
Predictive Performance Modeling for Distributed Computing using
Black-Box Monitoring and Machine Learning

Carl Witt1,∗, Marc Bux, Wladislaw Gusew, Ulf Leser

Humboldt-Universität zu Berlin, 6, Unter den Linden, Berlin, GER.

Abstract

In many domains, the previous decade was characterized by increasing data volumes and growing complexity of computational
workloads, creating new demands for highly data-parallel computing in distributed systems. Effective operation of these systems
is challenging when facing uncertainties about the performance of jobs and tasks under varying resource configurations, e. g.,
for scheduling and resource allocation. We survey predictive performance modeling (PPM) approaches to estimate performance
metrics such as execution duration, required memory or wait times of future jobs and tasks based on past performance observations.
We focus on non-intrusive methods, i. e., methods that can be applied to any workload without modification, since the workload
is usually a black-box from the perspective of the systems managing the computational infrastructure. We classify and compare
sources of performance variation, predicted performance metrics, required training data, use cases, and the underlying prediction
techniques. We conclude by identifying several open problems and pressing research needs in the field.

Keywords: Distributed Computing, Resource Management, Machine Learning, Black-Box Monitoring

1. Introduction

Growing computational demands in science and industry
are strong drivers of innovations in distributed computing, ini-
tiating, for instance, the development of grid infrastructures or
cloud computing [1, 2]. One of the fundamental problems oc-
curring when performing complex computations in a distributed
environment is scheduling: Given a set of resources (compute
nodes, network, storage) and a workload, a scheduler has to de-
cide when and which resources (nodes) are to be assigned to
which units of work (jobs or tasks). Scheduling decisions are
typically guided by a goal, such as minimization of runtime or
of resource usage, and often have to meet additional constraints,
such as resource limits of the individual nodes or data depen-
dencies between tasks [3]. To achieve its given goals as good
as possible under the specified constraints, a scheduler requires
precise estimates about the expected performance of a given
job or task for a given input on given resources. Only with such
knowledge it is possible to take decisions which consider their
future implications, which is a pre-requisite for achieving near-
optimal schedules [4].

Unfortunately, such estimates are very difficult to obtain
in practice [5, 6, 7, 8]. In most systems, the scheduler has
no knowledge about the particular computation performed by
a job or task, i.e., it treats everything as black-box. Accord-
ingly, approaches involving analysis of source codes [9, 10] or

∗Corresponding author
Email addresses: wittcarl@informatik.hu-berlin.de (Carl Witt),

buxmarcn@informatik.hu-berlin.de (Marc Bux),
gusewwly@informatik.hu-berlin.de (Wladislaw Gusew),
leser@informatik.hu-berlin.de (Ulf Leser)

1ORCiD: 0000-0002-7918-605X

hand-crafted analytical models for specific operators or work-
loads [11, 12] are not applicable. Instead, the only available
type of information are usually a few observations of perfor-
mance for varying problem sizes and resource configurations
extracted from log files of past executions of the same or a sim-
ilar workload. The challenge is to derive precise predictions
from these sparse samples.

Due to these difficulties, many practical schedulers com-
pletely disregard such estimations [13], creating schedules that
potentially are far from optimal [14, 13, 15]. Other systems del-
egate the task of estimating resource consumption to the user,
demanding a deep understanding of the workload, the input
data, and the infrastructure at hand, often leading to inaccurate
estimates [16, 17].

In this paper, we survey predictive performance modeling
(PPM) approaches for execution durations, resource consump-
tion, and wait times for black-box jobs and tasks based on his-
torical data. Such approaches extrapolate historical observa-
tions to future situations without requiring detailed knowledge
about the internals of the workload. Their basic idea is to model
relationships between workload and execution environment based
on historical performance observations, using, for instance, re-
gression [18] or time series analysis [19].

Research on PPM dates back at least to the late eighties,
motivated by load balancing in a distributed system [8]. Later,
cluster computing constituted the focus of the research, fol-
lowed by a series of relevant works in the context of grid com-
puting [1]. The development to this point was characterized
by an increasing consideration of system heterogeneity, mov-
ing from single-core systems over clusters of homogeneous ma-
chines to data centers encompassing a battery of different node

Preprint submitted to Elsevier May 31, 2018

ar
X

iv
:1

80
5.

11
87

7v
1 

 [
cs

.D
C

] 
 3

0 
M

ay
 2

01
8



Heterogeneous Nodes

Job A
Job B

Tasks

Data Transfer

Job Aʹ

Compute Node

Figure 1: Overview of the distributed resource and workload model. Jobs have
different resource usage patterns (computation and communication), occur at
different scales (Job A and Job A’), utilize compute nodes with heterogeneous
hardware specifications, and experience resource contention on a shared node
(e. g., tasks and ).

types. System heterogeneity was further increased through the
recent introduction of cloud computing, where resources are
typically virtualized and available in various configurations. On
the workload side, big data workloads [20, 21, 22] and complex
analysis pipelines [23, 24] added to the diversity of the process-
ing tasks, increasing the demand for other resources than CPU,
like disk I/O, and the complexity of the resource usage patterns.

We are aware of only a few previous surveys in related
fields. [25, 26] reviewed performance modeling, but focused on
analytical models, breaking the black-box assumption. [27, 28]
survey the general field of distributed resource management
but without special attention to PPM. [29] surveyed machine
learning methods for predicting the performance of algorithms
but only considered isolated programs on a single machine,
whereas we target methods for complex workloads on a dis-
tributed environment. [30] reviews techniques to model the per-
formance of relational queries using queuing theory, but focuses
on relational, transactional workloads.

This survey is structured as follows. Section 2 provides
background on predictive resource management in a distributed
system. Section 3 describes our comparison scheme for PPM
approaches. Section 4 presents approaches to forecast the be-
havior of a single task on a single node. In Section 5, we re-
view performance models for complex workloads (jobs) on a
set of nodes. In Section 3.2 we review techniques for black-box
performance monitoring. We conclude in Section 7 with open
questions and possible research directions.

2. Background and Scope

In this work, we survey methods for predictive performance
modeling (PPM) to improve resource efficiency and user sat-

isfaction in distributed systems. The predictions are provided
either to a system component such as the scheduler or a user
facing a similar decisions, e. g., the amount of resources to re-
quest for a job. In both cases, decision making is driven by cer-
tain constraints and goals, such as fairness, deadlines, or costs.
To make valid decisions under a predefined optimization goal,
PPM can be used to compare alternative resource allocations,
job placement, starting time, resource types, etc.

In the following subsections, we first give an abstract model
for the most important resources within a distributed execution
environment and for a workload. We then outline exemplary
scheduling use cases and their information needs.

2.1. Abstract View on Resources and Workloads

We model a distributed computing system as a set of com-
pute nodes that are connected via a network. Each node encom-
passes various devices, such as CPUs, memory, disks, and net-
work controllers. The nodes that comprise a system can vary in
their available resources, featuring, for instance, different num-
bers of cores or different sizes of main memory. The network
may also connect nodes at varying speeds, e. g., across racks
in a cluster or across sites in a grid. Note that many modern
system architectures virtualize resources to improve maintain-
ability and resource usage [31].

Users submit jobs to the system for execution. A job works
on some input data and may have parameters, which may affect
the amount of work to be done and its resource usage patterns.
Some jobs can be broken down to tasks which represent the
smallest unit of work for the system. Each task is executed
on a single node, but nevertheless may employ parallelism by
utilizing multiple threads.

Distributed systems, and thus their resources, are usually
shared by different users. Different policies for sharing re-
sources exist. In a system that is space-shared, a set of re-
sources is assigned exclusively to one job, and this assignment
remains until the job finishes. In a space-shared system, jobs
are typically submitted to one or more queues, implementing
system properties like fairness or job priorities [32]. In a time-
shared system, multiple jobs can run on overlapping resources
at the same time. This implies that they potentially compete
for system resources, giving rise to resource contention [33].
However, from a scheduling point of view, these policies are
not fundamentally different, as in both cases the amount of re-
sources and the placement need to be decided such that some
optimization goal is achieved.

Our model of distributed computing covers various scenar-
ios, including cluster, grid, and cloud computing, high perfor-
mance computing and big data workloads. A very generic model
is sufficient because of the versatility of the black-box approach.
Although these paradigms differ strongly in their organizational
aspects such as resource ownership, pricing, access, etc. black-
box modeling techniques are applicable to all of them because
they rely on patterns in the observed performance data rather
than models of the internals of a system or workload.

2



2.2. Scheduling Use Cases

In this section, we briefly review some of the use cases that
arise when using PPM to support a scheduler in a distributed
system, which is a frequent motivation for research in this field.
A scheduler is the component of a distributed system which
assigns resources to jobs and tasks in a way that aims at opti-
mizing some criterion, such as throughput, time-to-finish, en-
ergy consumption, or even monetary cost, e. g., when renting
resources in a cloud.

Scheduling heuristics exist for various scenarios, such as
running independent batch jobs by various users on a cluster[34,
13], or for executing workflows of interdependent tasks [35,
36]. Except for extremely constrained scenarios, scheduling
problems are difficult to solve and usually NP-hard [37]. Ac-
cordingly, there exists a rich literature on heuristics and strate-
gies for scheduling [38, 39, 40, 41]. The focus of our survey
are methods to obtain performance predictions that support in-
formed decision making. Such performance estimates are fun-
damental for many approaches to scheduling; in the following,
we describe, for illustration, three popular techniques all rely-
ing on accurate cost estimates.

Backfilling is a scheduling technique to improve the uti-
lization and response time of a system [42]. In a space-shared
compute cluster, jobs are often scheduled according to a first-
come-first-served policy. A backfilling policy allows short jobs
to take advantage of resources left idle by larger jobs. To make
sure that a job really fits a gap between reservations, predictions
of job execution duration are required (e. g. [13]).

Task graph scheduling is the problem of executing computa-
tional tasks in compliance with their control and data dependen-
cies [43]. The problem again is NP-hard, which has led to the
development of numerous scheduling heuristics, like the pop-
ular Heterogeneous Earliest Finish Time heuristic [36]. These
heuristics typically rely on estimated execution and file transfer
times [44].

Site selection denotes the problem of choosing, for a given
job, from various eligible sites the one that best fits the schedul-
ing goal, depending on properties like required data transfer
times, expected execution times, or the current load on the sites [45].
Site selection was intensively studied in grid computing, moti-
vated by the availability of various clusters for a given job [46].
Another application area are systems that chose the best from a
set of available clouds [47]. Clearly, the expected runtime of a
job on a site (or cloud) is an important parameter in any such
decision method.

3. Comparing Black-Box Performance Prediction Methods

In this section, we describe the four distinction criteria along
which we compare methods for PPM: (1) Methods can be dis-
tinguished by the unit of prediction: Some predict the perfor-
mance of single tasks, while others predict performance of en-
tire jobs. (2) Another distinction lies in the metrics which are
predicted, such as wall-clock time or peak memory usage. (3)
Different methods take different properties of the system and

Figure 2: The performance metrics capturing the different notions of perfor-
mance in a distributed system.

tasks into consideration, i.e., they differ in the principal per-
formance factors which their prediction model covers. (4) Ap-
proaches can be classified according to the prediction method
they employ, such as classification or regression. In the follow-
ing, we explain each of the criteria in more detail.

3.1. Workload Granularity
We divide approaches in two categories depending on the

target of analysis. The first category comprises task models
(Section 4), i. e., methods that predict the performance of a sin-
gle node executing a single task. Approaches in this category
may rely on various performance information sources, such as
hardware performance counters, the operating system, and bi-
nary instrumentation. In the context of distributed computing,
the relevance of task performance prediction arises in various
scenarios, e. g., as input to scheduling heuristics for several
tasks with dependencies [36, 48].

The second category of approaches comprises job models
(Section 5), which assess the collective performance of a set
of nodes working together to solve a workload of tasks. A
standard use case for job-level performance prediction is batch
scheduling in a high-performance computing system. Such sys-
tems are typically based on per-job information from previous
execution, like the total amount of the requested resources or
the overall execution duration.

3.2. Performance Metrics
Methods for PPM differ in the metric of performance they

try to assess, i.e., the concrete aspect of performance predicted.
We categorize these into metrics related to computation and
metrics related to wait times (see Figure 2).

The most commonly predicted metrics are related to com-
putation, a term which itself subsumes different aspects. The
most prominent one is execution duration (wall-clock time),
i. e., the time that elapses between the beginning and the com-
pletion of a task or a job. It is typically correlated to other met-
rics, such as input size [7], program arguments [49], or hard-
ware characteristics [50]. Estimated wall-clock times constitute
important information for schedulers, for instance to estimate
at what point-in-time a given node becomes free again, or to
estimate the critical path through the tasks of a job [43]. A
second perspective on computation is the amount of resources
required to complete a task or job. For instance, predicting the
number of CPU instructions can be used as an intermediate met-
ric to estimate wall-clock time [51]. Other important aspects

3



Table 1: Principal Performance Factors

Abbrv. Performance Factor

W Workload: resource usage patterns
H Heterogeneity: type of resources
S Scale: amount of resources and problem size

C
Contention: performance degradation caused by
resource sharing

of computation are the peak amount of memory used and the
amount of disk I/O or network traffic caused. Both are critical
measures for a scheduler to prevent spilling from main memory
to disk and contention of processes competing for constrained
data exchange channels [5, 52].

A second important category of performance metrics covers
wait times, resulting from activities supplementary to the actual
computing. Especially the duration of file transfers during a
task or job execution has been subject of various works. Trans-
fer times depend mainly on the amount of data to transfer, the
bandwidth of the communication channel, the current load on
this channel, and the possibility to use multiple channels in par-
allel [53, 54, 55]. Thus, transfer times largely depend on prop-
erties of a system which are not under the exclusive control of
the scheduler, making analytical models difficult to employ; in-
stead, predictions are usually based on real-time network prob-
ing [56, 57, 55, 53]. Transfer time predictions are important to
estimate when all necessary data for a scheduled task will be
available, or to find the fastest route to data in case multiple
replica exist, or to choose a node for executing a task which has
the fastest access to the data this task requires. Specific research
has been devoted to the communication costs of programs writ-
ten in certain paradigms, e. g., Message Passing Interface [58]
or MapReduce [20]. We do not cover approaches specific to
these paradigms, as the focus of this survey are black-box ap-
proaches. Finally, considerable wait times often occur when a
scheduled job has to wait for resources to become free. This ef-
fect is usually captured by measuring the time spent in a queue
waiting for resources [59]. A scheduler can utilize predicted
queue times to select among multiple available computation
sites.

3.3. Principal Performance Factors

Distributed systems are complex and exhibit multiple ef-
fects which may cause variations in the performance metrics
of jobs or tasks. Methods for predicting performance metrics
can be classified by the concrete set of properties of such sys-
tems which they take into account, either explicitly or implic-
itly. The four most influential performance factors are resource
usage patterns, resource heterogeneity, scale, and resource con-
tention.

The first and most fundamental factor is the resource usage
pattern of the job or task that is to be scheduled. Different jobs
or tasks might stress different subsystems of the system: A typ-
ical distinction is between compute-intensive jobs, demanding
mostly CPU cycles, and data-intensive jobs, requiring mostly

main memory and fast data transfer [56, 59, 60, 34, 61]. In
the black-box scenario we consider in this survey, one has lim-
ited insight into what a program does, but one may observe its
resource usage over time and its interaction with the system.
The challenge is that the behavior of a program, and thus its
resource usage patterns, can depend in complex ways on the
input data and the program arguments. For example, the execu-
tion duration of a scientific simulation might be dominated by
the number of scenarios considered, which could be specified
as application parameters.

A second important performance factor is resource hetero-
geneity in the target system, denoting varying amounts or kinds
of resources across compute nodes. For instance, running a
given task on a CPU with higher clock rate is expected to be
faster than on a node with a slower CPUs; however, the effect
depends much on the resource usage pattern of the task, i.e.,
whether it is compute-intensive or not. Resource heterogeneity
is present in many real-world systems, often induced by ex-
tensions of systems over time where each extension utilizes the
best machines affordable at the time of the expansion. Resource
heterogeneity can also be present by design to allow systems to
offer different levels of service [62]. Schedulers critically de-
pend on information about resource heterogeneity to prevent
load imbalance [63, 64]. Performance prediction in heteroge-
neous environments ideally provides a means to normalize ob-
servations with respect to hardware, such that predictions for
other kinds of hardware can be extrapolated from prior perfor-
mance observations.

A third performance factor is the scale of the problem. This
includes both the amount of resources assigned to an applica-
tion, e. g., the number of nodes, and the size of the problem,
e. g., the amount of input data. The scaling behavior of an
application is affected by various factors, such as communi-
cation patterns and contention or degree of parallelism. Since
the execution times of jobs and tasks typically do not scale lin-
early with node (or core) count, predicting scale-out behavior
is important to sensibly trade off resource demands and appli-
cation performance [65]. Requesting as few resources as pos-
sible is both beneficial for optimizing resource usage, since it
avoids idle resources, and for the application itself, since in
space-sharing systems queue times can be expected to increase
quickly with the amount of requested resources [65, 59].

A fourth performance factor is resource contention arising
from simultaneous resource usage of different jobs or tasks. Re-
sources in a distributed environment are often shared and the
load imposed by other applications can affect the performance
of a task. For instance, given the performance of a task on an
idle node, the performance on a loaded node can be predicted
using time series forecasting methods [66]. Another approach
to predict performance degradation due to resource sharing is
based on the current load on shared CPU resources, as revealed
by hardware performance counters [67, 68].

3.4. Prediction Method
PPM methods predict a certain performance metric for a job

or a task based on information about certain performance fac-
tors, typically extracted from log files of previous runs. In this

4



Table 2: Prediction Methods

Abbrv. Prediction Method

CL Classification
LL Local Learning
R Regression
TS Time Series

section, we summarize the four most common techniques for
actually computing predictions, which are classification, local
learning, regression, and time series analysis. Note that a de-
tailed description of the technical basis of each of these methods
are beyond the scope of our work; the interested readers might
refer to [69] for an introduction in classification, regression and
local learning, and to [19] for time series analysis.

In the following, we focus on application possibilities of
these methods to PPM and their specific advantages. Regarding
the disadvantages, three apparent issues in the context of PPM
are (1) since observations correspond to task or job executions,
training data is potentially very expensive to collect and may
only be sparsely available. (2) System workload is difficult to
model and its characteristics are likely to change over time [70],
such that a trained model might become obsolete. (3) It can be
harder to explain insufficient prediction accuracy and find ways
to improve it than for analytical or simulation models.

Classification refers to techniques which assign one of a
(small) set of classes to a problem instance at hand. Applied to
performance prediction, these classes essentially are discretized
ranges of the performance metric addressed, and the problem
instance is the triple of the distributed system at hand, the job
or task to be executed, and the input data. Thus, approaches
based on classification are fundamentally based on the assump-
tion that tasks or jobs can be partitioned into categories with
similar behavior regarding the performance metric. Predictions
can be made based on historical runs, textual job descriptions,
or properties of the user or organization submitting a job [34,
71, 6, 13, 60]. Classes may be derived data-driven by clustering
historical runs [8] or may be specified manually based on expert
knowledge. One advantage of the classification approach is that
it is relatively simple and has been shown to work reasonably
well using only easily collectable job and task metadata [60, 6].
A trained classification model can also provide insights into the
properties of a system’s workload.

Local learning2 approaches predict the performance of a
job or task to be the same as that of the most similar job or
task they have seen in the past. In a more general setting, they
also might interpolate between the most similar jobs or tasks to
predict the performance metric of interest. Local learning re-
quires a function to compute the similarity of jobs and is based
on the hypothesis that jobs similar under this function exhibit
similar performance metrics. In contrast to classification ap-
proaches, they do not require the definition of distinct classes of

2also referred to as instance-based learning, non-parametric regression, and
nearest neighbor regression

jobs. Local approaches are more flexible than classification be-
cause they do not require performance metrics to be consistent
within classes, and the model can be adapted without retraining
by adding new instances or discarding older ones [72].

Regression denotes a broad class of methods which map ob-
servations into a numerical space and then fit a function over the
observations which approximates a given target variable. In our
setting, the observations are performance factors of the job or
task to execute, and the target variable is the performance met-
ric to predict. Regression methods usually treat performance
factors as numerical variables and consider only a limited set
of functions; the by-far most popular methods express a tar-
get variable as linear combination of the independent variables.
Thus, a trained regression model can also provide explicit in-
sights about what performance factors affect a metric of interest
most severely.

All previous methods are based on the assumption that the
observations they are based on (for classifying jobs, for per-
forming regression, for comparing jobs) are independent from
each other. In contrast, time series analysis focusses on the
temporal development of observations, i.e., they generate pre-
dictions based on performance trends and patterns over time.
Thus, the temporal order of observations is the primary source
of information, assuming that the past development of perfor-
mance factors dominates future developments. These models
lend naturally to performance prediction in systems whose re-
source usage change over time, which for the other methods
requires additional steps, such as retraining the model. Another
advantage is that performance variation from any source can be
captured, as long as the effect is exposed in a predictable pattern
over time.

4. Task Performance Models

In this section, we survey concrete PPM methods at the task
level, that is, performance prediction for single programs run-
ning on a single node. Such methods are important for sched-
ulers as they allow taking into account the performance varia-
tion resulting from placing a task at different compute nodes, or
the performance degradation resulting from sharing resources
with another task. The presentation of the approaches is struc-
tured according the principal performance factors, as summa-
rized in Table 3. An approach may occur in multiple of the fol-
lowing subsections, where we consider a paper’s contribution
relevant to the overall topic of modeling that specific perfor-
mance factor.

4.1. Resource Usage Pattern Modeling at the Task Level

Task resource usage patterns can be modeled in different
ways. One way is to characterize them implicitly by observ-
ing similarities in behavior and performance of programs. This
leads to classification or local learning methods based on reusing
performance observations from similar tasks. Another approach
is to model resource usage across repeated executions of the
same task. This leads to time series methods that predict the
performance of a task based on the last executions of a task.

5



Table 3: Task Performance Models. The principal performance factors (W,H,S,C) and methods (Mthds.) are abbreviated according to Tables 1 and 2.

References Context W H S C Input Output Mthds.

Marin et al.
[73]

Explore interactions between
an application and a platform

• • • ·
CPU speed and cache sizes,
small input instances,
application binaries

Execution duration,
L1, L2 and TLB
cache miss counts

R

Hoste et al.
[74]

Select platform that yields
best performance

• • · · Binary instrumentation
results, benchmark scores

Execution duration
(relative)

LL

Yadwadkar et
al. [75] Cloud instance selection • • · ·

Benchmark results of VM
instances, representative task
test run

Execution duration R

Ferreira da
Silva et al.
[52]

Predict resource consumption
of workflow tasks Size of the input files

Execution duration,
peak memory
usage, disk usage

R

Chatzopoulos
et al. [76]

Assess scalability, detect
bottlenecks

• · • ·
Sampled durations and
stalled cycles for different
core counts

Execution duration R

Govindan et
al. [77] Virtual machine consolidation • · · • Memory access pattern,

degradation table

Execution duration
relative to
execution on an
idle node

LL

Gao et al.
[78]

Effective scheduling in
heterogeneous grids

• · · •
Execution duration, predicted
execution duration of other
running tasks

Execution duration TS

Devarakonda
and Iyer [79]

Load balancing in distributed
systems

• · · · Execution duration, file I/O,
peak memory Same as input TS

Dinda[66, 80]
Deadline-constrained
scheduling in shared
distributed systems

• · · · CPU load, nominal execution
duration Execution duration TS

Zhang et
al.[81]

Scheduling on distributed
infrastructures

• · · · CPU load, nominal execution
duration Execution duration TS

Wolski et
al.[56, 82, 83]

Dynamic scheduling in
shared distributed systems

• · · · CPU load, network
throughput Same as input TS

Yang et
al.[84, 85]

Adaptive scheduling on
multi-user grids

• · · · CPU load Same as input TS

Matsunaga
and Fortes [5]

Supporting job schedulers in
a heterogeneous cloud or grid
environment

· • • • Hardware specifications and
benchmark results, input size

Execution duration,
resident set size,
size of output
produced

R

Iverson et al.
[7]

DAG scheduling in
heterogeneous cluster

· • • · Numerical description of the
input, benchmark results Execution duration LL

Zhao et al.
[68]

Improve resource utilization
while “providing QoS
guarantees”

· · • • Benchmark results Execution duration
(relative)

R

6



Resource usage patterns can also be captured in a fine-grained
manner by instrumenting a program or by monitoring hardware
performance counters of a CPU. Such methods are also used
to predict the performance degradation of tasks due to resource
contention, which is covered separately in Section 4.4.

One of the earliest time series approaches to PPM was pro-
posed by Devarakonda and Iyer [8]. In their approach, the
performance observations are represented as points in a three-
dimensional space comprising the dimensions execution dura-
tion, peak memory usage, and file I/O. Using the k-means algo-
rithm, clusters of observations are determined. Subsequently,
a Markov model is assembled where each state corresponds to
one cluster and transition probabilities are derived from the or-
der of observations. Based on the previous performance of a
task, the performance of the next invocation of a program is
predicted, by averaging over cluster centers according to tran-
sition probability.

Marin and Mellor-Crummey [73] instrument the binary of
a task to observe its memory access patterns. These patterns
are quantified using memory reuse distance histograms, which
are based on “the number of unique memory locations accessed
between a pair of accesses to a particular data item”. The pro-
gram to predict is executed on small input instances of different
sizes, and the bins of the resulting histograms are subjected to
regression to describe how the memory access patterns change
with input size.

Hoste et al. [74] use a local learning approach to predict
execution durations. They introduce the concept of benchmark
space to describe application behavior. The coordinates of an
application are defined by 47 characteristics, such as instruc-
tion mix and branch predictability, which are independent of
the CPU’s microarchitecture (e. g., its cache size and branch
predictor size). These characteristics are obtained for a variety
of representative tasks by means of binary instrumentation. A
new task is profiled in the same way as the representative tasks
before its execution to determine its coordinates in benchmark
space and thus to quantify its behavioral similarity to the rep-
resentative tasks. Performance measurements of benchmarks
that are close to the task in benchmark space are used to pre-
dict the performance of the task on different nodes. Like Marin
et al. [73], the authors focus on predicting the best suited node
rather than absolute performance values. Thus, they evaluate
their method by comparing predicted and actual task perfor-
mance rankings of nodes rather than the differences between
predicted and actual execution duration.

Zhang et al. [81] developed a method to provide a continu-
ous prediction of CPU load, in contrast to common time-series-
based approaches which are limited to a one- or a multiple-
step-ahead forecast. They propose to fit a polynomial curve of
second or third order on the CPU load time series using least
squares regression. While this method is able to capture long-
term developments in CPU load, it is slow to react to sudden
turning points. To address this issue, the authors propose a
means of predicting turning points by comparing the latest CPU
load tendencies (i. e., differences between current subsequent
measurements) against patterns that occurred in the past and
that were associated with a turning point. If such a pattern can

be found, an imminent turning point is deemed likely and the
forecast is derived from the historical pattern as opposed to the
polynomial curve.

A seminal work for PPM is the Network Weather Service
(NWS) [56] developed by Wolski et al. It is one of the pi-
oneering works in distributed resource usage monitoring and
prediction, which lays the foundation for PPM at higher lev-
els, e. g., to guide scheduling decisions. The NWS is a dis-
tributed performance forecasting framework that continuously
measures and forecasts CPU and network performance. It uses
various time series analysis methods [82], which are applied
simultaneously. The method which has exhibited the smallest
prediction error so far is used for the next forecast. To keep
the intrusiveness of the system low, the frequency at which new
forecasts are generated is adjusted automatically, based on the
accuracy of earlier forecasts. The provided bandwidth measure-
ments and forecasts have been extensively used in other perfor-
mance prediction approaches. Forecasts of CPU load capture
the aggregated short-term resource usage patterns of all tasks
running on a node, which can be used to estimate the execu-
tion time of an additional task, taking into account the back-
ground load. Refer to Section 4.4 for details on approaches that
focus on the resource contention performance factor. To mini-
mize prediction errors when forecasting grid performance, Wu
et al. suggested to extend the autoregressive estimator by ap-
plying Kalman and Savitzky-Golay filters to measurement data
to reduce noise [86]. Furthermore, they propose to adaptively
adjust the amount of considered measurements to minimize the
prediction error, similar to the adaptive sliding window estima-
tor in the NWS.

4.2. Heterogeneity Modeling at the Task Level
Performance variation from hardware heterogeneity arises

in various scenarios. In a compute cluster, older hardware might
be operated side-by-side with newer hardware. In a cloud com-
puting scenario, customers choose from various instance types
and in a virtualized setup, users create virtual machines with
custom resource limits. Predicting the performance of a task
on different node types is useful for a scheduler to avoid load
imbalance or to prioritize tasks. In contrast to Section 4.1, this
section focuses on modeling the effects of heterogeneity in the
compute infrastructure, i. e., the compute nodes, rather than the
workload.

Iverson et al. [7] propose a local learning approach to pre-
dict the execution duration of a task on a given node, based
on the input size and the hardware characteristics, expressed as
benchmark scores. To be able to reuse observations made on
one node for similar nodes, the concept of machine space is in-
troduced. A node’s benchmark scores define its coordinates in
machine space and performance observations from nodes that
are close in machine space are considered reusable across these
nodes. To avoid high dimensionality in the machine space, a
distance-preserving dimensionality reduction is applied. To de-
crease the influence of extreme data points, a constant fraction
of the largest and smallest observations is discarded. The work
generally assumes that resources are space-shared, i. e., there is
no background load on the nodes.

7



Yadwadkar et al. [75] predict the execution duration of a
task as a function of the chosen instance types in a cloud com-
puting scenario. Their method is based on an offline profiling
phase in which, for each instance type, the performance of a
set of benchmarks is measured. In addition to the measured
mean and tail performance, the task’s load on the CPU, mem-
ory, network, disk, and operating system is measured. The com-
bination of a task’s performance and resource usage is termed
its “fingerprint”. The collected profiling data is used to train a
random forest that learns a mapping from a benchmark’s finger-
print on a pair of instance types to a fingerprint on another in-
stance type. In the online phase, users submit a “representative”
task which is executed and profiled on a pair of instance types to
then extrapolate performance on all instance types and deliver
recommendations on performance-cost tradeoffs. Although the
method works well given a representative task, it does not ac-
count for varying input sizes or scaling behavior (problem size)
or resource contention.

Marin and Mellor-Crummey [73] use resource usage pat-
terns, specifically memory access patterns, to predict the rel-
ative performance of a task on different node types. Given
the cache size of a target architecture and the input size, the
cache miss counts are predicted. Similar techniques are used
to predict the cost of the computation, which can be combined
with the memory hierarchy latency to predict execution dura-
tion. Since exact prediction of execution duration is difficult,
the authors focus on ranking the compute nodes according to
their suitability for a given task.

Matsunaga and Fortes [5] build a regression tree for each
program based on input size and hardware characteristics, e. g.,
CPU speed, cache size, amount of memory, and disk bench-
mark scores. Furthermore, the location of the input data (e. g.,
on the node or in a network file system) is considered. Based
on these data, they predict execution duration, output file size,
and resident set size of the task. They report that in a few sit-
uations where resource performance is non-linear, e. g., a net-
work file system under load, local learning or support vector
machines outperform the regression tree, which overall still per-
forms best. Note that output file sizes and memory consump-
tion are seldomly considered in the literature, Devarakonda and
Iyer’s early work [8] being one of the few examples. Ferreira da
Silva et al. [52] take a similar approach, but use a density-based
clustering to partition the observations. For each cluster of ob-
servations, the pearson correlation coefficient is computed to
test on a linear relationship. If there is one, execution duration,
peak memory usage, and disk usage are predicted by regress-
ing on the input file size, otherwise the mean observed resource
usage is returned.

Venkataraman et al. [23] consider heterogeneity across in-
stance types in a cloud scenario. They compare the execution
duration of several tasks across instance types and use the in-
sights to learn an task-specific regression model that relates ex-
ecution duration to the input size and the number of nodes. A
separate model has to be learned for each instance type. Before
investing the cost of training a model for each instance type,
they can optimize the costs for a given deadline or budget by
choosing the appropriate instance type.

4.3. Scale Modeling at the Task Level

As described in Section 3.3, we consider as the scale factor
both to the number of CPU cores assigned to a task and the
amount of input data. The former is important in the context
of malleable tasks, i. e., in cases where more CPU cores can
be assigned to reduce execution duration. Considering input
sizes is important for resource consumption prediction, such as
execution duration and peak memory usage.

Zhao et al. [68] predict the execution duration of a task in
relationship to the number of threads by applying a thread re-
source contention model (Section 4.4). Each thread is treated
like an independent single-threaded instance of the task, con-
tending for CPU resources. The model takes into account ad-
ditional CPU cycles incurred by resource contention and thread
synchronization, as measured via profiling. The predicted total
work is divided by the number of threads to obtain an execution
duration estimate. They observe that inter-thread contention for
resources dominates the performance variation, whereas thread
creation costs and data sharing benefits are negligible. How-
ever, contention effects were only noticeable on a CPU with
a relatively small cache, whereas on a CPU with eight cores
and 24 MB shared cache, the PARSEC benchmarks [87] ex-
hibited only a few percent of performance degradation due to
inter-thread contention.

Chatzopoulos et al. [76] predict task execution duration as
a function of the number of cores used. They use hardware per-
formance counters to measure the number of wasted (“stalled”)
CPU cycles due to various reasons, such as waiting for the
cache to fetch a line. The key insights are that stalled cycles
correlate highly with execution duration, but exhibit scaling
trends even before they affect measured runtime. This allows
better extrapolation compared to extrapolating execution dura-
tions. To fit a model, runtimes and stalled cycles are measured
on different numbers of cores and then extrapolated by selecting
the best fit from selected rational, cubic, and polynomial func-
tions. When fitting the function, more weight is given to the
measurements at higher numbers of cores. The method works
well for scale-out predictions on similar platforms but has its
limitations when it comes to different architectures, e. g., due to
other performance counters or non-uniform memory access.

Matsunaga and Fortes [5] study both the effects of varying
input sizes and numbers of threads for two bioinformatics tasks.
They first collect training data by running the tasks on various
input sizes and thread counts and then compare several machine
learning algorithms in terms of prediction accuracy. They find
that the PQR2 regression tree yields the lowest average per-
centage error and is also able to capture non-linear effects of
execution duration with regard to input size and the number of
CPU cores.

4.4. Contention Modeling at the Task Level

Due to the trend of increasing numbers of cores per CPU,
contention between tasks for shared resources has received much
attention. Early approaches are based on operating-system-
level measurement of resource load and task resource demand.

8



Binary instrumentation can be used to measure task memory ac-
cess patterns, which can be used to predict performance degra-
dation due to contention for CPU caches. Another approach is
to profile the tasks’ sensitivity for contention to predict the ag-
gregate memory pressure and the according performance degra-
dation for co-running tasks.

Dinda [66] uses autoregressive time series models to pre-
dict background load, i. e., CPU utilization by other processes,
on a node. Load predictions are combined with a task’s nomi-
nal execution duration, measured on an idle machine, to predict
the increase in execution duration on the loaded node. The pre-
dictions have been used to determine suitable hosts for execut-
ing CPU-bound tasks in a distributed system of homogeneous
nodes [80]. A solution for predicting nominal execution dura-
tions, however, is not proposed.

Yang et al. [84] assume the same notion of background load
like Dinda [66]. They also take into account the variation of the
background load. To assign a task, the scheduler favors nodes
that have both low background load and expose little variation
in background load. Both quantities can be observed and fed
into standard time series predictors, but the authors observe
that standard prediction scheme do not sufficiently emphasize
the latest few measurements. Hence, they propose several sim-
ple strategies based on the current tendency, i. e., the difference
between the latest and second-to-latest measurements. The au-
thors found that their strategies outperform not only the other
proposed strategies, but also the predictions of the Network
Weather Service.

Gao et al. [78] estimate execution duration based on pre-
vious invocations and on the amount of tasks that are already
running on a node. Starting from a scenario where only one
program is executed, node curves are derived that relate the av-
erage execution duration of a task to the number of tasks al-
ready running on the node. This model is then extended to an
arbitrary number of task types. The determined execution du-
ration estimates are employed by a sampling-based scheduler,
which leaves room for (re-)exploring node performance, while
also exploiting favorable task-machine assignments.

Govindan et al. [77] predict the increase in execution du-
ration due to CPU cache contention. A program that occu-
pies cache space and bandwidth, the synthetic cache loader, is
used to induce synthetic pressure on the CPU’s memory subsys-
tem. The synthetic cache loader can be configured to occupy a
given number of sets and ways in a set-associative cache. It is
assumed that a limited number (e. g., 256) of synthetic cache
loader configurations approximately covers all possible mem-
ory access patterns. In a classification-like manner, each task
is mapped to the most similar cache loader configuration, for
which degradation behavior is known. Once for every node
type, performance degradation of all pairwise cache loader co-
locations is measured. To extend to more than two co-runners, a
reduction scheme is proposed that maps the pressure of two co-
runners to a single, more aggressive configuration of the cache
loader. This reduction is applied recursively to predict perfor-
mance degradation with up to four co-runners in the experi-
ments.

Zhao et al. [68] also follow a memory-centric approach us-

ing the same basic aggregate pressure approach as in [88, 77].
They distinguish between CPU cache space consumption and
cache bandwidth consumption. This is motivated by the obser-
vation that performance degradation can be modeled as a piece-
wise linear function of the aggregate pressure on both cache
space and cache bandwidth. To measure the cache space and
bandwidth consumption, hardware performance counters are
used. To find the piecewise linear function that best models the
execution duration of a task, all models in a set of user-defined
models are evaluated. To reduce the costs of trying all possible
model forms, a task-independent model is first created that op-
timizes the functional form, whereas task-specific parameters
for that model are fitted in a second step.

5. Job Performance Models

In this section, we survey PPM approaches at the job level,
that is, prediction methods for complex workloads utilizing sev-
eral nodes connected through a network. Like for tasks, we
structure the review of performance models along the principal
performance factors from Section 3.3.

5.1. Resource Usage Pattern Modeling at the Job Level

Compared to the task level, resource usage patterns at the
job level include communication between nodes. In addition,
a job resource usage pattern depends on the resource usage
patterns of its tasks, leading to potentially much more com-
plex patterns. Job resource usage patterns can sometimes be
inferred from job metadata, such as the name of the application
or the submitting user. The assumption is that jobs with simi-
lar metadata will have similar resource usage patterns and thus
similar performance metrics. Historically, analyses of super-
computer workloads showed that categorizing jobs according
to their metadata reduces the variance among the observed run-
times [94]. Not very surprisingly, invocations of the same job,
submitted by the same user on the same number of requested
processors have been observed to expose much less runtime
variation than the set of all jobs observed in a cluster. Gib-
bons [60] verified this observation and used it to predict job exe-
cution duration by simply averaging runtimes of prior jobs with
the same metadata. Downey [59] makes a similar observation
in a San Diego Supercomputer Center workload, where job run-
times approximately followed a log-uniform distribution, with
different parameters for the queues for short, medium, and long
jobs.

Smith et al. [97] build on the observations by Gibbons [60]
to predict job execution durations from scheduler logs. They
coined the term template for a set of metadata attributes used to
partition the observations into groups. The execution duration
for a new job is predicted by looking up prior observations in
the according category and aggregating them either by using the
arithmetic mean or by regression over the number of assigned
processors. A genetic algorithm is used to determine the meta-
data features to group by and the aggregation method. Instead
of searching for a single best template, they also propose to
search for “template sets” that consist of one to ten templates,

9



Table 4: Job Performance Models. The principal performance factors (W,H,S,C) and methods (Mthds.) are abbreviated according to Tables 1 and 2.

References Context W H S C Input Output Mthds.

Delimitrou et
al. [34] Data center scheduling • • • • Short test runs of the

application

Performance
metrics under
different resource
configurations

CL

Smith [89] Site selection in a compute
grid

• · • •
Job metadata, requested
processors, maximum run
time

Execution duration,
queue time, transfer
duration

LL

Arslan et al.
[54]

Optimizing end-to-end data
transfer parameters for a set
of files

• · • •
Historical data transfer times,
parameters, and background
traffic probe data

Transfer duration R, LL

Venkatara-
man et al.
[23]

Cloud resource configuration • · • · Input size, number of
machines Execution duration R

Pumma et al.
[90] Scientific computing • · • · Input size, hardware usage

during probe execution Execution duration CR

Alipourfard et
al. [91] Cloud resource configuration · • • · Job and initial cloud

configuration
Optimized
Configuration

R

Gaussier et al.
[15]

Provide runtime estimates for
a backfilling scheduler

• · · • User’s job history, job
submission time Execution duration R

Lee et al. [49] Tune application parameters
for a platform

• · · · Application parameters,
sampled execution runs Execution duration R

Dobber et al.
[92]

Increase robustness of
applications in the grid

• · · · Previous job durations Execution duration TS

Tsafrir et al.
[13] Backfilling in a HPC context • · · · History of user estimated and

observed runtimes Execution duration TS

Sanjay and
Vadhiyar [93]

Site selection in a grid
environment

· • • • CPU and network benchmark
results Execution duration R

Cunha et al.
[47]

Site selection (cloud or
private cluster)

· • • •
Metadata, requested
Processors, queue state,
submission time

Execution duration,
queue time

LL

Pfeiffer and
Wright [50]

“high-performance (HPC)
system acquisitions”

· • · ·
CPU and network
characteristics, HPCC
benchmark results

Execution duration R

Li et al. [46] Site selection (grid) · · • •
Metadata, executable name,
requested processors,
maximum run time,
submission time, queue state

Execution duration,
queue time

LL

10



Table 4: (continued) Job Performance Models.

References Context W H S C Input Output Mthds.

Downey [59] Site selection · · • •
Number of running jobs, their
age, and occupied number of
processors, requested number
of processors

Queue time R

Barnes et al.
[65] Improve cluster efficiency · · • · Application parameters,

number of processors Execution duration R

Gibbons [60] Provide estimates to
scheduler

· · • ·
Executable name, user name,
assigned number of
processors, current job age

Execution duration CL, R

Wu et al. [86] Scheduling and load
balancing on the grid

· · · • CPU load history CPU load TS

Brevik and
Nurmi
[95, 96]

Estimating queueing delays
for batch jobs

· · · • Queue time history Queue time TS

each giving one prediction with a confidence interval for a new
job. Li et al. [45] found that averaging all templates’ predic-
tions can improve prediction accuracy. The template approach
later has been extended by considering more job attributes, e. g.,
the topology of a workflow-structured application [98], predict-
ing other resource types, e. g., memory usage [99], and by using
other prediction methods within the categories, e. g., time series
predictors [45, 100].

Tsafrir et al. [13] predict the runtime of a job as the aver-
age of the runtimes of the last two submitted jobs of the same
user. This is a time series approach that aims more at the re-
source usage pattern of the user rather than the job. The authors
compare several variations of the above scheme and conclude
that no method works best for all systems and workloads. Other
time series-based approaches include Sonmez et al. [100], who
show that the accuracy of time series predictors for job runtime
and queue time predictions can be boosted when building sep-
arate models for each user, computing site, or both. Gaussier et
al. [15] propose a set of features similar to the above time series
features for a linear regression model. They include a variety
of information about the user’s job history, e. g., the execution
durations of the last three jobs and the time since the last job
of that user was completed. Their cost function penalizes the
underestimation of execution duration stronger than overpre-
diction because backfilling schedulers need to take corrective
actions when jobs exceed their reservation, in the worst case
even killing the job.

Dobber et al. [92] compare several time series predictors
for execution duration prediction. The proposed adaptive expo-
nential smoothing technique improves upon the basic exponen-
tial smoothing predictor implemented in the Network Weather
Service [56] (see Section 5.4) by continuously adjusting the
smoothing parameter based on the observed forecast error. This
way, the weight of the latest measurement is increased if, for in-
stance, the last forecast was found to be inaccurate. They also

propose a dynamic exponential smoothing method, which com-
bines a sliding window approach with the adaptive exponential
smoothing predictor. Results were found to be comparable or
even preferable to the Network Weather Service, due to an in-
creased robustness to peaks and changes in performance.

Recently, more sophisticated classification methods have
been applied to job performance prediction. The performance
predictions of Matsunaga et al. [5] and Dwyer et al. [101] are
based on regression trees, a technique that combines classifica-
tion and regression [102]. Both predict different metrics, but
identify regression trees as most accurate among a wide range
of machine learning techniques. This contradicts the observa-
tions by Smith et al. [97] and Tsafrir [13], who favor simple
predictors like the mean over a regression-based aggregation of
observations.

Pumma et al. [90] use an approach that completely ignores
metadata. Instead, each job is run for a short while and profiled
using platform independent low level features derived from hard-
ware performance counters. These include for instance instruc-
tion mix, branch predictability, and address distances between
successive cache accesses. Using a pre-built classification scheme
based on seven major types (“Dwarfs”) of scientific applica-
tions [103], the job is assigned to a job class that implies its
resource usage pattern. The C4.5 decision tree is trained using
manually labelled benchmarks from three benchmark suites [104,
105, 106]. For each job class, linear regression is used to model
runtime as a function of input size and observed resource usage
patterns (the measured low level characteristics).

Delimitrou et al. [34] use singular value decomposition to
classify an incoming job based on a short test run of the appli-
cation. The idea is to extrapolate the performance information
for untested configurations from other applications with simi-
lar resource usage patterns, as revealed by the test runs. The
assumption here is again that the workload can be partitioned
into jobs that expose similar behavior under the principal per-

11



formance factors.
Lee et al. [49, 107] analyze the impact of application pa-

rameters on the execution duration of two high performance
scientific applications. These applications have large param-
eter spaces comprising both parameters that define the work-
load, e. g., working set size per processor, and those that define
how to execute the workload, e. g., which broadcast method to
use. Such parameters clearly affect the resource usage pattern,
and through the latter parameters, their work gains a perfor-
mance tuning aspect. Moreover, a statistical analysis is incor-
porated, which indicates non-linear relationships between pa-
rameters and execution duration. The authors thus choose neu-
ral networks and piecewise polynomial regression for modeling
the relationship.

5.2. Heterogeneity Modeling at the Job Level

Heterogeneity at the job level is more complex than at the
task level, because it may affect different parts of a job. At the
task level, hardware heterogeneity, i. e., hardware specifications
affect the entire task. At the job level, parts of the job may run
on different nodes, and these parts depend on the scheduler, its
awareness of hardware differences and its ability to incorporate
them in its decisions. A typical problem in grid computing is
to choose a site to run a job on, under the premise that resource
characteristics of the sites are heterogeneous. A variant of the
site selection problem is computing in a hybrid cloud, in which,
for instance, some of the compute resources are owned by the
organization and additional resources can be acquired via cloud
computing on demand. The estimation of job finish times de-
pends on predictions of queue time, execution duration, and file
transfer duration.3

Sanjay and Vadhiyar [93] model execution duration of a
parallel application as the sum of computation duration and
non-overlapped communication duration. Both durations are
modeled by regression, using a mixture of 77 polynomial and
logarithmic functions. They address cross-platform performance
prediction by starting from a regression model learned on a ref-
erence platform, conducting dedicated small-scale experiments
on the reference and target platform and using the observed per-
formance ratios to scale the coefficients of the reference model.

Cunha et al. [47] consider performance differences between
a local cluster and cloud resources. They assume that executing
in the cloud slows down execution by a constant, application-
dependent factor, for which they propose a linear model and an
empirical model, based on relative performance of eight appli-
cations on three clusters and on three cloud platforms. Cunha
et al. acknowledge that it is difficult to predict relative perfor-
mance because of various factors, such as the network perfor-
mance. To alleviate this issue, they use a “cutoff function” that
favors executing on the local cluster in case of high uncertainty
associated with the predictions.

Pfeiffer and Wright [50] assume a homogeneous cluster, but
build models that regress on the performance characteristics of

3We address queue time estimation in Section 5.4, as queue times are a
result of jobs contending for resources.

a node type and thus have the possibility to predict performance
for different (but homogeneous) clusters. They also express job
execution duration as the sum of computation time and com-
munication time that is not overlapped with computation. The
former is modeled as a linear combination of CPU and mem-
ory benchmark results, whereas the latter is expressed as a lin-
ear combination of interconnect bandwidth and latency bench-
mark results. Both fits are performed using non-negative least
squares regression, on a subset of the benchmarks automatically
selected by backward elimination [108].

Alipourfard et al. [91] propose a search method to select
cloud configurations that optimize the performance of a job.
A configuration comprises the number of virtual machine in-
stances, number of cores, CPU speed, RAM per core, disk count
and speed, and network capacity. A gaussian process model is
used to estimate the uncertainty associated with a configuration
and to select the one that has the largest potential for increas-
ing performance. The configuration evaluated and the model is
updated until expected improvements fall below a threshold. A
limitation of the method is its reliance on representative work-
loads. Since the search procedure is too slow to be applied to a
job at hand, it is applied offline to representative workloads in-
stead. This is particularly problematic with respect to changes
in input size, which the method does not model explicitly. This
makes the method a perfect fit recurring jobs, which often op-
erate on data sets of similar size.

5.3. Scale Modeling at the Job Level

The scale of a job refers both to the problem size, e. g.,
amount of input data, and the amount of resources assigned to
the job. Compared to tasks, the effects of scale can be much
more pronounced and thus require careful decision making. For
instance, choosing the right amount of resources is important
because both undersizing and oversizing can have adverse ef-
fects. Allocating too many resources might result in an ineffi-
cient utilization, e. g., resources left idle although reserved, or
cause additional parallelization overheads that diminish or even
outweigh performance gains. Also, wait time in a cluster re-
source queue usually increases with the amount of requested
resources. Too few resources on the other hand may result in a
missed deadline or the failure of the job. Since scale-out is often
modeled as a linear or sub-linear function, regression methods
are a natural fit to this problem. Another option is to include the
amount of resources, e. g., the number of requested cores into
the distance metric of a local learning approach [89, 46].

Barnes et al. [65] regress execution duration both on appli-
cation parameters and processor count. Here, the application
parameters describe the problem size, e. g., the resolution of a
fluid dynamics simulation. They try both a linear and quadratic
form for the processor count and pick the better fit. All vari-
ables are transformed by taking their logarithm before regres-
sion to avoid the large execution durations dominating the short
ones in term of influencing the model coefficients. They ob-
serve that regressing separately on the time spent for computa-
tion and communication works better, as these two quantities
tend to scale differently.

12



Venkataraman et al. [23] model application execution dura-
tion as a function of input size and the number of nodes. They
argue that execution duration can be modeled as the sum of
constant costs, the costs of parallelizable work, a logarithmic
communication cost for aggregating data in a tree pattern, and
linear per-machine overheads. They use a non-negative least
squares regression to find the coefficients of these cost factors
given some runs of an application at different scales.

Arslan et al. [54] predict the duration of large file trans-
fers on the network, focusing on three parameters: amount of
data, concurrency, and parallelism, where concurrency denotes
the transfer of several files in parallel and parallelism refers to
transferring the blocks of a single file with several TCP streams
in parallel. The authors apply local learning to retrieve the most
similar observations to the current network load situation as
found by historical probe data. Then, the relationship between
the transfer parameters concurrency, and parallelism is found
using polynomial regression. These models are finally used to
predict optimal settings for a transfer of a set of files. A simi-
lar approach is proposed by Liu et al. [109], who also consider
the two file transfer parameters concurrency and parallelism.
Based on large Globus GridFTP logs, they engineer additional
features, such as the load on the two endpoints. Finally, they
build a regression model that relates the transfer configuration
to its duration.

5.4. Contention Modeling at the Job Level

Job resource contention commonly arises in two ways: queue
times for compute jobs and background load on the network for
file transfer jobs. We cover these scenarios in the following
subsections.

5.4.1. Queue Time Prediction
On space-shared clusters, jobs queue up for resources and

the scheduler decides which job to run next. For a metasched-
uler, i. e., a scheduler that submits a job to one of several sites,
predictions of queue time are important, as they add up to the
job execution duration. Queue time can be predicted based on
the queued jobs, their predicted execution durations, predicted
new job arrivals, and the scheduling policy applied to the queue.

Downey [59] considers the case of a simple first-come-first-
served scheduler to predict wait time for the job at the head of
the queue based on the number of processors it has requested.
He first fits a log-uniform distribution to the execution dura-
tions of the jobs in the queues for short, medium, and long
jobs. Given the current age of a job, the probability of run-
ning for another t minutes can be estimated. Using this, the
probability of a number of processors becoming free during the
next t minutes can be estimated. Smith et al. [97] applied the
template method (see Section 5.1) they developed for runtime
predictions to queue time prediction and report improvements
over Downey’s method. They also consider more schedulers,
including a backfilling scheduler. Li et al. [46] combine the
metadata-based classification of Smith and an idea similar to
Downey’s approach in a local learning approach. The state of
the resource is characterized by attributes like the number of

currently running jobs and their estimated runtimes. A genetic
algorithm is used to optimize various hyperparameters.

Brevik and Nurmi et al. [95, 96] propose a time series-based
approach for queue time prediction. The first component is a
conservative quantile estimator for distributions, which is ap-
plied to queue waiting times, disregarding the temporal order
of observations. The second component is a change point de-
tector. The assumption is that queue times are usually con-
sistent for an extended period of time before a change causes
entrance into another consistent phase. A change point is as-
sumed after observing a fixed number of queue times beyond
the .95 quantile of the current distribution of queue times. Sim-
ilar to Smith’s template approach, queue time observations are
grouped according to their job metadata.

Sonmez et al. [100] conducted a comparative evaluation of
estimators for job execution duration and for queue time on
grid job logs. This includes various time series methods and
Nurmi’s method [96]. They confirm that partitioning obser-
vations, e. g., by site, user or both, improves predictions, al-
though they do not observe strong improvements in the schedul-
ing quality in a trace-based simulation. This contradicts other
studies [13, 4], emphasizing the difficulty of comparing differ-
ent systems under various workloads.

5.4.2. File Transfer Duration Prediction
Resource contention also plays an important role for file

transfers. The replica selection problem arises when multiple
copies (replicas) of a file reside in the distributed environment.
A scheduler may want to select the one with shortest transfer
duration to a specific endpoint. Here, resource contention has
to be considered in the form of background load on the network
and the endpoints.

Faerman et al. [55] address the problem of predicting file
transfer durations based on network bandwidth probes. The
problem is that, to keep probing overhead low, the probes are
usually small in comparison to actual files. Instead of just divid-
ing file size by estimated bandwidth, the authors regress trans-
fer duration on bandwidth probe measurements (a single coef-
ficient regression model), which presumably captures the over-
head of larger file transfers. Swany and Wolski [110] also map
probed bandwidth values to file transfer durations. Instead of a
regression model, they map the cumulative distribution function
of the bandwidth probe values CDFB to the cumulative distri-
bution of file transfer durations CDFD. The forecast is obtained
by looking up CDF−1

D for CDFB(B). The bandwidth value B
is suggested to be obtained from a Network Weather Service
forecast. Vazhkudai and Schopf [111] show that also consid-
ering disk load values improved predictions. A comprehensive
study considering disk load and several additional factors was
recently conducted by Liu et al. [109].

Qiao et al. [112] consider the impact of the frequency of
bandwidth probes. They claim that for small files, a higher-
resolution signal is needed, whereas for large files, a coarse-
grained observation history will suffice. They evaluate numer-
ous network packet traces with bandwidth utilization data cap-
tured on WANs and LANs in combination with smoothing tech-
niques to adapt the time scale of the bandwidth utilization time

13



Figure 3: Methods for performance monitoring that do not require modification
of the workload or execution system.

series. Subsequently, they apply various prediction methods
to this data, including the mean and last value alongside au-
toregression approaches and nonlinear schemes. They find that
often there is a sweet spot in the resolution of the bandwidth
probe signal which improves predictability, but the optimal res-
olution depends on unidentified criteria. Notably, simple mod-
els are shown to be competitive with more complex prediction
schemes, a result that has already been observed by Vazhkudai
and Schopf [111].

6. Obtaining Performance Indicators

All methods presented in this survey rely on performance
measurements of jobs or tasks that do not require modifications
to the workload. We thus give a brief overview of common
tools and methods for black-box performance monitoring. To
observe performance of jobs and tasks in a non-intrusive way,
various tools and methods are available. These produce data
at different levels of granularity and at different levels of over-
head. As shown in Figure 3, one can distinguish approaches
that aim at measuring the behavior of an application, the per-
formance of the resources, and the interaction between both.4

In the following, we briefly explain each approach, give usage
examples, cite exemplary tools and discuss their overhead.

Benchmarks can be used to measure the performance of a
node with respect to some representative task. Measuring such
task-specific performance is important because resource con-
sumption may depend on complex interactions, e. g., between
CPU, memory and mass storage. To compare the performance
of two nodes with respect to some task, their benchmark scores
are likely more useful than their hardware specifications, given
that the task to schedule is similar to the benchmark task. Pop-
ular benchmark suites are SPEC [114] and PARSEC [87]. As
benchmarks are usually only executed once, their overhead is
negligible. Load probes are a related technique, which aim at
the current, transient performance of a subsystem, usually the
network. A small amount of data is sent in order to measure
the current available bandwidth and latency. This technique
was used for instance in the Network Weather Service [56] and
many others [115, 55]. With respect to overhead, probe sizes
closer to the actual transfer size are more representative, but
also incur higher overhead [55].

4Another common source of information are application logs, but these
require information on how to parse, interpret, and use the relevant informa-
tion [113], which is not available in a black-box scenario.

Operating systems provide means to inspect the current load
on a node’s devices and all running processes. In a virtualized
environment, the hypervisor plays a similar role as the oper-
ating system and can be used to collect performance measure-
ments [67]. In a Linux environment, the virtual proc file sys-
tem exposes performance information, e. g., about the CPU and
memory usage of individual processes. Another option is to
monitor the task’s interaction with the operating system by in-
tercepting system calls. This can be used, e. g., to measure the
amount of data a task reads and writes, which is an aspect of
application behavior, rather than resource performance. Tools
like uptime, vmstat, and iostat are useful to determine the
current load of CPU or mass storage devices [56, 111]. As an
example of a higher-level tool, Kickstart [116] can be used to
wrap the execution of any task and collect comprehensive per-
formance information. The overhead of polling operating sys-
tem performance metrics is low, while intercepting system calls
for tasks can be expensive, depending on how much informa-
tion is collected.

Binary instrumentation is a technique that modifies the ex-
ecutable of a program to collect information about its behav-
ior while it executes. In general, it is challenging to obtain
hardware-independent information about a black-box task, be-
cause its observed performance is always a product of the task
behavior and the resources it interacts with. Using binary in-
strumentation, memory access patterns can be characterized in
a microarchitecture independent manner [117], giving some low-
level insights into program behavior. For instance, Marin et
al. [73] use binary instrumentation to measure memory access
patterns to select a CPU with appropriate cache size. Typical
tools for binary instrumentation are PEBIL [118] and Dyninst [119].
This technique has relatively high overhead and the execution
duration of the binary can increase considerably.

Scheduler log files are a widely used source for training pre-
diction models. They usually comprise metadata and perfor-
mance data, such as the submitting user, the application name
and the observed resource consumption of a job. Since high-
level performance metrics like the job execution duration are a
joint product of resource usage pattern and hardware character-
istics, we classify log files as a monitoring technique for inter-
action effects. Comprehensive logs from large-scale systems in
science and industry are occasionally published, e. g., the par-
allel workloads archive [120] or Google cluster traces [121].
Each application can also log its own performance data, and
a tailored analysis can yield valuable information [113], but
since it cannot be exploited in an application-independent way,
such approaches are out of the scope for this work. Since the
scheduler usually collects accounting information anyways dur-
ing operation, log data comes virtually for free.

Hardware performance counters provide low level insights
into task behavior. Performance counters are dedicated registers
in a CPU that can be used for measuring events, such as cache
misses, branch mispredictions, or the total number of CPU cy-
cles consumed by a process. They are often used to reveal the
performance degradation due to sharing resources with another
task, e. g., by measuring an increase in cache misses or cycles
per instruction compared to executing with exclusive access to

14



Table 5: Open topics in PPM research. Benefits are abbreviated as prediction
accuracy (A), model generalizability (G), and overhead reduction (O).

Domain Opportunities Benefits

Prediction Online Learning A,G,O
Active Learning A,O
Multi-resource models A
Temporal resource usage A
Multi-level parallelism A
Continuous prediction A

Data collection
Resource-agnostic workload
patterns A,G,O

Monitoring data integration A,G

Decision making Holistic approaches A,G,O
Sufficient accuracy models O

resources. For instance, Zhao et al. [68] and Dwyer et al. [101]
predict the slowdown experienced by two applications contend-
ing for shared CPU resources based on performance counter ob-
servations. As the configuration of these hardware performance
counters is microarchitecture-specific, typically a high-level in-
terface like PAPI [122] or LIKWID [123] is used for interacting
with performance counters. Because measurement takes place
in hardware, hardware performance counters incur only negli-
gible overhead.

7. Open Issues and Directions for Research

The reviewed literature demonstrates the long-standing and
evolving research in predictive performance modeling. In this
section, we identify future trends and research opportunities
in the field. We tag research opportunities according to three
classes of improvements. Most research aims at improving the
prediction accuracy (A) delivered by a predictor in a certain
scenario. A second, often opposing goal is model generaliz-
ability (G), i. e., the ability of a predictor to perform well in a
large range of scenarios. Thirdly, collecting training data for
predictors can incur significant costs. Therefore, reducing the
overhead (O) associated to integrating PPM into a system is an-
other research goal. An overview of the research opportunities
discussed in the following is given in Table 5.

7.1. Prediction
Often, PPM methods involve an offline phase in which per-

formance measurements are taken, models are trained, and hy-
perparameters are chosen. On the upside, this approach allows
for costly collection of high quality training data (since it is
usually performed only once) and keeps the complexity of the
production system low. On the downside, this approach cannot
directly benefit from data collected during system operation.
Performance may degrade over time, as the system or its work-
load changes. Thus, we see a major research opportunity in
approaching training and prediction in an online fashion, i. e.,
collecting training data and updating prediction models during
system operation.

A major challenge in PPM using machine learning is that
training data sets can be expensive to obtain, as each observa-
tion might come at significant costs. In addition to using data
that is generated during system operation, active learning [124]
approaches and sampling strategies [125, 126] might reduce
data collection overhead and increase accuracy by achieving
better coverage of the feature space.

In the literature, models for predicting execution duration
dominate. Recently however, other resource types such as mem-
ory [127, 128] shift more into focus. A research opportunity
would be to investigate and predict the interdependent usage of
resources rather than predicting the usage of each resource type
separately [5, 8]. Predictions regarding disk and memory usage
are essential to more efficiently provision resources, e. g., in a
cloud scenario [129]. Predictions for resources other than the
CPU gain importance as I/O- and memory-intensive workloads
arise [130] in distributed computing.

A related research direction is the exploration of temporal
variations. Resource usage of tasks and jobs usually varies
across time and predicting the usage of multiple resources as
a (multi-dimensional) time series rather than as their aggregate
metrics could lead to more sophisticated schemes to improve
resource utilization and reduce contention between jobs and
tasks. Phase analysis [131, 132] is a related research field that
explores the resource usage of programs on a cycle-accurate
level, but we see a research gap in exploring the use of several
resources in a black-box fashion and across various time scales.

Large-scale computing involves multiple levels of parallelism,
ranging from multi-core architectures over clusters to grid and
federated cloud [133] scenarios. This flexibility offers new trade-
offs with severe performance implications, for instance when
having to choose between fewer machines with more cores and
more machines with fewer cores. Resources like memory, net-
work, and disks per compute node contribute to complex per-
formance behavior [91]. Predicting performance for various re-
source configurations and granularities of parallelization is es-
pecially pressing in cloud scenarios, where users have to choose
from a large range of compute node types [23].

Another challenge is handling errors from PPM. While all
methods strive for high average accuracy, maximum errors can
still be high. To mitigate those effects and to avoid catastrophic
decisions, schemes to correct decisions [134, 135] and update
predictions [34] are emerging. Another possible research di-
rection is to extend single predictions before making a deci-
sion with continuous predictions that account for newly arriv-
ing monitoring information and provide a decision maker with
updated, more accurate predictions.

7.2. Data Collection
A largely unexplored aspect is the collection of resource-

agnostic workload patterns. Observed performance is usually a
product of a task’s or job’s resource usage patterns and a spe-
cific resource configuration. For example, the number of cache
misses is a product of the application’s memory access pattern
and the cache size. To predict performance across various re-
source configurations, it would be helpful to quantify applica-
tion behavior in a resource-independent way. Approaches that

15



collect such information in a black-box fashion exist [117, 73]
but incur high runtime overheads and cover only low-level per-
formance metrics. Detecting and accounting for more general
interaction effects between workload and resources would sup-
port PPM by reducing the amount of data that needs to be col-
lected and would help to generalize better to other resource con-
figurations.

Various technologies have transformed the landscape of dis-
tributed computing during the last years. For instance, the cgroups
kernel feature in Linux operating systems now allows for bet-
ter monitoring and control of the resource usage of processes
or groups of processes. On the networking side, software de-
fined networking has introduced new opportunities to monitor
and thus predict resource usage. Hardware performance coun-
ters allow for low-level characterization of application perfor-
mance. Aggregating this low-level information to more de-
scriptive metrics and integrating the data of various sources
to characterize an application’s resource usage is both an en-
gineering and a research challenge.

7.3. Decision Making
There is a dichotomy in the literature between scheduling

and prediction: scheduling research often takes the availabil-
ity of performance estimates for granted and research on PPM
seldomly explores its impact on scheduling. We see a large
research potential in the exploration of holistic approaches to
prediction, data collection, and decision making. For instance,
improving prediction quality could be added the objectives of
a scheduler. By integrating scheduling and prediction, systems
that continuously improve accuracy, adopt to changing work-
loads, and make optimal use of performance observations dur-
ing system operation become feasible.

In this context, the question of sufficient prediction accu-
racy arises, i. e., how scheduling quality is affected by predic-
tion accuracy. This relationship has been empirically evaluated
before [60, 4, 13], but the results are ambiguous and still lack a
theoretical foundation. Further research in this area might en-
able models of sufficient accuracy, that allow for better trade-
offs between data collection efforts, the resulting prediction ac-
curacy, and the returns of improved decision making.

8. Conclusion

Predictive performance modeling methods are important to
support distributed computing at growing scales and levels of
automation, under increasing hardware complexity and work-
load diversity. We surveyed approaches that provide perfor-
mance predictions to improve the utilization, throughput, and
other efficiency metrics of distributed computing systems. The
approaches were compared in various dimensions, most impor-
tantly the principal performance factors they account for, i. e.,
resource usage patterns, resource heterogeneity, problem scale,
and resource contention. From this perspective, we reviewed
and classified the literature according to prediction model, in-
put and output data, and use cases.

In conclusion, machine learning methods are an approach to
the problem of efficiently managing and planning resources in

distributed systems under various factors of uncertainty. They
offer greater versatility and reduced development costs com-
pared to simulation and analytical performance models that are
tailor-made for specific applications and infrastructures. The
key idea is to put a stronger emphasis on observed performance
factors as opposed to the performance factors anticipated by an
analytical model or simulation, which offers greater flexibility
at the price of reduced prediction accuracy. However, we be-
lieve that machine learning approaches are necessary to make
PPM available in practice for a large range of applications and
computing platforms. Further developments in PPM and their
integration into scheduling algorithms promise improved re-
source utilization, reduced execution times and costs, and more
satisfied users.

Acknowledgements

Carl Witt, Marc Bux, and Wladislaw Gusew have received
funding by the Deutsche Forschungsgemeinschaft (DFG) through
the SOAMED graduate school (GRK 1651).

References

References

[1] I. T. Foster, Y. Zhao, I. Raicu, S. Lu, Cloud Computing and Grid Com-
puting 360-degree compared, in: Grid Computing Environments Work-
shop, IEEE, 2008.

[2] H. Hussain, S. U. R. Malik, A. Hameed, S. U. Khan, G. Bickler, N. Min-
Allah, M. B. Qureshi, L. Zhang, W. Yongji, N. Ghani, J. Kolodziej, A. Y.
Zomaya, C.-Z. Xu, P. Balaji, A. Vishnu, F. Pinel, J. E. Pecero, D. Kli-
azovich, P. Bouvry, H. Li, L. Wang, D. Chen, A. Rayes, A survey on
resource allocation in high performance distributed computing systems,
Parallel Computing 39 (11) (2013) 709–736.

[3] T. L. Casavant, J. G. Kuhl, A taxonomy of scheduling in general-purpose
distributed computing systems, IEEE Transactions on Software Engi-
neering 14 (2) (1988) 141–154.

[4] H. Casanova, A. Legrand, D. Zagorodnov, F. Berman, Heuristics for
scheduling parameter sweep applications in grid environments, 9th Het-
erogeneous Computing Workshop (HCW 2000) (2000) 349–363.

[5] A. Matsunaga, J. A. B. Fortes, On the Use of Machine Learning to Pre-
dict the Time and Resources Consumed by Applications, in: IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, IEEE,
2010, pp. 495–504.

[6] W. Smith, I. T. Foster, V. E. Taylor, Predicting application run times
using historical information, Job Scheduling Strategies for Parallel Pro-
cessing.

[7] M. A. Iverson, F. Özgüner, L. Potter, Statistical Prediction of Task
Execution Times through Analytic Benchmarking for Scheduling in a
Heterogeneous Environment, IEEE Transactions on Computers 48 (12)
(1999) 1374–1379.

[8] M. V. Devarakonda, R. K. Iyer, Predictability of Process Resource Us-
age: A Measurement-Based Study on UNIX, IEEE Trans. Software Eng.
15 (12) (1989) 1579–1586.

[9] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. Perry, J. S. Harper,
D. V. Wilcox, Pace—A Toolset for the Performance Prediction of Paral-
lel and Distributed Systems, International Journal of High Performance
Computing Applications 14 (3) (2000) 228–251.

[10] V. E. Taylor, X. Wu, R. Stevens, Prophesy: an infrastructure for per-
formance analysis and modeling of parallel and grid applications, ACM
SIGMETRICS Performance Evaluation Review 30 (4) (2003) 13–18.

[11] M. Khan, Y. Jin, M. Li, Y. Xiang, C. Jiang, Hadoop Performance Mod-
eling for Job Estimation and Resource Provisioning, IEEE Transactions
on Parallel and Distributed Systems 27 (2) (2016) 441–454.

16



[12] A. Ganapathi, H. A. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. I. Jordan,
D. A. Patterson, Predicting Multiple Metrics for Queries, ICDE.

[13] D. Tsafrir, Y. Etsion, D. G. Feitelson, Backfilling Using System-
Generated Predictions Rather than User Runtime Estimates., IEEE
Transactions on Parallel and Distributed Systems 18 (6) (2007) 789–
803.

[14] E. Agullo, O. Beaumont, L. Eyraud-Dubois, S. Kumar, Are Static
Schedules so Bad? A Case Study on Cholesky Factorization, IPDPS
(2016) 1021–1030.

[15] É. Gaussier, D. Glesser, V. Reis, D. Trystram, Improving backfilling by
using machine learning to predict running times., SC (2015) 64–10.

[16] W. Tang, N. Desai, D. Buettner, Z. Lan, Analyzing and adjusting user
runtime estimates to improve job scheduling on the Blue Gene/P, in:
Proceedings of the 2010 IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2010, Illinois Institute of Technology,
Chicago, United States, IEEE, 2010, pp. 1–11.

[17] J. M. Ramı́rez-Alcaraz, A. Tchernykh, R. Yahyapour,
U. Schwiegelshohn, A. Quezada-Pina, J. L. González-Garcı́a,
A. Hirales-Carbajal, Job Allocation Strategies with User Run Time
Estimates for Online Scheduling in Hierarchical Grids, Journal of Grid
Computing 9 (1) (2011) 95–116.

[18] F. E. Harrell, Regression Modeling Strategies, With Applications to Lin-
ear Models, Logistic and Ordinal Regression, and Survival Analysis,
Springer, 2015.

[19] W. W. S. Wei, Time Series Analysis, Univariate and Multivariate Meth-
ods, Pearson Addison Wesley, 2006.

[20] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large
clusters, Communications of the ACM 51 (1) (2008) 107–113.

[21] A. Gandomi, M. Haider, Beyond the hype: Big data concepts, methods,
and analytics, International Journal of Information Management 35 (2)
(2015) 137–144.

[22] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, S. U.
Khan, The rise of ”big data” on cloud computing - Review and open
research issues., Inf. Syst. 47 (2015) 98–115.

[23] S. Venkataraman, Z. Yang, M. J. Franklin, B. Recht, I. Stoica, Ernest -
Efficient Performance Prediction for Large-Scale Advanced Analytics,
in: 13th USENIX Symposium on Networked Systems Design and Im-
plementation, 2016.

[24] C. S. Liew, M. P. Atkinson, M. Galea, T. F. Ang, P. Martin, J. I. V.
Hemert, Scientific Workflows: Moving Across Paradigms, ACM Com-
puting Surveys (CSUR) 49 (4) (2017) 66–39.

[25] S. Pllana, I. Brandic, S. Benkner, A survey of the state of the art in per-
formance modeling and prediction of parallel and distributed computing
systems, International Journal of Computational Intelligence Research
4 (1).

[26] S. Seneviratne, S. Witharana, A survey on methodologies for runtime
prediction on grid environments, in: International Conference on Infor-
mation and Automation for Sustainability, The University of Sydney,
Sydney, Australia, 2014.

[27] B. Jennings, R. Stadler, Resource Management in Clouds - Survey and
Research Challenges., J. Network Syst. Manage. 23 (3) (2014) 567–619.

[28] M. B. Qureshi, M. M. Dehnavi, N. Min-Allah, M. S. Qureshi, H. Hus-
sain, I. Rentifis, N. Tziritas, T. Loukopoulos, S. U. Khan, C.-Z. Xu, A. Y.
Zomaya, Survey on Grid Resource Allocation Mechanisms, Journal of
Grid Computing 12 (2) (2014) 399–441.

[29] F. Hutter, L. Xu, H. H. Hoos, K. Leyton-Brown, Algorithm runtime pre-
diction: Methods & evaluation, Artificial Intelligence 206 (2014) 79–
111.

[30] R. Osman, W. J. Knottenbelt, Database system performance evaluation
models: A survey, Performance Evaluation 69 (10) (2012) 471–493.

[31] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, A. Warfield, P. Barham, B. Dragovic, K. Fraser, S. Hand,
A. Ho, R. Neugebauer, I. Pratt, A. Warfield, Xen and the art of virtual-
ization, Vol. 37, ACM, 2003.

[32] M. Hovestadt, O. Kao, A. Keller, A. Streit, Scheduling in HPC Re-
source Management Systems: Queuing vs. Planning, in: Computer Per-
formance Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg,
2003, pp. 1–20.

[33] Y. Zhu, L. M. Ni, A survey on grid scheduling systems, Tech. rep.,
Shanghai Jiao Tong University (2003).

[34] C. Delimitrou, C. Kozyrakis, Quasar: resource-efficient and QoS-aware

cluster management., ASPLOS (2014) 127–144.
[35] R. Ferreira da Silva, R. Filgueira, I. Pietri, M. Jiang, R. Sakellariou,

E. Deelman, A characterization of workflow management systems for
extreme-scale applications, Future Generation Computing Systems.

[36] H. Topcuoglu, S. Hariri, M.-Y. Wu, Performance-effective and low-
complexity task scheduling for heterogeneous computing, IEEE Trans-
actions on Parallel and Distributed Systems 13 (3) (2002) 260–274.

[37] J. K. Lenstra, A. H. G. Rinnooy Kan, P. Brucker, Complexity of Ma-
chine Scheduling Problems, in: Studies in Integer Programming, Else-
vier, 1977, pp. 343–362.

[38] F. Dong, S. G. Akl, Scheduling algorithms for grid computing: State
of the art and open problems, Tech. Rep. 2006-504, Queen’s University
(2006).

[39] S. Smanchat, K. Viriyapant, Taxonomies of workflow scheduling prob-
lem and techniques in the cloud, Future Generation Computing Systems
52 (2015) 1–12.

[40] Z.-H. Zhan, X.-F. Liu, Y.-J. Gong, J. Zhang, H. S.-H. Chung, Y. Li,
Cloud Computing Resource Scheduling and a Survey of Its Evolutionary
Approaches, ACM Computing Surveys (CSUR) 47 (4) (2015) 1–33.

[41] R. V. Lopes, D. Menasce, A Taxonomy of Job Scheduling on Distributed
Computing Systems, IEEE Transactions on Parallel and Distributed Sys-
tems 27 (12) (2016) 3412–3428.

[42] A. W. Mu’alem, D. G. Feitelson, Utilization, Predictability, Workloads,
and User Runtime Estimates in Scheduling the IBM SP2 with Back-
filling, IEEE Transactions on Parallel and Distributed Systems 12 (6)
(2001) 529–543.

[43] Y.-K. Kwok, I. Ahmad, Static scheduling algorithms for allocating di-
rected task graphs to multiprocessors, ACM Computing Surveys 31 (4)
(1999) 406–471.

[44] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, K. Kennedy,
Task scheduling strategies for workflow-based applications in grids.,
CCGRID (2005) 759–767.

[45] H. Li, D. Groep, J. Templon, L. Wolters, Predicting job start times on
clusters, in: International Symposium on Cluster Computing and the
Grid, Leiden University, Leiden, Netherlands, IEEE, 2004, pp. 301–308.

[46] H. Li, D. Groep, L. Wolters, Mining performance data for metaschedul-
ing decision support in the Grid, Future Generation Computer Systems
23 (1) (2007) 92–99.

[47] R. L. F. Cunha, E. R. Rodrigues, L. P. Tizzei, M. A. S. Netto, Job place-
ment advisor based on turnaround predictions for HPC hybrid clouds,
Future Generation Computer Systems 67 (2017) 35–46.

[48] J. Liu, E. Pacitti, P. Valduriez, M. Mattoso, A Survey of Data-Intensive
Scientific Workflow Management, Journal of Grid Computing.

[49] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh, S. A.
McKee, Methods of Inference and Learning for Performance Modeling
of Parallel Applications, PPOPP.

[50] W. Pfeiffer, N. J. Wright, Modeling and predicting application perfor-
mance on parallel computers using HPC challenge benchmarks, IEEE
International Symposium on Parallel and Distributed Processing (2008)
1–12.

[51] M. Kuperberg, K. Krogmann, R. Reussner, Performance Prediction
for Black-Box Components Using Reengineered Parametric Behaviour
Models, in: Component-Based Software Engineering, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008, pp. 48–63.

[52] R. Ferreira da Silva, G. Juve, M. Rynge, E. Deelman, M. Livny, Online
Task Resource Consumption Prediction for Scientific Workflows, Paral-
lel Processing Letters 25 (03) (2015) 1541003.

[53] S. Vazhkudai, J. M. Schopf, Using Regression Techniques to Predict
Large Data Transfers, International Journal of High Performance Com-
puting Applications 17 (3) (2003) 249–268.

[54] E. Arslan, K. Guner, T. Kosar, HARP - predictive transfer optimization
based on historical analysis and real-time probing., in: the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2016.

[55] M. Faerman, A. Su, R. Wolski, F. Berman, Adaptive performance pre-
diction for distributed data-intensive applications, in: ACM International
Conference on Supercomputing, ACM Press, New York, New York,
USA, 1999.

[56] R. Wolski, N. T. Spring, J. Hayes, The network weather service: a dis-
tributed resource performance forecasting service for metacomputing.,
Future Generation Computer Systems (1999) 757–768.

17



[57] D. M. Swany, R. Wolski, Multivariate resource performance forecasting
in the network weather service., SC.

[58] W. Gropp, E. Lusk, A. Skjellum, Using MPI: portable parallel program-
ming with the message-passing interface, MIT Press, 1999.

[59] A. B. Downey, Predicting Queue Times on Space-Sharing Parallel Com-
puters., IPPS (1997) 209–218.

[60] R. Gibbons, A Historical Application Profiler for Use by Parallel Sched-
ulers., Job Scheduling Strategies for Parallel Processing 1291 (Chapter
3) (1997) 58–77.

[61] T. Miu, P. Missier, Predicting the Execution Time of Workflow Activi-
ties Based on Their Input Features, in: High Performance Computing,
Networking, Storage and Analysis, IEEE, 2012, pp. 64–72.

[62] F. Ahmad, S. T. Chakradhar, A. Raghunathan, T. N. Vijaykumar, Tarazu
- Optimizing MapReduce on Heterogeneous Clusters, Acm Sigplan No-
tices 47 (4) (2012) 61–74.

[63] D. Cheng, J. Rao, Y. Guo, X. Zhou, Improving MapReduce perfor-
mance in heterogeneous environments with adaptive task tuning, in: the
15th International Middleware Conference, ACM Press, New York, New
York, USA, 2014, pp. 97–108.

[64] M. Bux, U. Leser, DynamicCloudSim: Simulating heterogeneity in
computational clouds, Future Generation Computer Systems.

[65] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. de Supinski,
M. Schulz, A regression-based approach to scalability prediction, in:
International Conference on Supercomputing, ACM, New York, New
York, USA, 2008, pp. 368–377.

[66] P. A. Dinda, Online prediction of the running time of tasks, 10th IEEE
International Symposium on High Performance Distributed Computing
(2002) 383–394.

[67] Y. Koh, R. C. Knauerhase, P. Brett, M. Bowman, Z. Wen, C. Pu, An
Analysis of Performance Interference Effects in Virtual Environments.,
ISPASS (2007) 200–209.

[68] J. Zhao, H. Cui, J. Xue, X. Feng, Predicting Cross-Core Performance
Interference on Multicore Processors with Regression Analysis, IEEE
Transactions on Parallel and Distributed Systems 27 (5) (2016) 1443–
1456.

[69] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learn-
ing, Data Mining, Inference, and Prediction, Second Edition, Springer
Science & Business Media, 2009.

[70] A. B. Downey, D. G. Feitelson, The elusive goal of workload characteri-
zation., SIGMETRICS Performance Evaluation Review () 26 (4) (1999)
14–29.

[71] L. T. Yang, X. Ma, F. Mueller, Cross-Platform Performance Prediction
of Parallel Applications Using Partial Execution., SC.

[72] N. H. Kapadia, J. A. B. Fortes, C. E. Brodley, Predictive Application-
Performance Modeling in a Computational Grid Environment., in: In-
ternational Symposium on High-Performance Distributed Computing,
1999.

[73] G. Marin, J. Mellor-Crummey, Cross-Architecture Performance Predic-
tions for Scientific Applications Using Parameterized Models, ACM
SIGMETRICS Performance Evaluation Review 32 (1) (2004) 2.

[74] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John,
K. De Bosschere, Performance Prediction based on Inherent Program
Similarity, in: International Conference on Extending Database Tech-
nology, ACM Press, New York, New York, USA, 2006, p. 114.

[75] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith, R. H. Katz,
Selecting the Best VM Across Multiple Public Clouds: A Data-Driven
Performance Modeling Approach, ACM, New York, New York, USA,
2017.

[76] G. Chatzopoulos, A. Dragojevic, R. Guerraoui, ESTIMA - extrapolating
scalability of in-memory applications., PPOPP 12-16-March-2016 (8)
(2017) 1–11.

[77] S. Govindan, J. Liu, A. Kansal, A. Sivasubramaniam, Cuanta - quan-
tifying effects of shared on-chip resource interference for consolidated
virtual machines., Symposium on Cloud Computing (2011) 22–14.

[78] Y. Gao, H. Rong, J. Z. Huang, Adaptive grid job scheduling with genetic
algorithms, Future Generation Computer Systems 21 (1) (2005) 151–
161. doi:10.1016/j.future.2004.09.033.

[79] M. V. Devarakonda, R. K. Iyer, Predictability of Process Resource Us-
age: A Measurement-Based Study on UNIX, IEEE Transactions on
Software Engineering 15 (12) (1989) 1579–1586. doi:10.1109/32.

58769.

[80] P. A. Dinda, A prediction-based real-time scheduling advisor, in: Pro-
ceedings - International Parallel and Distributed Processing Symposium,
IPDPS 2002, Northwestern University, Evanston, United States, IEEE,
2002, pp. 88–95.

[81] Y. Zhang, W. Sun, Y. Inoguchi, Predict task running time in grid envi-
ronments based on CPU load predictions, Future Generation Computer
Systems 24 (6) (2008) 489–497.

[82] R. Wolski, Dynamically forecasting network performance using the Net-
work Weather Service, Cluster Computing, IEEE International Confer-
ence on 1 (1) (1998) 119–132.

[83] R. Wolski, N. Spring, J. Hayes, Predicting the CPU availability of time-
shared Unix systems on the computational grid, Cluster Computing,
IEEE International Conference on 3 (4) (2000) 293–301.

[84] L. Yang, I. T. Foster, J. M. Schopf, Homeostatic and Tendency-Based
CPU Load Predictions, IPDPS.

[85] L. Yang, J. M. Schopf, I. T. Foster, Conservative Scheduling, in: the
2003 ACM/IEEE conference, ACM Press, New York, New York, USA,
2003, p. 31.

[86] Y. Wu, K. H. 0001, Y. Yuan, W. Zheng, Adaptive Workload Prediction
of Grid Performance in Confidence Windows., IEEE Trans. Parallel Dis-
trib. Syst.

[87] C. Bienia, Benchmarking Modern Multiprocessors, Ph.D. thesis, Prince-
ton University, Princeton University (2011).

[88] J. Mars, L. Tang, R. Hundt, K. Skadron, M. Lou Soffa, Bubble-Up -
increasing utilization in modern warehouse scale computers via sensible
co-locations., MICRO.

[89] W. Smith, Prediction Services for Distributed Computing, IPDPS (2007)
1–10.

[90] S. Pumma, W.-c. Feng, P. Phunchongharn, S. Chapeland, T. Achalakul,
A runtime estimation framework for ALICE, Future Generation Com-
puter Systems 72 (2017) 65–77.

[91] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, M. Zhang,
CherryPick - Adaptively Unearthing the Best Cloud Configurations for
Big Data Analytics., NSDI.

[92] M. Dobber, R. van der Mei, G. Koole, A prediction method for job run-
times on shared processors: Survey, statistical analysis and new avenues,
Performance Evaluation 64 (2007) 755–781.

[93] H. A. Sanjay, S. Vadhiyar, Performance modeling of parallel applica-
tions for grid scheduling, Journal of Parallel and Distributed Computing
68 (8) (2008) 1135–1145.

[94] D. G. Feitelson, B. Nitzberg, Job characteristics of a production parallel
scientific workload on the NASA Ames iPSC/860, Economics of Grids
949 (Chapter 19) (1995) 337–360.

[95] J. Brevik, D. Nurmi, R. Wolski, Predicting bounds on queuing delay for
batch-scheduled parallel machines., PPOPP (2006) 110–118.

[96] D. Nurmi, J. Brevik, R. Wolski, QBETS: queue bounds estimation from
time series, in: International Conference on Job scheduling strategies for
parallel processing, California State University Long Beach, Springer-
Verlag, 2007.

[97] W. Smith, V. E. Taylor, I. T. Foster, Using Run-Time Predictions to
Estimate Queue Wait Times and Improve Scheduler Performance., Job
Scheduling Strategies for Parallel Processing (1999) 202–219.

[98] F. Nadeem, T. Fahringer, Optimizing execution time predictions of sci-
entific workflow applications in the Grid through evolutionary program-
ming, Future Generation Computer Systems 29 (4) (2013) 926–935.

[99] R. M. Piro, A. Guarise, G. Patania, A. Werbrouck, Using historical ac-
counting information to predict the resource usage of grid jobs, Future
Generation Computer Systems 25 (5) (2009) 499–510.

[100] O. Sonmez, N. Yigitbasi, A. Iosup, D. Epema, Trace-based evaluation of
job runtime and queue wait time predictions in grids, in: ACM Interna-
tional Symposium on High Performance Distributed Computing, ACM
Press, New York, New York, USA, 2009, pp. 111–120.

[101] T. Dwyer, A. Fedorova, S. Blagodurov, M. Roth, F. Gaud, J. Pei, A
practical method for estimating performance degradation on multicore
processors, and its application to HPC workloads, in: High Performance
Computing, Networking, Storage and Analysis, International Confer-
ence on, Simon Fraser University, IEEE Computer Society Press, 2012,
pp. 1–11.

[102] L. Rokach, O. Maimon, Data Mining with Decision Trees - Theory and
Applications. 2nd Edition, Series in Machine Perception and Artificial
Intelligence 81.

18

http://dx.doi.org/10.1016/j.future.2004.09.033
http://dx.doi.org/10.1109/32.58769
http://dx.doi.org/10.1109/32.58769


[103] K. A. Asanovic, R. A. Bodik, B. C. A. Catanzaro, J. J. A. Gebis, P. A.
Husbands, K. A. Keutzer, D. A. A. Patterson, W. L. A. Plishker, J. A.
Shalf, S. W. A. Williams, K. A. A. Yelick, The Landscape of Parallel
Computing Research: A View from Berkeley, Tech. Rep. UCB/EECS-
2006-183 (2006).

[104] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
K. Skadron, Rodinia: A benchmark suite for heterogeneous computing,
in: 2009 IEEE International Symposium on Workload Characterization
(IISWC), IEEE, 2009, pp. 44–54.

[105] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, S. K. Weeratunga, The Nas
Parallel Benchmarks, International Journal of Supercomputer Applica-
tions and High Performance Computing 5 (3) (1991) 63–73.

[106] A. Kaiser, TORCH Computational Reference Kernels - A Testbed for
Computer Science Research, Lawrence Berkeley National Laboratory.

[107] E. Ipek, B. R. de Supinski, M. Schulz, S. A. McKee, An Approach
to Performance Prediction for Parallel Applications, in: Computer Per-
formance Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg,
2005, pp. 196–205.

[108] N. R. Draper, H. Smith, Applied regression analysis, Wiley series in
probability and mathematical statistics, Wiley, 1998.

[109] Z. Liu, P. Balaprakash, R. Kettimuthu, I. T. Foster, Explaining Wide
Area Data Transfer Performance, HPDC (2017) 167–178.

[110] M. Swany, R. Wolski, Multivariate resource performance forecasting in
the network weather service, in: SC ’02: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Stor-
age and Analysis, IEEE, 2002.

[111] S. Vazhkudai, J. Schopf, Using regression techniques to predict large
data transfers, The International Journal of High Performance Comput-
ing Applications 17 (3) (2003) 249–268.

[112] Y. Qiao, J. A. Skicewicz, P. A. Dinda, An Empirical Study of the Multi-
scale Predictability of Network Traffic, in: International Symposium on
High-Performance Distributed Computing, 2004.

[113] J. Tan, X. Pan, S. Kavulya, R. Gandhi, P. Narasimhan, SALSA - Ana-
lyzing Logs as StAte Machines, in: USENIX Workshop on the Analysis
of System Logs, 2008.

[114] J. L. Henning, SPEC CPU2006 benchmark descriptions, ACM
SIGARCH Computer Architecture News 34 (4) (2006) 1–17.

[115] Y. Yuan, Y. Wu, G. Yang, W. Zheng, Adaptive hybrid model for long
term load prediction in computational grid, in: IEEE International Sym-
posium on Cluster Computing and the Grid, Tsinghua University, Bei-
jing, China, 2008, pp. 340–347.

[116] G. Juve, B. Tovar, R. Ferreira da Silva, D. Król, D. Thain, E. Deel-
man, W. E. Allcock, M. Livny, Practical Resource Monitoring for Ro-
bust High Throughput Computing., in: IEEE International Conference
on Cluster Computing, 2015, pp. 650–657.

[117] K. Hoste, L. Eeckhout, Microarchitecture-Independent Workload Char-
acterization., IEEE micro 27 (3) (2007) 63–72.

[118] M. Laurenzano, M. M. Tikir, L. Carrington, A. Snavely, PEBIL - Effi-
cient static binary instrumentation for Linux., ISPASS.

[119] A. R. Bernat, B. P. Miller, Anywhere, any-time binary instrumentation.,
in: SIGPLAN-SIGSOFT workshop on Program analysis for software
tools, ACM Press, New York, New York, USA, 2011, p. 9.

[120] D. G. Feitelson, D. Tsafrir, D. Krakov, Experience with using the Par-
allel Workloads Archive, Journal of Parallel and Distributed Computing
74 (10) (2014) 2967–2982.

[121] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, M. A. Kozuch, Het-
erogeneity and dynamicity of clouds at scale, in: ACM Symposium on
Cloud Computing, ACM Press, New York, New York, USA, 2012, pp.
1–13.

[122] J. Dongarra, K. London, S. Moore, P. Mucci, D. Terpstra, Using papi
for hardware performance monitoring on linux systems, in: LCI ’01:
Proceedings of the 2nd Conference on Linux Clusters: The HPC Revo-
lution, Vol. 5, Linux Clusters Institute, 2001.

[123] J. Treibig, G. Hager, G. Wellein, LIKWID: A Lightweight Performance-
Oriented Tool Suite for x86 Multicore Environments, in: International
Conference on Parallel Processing, IEEE, 2010, pp. 207–216.

[124] F. Olsson, A literature survey of active machine learning in the context of
natural language processing, Tech. rep., Swedish Institute of Computer
Science (2009).

[125] A. Sarkar, J. Guo, N. Siegmund, S. Apel, K. Czarnecki, Cost-Efficient
Sampling for Performance Prediction of Configurable Systems, 2015
30th IEEE/ACM International Conference on Automated Software En-
gineering (ASE) (2015) 342–352.

[126] A. Singh, A. Rao, S. Purawat, I. Altintas, A machine learning approach
for modular workflow performance prediction, in: the 12th Workshop,
ACM Press, New York, New York, USA, 2017, pp. 1–11.

[127] E. Rodrigues, R. L. F. Cunha, M. A. S. Netto, M. Spriggs, Helping HPC
Users Specify Job Memory Requirements via Machine Learning, in:
Proceedings of HUST 2016: 3rd International Workshop on HPC User
Support Tools - Held in conjunction with SC 2016: The International
Conference for High Performance Computing, Networking, Storage and
Analysis, IBM Research, Yorktown Heights, United States, IEEE, 2017,
pp. 6–13.

[128] C. Reiss, Understanding Memory Configurations for In-Memory Ana-
lytics, Ph.D. thesis (2016).

[129] G. Juve, Resource management for scientific workflows, Ph.D. thesis,
University of Southern California, University of Southern California
(Jan. 2012).

[130] E. Pennisi, Will Computers Crash Genomics?, science 331 (6018)
(2011) 666–668.

[131] T. Sherwood, S. Sair, B. Calder, Phase Tracking and Prediction., ISCA
(2003) 336–347.

[132] W. Zhang, J. Li, Y. Li, H. Chen, Multilevel Phase Analysis, ACM Trans-
actions on Embedded Computing Systems (TECS) 14 (2) (2015) 31–29.

[133] R. C. Coutinho, L. Drummond, Y. Frota, Optimizing virtual machine
allocation for parallel scientific workflows in federated clouds, Future
Generation Computer Systems.

[134] N. Mishra, J. D. Lafferty, H. Hoffmann, ESP: A Machine Learning Ap-
proach to Predicting Application Interference, ICAC (2017) 125–134.

[135] M. Jeon, Y. He, H. Kim, S. Elnikety, S. Rixner, A. L. Cox, TPC: Target-
driven parallelism combining prediction and correction to reduce tail
latency in interactive services, in: International Conference on Archi-
tectural Support for Programming Languages and Operating Systems -
ASPLOS, Microsoft Research, Redmond, United States, ACM Press,
New York, New York, USA, 2016, pp. 129–141.

19


	1 Introduction
	2 Background and Scope
	2.1 Abstract View on Resources and Workloads
	2.2 Scheduling Use Cases

	3 Comparing Black-Box Performance Prediction Methods
	3.1 Workload Granularity
	3.2 Performance Metrics
	3.3 Principal Performance Factors
	3.4 Prediction Method

	4 Task Performance Models
	4.1 Resource Usage Pattern Modeling at the Task Level
	4.2 Heterogeneity Modeling at the Task Level
	4.3 Scale Modeling at the Task Level
	4.4 Contention Modeling at the Task Level

	5 Job Performance Models
	5.1 Resource Usage Pattern Modeling at the Job Level
	5.2 Heterogeneity Modeling at the Job Level
	5.3 Scale Modeling at the Job Level
	5.4 Contention Modeling at the Job Level
	5.4.1 Queue Time Prediction
	5.4.2 File Transfer Duration Prediction


	6 Obtaining Performance Indicators
	7 Open Issues and Directions for Research
	7.1 Prediction
	7.2 Data Collection
	7.3 Decision Making

	8 Conclusion

