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Abstract

Over the last few years, data analytics shifted from a descriptive era, confined to the explanation of past events, to the
emergence of predictive techniques. Nonetheless, existing predictive techniques still fail to effectively explore alternative

futures, which continuously diverge from current situations when exploring the effects of what-if decisions.

Enabling

prescriptive analytics therefore calls for the design of scalable systems that can cope with the complexity and the

diversity of underlying data models.

In this article, we address this challenge by combining graphs and time series

within a scalable storage system that can organize a massive amount of unstructured and continuously changing data
into multi-dimensional data models, called Many- Worlds Graphs. We demonstrate that our open source implementation,
GREYCAT, can efficiently fork and update thousands of parallel worlds composed of millions of timestamped nodes, such

as what-if exploration.
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1. Introduction

The data deluge raised by large-scale distributed sys-
tems has called for scalable analytics platforms in order to
guide decisions in critical cyber-physical infrastructures,
such as smart grids [I]. In this domain, predictive analyt-
ics techniques, like sliding window analytics [2], typically
extract temporal models from current and past historical
facts in order to make predictions about the future [3].
However, taking appropriate decisions rather requires pre-
scriptive analytics in order to explore the impact of current
and future actions on the underlying system, better known
as what-if analysis []. More specifically, what-if analysis
is a powerful primitive to plan an optimal sequence of ac-
tions that leads to a desired target state of the underlying
system. Reaching this optimization objective implies to
cover all potential decision timepoints and applicable ac-
tions, thus inevitably yielding to a combinatorial explosion
of alternative scenarios. In addition to that, this decision
process has to deal with the continuous updates of states
as time keeps flowing along.

Graphs are increasingly being used to structure and an-
alyze such complex data [5H7]. However, most of graph
representations only reflect a snapshot at a given time,
while reflected data keeps changing as the systems evolve.
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Figure 1: Snapshots (S;) and deltas (d,) of a time-evolving graph
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Understanding temporal characteristics of time-evolving
graphs therefore attracts increasing attention from re-
search communities [8]—e.g., in the domains of social net-
works, smart mobility, or smart grids [9]. Yet, state-of-
the-art approaches fail to provide a scalable solution to
effectively support time in graphs. In particular, existing
approaches represent time-evolving graphs as sequences of
full-graph snapshots [I0], or they use a combination of
snapshots and deltas [I1], which requires to reconstruct a
graph for a given time, as depicted in Figure

However, full-graph snapshots tend to be expensive in
terms of memory requirements, both on disk and in-
memory. This overhead becomes even worse when data
from several snapshots need to be correlated, which is the
case for most of advanced analytics [9] [T0, 12]. Another
challenging issue related to snapshots relates to the snap-
shotting frequency: regardless of changes, for any change
in the graph, or only for the major changes, which re-
sults in a tradeoff between duplicating data and feeding
analytics with up-to-date metrics. This is crucial when
data evolves rapidly and at different paces for different el-



ements in the graph, like it is for example the case with
sensor data in domains like the Internet of Things (IoT)
or Cyber-Physical Systems (CPS) [9]. An alternative to
snapshotting consists in combining graphs with time series
databases [I3], by mapping individual nodes to time series.
However, this becomes quickly limited when large parts of
the graph evolve over time, inducing multiple time queries
to explore the graph. Moreover, the description and the
evolution of relationships among the nodes of the graph
are rather hard to model within a time series database.

These challenges are even exacerbated when it comes to
what-if analysis on top of such time-evolving graphs.

Therefore, in this article, we propose to adopt the the-
ory of many-worlds interpretation [14], where every single
action can be interpreted as a divergence point, forking
an alternative, independent world. In particular, we in-
troduce the concept of Many-Worlds Graphs (MWG) as
a versatile and scalable analytics data model supporting
the evaluation of hundreds or even thousands of alterna-
tive actions on temporal graphs in parallel. MWG extends
state-of-the-art graph analytics [7], [I5] [16], which are com-
monly used to organize massive amounts of unstructured
data [7, I7]. Beyond the inclusion of temporal aspects
within graphs [10} [18H20], MWG proposes an efficient ex-
ploration of many independently evolving worlds to sup-
port the requirements of what-if analysis. The main con-
tribution of this paper is a novel graph data model to sup-
port large-scale what-if analysis on time-evolving graphs.
Related topics like graph processing, traversing, fault tol-
erance, and distribution are described where necessary.

We demonstrate that GREYCAT, our implementation of
MWG, can efficiently explore hundreds of thousands of
independent worlds in parallel and we assess this capabil-
ity on a real-world smart grid’s workload. GreyCat is open
source and available at GitHuHl MWG and GREYCAT re-
fer to Everett’s [14] many-world interpretation, illustrated
by Schrodinger’s cat [21].

The remainder of this article is organized as follows.
Section [2] introduces a real smart grid case study, as a mo-
tivation of this research. Sections [3] and [ introduce the
main concepts of MWG and their implementation. We
thoroughly evaluate GREYCAT in Section [5} The related
work is discussed in Section [f] before concluding in Sec-
tion [7

2. Motivating Case Study

Intelligent load management is a critical challenge for
electricity utility companies [22], [23]. These companies are
expected to avoid overload situations in electricity cables
by balancing the load. The electric load in cables depends
on the current and historical consumption of customers
connected to a given cable within the system topology—
i.e., how cables are connected to each other and to power
substations.

Thttps://github.com/datathings/greycat

The underlying topology can be changed by opening/-
closing so-called fuses at substations. This results in con-
necting/disconnecting households to different power sub-
stations, therefore impacting the electricity flow within
the grid. As all of this (consumptions, decisions) changes
over time, the idea behind prescriptive analytics is to con-
tinuously simulate the expected load for different topolo-
gies (what-if scenarios) with the goal to find an “optimal”
one—i.e., where the load in all cables is the best balanced.
Smart grids are very-large-scale systems, connecting hun-
dreds of thousands or even hundreds of millions of nodes
(customers). Furthermore, most data in the context of
smart grids is temporal, i.e., it keeps changing over time,
from consumption reports to the topology structure. This
makes the simulation of different what-if scenarios very
challenging and, in addition, it requires to take the tempo-
ral dimension, i.e., data history—into account. Moreover,
many different topologies are possible, which can easily
lead to thousands of different scenarios.

To anticipate potential overload situations, alternative
topologies need to be explored a priori—i.e., before the
problem actually occurs. The estimation of the electric
load depends, aside from the topology, on the consumption
data of customers. In the context of a smart grid, this data
is measured by smart meters, which are installed at cus-
tomers’ homes, and regularly report to utility companies,
(e.g., every 15 minutes [24]). One can compute the electric
load based on the profiles of customers’ consumption be-
havior. These profiles are built using online machine learn-
ing algorithms, such as the ones introduced in [24]. How-
ever, the huge amount of consumption data quickly leads
to millions of values per customer, and efficiently analyzing
such large historical datasets is challenging. The temporal
dimension of data often results in inefficient data querying
and iteration operations to find the requested data. While
this issue has been extensively discussed by the database
community in the 80s and 90s [25, 26], this topic is gaining
popularity again with the advent of time series databases
for the IoT, like InfluxDB [27]. Time series can be seen
as a special kind of temporal data, which is defined as a
sequence of timestamped data points, and is used to store
data like ocean tides, stock values, and weather data. It is
important to note that in time series, data is “flat”, i.e.,
time series only contain primitive tuples, like raw mea-
surements. However, they are not able to capture complex
data structures and their relationships like, for example,
the evolution of a smart grid topology. Therefore, time
series analysis is not sufficient to explore complex what-
if analysis and prescriptive analytics. On the other side,
graph-based storage solutions (e.g., NeodJ [28]), as well
as graph processing frameworks, despite some attempts to
represent time dependent graphs [10, [T, 19} 29], are in-
sufficiently addressing continuously changing data in their
model: either failing to navigate through alternative ver-
sions of a given graph, or inefficiently covering this issue by
generating distinct snapshots of the graph. When we speak
in this paper about temporal data, we refer to this fully
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Figure 2: States of a node in two worlds

temporal aspect and not about flat time series’. Most im-
portantly, none of these solutions supports the large-scale
exploration of different alternatives.

These limitations motivates our work on MWG in or-
der to enable large-scale what-if analysis for prescriptive
analytics [4]. Haas et al. [4], also supports the need for
large-scale what-if analysis in many other domains, e.g.,
weather prediction. Beyond the specificities of smart grids,
we introduce the concept of Many-World Graphs as a scal-
able model to explore alternative scenarios in the context
of what-if analysis.

3. Introducing Many-World Graphs

3.1. Key Concepts

This paper introduces the notion of Many- World Graphs
(MWG), which are directed, attributed hypergraphs which
structure and properties can evolve along time and parallel
worlds. In particular, MWG build on the following core
concepts:

Timepoint is an event, encoded as a timestamp;

World is a parallel universe, used as an identifier;

Node reflects a domain-specific concept, which exists
across worlds, and is used as an identifier;

State is a node’s value for a given world and timepoint,
including attributes and relationships;

Timeline is a sequence of states for a given node and a
given world.

Depending on the timepoint (¢) and world (w), different
states can be fetched from a given node (n). This is il-
lustrated in Figure[2] Therefore, states are organized into
chunks (c¢), which are uniquely mapped from any view-
point:

(n,t,w) : read(n,t,w) — c.

We associate each state chunk with a timepoint (¢;) and
we define a timeline (t,., = [co,.-.,¢n]) as an ordered
sequence of chunks belonging to a given node (n) from
a given world (w). Alternative state chunks in different
worlds therefore form alternative timelines. Hence, a res-
olution function read returns a chunk (¢;) for an input
viewpoint as the “closest” state chunk in the timeline.

Therefore, when a MWG is explored, state chunks of ev-
ery node have to be resolved according to an input world
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Figure 3: Types of many-worlds.

and timepoint. The storage and processing of MWG made
of billions of nodes cannot be done in memory, thus requir-
ing to efficiently store and retrieve chunks from a persistent
data store. For this purpose, we decompose state chunks
into keys and values to leverage existing key/value stores
to persist the data on disk. The mapping of nodes to state
chunks (including attributes and references to other nodes)
and their persistent storage is detailed in Section

While prescriptive analytics tends to explore new worlds
along time, two techniques can be employed when forking
worlds: snapshotting and shared past (cf. Figure [3)).

Snapshotting: consists in copying all state chunks of
all timepoints from a parent world p to the child world
w, thus leaving both worlds to evolve completely indepen-
dently, from past to future. Although this approach is
simple, it is very inefficient in terms of time and storage
to clone all state chunks of all historical records.

Shared past: we propose to adopt an alternative ap-
proach, which makes it unnecessary to copy past state
chunks. Instead, a new world w is diverged from a parent
p at a point s in time. Before ¢, both worlds share the
same past, thus resolving the same state chunks. After ¢,
world w and p co-evolve, which means that each have their
own timeline for ¢,, > t,. Therefore, both worlds share the
same past before the divergent point (for ¢ < s), but each
evolves independently after the divergent point for ¢ > s.

3.2. Many-World Graph Semantics

With MWG, we seek to efficiently organize and analyze
data that can evolve along time and alternative worlds. We
define such a complex topology as a graph G = N xT x W,
where N is the set of nodes, T' the set of timepoints, and
W the set of worlds. However, what-if analysis needs to
explore many different actions, which usually does not af-
fect all data in all worlds and all timepoints. To address
this combinatorial problem of world and timepoint alter-
natives, we define our MWG so that values of each node
are resolved on-demand, based on a reference world and
timepoint. In this section, we formalize the semantics of
our MWG by starting with a base graph definition, which
we first extend with temporal semantics and then with the
many-worlds semantics.



3.3. Base Graph (BG)

A graph G is commonly defined as an ordered pair G =
{V, E} consisting of a set V of nodes and a set E of edges.
In order to distinguish between nodes and their states, we
define a different semantics. First, we define a node as a
conceptual identifier that is mapped to a “state chunk”. A
state chunk contains the values of all attributes and edges
that belong to a node. Attributes are typed according to
one of the following primitive types: int, long, double,
string, bool, or enumerations.

The state chunk ¢ of a node n is:

¢n = (An, Ry), where A, is the set of attribute
values of node n and R, is the set of relationship values
from n to other nodes.

From now on, we refer to edges as directed relationships
or simply as relationships. Unlike other graph models (e.g.,
NeodJ [I7]), our model does not support edge attributes.
Nevertheless, any edge attribute can be easily modeled as
an intermediate node within such graphs, without com-
promising the expressiveness and the efficiency. Besides
being simple, this also makes our graph data model similar
to the object-oriented one, which today is the dominating
data model of many modern programming languages, like
Java, C#, Scala and Swift. This straightforward mapping
leverages the integration of MWG within an application
layer.

Then, we introduce the function read(n) to resolve the
state chunk of a node n. It returns the state chunk of
the node, which contains the relationships—or edges—to
other nodes. Thus, we define a base graph BG as:

BG = {read(n),¥n € N}.

Unlike common graph definitions, our base graph is not
statically defined, but dynamically created as the result
of the evaluation of the read(n) function over all nodes
n. Implicitly, all state chunks of all nodes are dynamically
resolved and the graph aggregates the nodes accordingly to
the relationships defined within the resolved state chunks.
This definition forms the basis for the semantics of our
proposed data model.

In this way, only the destination nodes need to be listed
in the set, since all the directed edges start from the same
node n, thus making it redundant to list the source node.
For example, if we have: ¢, = {{attl},{m,p}}, where
m,p € N, this means that the node n has one attribute
and two relationships (one to node m and another one to
node p). Two directed edges can be implicitly constructed:
n — m and n — p. In the next sections, we overload the
function read incrementally to integrate step by step the
time and many-world semantic.

3.4. Temporal Graph (TG)
To extend our BG with temporal semantics, we override
the function read(n) with a function read(n,t), with ¢t € T.

T is a totally ordered sequence of all possible timepoints:
Vti,tj el t; < tj Vit <t.
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We also extend the state chunk with a temporal repre-
sentation:

cnt = (Ant, Rnt), where A, ; and R, ; are the sets
of resolved values of attributes and relationships, for the
node n at time t.

Then, we define the temporal graph as follows:
TG(t) = {read(n,t),Yn € N},Vt € T.

Every node of the T'G can evolve independently and, as
timepoints can be compared, they naturally form a chrono-
logical order. We define that every state chunk belonging
to a node in a T'G is associated to a timepoint and can
therefore be organized according to this chronological or-
der in a sequence TP C T. We call this ordered sequence
of state chunks the timeline of a node. The timeline ¢l of
a node n is defined as tl,, = {c, ., Vt € TP C T}.

The two core operations insert and read are defined
as follows:

insert(cn,e,n,t): (¢ x N x T) — Void, as the func-
tion that inserts a state chunk in the timeline of a node n,
such as: tl,, :=tl, U {cpni}-

The operation read(n,t): (N x T) — ¢, is the function
that retrieves, from the timeline tl,,, and up until time ¢,
the most recent version of the state chunk of n which was
inserted at timepoint ¢;:

Cn t; if (Cn,ti S tln)
/\(ti S TP) A (ti < t)
/\(th €eTP — tj < ti)
0 otherwise

read(n,t) =

Based on these definitions, although timestamps are dis-
crete, they logically define intervals in which a state chunk
can be considered as wvalid within its timeline. When ex-
ecuting insert(cp, +,,m1,t1) and insert(cn, t,,n1,t2), We
insert 2 state chunks c,, ;, and c,, ., for the same node
ny at two different timepoints with ¢; < to, we define that
Cny 1, is valid in the open interval [t1, to[, and ¢, 4, is valid
in [t2,+o0o[. Thus, an operation read(n,t) resolves @ if
t < ti, Cpyty, When t1 <t < to, and cp, ¢, if t > to for
the same node ny. The corresponding time validities are
depicted in Figure [4]

Since state chunks with this semantics have temporal
validities, relationships between nodes also have temporal
validities. This leads to temporal relationships between
TG nodes and forms a natural extension of relationships in



the time dimension. Once the time resolution returns the
correct timepoint ¢;, the temporal graph can be reduced
to a base graph, therefore a TG for a particular ¢ can be
seen as a base graph: TG(t) = BGy,.

3.5. Many-World Graph (MWG)

To extend the T'G with a many-world semantics, we
refine the definition of the function read(n,t) by consider-
ing, in addition to time, the different worlds. The function
read(n,t,w), with t € T and w € W, where W is the set of
all possible worlds, which resolves the state chunk of node
n at timepoint ¢ in world w. In analogy to Section [3.4] the
state chunk definition is extended as follows:

Cntaw = (An,t,w»Rn,t,w)u where An,t,w and Rn,t,w
are the sets of resolved values of attributes and relation-
ships, for the node n at time ¢, in world w.

From this definition, a MWG is formalized as:

MWG(t,w) = {read(n,t,w),¥Yn € N}, V(t,w) €
T x W, where W is a partially ordered set of all possible
worlds.

The partial order < on the set W is defined by the par-
ent ordering, with (p < w) = (p = parent(w)). Intu-
itively, the set W is partially ordered by the generations
of worlds. However, worlds that are created from the same
parent, or the worlds that are created from different par-
ents, cannot be compared (in terms of order) to each other.
We define the first created world as the root world, with
parent(root) = (). Then, all other worlds are created by
diverging from the root world, or from any other exist-
ing world in the world map set WM of our MWG. The
divergence function is defined as:

w = diverge(p): World — World, the function
that creates world w from the parent world p, with p < w
and p e WM C W. Upon divergence, we therefore obtain
WM :=WMU{w}.

According to this definition, we consider the world w as
the child of world p and it is added to the world map of our
MWG. For the MWG, we define the local timeline of a
world and a node as itl, . = {¢n t.w, Vt € TP, ), with
TP, . C T, which is the ordered subset of timepoints for
node n and world w. As T'P, ,, is ordered, there exists a
timepoint s, ,,, which is the smallest timepoint in T'F, ,,,
defined as sp . € TPy, Vt € TPy w,S5n0w < t. We call
this timepoint a divergent timepoint—i.e., where the
world w starts to diverge from its parent p for node n.
Following the shared-past concept between a world and
its parent (cf. Section , we define the global timeline of
a world per node as

tl(n,w) = 0ifw=0
T W (n,w) U subset{tl(n,p),t < Spw},p <

The global timeline of a world is therefore the recursive
aggregation of the local timeline of the world w with the
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Figure 5: Many worlds example

subset of the global timeline of its parent p, up until the
divergent point sy, 4.
Finally, we extend the functions insert and read as:

insert(cp My t,w): (¢ x N xT x W)~ Void, the
function that inserts a state chunk in the local timeline of
node n and world w, such as ltly, v := ltlyw U {cn,t.w}-

read(n,t,w): (N x T x W) — ¢ is the function that
retrieves a state chunk from a world w, at time ¢t. It is
recursively defined as:

readis,, ., (n,t) if (t > 5) A (ltlnw # 0)
read(n,t,w) = ¢ read(n,t,p)
0

otherwise

The function insert always operates on the local time-
line [t 4, of the requested node n and world w. For the
function read, if the requested time ¢ is higher or equal
to the divergent point in time s, ,, of the requested world
w and node n, the read is resolved on the local timeline
ltl,, v, as defined in Section @ Otherwise, we recursively
resolve on parent p of w, until we reach the corresponding
parent to read from.

Once the world resolution is completed, a MWG state
chunk can be reduced to a temporal graph state chunk,
which in turn can be reduced to a base graph state chunk
once the timepoint is resolved. Similarly, over all nodes,
a MWG can be reduced to a temporal graph, then to a
base graph, once the read function dynamically resolves
the world and time.

Figure p| shows an example of a MWG with several
worlds. wy is the root world. In this figure, w; is diverged
from wgy, we from wiy, and ws from wg. Thus we have
the following partial order: wy < wi < wg and wy < ws.
But no order between ws and ws or between ws and w;.
s; for i from 0 to 3, represent the divergent timepoint for
world w; respectively. An insert operation on the node n
and in any of the worlds w;, will always insert in the local
timeline ltl,, ,,, of the world w;. However, a read operation
on the world ws for instance, according to the shared-past
view, will resolve a state chunk from Itl,, ,,, if t > sg, from
Il wy if 851 <t < S, from Ut 4, if so <t < s1, and 0 if
t < sg.

It is important to note that this semantics goes beyond
copy-on-write strategies [30] as a world is never copied,
even if data is modified. Instead, only modified nodes are

if (t<s)A(p<w,p##0)
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Figure 6: Mapping of nodes to storable state chunks

copied and transparently loaded. In fact, this is similar to
the concept how we organise and represent the temporal
data aspect of the graph.

4. GreyCat: Implementing MWG

Our MWG concept is supported by an implementation,
named GREYCAT, to create, read, update, fork and delete
graphs and nodes along time. In particular, the following
sections dive into the implementation details of GREYCAT
to expose the design choices we made to outperform the
state-of-the-art.

4.1. Mapping Nodes to State Chunks

The MWG is a conceptual view of data to work with
temporal data and to explore many different alternative
worlds. Internally, we structure the data of a MWG as
an unbounded set of state chunks. Therefore, as discussed
in Section |3, we map the conceptual nodes (and relation-
ships) of a MWG to state chunks. State chunks are the
internal data structures reflecting the MWG and at the
same time also used for storing the MWG data. A state
chunk contains, for every attribute of a node, the name and
value of the attribute and, for every outgoing relationship,
the name of the relationship and a list of identifiers of the
referenced state chunks. Figure [6] depicts, in form of a
concrete example, how nodes are mapped to state chunks
in accordance with the semantic definitions of Section 3.2

At time ¢; (the starting time of the MWG), GREYCAT
maps the nodes and the relationships to 3 state chunks:
one for Eve, one for Bob, and one for Bob’s video. At time
ti+1, the MWG evolves to include a relationship watched
from Eve to Bob's video. Since this evolution only affects
Eve, GREYCAT only creates an additional state chunk for
Eve from time ¢;,1. All other nodes are kept unchanged
at time t; 1 and thus still valid. Then, at time ¢;, 5, world
m of the MWG diverges into two worlds: m and n. While

world m remains unchanged, in world n Bob meets Alice,
who sends a friend request to Bob. Only Alice changes
so that GREYCAT only creates one state chunk for Alice
from time ¢;1o and world n. Here, we see the benefit of
the MWG and its semantics: while we are able to repre-
sent complex graph topologies, which evolve in time and
in many worlds, we only need to store a fraction of this
structure. In this example, the graph contains 13 different
nodes and 16 relationships (counting each bidirectional re-
lation as two) and evolves along 2 different worlds and 3
different timestamps, but we only have to create 5 state
chunks to represent all of this. Whenever the MWG is
traversed, the correct state chunks are retrieved with the
right time and world. The resolution algorithm behind
this is presented in Section

State chunks are the storage units of GREYCAT. They
are stored on disk and loaded into main memory while the
MWG is traversed or when nodes are explicitly retrieved.
Loading state chunks can be qualified as lazy, because only
attributes and sets of identifiers are loaded. This theoret-
ically allows to process unbounded MWGs. For persistent
storage of state chunks, we rely on key/value stores by us-
ing the 3-tuple of {node; time; world} as key and the state
chunk as value. We serialize chunk states into Base64 en-
coded blobs. Despite being simple, this format can be
used to distribute state chunks over networks. Moreover,
it reduces the minimal required interface to insert state
chunks into, and read from, a persistent data store to put
and get operations. This allows to use different storage
backends depending on the requirements of an applica-
tion: from in-memory key/value stores up to distributed
and replicated NoSQL databases.

This mapping approach copies state chunks only on-
demand—i.e., on-write (per time and world). This deliv-
ers very efficient read and write operations at any point in
time. Using diffs instead of our proposed on-demand fork-
ing concept could—in some cases—save disk space, but
it would come with a much higher cost for inserting and
reading.

4.2. Indexing and Resolving Chunks

This section focuses on the index structures used in GR-
EYCAT and the state chunk resolution algorithm. In par-
ticular, GREYCAT combines two structures for the indexes
of the MWG: time trees and many-world maps.

4.2.1. Index Time Tree (ITT)

As discussed in Section [3.3] timepoints are chronologi-
cally ordered. This creates implicit intervals of “validities”
for nodes in time. Finding the right “position” in a time-
line of a node has to be very efficient. New nodes can be
inserted at any time—i.e., not just after the last one. Be-
sides, ordered trees (e.g., binary search trees) are suitable
data structures to represent a temporal order, since they
have efficient random insert and read complexities. If we
consider n to be the total number of modifications of a
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node, the average insert/read complexity is O(log(n)) and
O(n) in the worst case (inserting new nodes at the end of
a timeline). Given that inserting new nodes at the end
of a timeline and reading the latest version of nodes is the
common case, we use red-black trees [31] for the implemen-
tation of our time tree index structure. The self-balancing
property of red-black trees avoids the tree to only grow in
depth and improves the worst case of insert/read opera-
tions to O(log(n)). Furthermore, we used a custom Java
implementation of red-black trees, using primitive arrays
as a data backend to minimize garbage collection times, as
garbage collection can be a severe bottleneck in graph data
stores [32]. Every conceptual node of a MWG can evolve
independently in time. For scalability reasons, we decided
to use one red-black black tree, further called index time
tree (ITT), per conceptual node to represent its timeline.
Figure [7] depicts how the ITT looks like and evolves for
the node Fve introduced in Figure [6]

As it can be seen, at time t;, one conceptual version of
node Eve exists and therefore the ITT has only one entry.
At time t;41, Fve changes, a new conceptual version of
this node is created and the ITT is updated, accordingly.
Then, at time ¢;;9, there are additional changes on the
MWG, which do not impact Fve: the ITT of Eve remains
unchanged.

ITTs are special state chunks and stored/loaded in the
same way to/from key/value stores than any other state
chunk. More specifically, as key, we use the id of the cor-
responding conceptual node, together with the world iden-
tifier and the type (time tree in this case). The value is a
serialized and Base64 encoded blob of the tree’s values.

4.2.2. World Index Maps (WIM)

Since new worlds can diverge from existing worlds at
any time and in any number, the hierarchy of worlds can
arbitrarily grow both in depth and width. As it can be
observed in Figure [5| the divergent point is therefore not
enough to identify the parent relationship. The divergent
point is therefore not enough to identify the parent rela-
tionship. In our many-world resolution, we use a global
hash map that stores, for every world w, the correspond-
ing parent world p from which w is derived: w — p. We
refer to it as the global world index map (GWIM). This
allows GREYCAT to insert the parent p of a world w, in-
dependently of the overall number of worlds, in average in
constant time O(1) and in the worst case in O(l), where [
is the total number of worlds. We also use a custom Java
hash map implementation built with primitive arrays to

a) I= 6 worlds, m=1 (maximum
hops to reach root)

b) I= 6 worlds, m=4
(maximum hops to reach root)
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Figure 8: Example of different configurations of the same number of
worlds [, but with a different m

minimize garbage collector effects.

In addition to the GWIM, GREYCAT defines one local
index map, called local world index map (LWIM), per con-
ceptual node to identify different versions of the same con-
ceptual node in different worlds. In this map, we link every
world in which the node exists with its “local” divergent
time, meaning the time when this node was first modified
(or created) in this world and therefore starts to diverge
from its parent: w — tiocai divergence. As we will see, this
information is needed to resolve state chunks. The LWIM
is the core allowing nodes to evolve independently in differ-
ent worlds. When a conceptual node is first modified (or
created) in a world, its state chunk is copied (or created)
and the LWIM of the node is updated—i.e., the world in
which the node was modified is inserted (and mapped to
its local divergence time). Both the GWIM and the LWIM
must be recursively accessed for every read operation of a
node (see the semantic definitions in Section .

Other than the total number of worlds [, we define an-
other notation: m, as the maximum number of hops neces-
sary to reach the root world (m <1). Figure 8| reports on
an example of 2 MWGs with the same number of worlds
[ = 6 but, in the first case we can always reach the root
world in m = 1 hop, while in the second case, we might
need m = 4 hops in the worst case (from world wy4 to wp).

The recursive world resolution function has a minimum
complexity of O(1) in the best case, where all worlds are
directly derived from the root world (shown in Figure
a). The worst case complexity is O(m) < O(1), like for the
stair-shaped case shown in Figure B}b, where we might
to have to go several hops down before actually resolving
the world.

Like it is the case for ITTs, WIMs are special state
chunks and stored/loaded in the same way than regular
state chunks.

4.2.8. Chunk Resolution Algorithm

To illustrate the resolution algorithm of MWG, let us
consider the example of Figure [6] assuming we want to
resolve node Bob at time ¢;19 in world n. We first check
the LWIM of Bob and see that there is no entry for world n,
since Bob has never been modified in this world. Therefore,
we resolve the parent of world n with the GWIM, which is



world m. A glance in the LWIM of Bob reveals that world
m diverged (or started to exist in this case) for Bob at
time ¢;. This indicates MWG that world m is the correct
place to lookup state chunks, since we are interested in
Bob at time t;1 2, which is after time ¢; where world m for
Bob becomes valid. World m is the “closest” where Bob
has been actually modified. Otherwise, it would have been
necessary to recursively resolve the parent world of m from
the GWIM until we find the correct world. In a last step,
we look at the ITT of Bob to find the “closest” entry to
time ¢;49, which is time ¢;. Finally, this index indicates
GREYCAT to resolve the state chunk for Bob (id 3) with
the following parameters: {node 3;time i;world m}. This
state chunk resolution is summarized in Algorithm

Algorithm 1 State chunk resolution

1: procedure RESOLVE(id, t, w)
2 lwim < get LW 1M (id)

3 s <« lwim.get(w)

4 if t >=s then

5: it < getI'TT (id)
6

7

8

9

return itt.get(t, w)
else
p + GWIM.get Parent(w)
: return resolve(id, t,p)
10: end if
11: end procedure

The full resolution algorithm has a complexity of O(1)
for insert, and a complexity of O(1) + O(m) + O(n) <
O(l) + O(n) for read operations, where [ is the number
of worlds, and n the number of time points, and m the
maximum depth of worlds.

4.8. Scaling the Processing of Graphs

Memory management and transactions or “units of
work” are closely related. In GREYCAT, we first con-
nect our graph to a database. This connection, further
called unit of work (UoW), marks the beginning of what
can be seen in a broader sense as a long-living transac-
tion. While working with this connection, the state chunks
representing the MWG are loaded on-demand into main
memory. All modifications of the MWG are performed
in memory. When saving, the modified and new state
chunks (internally marked as dirty) are written from mem-
ory into (persistent) key/value stores. Then, the allocated
memory is tagged as selectable for eviction, which marks
the end of the UoW. This, together with the on-demand
loading of state chunks into main memory, allows to work
with graphs of unlimited sizes, in theory. To increase
the read performance, GREYCAT uses local eviction-based
LRU caches [33].

4.4. Concurrency and Consistency

In this section, we discuss concurrency and consistency
properties of GREYCAT. This section focuses on multi-
core architectures while Section describes these prop-
erties for distributed deployments.

Concurrency: in order to ensure concurrency, GREY-
CAT uses a per-node locking strategy for every operation
that impacts the timeline of a particular node—i.e., new
time or world insertion. For such a major operation, it
is important to notice that we lock the whole concep-
tual node rather than only one state chunk, belonging
to one precise world and time. This means that all data
structures—i.e., all state chunks and index structures be-
longing to the locked node, are locked for temporal or
many-world write operations. This way, temporal indexes
are always consistent. Nonetheless, for other write opera-
tions, such as attribute value modification or relationship
insertion, we adopt a lock per state chunk. Therefore, par-
allel writes are allowed if they do not modify the node time-
line or the same time-point. To keep achieving a high level
of parallelism, only write operations are blocked while con-
current read operations remain—with some restrictions—
allowed. More specifically, GREYCAT uses a compare-and-
swap mechanism on the LWIM ensuring that a read oper-
ation of a specific node (for a given time and given world)
is blocked in case that the requested node is concurrently
modified in the same world. Otherwise, in the case of read
operations for the same node in another world, are fully
concurrent without locking.

Consistency: the previously defined locking strategy
of GREYCAT aims at ensuring consistency per node under
parallel read and write operations. In addition, GREY CAT
indexes are created as node attributes, therefore follow-
ing the locking scheme indexes are consistent by using the
standard locks like for write operations. Based on this de-
composition of GREYCAT indexes, no global consistency
strategy is necessary.

4.5. Distribution

GREYCAT defines a data access layer that can be dis-
tributed over various computers. However, the current
implementation of GREYCAT does not define a specific
sharding mechanism to distribute homogeneously data
stream on a pool of computers. Instead, GREYCAT relies
on the underlying key/value store for distributed storage
of our graph. Depending on the application requirements,
different key/value stores can be plugged via a simple in-
terface, which basically only relies on the implementation
of a get and put methods. For example, if performance is
the most critical requirement, but fault tolerance, avail-
ability, distribution, and replication are less important,
GREYCAT provides drivers for ROCKsDB [34] and LEV-
ELDB [35]. On the other hand, if availability, scalabil-
ity, and replication are more critical, GREYCAT provides
also implementations for drivers for CASSANDRA [30] and
HBASE [37].

To interconnect heterogeneous platforms, such as An-
droid mobile devices, browser environments, and Java-
powered servers, we use buses based on WebSocket or
MQTT protocols. This implies a distribution consis-
tency mechanism. To avoid the use of distributed locks,
which could drastically decrease performance, we decided



to use an optimistic approach using Conflict-Free repli-
cated Data Types (CRDT). By using CRDT structures
for every chunk, we ensure the ability to merge every dis-
tributed concurrent modification in a consistent manner.
In addition, we are studying the extension of such mech-
anism by using a RAFT algorithm to offer, on-demand, a
consensus primitive to ensure distributed consistency for
a dedicated zone of the temporal graph.

4.6. Working with MWGs

In order to work with MWGs—i.e., to create, navigate,
and analyse them—GREYCAT provides Java APIs for de-
velopers. For example, Listing |2| illustrates how a graph
can be created using GREYCAT.

Listing 2 Java API to create a MWG

Now, let us consider several different worlds in Listing [4]
We are interested in diverging a world 1 from world 0 and
change the name of Eve in this divergent world to Alice.

Listing 4 Java API to change a graph in several different
worlds

Graph g = new GraphBuilder ().build();
g.connect (new Callback<Boolean>() {
@0verride
public void on(Boolean result) {
//... code from Listing 2
long newWorld = 1;
eve.travelInWorld (newWorld, node -> {
node ("name", Type.STRING, "Alice");
1
}
1M

public static final long TIME = O0;
public static final long WORLD = O;

Graph g = new GraphBuilder () .build();
g.connect (new Callback<Boolean>() {
@0verride
public void on(Boolean result) {
Node eve = graph.newNode (WORLD, TIME);
node.set ("name", Type.STRING, "Eve");
Node bob = graph.newNode (WORLD, TIME);
node.set ("name", Type.STRING, "Bob");
eve.addToRelation("friend", bob);
bob.addToRelation("friend", eve);
}
B

The listing creates a graph consisting of two nodes, eve
and bob. Both are created in world 0 and for time 0. Node
eve has one attribute name, which is of type String and is
set to Eve. In addition, it has a relation named friend to
node bob.

Any graph can be manipulated and evolve over time.
Listing [3] depicts how GREYCAT’s API can be used to do
this, by extending the example of Listing

Listing 3 Java API to change a graph over time

public static final long TIME = O0;

Graph g = new GraphBuilder ().build();
g.connect (new Callback<Boolean>() {

@0verride
public void on(Boolean result) {
//... code from Listing 2

long newTime = TIME + 100;
eve.travelInTime (newTime, node -> {
node ("age", Type.INTEGER, 18);
b
}
B

The listing moves the node eve to TIME + 100 and
changes its attribute age to 18. This means, form time
TIME + 100 on, age will be resolved as 18, before this
time, it will be resolved to 17.

In order to process and analyse such a temporal graph,
GREYCAT provides an API to efficiently navigate and
query the content of the graph. From any given node,
the graph can be easily traversed, as shown in Listing [

Listing 5 Java API to traverse a graph

Graph g = new GraphBuilder ().build();
g.connect (new Callback<Boolean>() {
@0verride
public void on(Boolean result) {
//... code from Listing 2
eve.relation("friend", new Callback<Node[]>()
{
@Override
public void on(Node[] friends) {
/)
}
DM
}
1M

Since most operations in GREYCAT are non-blocking
and therefore asynchronous, deep navigations inside a
graph can lead to many nested callbacks (¢f. Listing .
Therefore, GREYCAT offers what we call a Task API,
which is comparable to Promises and Futures and al-
lows the developer to chain several navigation operations
without the need to nest them. In addition, this Task API
allows one to specify if a given number of Tasks can be
executed in parallel and also if they should be executed
on a specific machine, e.g., local or on a remote machine.
Therefore, tasks, their parameters, and results must be
serializable.

While Listing [5| shows how the graph can be navigated
from a specific node, the question remains how we find
this starting point in the first place. To solve this issue,
GREYCAT uses indexes, which can be created and queried
as shown in Listing [0}

As can be seen in the listing, the index itself is a regular
node and can also evolve over time.

These examples are showing only the main concepts of



Listing 6 Java API to query a graph

/)
// creating indez
name "
g.index (WORLD, Constants.BEGINNING_OF_TIME, "
namelIndex", new Callback<NodeIndex>() {
@0verride
public void on(NodeIndex index) {
index.addToIndex (self, "name");

"

"nameIndexz" from attribute

¥
B

// using indeces

indexNode.find (nodes -> {
// filter here

b

GREYCAT’s API’s to work with MWG. More advanced
queries and navigation methods are available. The com-
plete API can be found online on GitHuHﬂ

5. Experiments

This section reports on the extensive experiments we
performed to assess the performance of GREYCAT along
several perspectives, from reporting on a real industrial
case study (cf. Section , to comparing it against the
closest solutions in the state of the art (cf. Sections
, and to stressing it against micro-benchmarks (cf. Sec-

tions 5.7)).

5.1. FExperimental Setup

For all these experiments, we report on the throughputs
of insert and read operations as key performance indi-
cators. We executed each experiment 100 times to assess
the reproducibility of our results. Unless stated otherwise,
all the reported results are the average of the 100 execu-
tions. All the experiments have been executed on the high
performance computer (HPC) of the University of Lux-
embourg (Gaia cluster) [38]. We used a Dell FC430 with
2 Intel Xeon E5-2680 v3 processors, running at 2.5 GHz
clock speed and 128 GB of RAM. The experiments were
executed with Java version 1.8.0__73. All experiments (ex-
cept the comparison to InfluxDB) have been executed in
memory without persisting the results. The rational be-
hind this is that we want to evaluate our GREYCAT imple-
mentation and not the performance of 3rd-party key/value
stores, which we use for persisting the data. For similar
reasons, caches have been deactivated for all experiments.
All our experiments are available on GitHub [39].

All experiments—for GREYCAT, Neo4j, and InfluxDB—
are conducted in a non-clustered way, and are comparable,
since the goal of the evaluation is to show the capabilities
and limits of GREYCAT. Data sharding and distribution

2https://github.com/datathings/greycat
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Figure 9: Performance of load calculation in a what-if scenario for
the smart grid case study

are out of scope of this paper. We focus on the evalua-
tion of create, read, and update operations since the con-
tributions of this paper are a MWG data model and the
associated storage support rather than processing. Graph
processing algorithms, which are based on these primitives,
are therefore considered as out of scope of this paper.

5.2. Smart Grid Case Study

In this experiment, we evaluate GREYCAT on a real-
world smart grid case study, which we introduced in Sec-
tion 2] In particular, we leverage MWG to optimize the
electric load in a smart grid. Therefore, we build profiles
for the consumption behavior of customers. Based on the
profiles, we simulate different hypothetical what-if scenar-
ios for different topologies, compute the expected electric
load in cables, and derive the one with the most balanced
load in all cables. This allows to anticipate which topology
is likely to be the best for the upcoming days.

For this experiment, we use an in-memory configuration,
without a backend storage, because we do not need to per-
sist all the different alternatives. We use the publicly avail-
able smart meter data from households in London [40]. As
the dataset from our industrial partner CREOS is confi-
dential, we use this publicly available dataset for the sake
of reproducibility. The grid topology used in our experi-
ments is based on the characteristics of the CREOS smart
grid deployment [41]. We consider 5,000 households con-
nected to the smart grid, including 4, 000 consumption re-
ports per customer. This leads to a large-scale graph with
20,000,000 conceptual nodes used to learn the consump-
tion profiles. As described in [4I] around 100 customers
are connected to one transformer substation. We simulate
50 power substations for our experiments and we suppose
that every household can be connected to every power sub-
station. This is a simplification of the problem, since which
household can be connected to which power substation de-
pends on the underlaying physical properties of the grid,
which we neglect in the following experiment.

Figure [9] reports on the what-if analysis performed over
500, 000 worlds where, in each world, we mutate 3 % of the
power substations connections to smart meters. We plot
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the latency (in ms) of the load calculations and world cre-
ation (fork time) per world. As depicted in Figure[9] both
curves are quite constant, with some peaks due to garbage
collection. Based on this experiment, we can conclude that
GREYCAT is scalable and can apply to large-scale systems,
such as smart grids.

5.3. Base Graph Benchmarks

The objective of this benchmark is to evaluate the per-
formance of GREYCAT as a standard graph storage by
neglecting time and many-worlds. Therefore, this section
compares the performance of GREYCAT to state-of-the-
art graph databases. For this comparison, we use the
graph database benchmark [42] provided by Beis et al. [43].
This benchmark is based on the problem of community
detection in online social networks. It uses the public
datasets provided by Stanford Large Network Dataset Col-
lection [44]. This dataset collection contains sets from “so-
cial network and ground-truth communities” [45], which
are samples extracted from Enron, Amazon, YouTube, and
LiveJournal. The benchmark suite defines several metrics,
among which:

Massive Insertion Workload (MIW) creates the
graph database for massive loading, then populates
it with a dataset. The creation throughput of the
whole graph is reported.

Single Insertion Workload (SIW) creates the graph
database and loads it with a dataset. Every insertion
(node or edge) is committed directly and the graph is
constructed incrementally. The insertion throughput
is reported.

We compare the performance of GREYCAT to
Neo4J [28], which was the best performing base graph
in [43]. Figure reports on the results of MIW and
SIW, achieved by GREYCAT and Neo4J (both in-memory
and not persisting data), along the different datasets. For
all benchmarks, GREYCAT outperforms Neo4J by factors
ranging from 1.3x to 20x.
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Table 1: Average insert and read time, for different timepoints, for
one node and in the same world.

(n) in Insert speed Read speed Insert /  Read /
millions | (1,000 val./s) (1,000 val./s) log(n) log(n)
1 589.17 605.30 42.6 43.8
2 565.05 564.11 38.9 38.8
4 554.40 544.23 36.4 35.8
8 537.22 528.18 33.8 33.2
16 520.98 516.26 33.2 31.1
32 515.05 485.73 29.8 28.1
64 489.55 458.32 27.2 25.5
128 423.53 400.49 22.7 21.5
256 391.56 378.50 20.2 19.5

5.4. Temporal Graph Benchmarks

This experiment aims to evaluate the complexity of the
ITT (cf. Section . We compare the performance
of temporal data management of our approach with plain
time series databases. Therefore, we consider only one
world and one node id and we benchmark the through-
put of insert and read operations over a varying size of
timepoints, from 1 million to 256 million. Table [] reports
on the measured results under progressive load, to check
the complexity according to the expected one.

As one can observe, read and insert performance follows
an O(log(n)) scale as n increases from 1 million to 256 mil-
lion. The performance deterioration beyond 32 million can
be explained due to a 31 bit limitation in the hash func-
tion of the ITT. This comes from the fact that our ITT is
implemented as a red-black tree backed by primitive Java
arrays. These are limited to 31 bit indexes. At these large
numbers, collisions become very recurrent. For instance,
for the 256 million case, there are around 8 % of collisions.
This compares to less than 0.02% of collisions for 1 mil-
lion. To address this problem, we plan for future work an
off-heap memory management implementation (based on
Java’s unsafe operations), which would allow us to solve
the limitation of 31 bit indexes for primitive arrays and to
use hash functions with more than 31 bits.

To compare with a time series database, namely In-
fluxDB, we use the influxDB benchmark [46]. It consists of
creating 1,000 nodes (time series) where they insert 1,000
values in each node on MacBook Pro, resulting in a graph
with conceptually 1,000,000 million nodes. The second
test is to create 250, 000 nodes where they insert 1,000 val-
ues in each, on an Amazon EC2 i2.xlarge instance. This re-
sults in a large-scale graph with conceptually 250, 000, 000
nodes. For both experiments, data is persisted to disk.

The main difference with the experiment above is that
the ITT of each node does not grow the same way in terms
of complexity as an ITT of 250 million elements in a sin-
gle node does. For the sake of comparison, we applied the
same benchmarks using the same types of machines. We
use RocksDB [34] as our key/value backend. Despite the
fact that our MWG is not limited to flat time series, but a
full temporal graph, we are able to outperform InfluxDB
by completing the MacBook test in 388 seconds compared
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Figure 11: Insert and read performance before and after the diver-
gence timepoint s

to their 428 seconds (10 % faster), and by getting an aver-
age speed of 583,000 values per second on the amazon in-
stance, compared to their 500, 000 values per second (16 %
faster). We note that, when all elements are inserted in
the same I'TT, the speed drops to 391, 560 inserts per sec-
ond on average (cf. Table[I)). This is due to the increased
complexity of balancing the ITT of one node. The exper-
iment therefore assess that GREYCAT is able to manage
full temporal graphs as efficiently (on a comparable scale)
as time series databases are able to manage flat sequences
of timestamped values.

5.5. Node-scale Benchmarks

In this experiment, we demonstrate the effect on insert
and read performance of creating many worlds from one
node. Diverging only one world from the root world is not
enough to measure a noticeable performance difference.
Therefore, we created 100 nested parallel worlds from root
world wy. We first measure the insert performance for
the worlds wg and wygg. Then, we measure—for the root
world—the read performance Ry at a shared past time-
point t; = 5000 < s and R; at timepoint 5 = 15000 > s
(after the divergence). We repeat the experiments for the
same timepoints ¢; and to, but from the perspective of
world w9, to get read performance Ry and R3. The re-
sults are depicted in Figure [TI] as box plots over 100 ex-
ecutions. We can conclude that the insert performance
is similar for both worlds. The read performance for the
root world is not affected by the divergence Ry = Ry,
while the read performance of world w99 depends on the
timepoint—i.e., it is faster to read after the divergence
point than before it (R3 > Rj). This is due to the re-
cursive resolution algorithm of GREYCAT, as explained in
Section 4.2.2]

In this experiment, we validated that the write and read
performance on the GREYCAT are not affected by the cre-
ation of several worlds. In particular, we showed that the
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read speed is kept intact after the divergence for the child
worlds.

5.6. Graph-scale Benchmarks

To stress the effect of recursive world resolution, we con-
sider the stair-shaped scenario presented in Figure [B}b.
In this benchmark, we create a graph of n = 2000 nodes,
each having an initial fixed timeline of 10,000 timepoints
in the main world. This results in an initial graph of
20,000,000 conceptual nodes. Then, we select a fixed x %
amount of these nodes to go through the process of cre-
ating the shape of stairs of m steps across m worlds. In
each step, we modify one timepoint in the corresponding
world of the corresponding node. For this experiment, we
vary m from 1 to 5,000 worlds by steps of 200 and = from
0 to 100 % per steps of 10%. This generates 250 differ-
ent experiments. We executed each experiment 100 times
and averaged the read performance of the whole graph be-
fore the divergence point, from the perspective of the last
world. Figure [I2] depicts the results as a heat map of the
average read performance for the different combinations of
number of worlds and percentage of nodes changed. The
brightest area (lower left) represent the best performance
(low number of worlds or low percentage of nodes changed
in each world). The darkest area (upper right) represent
up to 26 % of performance drop (when facing an high per-
centage of changes and an high number of worlds).

This benchmark is the worst case for the MWG, since
for m*" worlds, a read operation might potentially require
m hops on the WIM, before actually resolving the cor-
rect state (e.g., reading the first inserted node from the
perspective of the last created world), as discussed in Sec-
tion The performance drop is linear in O(m) and
according to the percentage of nodes changed from one
world to another. For less than 20 % of changes, the perfor-
mance drop is hardly noticeable even at an high number of
worlds (lower right). We note that our solution only stores
the modifications for the different worlds and rely on the
resolution algorithm to infer the past from the previous
worlds. Any snapshotting technique, cloning the whole
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Figure 13: Average read performance over 120,000 generations with
3% mutations

graph of 2,000 nodes, each including 10,000 timepoints—
i.e., a graph with 20,000,000 nodes—5, 000 times would
be extremely costly to process. To sum up, we show in this
section that our index structure allows independent evolu-
tion of nodes at scale. The performance decreases linearly
with the percentage of nodes changed and the maximum
of worlds reached.

5.7. Deep What-if Simulations

As the motivation of our work is to enable deep what-if
simulations, we benchmark in this section the read per-
formance over a use-case similar to the ones we can find
in this domain. We use a setup similar to the previous
section: a graph of n = 2,000 nodes with initially 10,000
timepoints in the root world. The difference is that we
fixed the percentage of changes between one world to an-
other to z = 3% (similar to a nominal mutation rate in
genetic algorithms of 0.1-5 % [47]). The second difference
is that changes only randomly affect 3% of the nodes for
each step. This is unlike the previous experiment, where
the target was to reach a maximum depth of worlds for the
same amount of x % of nodes. We executed this simulation
in steps of 1,000 to 120, 000 generations (120 experiments,
each repeated 100 times). The number of generations is
similar to the ones in genetic algorithms [47]. In each gen-
eration, we create a new world from the previous one and
randomly modify 3% of the nodes. At the end of each
experiment, we measure the performance of reading the
whole graph of 1,000 nodes. Figure [I3] reports on the re-
sults MWG achieves. In particular, one can observe that
the read performance drops linearly, 28 % after 120,000
generations. This validates the linear complexity of the
world resolution, as presented in Section [1.2.2] and the
usefulness of our approach for what-if simulation when a
small percentage of nodes change, even in a huge amount
of deep nested worlds.
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6. Related Work

Over the years, data management systems have pushed
the limits of data analytics for huge amounts of data fur-
ther and further. In the 1990’s Codd et al. [48] presented
a category of database processing, called online analyt-
ical processing (OLAP). It addressed the lack of tradi-
tional database processing to consolidate, view, and an-
alyze data according to multiple dimensions. In a more
recent work about best practices for big data analytics,
Cohen et al. [49] present what they call “MAD Skills”.
They highlight the practice of magnetic, agile, and deep
(MAD) data analysis as a departure from traditional data
warehousing and business intelligence. For example, the
Hadoop stack [50], Heron [5I], and Spark [52] drove the
development of new and powerful data analytics. Despite
this, today data analytics is still predominantly descrip-
tive. However, as Haas et al. [4] suggested, what enter-
prises really need is prescriptive analytics to identify op-
timal business decisions. They argue that this requires
what-if analysis. In accordance with this idea, we propose
a graph data model, which is able to efficiently evolve in
time and in many worlds to simulate different decisions.

Recently, much work focuses on large-scale graph rep-
resentation, storage, and processing for analytics. Well-
known examples are Pregel [7], Giraph, Neodj [28§],
GraPS [53], SNAPLE [54], and GraphLab [15]. While
many of them require the graph to be completely in-
memory while processing [55], others, like Roy et al. [56]
or Shao et al., [57], suggest to process graphs from sec-
ondary storage. Similarly, we allow to store graph data
on secondary storage, since even with big clusters at a cer-
tain point the limit of in-memory only solutions is reached.
Given that our MWG is built to evolve extensively in time
and many worlds, the need for secondary storage is even
more underlined, since many different versions of nodes
can coexist, making graphs even bigger. While most of
this work use a rather standard graph data model and fo-
cus on graph computation and processing, the focus of our
work is rather to support large-scale what-if analysis.

The need to represent and store the temporal dimen-
sion of data has been comprehensively discussed in the
database community in the 80s and 90s. For example,
Clifford et al., [25] and also Ariav [58] provide a formal
semantic for historical databases. In a similar direction
goes the work of Ariav [58]. They all suggest, in some
way or another, to directly integrate temporal structures
in the data model itself, rather than at the application
level. In [26], Segev and Shoshani discuss the semantics of
temporal data and corresponding operators independently
from a specific data model. Salzberg et al., [59] discuss
different temporal indexing techniques. Although most
of this work is relatively old, such temporal databases are
not very widespread. Google [60] embeds versioning at the
core of its BigTable implementation by enabling each cell
in a table to contain multiple versions of the same data.

With the emergence of cyber-physical systems, tempo-



ral aspects of data evolved again in form of time series
management. As mentioned before, InfluxDB is one of
the newer time series databases, which received much at-
tention lately. They position themselves as an IoT and
sensor database for real-time analytics. While it provides
many interesting features, like a SQL-like query language,
their data model is essentially flat and does not support
complex relationships between data, i.e., it provides very
little support for richer data models, like graphs. The same
counts for Atlas [61], which was developed by Netflix to
manage dimensional time series data for near real-time op-
erational insights, and OpenTSDB [62]. RRDtool [63] is
another data logging and graphing system for time series.
The same counts for Atlas [61], OpenTSDB [62], and RRD-
tool [63]. All of this work has in common that it provides
high performance storage and management specialized for
time series data. However, these solutions provide very
little support for richer data models, like graphs.

Lately, an increasing amount of work deals with the
need of temporal aspects of graph data. Finally, an in-
creasing interest in time-evolving graphs appeared. For
example, Huanhuan et al., [64] discuss the problem of
finding the shortest path in a temporal graph. Bahmani
et al., [I8] show how to compute PageRank on evolving
graphs. Khurana and Deshpande [20] present with Histor-
ical Graph Store (HGS) a system for managing and ana-
lyzing large historical traces of graphs. T-SPARQL [65] is
a temporal extension for the SPARQL [66] RDF query lan-
guage. HGS consists of two major components, the Tem-
poral Graph Index (TGI) and a Temporal Graph Analysis
Framework (TAF). Their proposed TGI stores the com-
plete history of a graph in form of partitioned deltas and
rebuilds the graph from these deltas while querying graph
data. With TAF, they provide a library to specify a wide
range of temporal graph analysis tasks. With the index
time tree, we pursue similar goals as they do with their
indexing strategies, however we do not save deltas for the
whole graph, but instead treat all versions of nodes simi-
lar. This simplifies the retrieval of historical data without
the need to rebuild it from stored deltas. GraphTau [10],
Kineograph [29], and Chronos [I1] also extend graph pro-
cessing to time-evolving graphs. While Neo4j itself does
not provide any support for temporal data, Cattuto et
al., [T9] present a pattern on how to use Neodj for ana-
lyzing time-varying social networks. They suggest to as-
sociate nodes and edges with time intervals (frames) and
to represent both logical graph nodes and edges as Neo4;j
nodes. This lack of a native support leads to a rather
complicated data and query model. Chronos [I1] is an-
other interesting storage and execution engine, however it
is designed specifically for in-memory iterative graph com-
putation. These approaches have in common that they
represent time-evolving graphs, in some form or another,
as a sequence of snapshots and use a rather standard graph
data model. In addition, most of these approaches requires
to keep a full graph snapshot in memory and they have
some limits when data is changing at a very high pace.
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Our approach suggests an efficient temporal graph data
model for large-scale what-if analysis on rapidly changing
data.

The idea of what-if analysis with hypothetical queries
has been discussed in database communities. Balmin et
al., [67] proposed an approach for hypothetical queries in
OLAP environments. They enable data analysts to formu-
late possible business scenarios, which then can be conse-
quently explored by querying. Unlike other approaches,
they use a “no-actual-update” policy, i.e., the possible
business scenarios are never actually materialized but only
kept in main memory. In a similar approach, Griffin and
Hull [68] focus on queries with form Q when {U} where Q
is a relational algebra query. This paper develops a frame-
work for evaluating hypothetical queries using a “lazy”
approach, or using a hybrid of eager and lazy approaches.
They present an equational theory and family of rewriting
rules that is analogous and compatible with the equational
theory and rewriting rules used for optimizing relational al-
gebra queries. In [69] and [70], Arenas et al., developed an
approach for hypothetical temporal queries of form “Has
it always been the case that the database has satisfied a
given condition C”. Despite there is no explicit time in
these queries, they call them “temporal” due to a simi-
larity with dynamic integrity constraints. Although these
approaches have a similar goal than our approach, they
differ in many major points. First, they mainly aim at
data analysts which perform selective queries on a modest
number of possible business scenarios to investigate im-
pacts of decisions. In contrary, we aim at intelligent sys-
tems and complex data analytics, which need to explore a
very large number of parallel actions (e.g., as for genetic
algorithms or the presented smart grid case study), which
can be highly nested. Moreover, these systems usually
face significantly higher demands regarding performance.
In addition, most of these approaches do not support (or
only in a limited manner) the co-evolution of worlds, which
is an essential feature of the MWG. To the best of our
knowledge there is no approach allowing graphs to evolve
in time and in many worlds for efficient what-if analysis.
Another major difference is that the MWG is a fully tem-
poral graph supporting both the exploration of different
hypothetical worlds and the temporal evolution of data.
Our proposed MWG can be used in arbitrary analytics
and is independent of the concrete underlying database
whereas most of the work on hypothetical queries has been
done on relational databases.

7. Conclusion

We proposed a novel graph data model, called Many-
World Graph (MWG), which allows to efficiently explore
a large number of independent actions—both in time and
many worlds—on a massive amount of data. We validated
that GREYCAT, our MWG implementation, follows the
theoretical time complexity of O(log(n)) for the temporal



resolution and O(m) for the world resolution, where m is
the maximum number of nested worlds.

Our experimental evaluation showed that even when
used as a base graph—without time and many-worlds—
GREYCAT outperforms a state-of-the-art graph database,
Neo4J, for both mass and single inserts. A direct compari-
son with a state-of-the-art time series database, InfluxDB,
showed that although the MWG is not just a simple time
series, but a fully temporal graph, the temporal resolu-
tion performance of MWG is comparable or in some cases
even faster than time series databases. The experimen-
tal validation showed that the MWG is very well suited
for what-if analysis. Regarding the support for prescrip-
tive analytics, we showed that GREYCAT is able to handle
efficiently hundreds of millions of nodes, timepoints, and
hundreds of thousands of independent worlds.

Beyond the specific case of smart grids, we believe that
GREYCAT can find applications in a large diversity of ap-
plication domains, including social networks [71], smart
cities, and biology [4].

Aside of potential applications of this approach, our per-
spectives also include the extension of GREYCAT to con-
sider different laws of evolution for the stored graphs, thus
going beyond the application of machine learning [24]. We
also look at the integration of GREYCAT with existing
graph processing systems, like Giraph [7]. Finally, beyond
the what-if analysis, the coverage of alternative prescrip-
tive analytics based on GREYCAT is a direction we are
aiming for.
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