql

(
op1(JQ1KD)

) (†)
= sql

(
Jop1(Q1)KD)

)
.

• Q is Q1 op2 Q2 for op2 ∈ {×,∪,∩,−}
By applying (†) the semantics of op2 in queries, (‡) the
induction hypothesis, (††) Lemma 3 (for Cartesian prod-
uct and union) and Lemma 4 (for intersection and differ-
ence), we obtain:

JQ1 op2 Q2KD′
(†)
= JQ1KD′ op2 JQ2KD′
(‡)
= sql

(
JQ1KD

)
op2 sql

(
JQ2KD

)

(††)
= sql

(
JQ1KD op2 JQ2KD

)

(†)
= sql

(
JQ1 op2 Q2KD

)
.

The only observation is that, since ∩ and − are required
to satisfy DJN, in these cases n-sig(Q1) and n-sig(Q2) are
disjoint, ensuring that the assumptions of Lemma 4 hold
for the tables JQ1KD and JQ2KD.

At this point, if in addition to the conditions of Propo-
sition 4 we also required the query itself to be non-nullable,
then preservation of Codd semantics would be guaranteed.

Corollary 2. Every non-nullable RA query that satisfies
the conditions of Proposition 4 preserves Codd semantics.

Proof. Let Q be a non-nullable RA query, and let D be a
Codd database. If Q satisfies the conditions of Proposi-
tion 4, then it satisfies (1a) on all databases, in particular
D. Since Q is non-nullable, JQKD is complete by Proposi-
tion 2, and so it is trivially a Codd table; therefore, Q also
satisfies (1b) on D.

However, this is too restrictive, as it would forbid even
the simple retrieval of a base relation whenever some of its
attributes are nullable. For example, if R has a nullable at-
tribute A, the query Q = R would not be allowed because
it is nullable, even though Q satisfies (1a) by Proposition 4
and its output is trivially guaranteed to be a Codd table
on every Codd database. Thus, we need more refined ways
of ensuring (1b) by restricting only the problematic oper-
ations.

Duplicate elimination, difference, selection and inter-
section always produce a table that is contained in at least
one of the input tables, so their output may have repeated
nulls only if these repetitions were already in the input.
The same holds for projection, for a similar reason. The
problematic operations w.r.t. (1b) are ∪ and ×. Both can
create repetitions of nulls across records, and the latter can
also create repetitions of nulls within a record. To restrict
these operations appropriately, we use the NNA condition.
Requiring this condition for each × and ∪ node is enough
to ensure that the query satisfies (1b). Intuitively, repeti-
tions of nulls that may be created by ∪ and × are allowed
in the intermediate results of a query, but only as long as
they will be eventually discarded, at the latest when the
final output is produced.

In fact, the NNA condition for union can be relaxed. We
want to restrict this operation when it may create “new”
repetitions of nulls, but we need not do so when the only
repetitions it may produce are those inherited from the in-
put, which were introduced by the application of previous
operations. There are two cases in which this happens:
when one of the operands is non-nullable, or when the in-
put tables are built from disjoint sets of base relations.
The first is captured by the NNC condition, and the second
by the DJB condition. We can then allow for these addi-
tional possibilities by requiring each ∪ node in the syntax
tree of a query to satisfy NNA or NNC or DJB.

Now that we explained why and how the conditions of
Definition 4 are needed, we can finally prove Theorem 1.

Proof of Theorem 1. Let Q be an RA query whose syntax
tree satisfies the conditions of Theorem 1. Clearly, Q sat-
isfies (1a) on all databases by Proposition 4, thus we only
need to show that JQKD is a Codd table for every Codd
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database D. To this end, we proceed by induction on the
structure of Q.

Base:

• Q is non-nullable. Then, JQKD is complete and so it is
trivially a Codd table.

• Q is a relation name R. Then, JQKD = JRKD, which is a
Codd table since D is a Codd database by assumption.

Induction: Observe that the case when Q is Q1 × Q2 is
already covered in the base case, since the NNA condition
implies that Q is non-nullable. For the same reason, we
need not consider the case when Q is Q1 ∪Q2 and satisfies
NNA, as this again implies non-nullability. Similarly, the
cases when Q is ε(Q1) or Q1 ∩Q2 are also covered in the
base case, because of the NNC and DJN conditions.

• Q is πα(Q1)

Towards a contradiction, suppose that Jπα(Q1)KD is not
a Codd table. There are three possibilities:

1) There is a record r ∈ Jπα(Q1)KD such that r(A) =
r(B) ∈ Null for two distinct attributes A,B ∈ α.
As r ∈ Jπα(Q1)KD, there must be r′ ∈ JQ1KD such
that r = πα(r′). But then r′(A) = r(A) = r(B) =
r′(B) ∈ Null, which is impossible because JQ1KD is
a Codd table by the induction hypothesis.

2) There exist distinct records r, s ∈ Jπα(Q1)KD such
that r(A) = s(B) ∈ Null for two (not necessarily dis-
tinct) attributes A,B ∈ α. Since r, s ∈ Jπα(Q1)KD,
there must be distinct r′, s′ ∈ JQ1KD s.t. r = πα(r′)
and s = πα(s′). But then r′(A) = r(A) = s(B) =
s′(B) ∈ Null, which is impossible because JQ1KD is
a Codd table by the induction hypothesis.

3) There is a record r ∈k Jπα(Q1)KD with k > 1 such
that r(A) ∈ Null for some attribute A ∈ α. Since
r ∈k Jπα(Q1)KD, there must be records r1, . . . , rn ∈
JQ1KD such that k =

∑n
i=1 #

(
ri, JQ1KD

)
and ri =

πα(r) for i = 1, . . . , n. But then r(A) = r1(A) =
· · · = rn(A) ∈ Null, which is impossible since JQ1KD
is a Codd table by the induction hypothesis.

• Q is σθ(Q1) or Q1 −Q2

The claim follows from the fact that JQKD ⊆ JQ1KD and,
by the induction hypothesis, JQ1KD is a Codd table.

• Q is ρA→B(Q1)

The claim trivially follows from the fact that ρA→B only
changes the name of attribute A in each record in JQ1KD,
which is a Codd table by the induction hypothesis, but
not the value this attribute is mapped to.

• Q is Q1 ∪Q2 and satisfies NNC

We have JQKD = JQ1KD ∪ JQ2KD. As union is commu-
tative, we assume w.l.o.g. that Q1 is non-nullable; then
JQ1KD is complete and thus Null(JQKD) = Null(JQ2KD).

Since JQ2KD is a Codd table by the induction hypothe-
sis, this implies that JQKD is a Codd table as well.

• Q is Q1 ∪Q2 and satisfies DJB

By the induction hypothesis JQ1KD and JQ2KD are Codd
tables; if we show that they have no nulls in common,
we can conclude that JQKD = JQ1KD ∪ JQ2KD is a Codd
table as well. For i = 1, 2 we have

Null(JQiKD) ⊆
⋃

R∈base(Qi)
Null(JRKD) .

As D is a Codd database, Null(JRKD)∩Null(JSKD) = ∅
for any two distinct relation names in the schema. Then,
as base(Q1)∩base(Q2) = ∅, we obtain that Null(JQ1KD)
and Null(JQ2KD) are disjoint as desired.

5. Derived Operations and Further Refinements

In our query language we explicitly included intersec-
tion, even though this operation is expressible in terms of
difference. While it may seem redundant to have ∩ in the
syntax of queries, it is not so w.r.t. our restrictions for the
preservation of Codd semantics. To see why, suppose we
want the intersection of base relations R and S (with the
same signature), but we do not have ∩ available as a prim-
itive operation in our query language. Of course, we can
always write R − (R − S) or S − (S − R); the problem is
that, even though these queries are equivalent, the former
satisfies the conditions of Theorem 1 iff R is non-nullable,
while the latter satisfies them iff S is non-nullable. In ei-
ther case, each requirement (and even their disjunction) is
stronger than the one for R ∩ S (i.e., DJN), which only re-
quires R and S not to have nullable attributes in common.

This suggests that adding some derived operations ex-
plicitly to the syntax of queries may lead to milder restric-
tions, allowing us to recognize more queries that preserve
Codd semantics. We will show two such refinements: con-
stant selections and anti/semijoins.

Selections. Looking at σ may seem counterintuitive as this
operation did not need to be restricted in any way. How-
ever, consider the query σconst(A)(R)∩S, for unary relation
symbols R and S over a nullable attribute A. This query
clearly does not satisfy the conditions of Theorem 1, as A is
nullable in both σconst(A)(R) and S. But even though A is
nullable in σconst(A)(R), we can rest assured that, for every
database D, no nulls will in fact appear in Jσconst(A)(R)KD,
because only records where the value of A is a constant will
be selected from JRKD.

The idea here is to extend the query language with an
explicit operation of constant selection σconst(α), by adding
the production rule σconst(α)(E) to the grammar of expres-
sions in Figure 3a. The signature of σconst(α)(E) is sig(E),
as for regular selections, and the expression is well-defined
if E is well-defined and α ⊆ sig(E). Its semantics is given
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as follows:

Jσconst(α)(E)KD def
== σθ

(
JQKD

)
, where θ =

∧

A∈α
const(A)

Finally – and this is the crucial bit – its nullable attributes
are given by

n-sig
(
σconst(α)(Q)

)
= n-sig(Q)− α

Semijoins and antijoins. The theta-join onθ of two tables
T1 and T2 with disjoint sets of attributes is defined as

T1 onθ T2
def
== σθ

(
T1 × T2

)

where θ is a condition such that sig(θ) ⊆ sig(T1)∪ sig(T1).
Adding onθ to the language does not change anything: we
impose no restriction on selections, and onθ would have to
be restricted in the same way × is. But two operations de-
rived from it can be added: semijoin nθ and antijoin nθ,
which essentially correspond to EXISTS and NOT EXISTS in
SQL. For tables T1 and T2 with disjoint signatures and a
condition θ such that sig(θ) ⊆ sig(T1) ∪ sig(T2), these are
defined as:

T1 nθ T2
def
== T1 ∩ πsig(T1)(T1 onθ T2)

T1 nθ T2
def
== T1 − T1 nθ T2

That is, T1 nθ T2 returns all occurrences of each record r
in T1 for which there exists a record s in T2 such that θ is
true on r × s. Similarly, T1 nθ T2 returns all occurrences
of each record r in T1 for which there is no record s in T2
such that JθKr×s = t.

To include these operations in the query language, we
add the production rules Enθ E and Enθ E to the gram-
mar of expressions in Figure 3a. The signature of E1nθE2

and E1nθE2 is sig(E1). The expressions are well-defined if
E1 and E2 are well-defined and sig(θ) ⊆ sig(E1)∪ sig(E2).
Their semantics is given by

JE1 nθ E2KD def
== JE1KD nθ JE2KD

JE1 nθ E2KD def
== JE1KD nθ JE2KD

and, finally, we define

n-sig(Q1 nθ Q2) = n-sig(Q1 nθ Q2) = n-sig(Q1)

How do we restrict these operations to ensure (1a) and
(1b)? Observe that n is an intersection and n is a differ-
ence, for which syntactic matching of nulls must in general
be prevented. Here, however, one of the operands to this
intersection or difference is always contained in the other,
regardless of whether SQL nulls or Codd nulls are used, so
syntactic matching of nulls is not a problem in this case.
In turn, we need no restriction on n and n to ensure (1a).

As for (1b), observe that the output of both n and n is
always contained in their left input, so no new repetitions
of nulls can be created and, in turn, we do not need any
restriction to guarantee (1b) either.

Since repetitions of nulls that might have been created
in the right operand of n or n are discarded, we can use an
alternative to NNA, called RDS: a node in the syntax tree of
a query satisfies this condition if it is the right-descendant
of a node labeled n or n.

We denote by RAext the language of Figure 3 extended
with the operations of constant selection, semijoin and an-
tijoin described above. Then, we have:

Theorem 2. Let Q be an RAext query whose syntax tree
is such that:

a) each ε node satisfies NNC;

b) each ∩ and − node satisfies DJN;

c) each × node satisfies NNA or RDS;

d) each ∪ node satisfies NNC or DJB or NNA or RDS.

Then, Q preserves Codd semantics.

An analog of Corollary 1 follows, and simple modifications
to the algorithm of Proposition 3 show that these condi-
tions are still linear-time testable.

To prove the result, we first show that the sql operation
on tables distributes over semijoin and antijoin.

Lemma 5. Let T1 and T2 be tables with disjoint signatures
and θ be a selection condition over sig(T1)∪sig(T2). Then,

a) sql(T1 nθ T2) = sql(T1) nθ sql(T2);

b) sql(T1 nθ T2) = sql(T1) nθ sql(T2).

Proof. We only prove a); the proof of b) is analogous. To
this end, let r be a record over sig(T1). Then, we have:

m = #
(
r, sql(T1) nθ sql(T2)

)

=

{
#
(
r, sql(T1)

)
if ∃ r′ ∈ sql(T2) : JθKr×r′ = t

0 otherwise

=





∑

s∈sql−1(r)

#(s, T1) if ∃ r′ ∈ sql(T2) : JθKr×r′ = t

0 otherwise

and

n = #
(
r, sql(T1 nθ T2)

)
=
∑

s∈sql−1(r)

#(s, T1 nθ T2)

=





∑

s∈sql−1(r)

#(s, T1) if ∃ s′ ∈ T2 : JθKs×s′ = t

0 otherwise

Obviously, for every r′ ∈ sql(T2) there is s′ ∈ T2 such that
r′ = sql(s′), and for every s′ ∈ T2 there exists r′ ∈ sql(T2)
such that r′ = sql(s′). Moreover, for records s ∈ sql−1(r)
and r′ = sql(s′), by Lemma 1 we have that

JθKr×r′ = JθKsql(r×r′) = JθKsql(r)×sql(r′) = JθKs×s′

and therefore m = n.

12
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R 7→ R for any relation name R

πα(Q) 7→ ε
(
πα(Q′)

)
if Q 7→ Q′

σθ(Q) 7→ σθ(Q
′) if Q 7→ Q′

ρA→B(Q) 7→ ρA→B(Q′) if Q 7→ Q′

Q1 opQ2 7→ Q′1 opQ
′
2 if Q1 7→ Q′1 and Q2 7→ Q′2

for op ∈ {×,∩,−}
Q1 ∪Q2 7→ ε

(
Q′1 ∪Q′2

)
if Q1 7→ Q′1 and Q2 7→ Q′2

Figure 7: Translation from RAset to RA

Next, we can show that:

Proposition 5. Every RAext query whose syntax tree sat-
isfies conditions a) and b) of Theorem 2 satisfies (1a) on
all databases (not only Codd ones).

Proof. This is the same as the proof of Proposition 4, with
the only difference that, in the induction, we additionally
need to address the cases for the operations of RAext that
are not in RA. Constant selection is simply a special case
of selection and so there is nothing new to show. The cases
for semijoin and antijoin follow directly from the inductive
hypothesis and Lemma 5 above.

Finally, we can prove Theorem 2 by adapting the proof
of Theorem 1.

Proof of Theorem 2. Let Q be an RAext query whose syn-
tax tree satisfies the conditions of Theorem 2. By Proposi-
tion 5, Q satisfies (1a) on all databases, so we only need to
show that JQKD is a Codd table for every Codd database
D. To this end, we proceed by induction on the structure
of Q as in the proof of Theorem 1, with the only difference
that we additionally need to show also the following cases
for the inductive step:

• Q is σconst(α)(Q1).

There is nothing new to show here, since this is a special
case of σθ(Q1) where θ =

∧
A∈α const(A).

• Q is Q1 opQ2 for op ∈ {nθ,nθ}
The claim follows from the fact that JQKD ⊆ JQ1KD and,
by the induction hypothesis, JQ1KD is a Codd table.

6. Set Semantics

Without changing our underlying data model based on
bags, we now discuss the case of queries interpreted under
set semantics. To this end, we let RAset be the fragment of
RA without duplicate elimination, and we call set database
one where no record occurs more than once within a table.
The set semantics of an RAset query Q on a set database D
is denoted by JQKsetD and is defined inductively as follows:

JRKsetD
def
== JRKD

JQ1 opQ2KsetD
def
== JQ1KsetD op JQ2KsetD for op ∈ {∩,−,×}

JQ1 ∪Q2KsetD
def
== ε

(
JQ1KsetD ∪ JQ2KsetD

)

Jπα(Q′)KsetD
def
== ε

(
πα(JQ′KsetD )

)

JρA→B(Q′)KsetD
def
== ρA→B(JQ′KsetD )

Jσθ(Q′)KsetD
def
== σθ(JQ′KsetD )

The above is well-defined because D is a set database and,
even though the semantics of each subexpression returns a
table that is formally a bag, each record in it is guaranteed
to occur exactly once.

The notion of preservation of Codd semantics for RAset

queries in the context of sets is modified as follows:

Definition 5. An RAset query Q preserves Codd seman-
tics over sets if, for every SQL set database D and for every
D′ ∈ codd(D), it holds that JQKsetD′ ∈ codd

(
JQKsetD

)
.

From the definition of J·Kset, it is immediate to see that
every RAset query Q can always be rewritten into an RA
query Q′ with duplicate elimination, so that, on every set
database D, evaluating Q under set semantics is equivalent
to evaluating Q′ under bag semantics, i.e., JQKsetD = JQ′KD.
This translation – shown in Figure 7 for completeness – is
straightforward: each projection and union operation must
be immediately followed by duplicate elimination. Now, if
Q′ satisfies the condition of Theorem 1, then Q′ preserves
Codd semantics on all databases, in particular set ones; in
turn, Q preserves Codd semantics over sets.

Proposition 6. Let Q be an RAset query, and let Q′ be
obtained from Q by applying the translation in Figure 7. If
Q′ satisfies the conditions of Theorem 1, then Q preserves
Codd semantics over sets.

However, this is too restrictive for even simple queries,
as the following example shows.

Example 3. Consider a schema with R and S over a sin-
gle attribute A that is nullable in R but not in S, and take
the RAset query Q = R ∪ S. The translation of Figure 7
yields Q′ = ε(R∪S), which does not satisfy the conditions
of Theorem 1, since R∪S is nullable and so ε(R∪S) does
not satisfy NNC as required. Thus, we cannot use Proposi-
tion 6 to conclude that Q preserves Codd semantics over
sets, although this is easily seen – in this particular exam-
ple – because, on every SQL set database D, JRKD will not
have duplicates and JSKD will not contain nulls.

This tells us that specific restrictions should be devised
to deal with set semantics. To this end, we observe that the
fundamental difference with the interpretation under bag
semantics is that projection and union operations are im-
mediately followed by duplicate elimination. As we know,
this is problematic because records that differ only on nul-
lable attributes will become the same when the nulls are all
replaced by N. Under set semantics, this can be allowed as
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long as nullable attributes are eventually discarded, which
is enforced by requiring πα and ∪ to satisfy the NNA condi-
tion. For ∪ we can further allow NNC as before, and this is
indeed the reason why the query Q in Example 3 preserves
Codd semantics over sets.

Theorem 3. Let Q be an RAset query whose syntax tree
is such that:

a) each ∩ and − node satisfies DJN;

b) each × and πα node satisfies NNA;

c) each ∪ node satisfies NNC or NNA.

Then, Q preserves Codd semantics over sets.

An analog of Corollary 1 follows, and straightforward mod-
ifications to the algorithm of Proposition 3 show that these
conditions are still linear-time testable.

Note that, under set semantics, the DJB condition for ∪
does not work any longer, as the following example shows.

Example 4. Consider a schema with R and S over a sin-
gle nullable attribute A. The RAset query Q = R∪S triv-
ially satisfies DJB, but it does not preserve Codd semantics
over sets. To see this, take the SQL set database D where

JRKD =
A

N
; JSKD =

A

N

and the Codd set database D′ where

JRKD′ =
A

⊥1

; JSKD′ =
A

⊥2

Clearly, D′ ∈ codd(D). However, we have:

JR ∪ SKset
D

=
A

N
; JR ∪ SKsetD′ =

A

⊥1

⊥2

Therefore JQKsetD′ 6∈ codd(JQKsetD ).

The restrictions of Theorem 3 for an RAset query Q are
weaker than those of Theorem 1 one would have to impose
on the RA translation of Q.

Proposition 7. Let Q be an RAset query, and let Q′ be
obtained from Q by applying the translation in Figure 7. If
Q′ satisfies the conditions of Theorem 1, then Q satisfies
the conditions of Theorem 3.

Proof. The only difference between Q and Q′ is that every
πα and ∪ node in (the syntax tree of) Q will have as parent
an ε node in (the syntax tree of) Q′, and the parent of such
ε node in Q′ is in turn the parent of the corresponding πα
or ∪ node in Q.

Now, if Q′ satisfies the conditions of Theorem 1, then
each ε node in its syntax tree must satisfy NNA, and thus
its only child is non-nullable. In turn, every πα and ∪ node
in Q will trivially satisfy NNA.

As witnessed by the query in Example 3, the converse
of Proposition 7 is obviously not true. This means that the
conditions of Theorem 3 allow us to identify strictly more
RAset queries that preserve Codd semantics over sets than
Proposition 6, and without any increase in complexity.

We conclude this section by providing the formal proof
of Theorem 3. Towards this goal, we first need a few lem-
mas about the interaction between duplicate elimination
and other operations on tables. These follow immediately
from the definitions.

Lemma 6. Let T be a table. Then,

a) ε
(
σθ(T )

)
= σθ

(
ε(T )

)
for every condition θ such that

sig(θ) ⊆ sig(T );

b) ε
(
ρA→B(T )

)
= ρA→B

(
ε(T )

)
for every A and B such

that A ∈ sig(T ) and B 6∈ sig(T )− {A};

c) ε
(
πα(ε(T ))

)
= ε
(
πα(T )

)
for every α ⊆ sig(T );

d) ε
(
sql(T )

)
= ε
(
sql(ε(T ))

)
.

Lemma 7.
a) ε(T1 × T2) = ε(T1) × ε(T2) for all tables T1, T2 with

disjoint signatures.

b) ε(T1 ∩ T2) = ε(T1)∩ ε(T2) for all tables T1, T2 of the
same signature.

c) ε(T1 ∪ T2) = ε
(
ε(T1) ∪ ε(T2)

)
for all tables T1, T2 of

the same signature.

d) ε(T1)−T2 = ε(T1)− ε(T2) for all tables T1, T2 of the
same signature.

Lemma 8. Let T ′1, T ′′1 and T2 be tables of the same sig-
nature and such that T ′′1 is disjoint with T ′1 and T2. Then,

ε
(
(T ′1 ∪ T ′′1 )− T2

)
= ε(T ′1 ∪ T ′′1 )− T2

Next, we show a technical result that will be crucial in
the proof of Theorem 3.

Lemma 9. Let Q be an RAset query whose syntax tree
satisfies condition a) of Theorem 3. Then, for all set data-
bases D and D′ such that D′ = sql(D), it holds that

ε
(
sql(JQKsetD )

)
= JQKsetD′

Proof. We proceed by induction on the structure of Q.

Base: Q is a relation name R. Then, obviously, JRKsetD′ =
JRKD′ = sql(JRKD) = sql(JRKsetD ) = ε

(
sql(JRKsetD )

)
because

D and D′ are set databases such that D′ = sql(D).

Induction:

• Q is op1(Q1) for op1 ∈ {σθ, ρA→B}

Jop1(Q1)KsetD′ = op1(JQ1KsetD′ ) (by def. of JKset)
= op1

(
ε(sql(JQ1KsetD ))

)
(by the I.H.)
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= ε
(
op1
(
sql(JQ1KsetD )

))
(by Lemma 6)

= ε
(
sql
(
op1(JQ1KsetD )

))
(by Lemma 2)

= ε
(
sql
(
Jop1(Q1)KsetD

))
(by def. of JKset)

• Q is πα(Q1)

Jπα(Q1)KsetD′ = ε
(
πα(JQ1KsetD′ )

)
(by def. of JKset)

= ε
(
πα
(
ε(sql(JQ1KsetD ))

))
(by the I.H.)

= ε
(
πα
(
sql(JQ1KsetD )

))
(by Lemma 6)

= ε
(
sql
(
πα(JQ1KsetD )

))
(by Lemma 2)

= ε
(
sql
(
ε(πα(JQ1KsetD ))

))
(by Lemma 6)

= ε
(
sql
(
Jπα(Q1)KsetD

))
(by def. of JKset)

• Q is Q1 ×Q2

JQ1 ×Q2KsetD′ = JQ1KsetD′ × JQ2KsetD′ (by def. of JKset)
= ε

(
sql(JQ1KsetD )

)
× ε
(
sql(JQ2KsetD )

)
(by the I.H.)

= ε
(
sql(JQ1KsetD )× sql(JQ2KsetD )

)
(by Lemma 7)

= ε
(
sql(JQ1KsetD × JQ2KsetD )

)
(by Lemma 3)

= ε
(
sql(JQ1 ×Q2KsetD )

)
(by def. of JKset)

• Q is Q1 ∪Q2

JQ1 ∪Q2KsetD′ = ε
(
JQ1KsetD′ ∪ JQ2KsetD′

)
(by def. of JKset)

= ε
(
ε(sql(JQ1KsetD )) ∪ ε(sql(JQ2KsetD ))

)
(by the I.H.)

= ε
(
sql(JQ1KsetD ) ∪ sql(JQ2KsetD )

)
(by Lemma 7)

= ε
(
sql(JQ1KsetD ∪ JQ2KsetD )

)
(by Lemma 3)

= ε
(
sql
(
ε(JQ1KsetD ∪ JQ2KsetD )

))
(by Lemma 6)

= ε
(
sql(JQ1 ∪Q2KsetD )

)
(by def. of JKset)

• Q is Q1 ∩Q2

JQ1 ∩Q2KsetD′ = JQ1KsetD′ ∩ JQ2KsetD′ (by def. of JKset)
= ε

(
sql(JQ1KsetD )

)
∩ ε
(
sql(JQ2KsetD )

)
(by the I.H.)

= ε
(
sql(JQ1KsetD ) ∩ sql(JQ2KsetD )

)
(by Lemma 7)

Since Q1∩Q2 satisfies DJN by assumption, n-sig(Q1) and
n-sig(Q2) are disjoint, so JQ1KsetD and JQ2KsetD satisfy the
assumptions of Lemma 4. Clearly, this remains true for
sql(JQ1KsetD ) and sql(JQ2KsetD ), and we obtain:

ε
(
sql(JQ1KsetD ) ∩ sql(JQ2KsetD )

)

= ε
(
sql(JQ1KsetD ∩ JQ2KsetD )

)
(by Lemma 4)

= ε
(
sql(JQ1 ∩Q2KsetD )

)
(by def. of JKset)

• Q is Q1 −Q2

JQ1 −Q2KsetD′ = JQ1KsetD′ − JQ2KsetD′ (by def. of JKset)
= ε

(
sql(JQ1KsetD )

)
− ε
(
sql(JQ2KsetD )

)
(by the I.H.)

= ε
(
sql(JQ1KsetD )︸ ︷︷ ︸

T1

)
− sql(JQ2KsetD )︸ ︷︷ ︸

T2

(by Lemma 7)

Now, we let T1 = sql(JQ1KsetD ) and T2 = sql(JQ2KsetD ), and
we partition T1 into two tables T ′1 and T ′′1 such that T ′1
consists of every occurrence of all and only the constant
records in T1. Since Q1−Q2 satisfies DJN by assumption,
n-sig(Q1) and n-sig(Q2) are disjoint. In turn, JQ1KsetD and
JQ2KsetD , and thus also T1 and T2, satisfy the assumptions
of Lemma 4. Moreover, T2 is disjoint with T ′′1 , and T ′′1
is trivially disjoint with T ′1, so these three tables satisfy
the assumptions of Lemma 8. Then, we have:

ε
(

T ′1 ∪T ′′1︷ ︸︸ ︷
sql(JQ1KsetD )

)
−

T2︷ ︸︸ ︷
sql(JQ2KsetD )

= ε
(
sql(JQ1KsetD )− sql(JQ2KsetD )

)
(by Lemma 8)

= ε
(
sql(JQ1KsetD − JQ2KsetD )

)
(by Lemma 4)

= ε
(
sql(JQ1 −Q2KsetD )

)
(by def. of JKset)

This concludes the proof of the lemma.

Now, observe that Definition 5 can be equivalently re-
formulated as follows: an RAset query Q preserves Codd
semantics over sets if, for all set databases D and D′ such
that D′ = sql(D) and D is a Codd database, it holds that

sql
(
JQKsetD

)
= JQKsetD′ (2a)

and

JQKsetD is a Codd table. (2b)

With all of this in place, we can finally proceed to prove
Theorem 3.

Proof of Theorem 3. Let Q be an RAset query whose syn-
tax tree is s.t. every ∩ and − node satisfies DJN, every ×
and πα node satisfies NNA, and every ∪ node satisfies NNC or
NNA. Let D and D′ be set databases such that D′ = sql(D)
and D is a Codd database. We need to show (2a) and (2b).
By Lemma 9, sql

(
ε(JQKsetD )

)
= JQKsetD′ , hence showing (2a)

amounts to proving that sql(JQKsetD ) is a set. We show this,
along with (2b), by induction on the structure of Q.

Base:

• Q is non-nullable. Then, JQKsetD is a complete set, so it
is a Codd table and sql(JQKsetD ) = JQKsetD is a set.

• Q is a relation name R. Then, JQKsetD = JRKD, which is
a Codd set table because D is a Codd set database by
assumption. Moreover, as D′ = sql(D) is a set database
by assumption, we have that sql(JRKD) = JRKD′ is a set.

Induction: The cases when Q is πα(Q1) or Q1 ×Q2 are
already covered in the base case, because the NNA condition
implies that such queries are non-nullable. For the same
reason, we need not consider the case when Q is Q1 ∪Q2

and satisfies NNA. Similarly, the case when Q is Q1 ∩Q2 is
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also covered in the base case, as the DJN condition for this
query again implies non-nullability.

From the definition of sql(·) on tables, we also have that
sql(T ) ⊆ sql(T ′) for all tables T, T ′ of the same signature
such that T ⊆ T ′.

• Q is σθ(Q1) or Q1 −Q2

Clearly JQKsetD ⊆ JQ1KsetD and, in turn, we also have that
sql(JQKsetD ) ⊆ sql(JQ1KsetD ). By the induction hypotheses,
JQ1KD is a Codd relation and sql(JQ1KsetD ) is a set table,
hence the claims follow.

• Q is ρA→B(Q1)

The claims trivially follow from the induction hypothe-
ses, because ρA→B only changes the name of attribute A
in each record in JQ1KsetD but not the value this attribute
is mapped to.

• Q is Q1 ∪Q2 and satisfies NNC

We have JQKsetD = ε(JQ1KsetD ∪ JQ2KsetD ). As union is com-
mutative, we assume w.l.o.g. that Q1 is non-nullable, so
JQ1KsetD is complete. We then partition JQ2KsetD into two
tables T ′2, T

′′
2 such that T ′2 contains every occurrence of

all and only the constant records in JQ2KsetD . As D is a
set database, JQ2KsetD is a set and, by the I.H., it is also
a Codd table. Therefore, T ′′2 is a Codd set table because
T ′′2 ⊆ JQ2KsetD . Now, as T ′′2 is a set disjoint with JQ1KsetD
and T ′1, we have

JQKsetD = ε(JQ1KsetD ∪ T ′2) ∪ T ′′2

Let T1 = ε(JQ1KsetD ∪ T ′2); since T1 is complete and T ′′2 is
a Codd table, JQKsetD is a Codd table too. Moreover, by
Lemma 3 we get

sql(JQKsetD ) = sql(T1) ∪ sql(T ′′2 )

where sql(T1) = T1 and sql(T ′′2 ) ⊆ sql(JQKset2 ). By the in-
duction hypotheses, sql(JQKset2 ) is a set, hence sql(T ′′2 ) is
a set as well. Therefore, since T1 and sql(T ′′2 ) are disjoint
sets, sql(JQKsetD ) is also a set.

7. Conclusions and Future Work

The main lesson to be learned from this work is that,
contrary to what is commonly believed, Codd nulls do not
properly model SQL nulls, as even simple queries may pro-
duce answers that break such interpretation. In turn, this
also means that theoretical results devised within the gen-
eral model of incompleteness with marked nulls are not di-
rectly applicable in practical scenarios where SQL is used,
unless queries are appropriately restricted.

Unfortunately, the class of relational algebra queries for
which the Codd interpretation of SQL nulls is preserved in
answers cannot be captured by a syntactic fragment of the
language. Thus, we can only hope for reasonable syntactic

restrictions that are sufficient to guarantee preservation.
In this paper we presented mild restrictions on the syntax
tree of queries, which ensure preservation and are easy to
check. One obvious direction for future research is to look
for more refined restrictions that allow one to recognize an
even larger set of queries preserving Codd semantics.

As we have shown for intersection, semijoins and anti-
joins, including derived operations to the query language,
while redundant from the expressivity point of view, may
allow for restrictions that are milder than the general ones.
Thus, the query language could be tailored to specific ap-
plications, e.g., by adding operations such as division (÷),
or by abstracting other commonly used query patterns.

Another possibility is to propagate nullable attributes
in selections in a more refined way, along the lines of what
we have done for constant selection. For example, we can
be sure that the values of attributes A and B in the answer
to σA=1∧B=2(Q) will always be constants, independently
of whether they are non-nullable in Q. On the other hand,
we cannot say the same for σA=1∨B=2(Q), so this requires
a careful handling of selection conditions.

Yet another opportunity for additional refinement may
be offered by intersection and union, which are commuta-
tive and associative operations. While commutativity does
not affect whether a query satisfies our restrictions or not,
associativity does have an impact. For example, consider a
schema with relation names R and S over attributes A and
B, where A is nullable only in R and B is nullable only in
S; then the query (R∪S)∪ (R∩S) satisfies the conditions
of Theorem 1, while R∪

(
S∪ (R∩S)

)
does not. Moreover,

there exist also queries that preserve Codd semantics but
for which no permutation of the operands results in an ex-
pression that satisfies our restrictions; e.g., RA ∩RB ∩RC
on a schema with relation names RA, RB and RC over at-
tributes A,B,C such that the only non-nullable attribute
of each Ri is i, for i ∈ {A,B,C}. To overcome these limi-
tations, the idea would be to view ∩ and ∪ in the syntax
tree of queries as variadic, rather than binary. This could
allow for appropriate restrictions to be imposed on a sin-
gle node with ≥ 2 children, instead of multiple nodes with
exactly two children.

Future work is not limited to further refinement of the
restrictions that ensure preservation of Codd semantics.
The notion of Codd database we adopted in this paper only
allows for constant tuples to occur multiple times, as nulls
cannot repeat. Relaxing this requirement to also allow for
duplicates of non-constant tuples raises several interesting
questions: How do we interpret multiple occurrences of a
tuple with nulls in an SQL database? What is preservation
of Codd semantics in this context? Do our restrictions still
guarantee it? One possible approach would be to explicitly
represent a table as a pair consisting of a set S of records
and an associated multiplicity function that indicates the
number of occurrences of each record of S within the table.
Then, the notion of Codd preservation, and the conditions
that enforce it, would probably be similar to those we used
for the case of queries interpreted under set semantics.
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There are then questions related to more practical as-
pects. For instance, how can we check that a query written
in (an appropriate fragment of) SQL satisfies our restric-
tions? We could translate the query to RA (e.g., by using
the translation in [8]) and then check whether the result-
ing expression satisfies the restrictions, but this of course
depends on the particular translation one chooses. A bet-
ter solution would be to devise explicit restrictions on the
actual SQL syntax.

Finally, another interesting direction for future work is
to implement marked nulls in SQL, instead of limiting the
expressivity of queries in an attempt to fit a flawed model.
It remains to be seen whether such an implementation is
feasible using only Standard features of the SQL language
and whether it requires custom extensions. In any case, an
implementation of marked nulls does not detract from the
work in this paper, which would still be relevant for closed
or legacy systems that cannot be extended, or applications
where the Standard must be strictly followed.
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Appendix: Additional Proofs

Proof of Lemma 2.

a) Let T be a table and let α ⊆ sig(T ). Obviously, the
tables T1 = sql

(
πα(T )

)
and T2 = πα

(
sql(T )

)
are well

defined and sig(T1) = sig(T2) = sig(T ).

Let r be a record over sig(T ); we need to show that
#(r, T1) = #(r, T2). On the one hand, we have

#
(
r, T1

)
=
∑

s∈sql−1(r)

#
(
s, πα(T )

)
=
∑

s′ : sql(πα(s′))=r

#
(
s′, T

)

because

#
(
s, πα(T )

)
=
∑

s′ : πα(s′)=s

#
(
s′, T

)

and sql(s) = r since s ∈ sql−1(r). On the other hand,

#
(
r, T2

)
=
∑

r′ : πα(r′)=r

#
(
r′, sql(T )

)
=
∑

s′ : πα(sql(s′))=r

#
(
s′, T

)

because

#
(
r′, sql(T )

)
=
∑

s′∈sql−1(r′)

#
(
s′, T

)
=
∑

s′ : sql(s′)=r′

#
(
s′, T

)

and r′ is such that πα(r′) = r.

By Lemma 1, we have that πα
(
sql(s′)

)
= sql

(
πα(s′)

)
,

and therefore the claim follows.

b) Let T be a table, and let θ be a selection condition
such that sig(θ) ⊆ sig(T ). Obviously, the tables T1 =
sql
(
σθ(T )

)
and T2 = σθ

(
sql(T )

)
are well defined and

sig(T1) = sig(T2) = sig(T ).

Let r be a record over sig(T ); we need to show that
#(r, T1) = #(r, T2). We have the following:

#
(
r, T1

)
=
∑

s∈sql−1(r)

#
(
s, σθ(T )

)

(†)
=





∑

s∈sql−1(r)

#
(
s, T

)
if JθKr = t

0 if JθKr = f

=

{
#
(
r, sql(T )

)
if JθKr = t

0 if JθKr = f

= #
(
r, T2

)

where (†) is because, for every record s ∈ sql−1(r), it
holds that sql(s) = r and so JθKr = JθKs by Lemma 1,
and

#
(
s, σθ(T )

)
=

{
#
(
s, T

)
if JθKs = t

0 if JθKs = f

by definition of the selection operation on tables.

c) Let T be a table, let A ∈ sig(T ) and let B 6∈
(
sig(T )−

{A}
)
. Obviously, the tables T1 = sql

(
ρA→B(T )

)
and

T2 = ρA→B
(
sql(T )

)
are well defined, and both have

signature
(
sig(T )− {A}

)
∪ {B}.

Let r be a record over sig(T1); we need to show that
#(r, T1) = #(r, T2). On the one hand, we have

#
(
r, T1

)
=
∑

s∈sql−1(r)

#
(
s, ρA→B(T )

)
=
∑

s′ : sql(ρA→B(s′))=r

#
(
s′, T

)

as #
(
s, ρA→B(T )

)
= #(s′, T ), where ρA→B(s′) = s,

and sql(s) = r since s ∈ sql−1(r). On the other hand,
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#(r, T2) = #
(
s, sql(T )

)
, where ρA→B(s) = r. Thus,

#
(
r, T2

)
=
∑

s′∈sql−1(s)
ρA→B(s)=r

#
(
s′, T

)
=
∑

s′ : ρA→B(sql(s′))=r

#
(
s′, T

)

Then, since sql
(
ρA→B(s′)

)
= ρA→B

(
sql(s′)

)
by Lem-

ma 1, the claim follows.

Proof of Lemma 3.

a) Let T1 and T2 be tables of the same signature. Obvi-
ously, the tables sql(T1∪T2) and sql(T1)∪sql(T2) are
well defined and they are both over sig(T1) = sig(T2).
Then, for every record r over sig(T1), we have:

#
(
r, sql(T1 ∪ T2)

) †
=
∑

s∈sql−1(r)

#(s, T1 ∪ T2)

††
=
∑

s∈sql−1(r)

(
#(s, T1) + #(s, T2)

)

=
∑

s∈sql−1(r)

#(s, T1) +
∑

s∈sql−1(r)

#(s, T2)

†
= #

(
r, sql(T1)

)
+ #

(
r, sql(T2)

)

††
= #

(
r, sql(T1) ∪ sql(T2)

)

where † are by definition of sql on tables, and †† are
by definition of the union operation on tables.

b) Let T1 and T2 be tables with disjoint signatures, and
let α= sig(T1) and β= sig(T2). Obviously, the tables
sql(T1 × T2) and sql(T1) × sql(T2) are well defined
and both are over α ∪ β. Since α and β are disjoint,
every record r over α∪β union is the product of the
projections of r on α and β, denoted for simplicity by
rα and rβ , respectively. By Lemma 1, sql(sα×sβ) =
sql(sα)×sql(sβ); therefore, sα×sβ ∈ sql−1(rα×rβ) if
and only if sα ∈ sql−1(rα) and sβ ∈ sql−1(rβ). Then,
for every record r over α ∪ β, we have:

#
(
rα × rβ , sql(T1 × T2)

)

=
∑

s∈sql−1(rα×rβ)
#(s, T1 × T2)

=
∑

s∈sql−1(rα×rβ)

(
#(sα, T1) ·#(sβ , T2)

)

=
∑

s1∈sql−1(rα)

(
#(s1, T1) ·

∑

s2∈sql−1(rβ)

#(s2, T2)
)

= #
(
rα, sql(T1)

)
·#
(
rβ , sql(T2)

)

= #
(
rα × rβ , sql(T1)× sql(T2)

)

Proof of Lemma 4. Let us denote by α the signature of T1
and T2.

a) Clearly, the tables sql(T1)− sql(T2) and sql(T1 − T2)
are well defined and both have signature α. Let r be

a record over α; to prove the claim we will show the
following:

#
(
r, sql(T1 − T2)

)
=
∑

s∈sql−1(r)

#
(
s, T1 − T2

)

=
∑

s∈sql−1(r)

(
#(s, T1) ´ #(s, T2)

)

(†)
=
∑

s∈sql−1(r)

#(s, T1) ´
∑

s∈sql−1(r)

#(s, T2)

= #
(
r, sql(T1)

)
´ #

(
r, sql(T2)

)

= #
(
r, sql(T1)− sql(T2)

)
.

In particular, we only need to show (†), as the other
equalities hold by definition of − and sql on tables.

If r maps all attributes to constants, then sql−1(r) =
{r} and (†) holds, as both its l.h.s. and r.h.s. are triv-
ially equal to #(r, T1) ´ #(r, T2) in this case. Thus,
assume r(A) ∈ Null for some attribute A. By defini-
tion, every s ∈ sql−1(r) is such that sql(s) = r and so
s(A) ∈ Null. In turn, by the assumption on T1 and
T2, there cannot exist records s1 and s2 in sql−1(r)
such that s1 ∈ T1 and s2 ∈ T2. Therefore, the l.h.s.
and r.h.s. of (†) will both be

∑
s∈sql−1(r) #(s, T1) if

some record in sql−1(r) occurs in T1, and they will
both be 0 otherwise.

b) Obviously, all of the tables T1 ∩ T2, sql(T1) ∩ sql(T2)
and sql(T1 ∩ T2) are well defined and have signature
α. By assumption, there is no record that assigns a
null to some attribute and occurs in both T1 and T2.
Thus, T1∩T2 is complete and T1∩T2 = sql(T1∩T2).

Now, let r be a record over α; to prove that T1∩T2 =
sql(T1) ∩ sql(T2), we will show the following:

#
(
r, T1 ∩ T2

)
= min

{
#
(
r, T1

)
,#
(
r, T2

)}

(∗)
= min

{
m︷ ︸︸ ︷∑

s∈sql−1(r)

#
(
s, T1

)
,

n︷ ︸︸ ︷∑

s∈sql−1(r)

#
(
s, T2

)}

= min
{

#
(
r, sql(T1)

)
,#
(
r, sql(T2)

)}

= #
(
r, sql(T1) ∩ sql(T2)

)
.

In particular, we only need to show (∗), as the other
equalities hold by definition of ∩ and sql on tables.

If r maps all attributes to constants, then sql−1(r) =
{r} and (∗) trivially holds. Thus, assume r(A) ∈ Null
for some attribute A. Then, as T1 ∩ T2 is complete,
r 6∈ T1 ∩ T2, i.e., the l.h.s. of (∗) is 0. By definition,
every record s ∈ sql−1(r) is such that sql(s) = r and
so s(A) ∈ Null. In turn, by the assumption on T1 and
T2, there cannot exist records s1 and s2 in sql−1(r)
such that s1 ∈ T1 and s2 ∈ T2. Therefore, the r.h.s.
of (∗) is also 0, as m = 0 whenever n > 0, and n = 0
whenever m > 0.
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