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Abstract

This work introduces a companion reproducible paper with the aim of allowing the exact replication of
the methods, experiments, and results discussed in a previous work [5]. In that parent paper, we proposed
many and varied techniques for compressing indexes which exploit that highly repetitive collections are
formed mostly of documents that are near-copies of others. More concretely, we describe a replication
framework, called uiHRDC (universal indexes for Highly Repetitive Document Collections), that allows our
original experimental setup to be easily replicated using various document collections. The corresponding
experimentation is carefully explained, providing precise details about the parameters that can be tuned
for each indexing solution. Finally, note that we also provide uiHRDC as reproducibility package.

Keywords: repetitive document collections, inverted index, self-index, reproducibility.

1. Introduction

Scientific publications remain the most common way for disseminating scientific advances. Focus-
ing on Computer Science, a scientific publication: paper, i) exposes new algorithms or techniques for
addressing an open challenge, and ii) reports experimental numbers to evaluate these new approaches
regarding a particular baseline. Thus, empirical evaluation is the stronger evidence of the achievements
reported by a paper, and its corresponding setup is the only way that the scientific community has for
assessing and (possibly) reusing such research proposals.

The ideal situation arises when a paper exposes enough information to make its research easily
reproducible. According to the definition proposed by the Association for Computation Machinery
(ACM) [1], an experiment is reproducible when an independent group of researchers can obtain the same
results using artifacts which they develop independently. A weaker form of reproducibility is replicability.
In this case, the original setup is reused, so an experiment is replicable when an independent group of
researchers can obtain the same results using the author own artifacts. Finally, the ACM document [1]
also defines the concept of repeatability. An experiment is repeatable if the group of researchers is able
to obtain the same results reusing their original setup (including the same measurement procedures and
the same system, under the same operating conditions). Non-repeatable results do not provide solid
insights about any scientific question, so they are not suitable for publication. Thus, we can accept that
research in Computer Science must be, at least, repeatable.
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Although reproducibility is the ultimate goal, getting it is not always easy because it requires that a
new experimental setup to be reconstructed from scratch. Implementing new algorithms, data structures,
or other computational artifacts can be extremely complex, and tuning them may require setting many
parameters which, in turn, can depend on particular system configurations or external tools. Besides,
it may be necessary to use programs in the exact versions used originally [26]. As a consequence,
reproducibility is time-consuming, error-prone, and sometimes just infeasible [4].

In practice, publishing replicable research1 would be an important step forward in Computer Science.
According to Collberg et al. [8], replicating a computational experiment only needs that the source code
and test case data have to be available. Although simple, many papers do not meet this precondition.
The aforementioned paper [8] provides an interesting study involving 601 papers from conferences and
journals. It shows that only 32.3% of the papers provide enough information and resources to build
their executables in less than 30 minutes. Note that external dependencies must be accessible to compile
these sources. Regarding test case data, Vandewalle et al. [30] report that more papers make data
available, but it is mainly due to some of them use standard corpora in their corresponding experimental
setups. However, the problem goes beyond. Once compiled, proper parameter settings must be set, and
sometimes it is tricky to find this information in the papers. In conclusion, reproducibility research is
currently challenging.

The situation is not quite different in Information Retrieval (IR), the field more related to the
research proposed in our work. IR is a broad area of Computer Science focused primarily on providing
the users with easy access to information of their interest [3]. As an empirical discipline, advances in
IR research are built on experimental validation of algorithms and techniques [20], but reproducing IR
experiments is extremely challenging, even when they are very well documented [13]. A recent Dagstuhl
Seminar about reproducibility of data-oriented experiments in e-Science [12] concludes that IR systems are
complex and depend on many external resources that cannot be encapsulated with the system. Besides,
it reports that many data collections are private, and their size could be an obstacle even for obtaining
them. Finally, it notes that some experimental assumptions are often hidden, making reproducibility a
less achievable goal.

Following the initiative of some previous papers [33, 18], the aim of this work is to propose a detailed
experimental setup that replicates the methods, experiments, and results on indexing repetitive document
collections discussed in a previous work [5] (we will refer it as the parent paper). This experimental setup
focuses on two dimensions: i) the space used to preserve and manage the document collection, and the
ii) time needed to query this data.

The rest of the paper is organized as follows. In Section 2, we briefly describe all the inverted-index
based variants and the self-indexes evaluated in the parent paper. We also explain the most relevant
space/time tradeoffs reported from our experiments. The following sections are devoted to the repro-
ducibility of these experiments. Section 3 details the fundamentals of uiHRDC, our replication framework,
which comprises i) the source code of all our indexing approaches, ii) some test data collections, and iii)
the set of scripts that runs the main tasks of our experimental setup and generates a final report with
the main figures of the parent paper. We focus both on discussing the workflow that leads the process of
replicating all our experiments, and also in describing the structure of the uiHRDC framework. Section 4
describes the Docker2 container that allows this workflow to be easily reproduced in a tuned environment.
Some brief conclusions are exposed in Section 5 to motivate the need of improving research reproducibil-
ity in Computer Science. Finally, Appendix A includes the actual compression ratios obtained for each
technique (which complements the results shown in the figures throughout the paper), and Appendix B
is devoted to explain how some of our self-indexes can be reused for dealing with universal (not document
oriented) repetitive collections.

1In this paper, we use the term reproducibility to refer experimental setups that can be replicated.
2https://www.docker.com/
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2. Universal Indexes for Highly Repetitive Document Collections

2.1. Background

Indexing highly repetitive collections has gained relevance because huge corpora of versioned doc-
uments are increasingly consolidated. Wikipedia3 is the most recognizable example, exposing millions
of articles which evolve to provide the best picture of the reality around us. Each Wikipedia article
comprises one version per document edition, and most of them are near-duplicates of others. Apart from
versioned document collections, other applications perform on versioned data. For instance, the version
control system GitHub4. In this case, a tree of versions is maintained to control changes from millions of
software projects which are continuously updated by their developers. Biological databases (where many
DNA or protein sequences from organisms of the same or related species are maintained), or periodic
technical publications (where the same data, with small updates, are published over and over) are other
examples of computer systems managing highly repetitive data.

The parent paper [5] focused on natural language text collections, which can be decomposed into
words, and queried for words or phrases. Managing these document collections is a challenge by itself
due to their large volume, but at the same time, they are highly compressible due to their repetitiveness.
In addition, version control systems require direct access to individual versions. This is also challenging
because it demands efficient and potentially large indexes to be deployed on top of the data collection.
Thus, we need to compress not only the data, but also indexes required to speed up searches.

The Inverted Index [3] has been traditionally used to index natural language text collections. The
inverted index maintains a list of the occurrences (also referred as posting list or inverted list) of each
distinct word in the text. It enables two different types of inverted indexes to be distinguished: i) non-
positional indexes store the list of document identifiers that contain each different word; and ii) positional
indexes store, in addition to the document identifiers, the word offsets of the occurrences within each
document. Posting lists are usually sorted by increasing document identifier, and by increasing word offset
within each document for positional indexes. This decision is useful for list intersections, a fundamental
task under the Google-like policy of treating bag-of-word queries as ranked AND-queries. Intersections
are also relevant to solve queries involving multiple words (phrase queries).

There is a burst of recent activity in exploiting repetitiveness at the indexing structures, in order
to provide fast searches in the collection within little space. These approaches are summarized in the
following. On the one hand, Section 2.1.1 discusses the fundamentals of inverted index compression, and
summarizes all our approaches. On the other hand, Section 2.1.2 introduces the concept of self-index
[23], an innovative succinct data structure which integrates data and index into a single compressed
representation. Besides, we explain how self-indexes can be adapted to perform on document versioned
collections attending to our original work. A detailed review of related literature, and a full explanation
of our compressed inverted indexes and self-indexes can be found in the parent paper.

2.1.1. Compressed Inverted Indexes

Since posting lists are sequences of increasing numbers, traditional compression techniques typically
compute the difference between consecutive values and then encode those gaps with a variable-length
encoding that favors small numbers. This is the basis of techniques traditionally used to represent posting
lists: those using Rice codes or Vbyte codes, that assign one codeword to each gap, or others such as
Simple9, that packs several gaps within a unique integer, or PforDelta which compresses blocks of k
gaps. Therefore, all aforementioned gap encoding techniques take advantage of the fact that the values
within posting lists (document identifiers or position values) are probably very close, and consequently
they require few bits for their encoding. We have revisited all the previous techniques and we used them in
this repetitive scenario. In addition, we have considered other state-of-the-art posting list representations
including: QMX, which is a good representative of the last generation of SIMD-based techniques [29], or the
recent Elias-Fano technique from [24] (EF-opt) and the implementations from [24] of some well-known
representations such as OPT-PFD [34], Interpolative coding [22], and varintG8IU [27].

Unfortunately, traditional techniques are not able to detect the repetitiveness that arises in versioned
collections. As one of the major contributions of our parent paper, we proposed some different techniques

3https://www.wikipedia.org/
4https://www.github.com/
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which exploit the types of repetitiveness that arise in versioned collections. We applied them both for
non-positional and positional inverted indexes. They are based on run-length encoding (Rice-Runs),
grammar-based compression (RePair), and Lempel-Ziv compression (Vbyte-LZMA and Vbyte-Lzend).

Even though the use of compressed posting list representations permits to drastically reduce inverted
index size, it also has implications in query time. As we indicated in the parent paper, intersections can
be performed by traversing the lists sequentially in a merge-type fashion. However, if one of the lists
to intersect is much shorter than the other/s it is preferred to provide direct access (using sampling) so
that the elements of the smallest list can be searched for within the longer list. This type of intersection
is commonly referred to as Set-vs-Set (svs) in the literature. In practice, the best choice is to sort the
lists by length. Then, we take the shortest one as the “candidate” list, and it is iteratively intersected
with longer and longer lists, hence shortening the candidate list at each step.

There are two main sampling structures to provide direct access in the literature. Culpepper and
Moffat [9] propose the first one, referred to as CM. It regularly samples the compressed list and stores
separately an array of samples, which is searched with exponential search. Given a sampling parameter
k, a list of length ℓ is sampled every k log2 ℓ positions. The second method, by Transier and Sanders [28]
(ST), applies domain sampling. It regularly samples the universe of positions, so that the exponential
search can be avoided. Given a parameter B, it samples the universe of size u at intervals 2⌈log2

(uB/ℓ)⌉. To
perform intersections, lookup algorithm was defined [28]. It somehow resembles a merge-type algorithm
but takes advantage of the domain sampling. As we will see below, we combined both CM and ST sampling
with posting list representations based on Vbyte and with our Re-Pair-based alternatives.

Posting List Representations. We include here a brief description of the different posting list representa-
tions evaluated in our original paper and the tuning options they support (if any). All this information
is summarized in Table 1.

• Vbyte. We included a simple posting list representation based on Vbyte [31] which uses no sampling
and consequently performs intersections in a merge-wise fashion. We also included two alternatives
using Vbyte coupled with sampling [9] (called Vbyte-CM), with k = {4, 32}, or domain sampling
[28] (called Vbyte-ST), with B = {16, 128}. In the former case, as indicated above, intersections
follow a Set-vs-Set approach where the smallest list is decompressed and its values are searched for
within the other lists using exponential search. For Vbyte-ST we used lookup intersection algorithm
[28]. In addition, we included a hybrid variant of Vbyte-CM that uses bitmaps to represent the
longest posting lists (Vbyte-CMB) [9]. In practice, lists longer than u/lenBitmapDiv (where u is
the largest document identifier, and lenBitmapDiv = 8) are replaced by a bitmap [9] that marks
which documents are present in the list. For completeness, we used the hybrid approach over
Vbyte-ST to build Vbyte-STB, and also included a variant VbyteB with no sampling.

• Rice. We included a representation based on Rice codes [32] and also implemented for completeness
a RiceB variant using bitmaps for the longest lists. In both cases they use no sampling and
intersections are done using merge algorithm.

• Simple9. We included a representation based on the word-aligned Simple9 technique, by Anh and
Moffat [2]. It packs consecutive gaps into a 32-bit word. It uses the first 4 bits to signal the type
of packing done, depending on how many bits the next gaps need: we can pack 28 1-bit numbers,
or 14 2-bit numbers, and so on. Intersections are done using merge algorithm.

• PforDelta. This representation [15, 35] uses the same idea of packing many gaps together, typically
up to 128 (parameter pfdThreshold = 128), while allowing for 10% of exceptions that need more
bits than the core 90% of the gaps. Those exceptions are then coded separately using a variant of
Simple9. In our case, we obtained our best results with pfdThreshold = 100. Again, we performed
intersections merge-wise.

• QMX. This technique [29] uses SIMD-instructions to boost decoding of large lists,5 and was coupled
with an intersection algorithm [19] that also benefits from SIMD-instructions.6

5http://www.cs.otago.ac.nz/homepages/andrew/papers/QMX.zip.
6 https://github.com/lemire/SIMDCompressionAndIntersection .
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Method Variants Description

Vbyte

Vbyte[31] Simple Vbyte encoding with no sampling. Intersections are performed
in a merge-wise fashion.

VbyteB[9] Vbyte enhanced with bitmaps to represent the longest posting lists.
Vbyte-CM[9] Vbyte coupled with list sampling: k = {4, 32}. Intersections are per-

fomed in a set-vs-set approach.
Vbyte-CMB[9] Vbyte-CM enhanced with bitmaps to represent the longest posting lists.
Vbyte-ST[28] Vbyte coupled with domain sampling: B = {16, 128} (B = {64} is

also tested for the positional scenario). Intersections follow a lookup
approach.

Vbyte-STB[5] Vbyte-ST enhanced with bitmaps to represent the longest posting lists.

Rice
Rice[32] Simple Rice encoding with no sampling. Intersections are performed

using a merge algorithm.
RiceB[5] Rice [32] enhanced with bitmaps to represent the longest posting lists.

Simple9 [2] No variants Word-aligned Simple9 that packs consecutive gaps into a 32-bit words.
Intersections are performed using a merge algorithm.

PforDelta [15, 35] No variants Extends Simple9 gaps to pack many gaps together (up to 128). A
variant of Simple9 is used to encode exceptions. Intersections are
performed in a merge-wise fashion.

QMX [29, 19] No variants Exploits SIMD-instructions to boost the decoding of long lists. Inter-
sections are performed using an specific algorithm that also benefits
from such instructions.

Rice-Runs [5] No variants Rice [32] coupled with run-length encoding. Intersections are per-
formed in a merge-wise fashion.

Vbyte-LZMA [6] No variants Encodes gaps with Vbyte [31] and, if the size of the resulting Vbyte-
sequence is ≥ 10 bytes, then it is further compressed with LZMA.
A bitmap indicates which posting lists are compressed with LZMA.
Intersections are performed using merge algorithm.

Vbyte-Lzend [5] No variants Encodes gaps with Vbyte [31] and then all posting lists are com-
pressed as a whole with LZ-End [16]. It can be parameterized:
ds = {4, 16, 64, 256}. Intersections first obtain Vbyte-encoded se-
quences and then perform in a merge-wise fashion.

RePair-based [5] RePair Compresses posting lists as a whole using RePair [17]. Intersections
are performed using merge algorithm over the compressed lists.

RePair-Skip Adds skipping data to RePair to improve performance.
RePair-Skip-CM RePair-Skip coupled with CM-type (list) sampling: k = {1, 64}.
RePair-Skip-ST RePair-Skip coupled with ST-type (domain) sampling: B = {1024}

for the non-positional scenario; B = {256} for the positional scenario.
Indexes from Ottaviano EF-opt [24] Partitioned Elias-Fano index.
and Venturini’s OPT-PFD [34] Optimized PforDelta variant.

Framework [24]
Interpolative [22] Binary interpolative coding.
varintG8IU [27] SIMD-optimized Variable Byte code.

Table 1: Summary of posting list representations evaluated in the parent paper. We used our own implementations of
posting list representations (except those from Ottaviano and Venturini’s Framework) that, in most cases, were built over
existing techniques to represent integers or general sequences.
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• Rice-Runs. We coupled run-length encoding with Rice coding to boost both the compression and
intersection speed of our Rice representation in a repetitive scenario where large sequences of +1
gaps could occur. Basically, a sequence of +1 gaps of length k is represented as the ricecode(+1)
followed by ricecode(k). Intersections are performed merge-wise, yet they take advantage of the
fact that a run of +1 values can be skipped/decoded in a unique operation.

• Vbyte-LZMA. In this representation we independently compress each posting list with a Vbyte+LZMA
chain. We initially encode the gaps in the posting list with Vbyte and then compress the output
with the LZMA variant of LZ77 (www.7-zip.org). We use a threshold parameter (minbcssize)
so that LZMA is only applied on those lists where their Vbyte encoded sequence occupies at least
10 bytes (minbcssize ← 10). Otherwise, the initial Vbyte encoded sequence is stored. A bitmap
indicates which posting lists were stored compressed with Vbyte plus LZMA, and which ones only
with Vbyte. Since Vbyte-LZMA only supports extracting a list from the beginning, intersections
can involve a initial step that applies LZMA decoder to recover the Vbyte encoded sequences, and
then we apply merge algorithm on those Vbyte encoded sequences.

• Vbyte-Lzend. This representation follows the same idea of Vbyte-LZMA but uses LZ-End [16]
instead of LZMA to compress the posting lists. Since LZ-End allows random access, the sequence
of all the concatenated lists can be compressed as a whole, not list-wise. Therefore, we first
concatenate the Vbyte representation of all the posting lists (keeping track of the offset where
each posting list started in the Vbyte encoded sequence), and then use LZ-End to represent it. At
construction time, we can obtain different space/time tradeoffs by tuning the delta-codes-sampling
parameter (ds) of LZ-End (see [16] for details). In our experiments we set it to ds = {4, 16, 64, 256}.
At intersection time, we first recover the Vbyte encoded sequences and then proceed merge-wise as
in Vbyte-LZMA.

• RePair-based representations. As in the LZ-End-based representation we compress all the posting
lists as a whole, yet we directly work on the sequences of gaps rather than on their Vbyte encodings.
We use the grammar-based compressor Re-Pair that recursively replaces the most frequent pair of
symbols (initially called terminals, which are those gaps from the concatenation of all the posting
lists) by a new non-terminal symbol not occurring before in the original sequence. Re-pairing
process ends when no pair occurs at least twice. The result is a sequence that could contain both
terminal and non-terminal symbols, and a dictionary of substitution rules which is represented
in a compact format. This makes up our basic RePair representation. It allows us to extract
individual posting lists,7 and to perform intersections in a merge-type fashion over the compressed
representation of the lists (non-terminals are expanded/decoded recursively during the traversal of
the lists). In addition, in our implementation we added a parameter repairBreak that allows us to
stop the recursive pairing when the gain in compression ratio (reduction of size of the compressed
sequence) of the current step with respect to the previous step is smaller than repairBreak.8 In
practice, for RePair we set repairBreak = 0.0 so that the Re-pairing process is not broken at all.

The compact representation of the dictionary of rules allows us to add additional skipping data
(i.e. the sum of all the gaps included below that non-terminal symbol) with little space cost. This
skipping data allows us to improve both decompression time for a list, and intersection time. We
adapted the merge-based algorithm from RePair so that it is boosted by using this skipping data.
The resulting algorithm was named skip. This makes a new representation of posting lists referred
to as RePair-Skip. In our experiments, we tuned RePair-Skip with repairBreak = 4× 10−7 and
repairBreak = 5× 10−7 respectively for the non-positional and positional scenarios.

Initially, neither RePair nor RePair-Skip had sampling to speed up intersections, and only
RePair-Skip could benefit of the additional data to boost the intersections. However, since
RePair-Skip was shown to outperform RePair, we also created two RePair-Skip variants using

7To avoid creating Re-Pair phrases that span along two different posting lists, we add a non-repeating separator to mark
the beginning of each posting list.

8Being n and m respectively the length of the original sequence and the length of the compressed sequence, we initially
set prevRatio ← (100.0 ∗m/n). Then, after each substitution, if ((prevRatio − (100.0 ∗m/n)) < repairBreak) we break
the Re-pairing process. Otherwise, we simply update prevRatio← (100.0 ∗m/n).
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both CM-type and ST-type sampling. They are named RePair-Skip-CM (where we set k = {1, 64})
and RePair-Skip-ST (with B = {256, 1024}).

• Ottaviano&Venturini’s Partitioned Elias-Fano indexes. In [24], Ottaviano and Venturini
presented several posting list representation alternatives based on Elias-Fano codes. We used
the best of them (EF-opt). The source code is available at authors’ website.9 In addition,
they included in their framework implementations of some well-known representations such as
OPT-PFD (optimized PforDelta variant [34]), Interpolative (Binary Interpolative Coding [22]),
and varintG8IU (SIMD-optimized Variable Byte code [27]). All of them were compared in our
parent paper.

Our implementation of non-positional and positional inverted indexes. Given a text T that is composed
of a set of documents, to create our inverted indexes, we process T to gather the different words/terms
in T , and for each term we obtain the positions were they occur. The text itself can be processed with
a suitable compressor in order to reduce space needs. In our implementation, we used Re-Pair10 as text
compressor, which reached compression ratios below 2% (we kept the rules uncompressed -as a pair of
integers- to speed up decompression), and we added sampling for every {1, 2, 8, 32, 64, 256, 4096} symbols
of the final Re-Pair sequence to allow decompressing arbitrary parts of the original text.11 Yet, the main
focus of our parent paper was set on how to efficiently deal with the set of posting lists. We included all
the above posting lists representations, with the exception of Ottaviano&Venturini’s implementations,
within a package that provides us methods to build a compressed representation for a set of posting
lists, extract a list, intersect 2-n lists, show the compressed size, etc. We did this to obtain compressed
representations for posting lists to be used in a non-positional scenario, where we indexed document-ids
and intersections were used to solve AND-conjunctive queries for the elements of our query patterns,
but also for a positional scenario, where those patterns were taken as phrase queries. In this positional
scenario, we indexed actual word/term positions and solving phrase queries implied that the intersections
had to consider the order of the terms in the query patterns to return the documents where they occur
at consecutive positions. The building process is handled by a build program that processes the source
text and saves all the required structures to disk. A searcher program is on charge of loading those
structures into main memory and then allowing us to perform queries. Both programs are linked a
posting list representation and a text compressor.

According to the experiments reported in our parent paper, our compressed inverted index variants
allow us to perform two types of queries:

• locate(p) returns the positions of all the occurrences of p in T . In the non-positional scenario our
experiments (see Section 2.2) were focused on comparing both the fetch time and the intersection
time of the different posting lists representations, so basically locate(p) returns the documents
where p occurs.

In the positional scenario, locate(p) returns a pair of the form (doc, pos in doc). Note that
our posting list representation indexes absolute positions in T rather than pairs (doc, pos in doc).
Therefore, to support returning relative positions within each document, we enhanced our inverted
index with an array of offsets that mark the beginning of each document in T , and provided an
operation merge-occs-to-docs which efficiently maps a sequence of absolute positions into pairs
(doc, pos in doc). Therefore, to solve locate(p) we initially perform an intersection to gather the
positions in T where p occurs, and then perform merge-occs-to-docs operation to obtain the
final output.

• extract(a,b) retrieves the text fragment in T [a, b]. This is efficiently supported by using the
regular sampling added to the (Re-Pair) text representation.

9https://github.com/ot/partitioned_elias_fano.
10We have also the option to use: a LZ-End compressor; keeping the text in plain form; or even not storing the text at

all.
11This was of interest in the positional scenario where, as we will see in the next section, we are interested in comparing

the snippet extraction time with that of self-indexes.
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2.1.2. Self-Indexes

A self-index [23] is a compact data structure that enables efficient searches over an string collection
(called the text, T ), and also replaces the text by supporting extraction of arbitrary snippets. Thus,
self-indexes provide, at least, two basic queries:

• locate(p) returns the positions of all the occurrences of p in T .

• extract(a,b) retrieves the text fragment in T [a, b].

This functionality allows self-indexes to be considered as an alternative choice to positional inverted
indexes.

Our original setup comprised three families of self-indexes that were able to capture high repetitive-
ness. All of them have a representative proposal which regards T as a sequence of characters, but two
word-oriented approaches (which process T as a sequence of words) were also proposed. It is worth
noting that, in all cases, locate(p) returns absolute positions in T that must be then converted into
(document,offset) pairs. The aforementioned merge-occs-to-docs position-document mapping is used
again for such purpose.

CSA-based Self-Indexes. The Compressed Suffix Array (CSA) by Sadakane [25] is one of the pioneering
self-indexes and proposes a succinct suffix array (SA) encoding. It retains the original locate functionality
of the suffix array (based on binary search), while providing snippet extraction in compressed space. CSA
encompasses two main structures: a bitmap B, which marks where the first symbol of the suffixes changes
in SA, and Ψ, an array which stores the position in SA pointing to the next character of a suffix. Ψ
is highly compressible, but it is also massively used to decode a portion of the text. Thus, self-indexes
dealing with highly repetitive collections must balance Ψ compression and decoding efficiency to be
competitive with respect to compressed positional inverted indexes.

Two different CSA-based approaches were evaluated in our benchmark: RLCSA and WCSA.

• RLCSA. The Run-Length Compressed Suffix Array, by Mäkinen et al. [21], exploits that Ψ contains
long runs of successive values in highly repetitive collections. It performs run-length encoding of
Ψ(i) − Ψ(i − 1) and stores regular samples to allow efficient access to absolute Ψ values. This
sample value must be provided to build RLCSA, and yields different space/time tradeoffs: larger
sample values are used to reduce space requirements, but it penalizes data access speed; on the
contrary, small sample values increase efficiency at the price of less compression. The authors
proposed sample= 512, but our experiments consider 7 different values of the form 2i, from i = 5
(sample = 32) to i = 11 (sample = 2048), to analyze particular tradeoffs. A blocksize parameter
is also required to configure internal bit vectors blocks (it sets the number of reserved bytes per
block). We use blocksize = 32, as suggested by the authors.

• WCSA. The Word Compressed Suffix Array, by Fariña et al. [11] adapts CSA to cope with particular
features of natural language; i.e. it processes the input text as a sequence of words instead of
characters. WCSA transforms the original text into an integer sequence where each position refers to
a word/separator, but it does not provide any particular optimization to manage highly-repetitive
texts. We included it in our original experiments because it acts as a bridge between inverted
indexes and more sophisticated self-indexes, both in space and time complexity. WCSA builds B and
Ψ, but over the integer sequence, and provides word-based location and extraction. This requires
keeping samples of SA and samples of the inverse of SA (indicating which position of SA points to
the j-th word) at regular intervals. The non-sampled values can be recovered with Ψ. Therefore,
three different parameters must be provided at construction time: 〈sPsi, sA, sAinv〉. Note that
the inverse of SA is only needed for extract, SA is used both for extract and locate, and Ψ is used
in all search operations. Therefore, even though we can tune different setups yielding similar space
requirements, it is worth to keep a rather small value of sPsi, a larger value of sA, and an even
larger value of sAinv. We evaluated seven different configurations for the sampling parameters
ranging from 〈sA, sAinv, sPsi〉 = 〈8, 8, 8〉 to 〈2048, 2048, 2048〉. In particular, we used the values:
{〈8, 8, 8〉, 〈16, 64, 16〉, 〈32, 64, 32〉, 〈64, 128, 32〉, 〈128, 256, 128〉, 〈512, 512, 512〉, 〈2048, 2048, 2048〉}.
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SLP-based Self-Indexes. We previously motivated that grammar-based compression is a good choice for
posting list encoding, but it is also promissory for self-indexes. Our original paper focused on a particular
type of grammar compressor built around the notion of straight-line program (SLP).12 We explored two
SLP-based self-indexes, referred to as SLPand WSLP, which were carefully tuned for our experiments.

• SLP. Claude et al. [6] proposed originally a character oriented SLP self-index to manage (highly
repetitive) biological databases, and then optimized it to cope with natural language collections
[7]. SLP indexes the set of rules as a labeled binary relation, and the reduced sequence (obtained
by RePair) using a varied configuration of bit-based structures. SLP requires space proportional to
that of a Re-Pair compression of the text, but its performance is less competitive than that reported
by other self-indexes. The original SLP implementation was improved in our parent paper, where
we tunned some of its algorithms and internal data structures. A single q parameter is required to
build an SLP index; it sets the lengths of the q-grams that are indexed, by an internal dictionary, to
improve prefix/suffix searches. q is set by default to 4 characters because no relevant improvements
have been found for larger values.

• WSLP. The word-oriented SLP was proposed in our parent paper, and adapted SLP to perform on
a sequence of integers (word identifiers). Its internal configuration is similar to that of the SLP,
but it does not use the q-gram dictionary because it was not competitive for words. Thus, WSLP
exposes a simple build interface which does not require any parameter.

LZ-based Self-Indexes. Finally, we evaluated two different approaches of self-indexing based on two
variants of LZ77-like parsing: LZ77-index and LZend-index. In short, an LZ77-like parsing transforms
a text into a sequence of phrases, each one encoding the first occurrence of a substring. Each substring
concatenates a maximal substring previously used in the text and a trailing character. LZ77-index

and LZend-index uses a similar configuration of succinct data structures to encode their corresponding
structure of phrases, and to allow fast search and decode capabilities.

Both self-indexes were originally proposed by Kreft and Navarro [16], but we tuned them to im-
prove their original space/time tradeoffs. Besides, it is worth noting that they support five different
configurations.13 The default configuration (Conf.#1) is considered if no parameters are provided. It
reports the best performance but also the worst space. The following parameter configurations are also
allowed: ‘‘bsst ssst’’ (for Conf.#2), ‘‘brev’’ (for Conf.#3), ‘‘bsst brev ssst’’ (for Conf.#2),
and ‘‘bsst brev’’ (for Conf.#5). The latter reports larger space savings at the price of a bit slowdown,
but ensuring a competitive performance. We chose it in our benchmark.

2.2. Experimental Results

We experimentally studied the space/time tradeoffs obtained when performing locate operation with
the described posting list representations, in both the non-positional and positional scenarios. In the
positional scenario we also added a comparison with the proposed self-indexes, and we finally included
results regarding the time needed to extract snippets.

In this section we provide a summary of the results that can be obtained using our replication
framework uiHRDC (see Section 4). In particular, for locate(p) operation we include results for the case
where the patterns are 2-word phrases, and for extract(range) we only include results for snippets of
around 13,000 characters. In Section 3.1 we discuss that there are actually four types of patterns for
locate and two different snippet lengths for extract operation. In that section we also discuss details
of the text collections used. In addition, we have also included some fixes to errors that were detected
in the parent paper during the reviewing process.

The time measures included here are referred to CPU user-times and were obtained using our Docker
instance in an Intel(R) i7-8700K@3.70GHz CPU with 64 GB of DDR4@2400MHz memory.

12SLPs are grammars in which a rule Xi generates i) a terminal j, or ii) a pair of non terminals XlXr .
13These configurations are described in our original paper and basically consider different structures and search algorithms

to provide locate and search functionality.
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2.2.1. Fixes to the Parent Paper

Before delving into the details of the experiments described in the parent paper, it is worth noting
that developing uiHRDC helped us to detect some minor errors in the results reported in the parent paper.
More precisely:

• QMX performance was wrong in the experiment dealing with locate operation for 5-words phrase
patterns (Figure 3 of the parent paper) in the non-positional scenario. Its actual performance is
slightly faster than the one reported by VbyteB, but it means that it is half an order of magnitude
slower than the fastest choice: Vbyte-STB. The locate times of QMX were also wrong in the case
of word queries in the positional scenario (Figure 6 of the parent paper). Although it remains as
the fastest choice in both cases, its difference to Simple9 or Vbyte is drastically reduced.

• The OPT-PFD compression ratios are wrong in the experiments for the positional scenario (Figures
6 and 9). Its actual compression ratio is 29.742% (instead of 31.848%), so it is more effective than
Interpolative and EF-opt.

2.2.2. Non-Positional scenario: Inverted Indexes

For the non-positional scenario we include a comparison of all the compressed inverted index rep-
resentations discussed in Section 2.1.1 when considering locate operation. Yet, in this case we only
consider fetch/intersection time and skip the parsing time of the query patterns. That is, we assume all
the patterns have been mapped into ids before timing starts.

Figure 1 shows the results. In the left part, we show the results for the state-of-the-art techniques. In
the right part we also include our proposals. Recall that for the variants from Ottaviano&Venturini’s

framework [24] we used exactly their source code and simply adapted the format of our data and patterns
to run their build and search programs. Those techniques are marked with an ‘*’ in the figures.
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Figure 1: Main results for the non-positional scenario.

As shown in the parent paper, our new techniques Rice-Runs Vbyte-LZMA, Vbyte-Lzend, and Re-
Pair-based variants drastically reduced the space needs of the existing techniques. Yet, they were typically
also much slower (particularly in the case of Vbyte-Lzend).

2.2.3. Positional scenario: Inverted Indexes and Self-Indexes

In this scenario we compare both our inverted index representations and self-indexes at both locate

and snippet extract operations.

Pattern Location. We did not include all the inverted index variants used in the non-positional scenario,
but only those that could be of interest here. For the self-indexes, timing includes the time needed to
perform (locate(p)) operation to obtain the positions where (p) occurs, and then converting absolute
positions to (document, offset) pairs using merge-occs-to-docs operation. For the inverted indexes,
timing includes: (a) the parsing time required to map each pattern into a sequence of ids; (b) performing
intersection of the required posting lists (for those ids); and (c) running merge-occs-to-docs to obtain
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the final result. For the techniques from Ottaviano&Venturini’s framework we directly used their
sources with no modifications to measure (b) times, whereas time measures for stages (a) and (c) where
done separately with a program we also implemented. During step (a), our program not only measures
times, but also outputs the sequence of ids obtained after the parsing of each pattern p. These id-based
patterns are used to perform intersections with the techniques from Ottaviano&Venturini’s framework.
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Figure 2: Main results for the positional scenario.

Figure 2 shows the results. On the one hand, our Vbyte-LZMA and Re-Pair-based inverted indexes still
improve the space needs of the other representations, while being typically up to one order of magnitude
slower. On the other hand, self-indexes showed to obtain around one order of magnitude reduction on
space, while becoming up to three orders of magnitude slower than the fastest inverted index alternative.
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Figure 3: Main results regarding text extraction performance for both self-indexes and text compressed with Re-Pair.

Snippet Extraction. We report the time needed to extract text snippets T [s, e] from the self-indexes
and compare them with the decoding performance of Re-Pair, that was the text compressor chosen to
compress the document collection for the representations using inverted indexes. Recall that Re-Pair is
coupled with the additional sampling that permit partial decompression, as discussed in Section 2.1.1.
Results are shown in Figure 3. We can see that Re-Pair is very fast at decompression (when a dense
sampling is used) and requires less than 1.5% of the size of the document collection. With very similar
space needs (around 2−3%) we find most of the self-indexes (LZend-index, LZ77-index, RLCSA SLP, and
WSLP), yet they are typically much slower. Finally, WCSA competes in speed with Re-Pair, but requires
around one order of magnitude more space.
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3. The uiHRDC Framework

Our experimental framework was named uiHRDC (universal indexes for Highly Repetitive Document
Collections). It is licensed under the GNU Lesser General Public License v2.1 (GNU LGPL), is hosted at
a GitHub repository,14 and it is also published through Mendeley Data [10]. It includes all the required
elements to reproduce the main experiments in our original paper including datasets, query patterns,
source code, and scripts.

github

JFF�benchmark FFFFF�GDWD�FFFFFFFFFFFFFF�LQGH[HVFFFFFFFFFFFFFFFFFFF�self-LQGH[HVFFF�GR$OO�VK
LFF�report LFF�intervals LFF�12326��������������� LFF�/=
JFF�GRUHSRUW�VK�LFF�patterns LFF�326����������������� LFF�5/&6$0

LFF�texts JFF�UXQ$OO([SHULPHQWV�VK LFF�6/3
LFF�FOHDQ�VK�������������������������������� LFF�:&6$
JFF�SUHSDUHBGDWD�VK������������������������� JFF�UXQ$OO([SHULPHQWV�VK

uiHRDC

LFF�benchmark
G LFF�report
G JFF�GR5HSRUW�VK
LFF�GDWD
G LFF�intervals
G LFF�patterns
G LFF�texts
G LFF�FOHDQ�VK�����������������������uiHRDC/indexes/NOPOS/       
G JFF�SUHSDUHBGDWD�VK����������������LFF�GDWD��������
LFF�LQGH[HV����������������������������LFF�(OLDV)DQR�29����������
G LFF�12326��������������������������LFF�(;3(5,0(176��������
G LFF�326����������������������������LFF�II_docs
G JFF�UXQ$OO([SHULPHQWV�VK�����������LFF�FRPSLOH$OO6RXUFHV�VK����
LFF�self-LQGH[HV�����������������������JFF�UXQ([SHULPHQWV�VK�������
G LFF�/=�������������������������������������
G LFF�5/&6$��������������������������uiHRDC/indexes/POS/        
G LFF�6/3����������������������������LFF�GDWD��������
G LFF�:&6$���������������������������LFF�(OLDV)DQR�29����������
G JFF�UXQ$OO([SHULPHQWV�VK�����������LFF�(;3(5,0(176��������
LFF�GR$OO�VK���������������������������LFF�II_docs
JFF�XWLOV�S\���������������������������LFF�FRPSLOH$OO6RXUFHV�VK

JFF�UXQ([SHULPHQWV�VK

Figure 4: Structure of the uiHRDC repository.

The general structure of the uiHRDC repository is shown in Figure 4. It can be seen that, under the
root of the repository, we include: i) directory benchmark which includes a LATEX formatted report and a
script that will collect all the data files resulting from running all the experiments and will generate a PDF
report with all the relevant figures (including those in Section 2.2). Further python scripts required for
such task are also included in directory utils.py. ii) Directory data, which includes the text collections
(7z compressed), and the query patterns. iii) Directories indexes and self-indexes that contain the
source code for each indexing alternative, and scripts that permit to run all the experiments for each
technique. This includes the construction of each compressed index of interest (using a builder program)
and then performing both locate and extract operations over that index (using the corresponding
searcher program). Each experiment will output relevant data to a results-data file. And iv) a script
doAll.sh that will drive all the process of decompressing the source collections; compiling the sources
for each index and running the experiments with it; and finally, generating the final report. The overall
workflow followed is depicted in Figure 5.

In the following section we will include further details regarding the contents of our repository.

3.1. Test Data

Within uiHRDC we provide in data directory, both the document collections and the query sets used
in the experimental setup of our parent paper. They are described below.

3.1.1. Document Collections

Our document collections were created from the 108.5 GB Wikipedia collection described by He et
al. [14], which contained 10% of the complete English Wikipedia from 2001 to mid 2008. It contains
240,179 articles, and each of them has a number of versions. Its statistics are shown in Table 2. Note
that we did not have the original 108.5 GB collection, but a filtered (tag-free) version of it whose size
totaled 85.58 GB. Therefore, the original collection was 1.27 times larger than ours.

14https://github.com/migumar2/uiHRDC/
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Figure 5: Workflow used in uiHRDC to reproduce our experiments.

Subset Size Articles Number of Versions / Filename Filesize
(GB) versions article (within uiHRDC) (GB)

Full 108.50 240,179 8,467,927 35.26 -- 85.58
Non-pos 24.77 2,203 881,802 400.27 text20gb.txt 19.53
Pos 1.94 4,327 149,761 34.61 wiki src2gb.txt 1.94

Table 2: Detailed statistics of the document collections used.

From the Full collection of articles, we chose two subsets of the articles, and collected all the versions
of the chosen articles. For the non-positional setting our subset (Non-pos) contains a prefix of 19.53 GB
of the full collection, whereas for positional indexes we chose 1.94 GB of random articles. However,
for a fair comparison with the techniques from [14], in the non-positional scenario we scaled the size
of the Non-pos subset using the above 1.27 factor when referring to its space requirements. Additional
statistics of our two subsets are also included in Table 2.

3.1.2. Query sets

Since the experiments target at providing space/time for the different indexing alternatives when
performing locate(pattern) and extract(interval) queries we provide two types of query sets for
each document subcollection.

• Query sets for locate: We provide four query sets, each of them containing 1,000 queries, which
include: i) two query sets composed of one-word patterns chosen at random from the vocabulary
of the indexed subcollection. In the first case (Wa), it includes low-frequency words occurring less
than 1,000 times. In the second case, the query set (Wb) includes high-frequency words occurring
more than 1,000 times; and ii) two query sets with 1,000 phrases composed of 2 and 5 words that
were chosen randomly from the text of the subcollection (with no restrictions on its frequency).

• Interval sets for extract: Aiming at measuring extraction time when recovering snippets of length
80 (around one line) and 13,000 (around one document, in our collection) characters, we generated:
i) a set of 10,000 intervals of width 13,000 characters from the POS text collection, and ii) a set
containing 100,000 intervals of width 80 characters. Since these intervals are not suitable for our
word-based self-indexes (WCSA and WSLP), and assuming that the average word length is around
4 in our datasets, we also generated two additional sets composed respectively of 10,000 intervals
containing 3, 000 words each, and 100,000 intervals containing 20 words each.

3.2. Source Code and scripts

As indicated above, the source code provided in our uiHRDC repository has two main directories
indexes and self-indexes. Those directories include both the source code and the scripts required to
reproduce our experiments. In this section we include more details regarding their structure so that an
interested reader can rapidly understand how they are organized.
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uiHRDC/indexes/NOPOS/                           

LFF�GDWD����������������������������������������
G LFF�FOHDQ�VK��������������������������������
G LFF�JR��JE�VK�������������������������������
G JFF�Readme.data.txt
LFF�II_docs
G LFF�LOLVWV�LPS��������������������������������������������������������������������������������
G LFF�lib
G LFF�src
G LFF�FOHDQ�VK������������������������������������
G LFF�FRPSLOH�VK����������������������������������
G JFF�Makefile
G������������������������������������������������������uiHRDC/indexes/NOPOS/EXPERIMENTS                                       
LFF�(;3(5,0(176����������������������������������������LFF�H[SHULPHQWV���J������������������������������������
G LFF�H[SHULPHQWV���J��������������������������������G LFF�����VFULSWV�ULFH�ELWPDS������������������������������������
G LFF�FOHDQ�VK���������������������������������������G LFF�����VFULWSV�ULFH5/(����FFFFFFFFFFFFFFFF���������
G JFF�JROLQNV�VK�������������������������������������G LFF�����VFULSWV�YE\WHELWPDS����������������LFF�JR%XLOG�VK
G������������������������������������������������������G LFF���VFULSWV�YE\WHELWPDSPRIIDW������������LFF�JR6HDUFK�VK���������
LFF��(OLDV)DQR�29��������������������������������������G LFF���VFULSWV�YE\WHELWPDS6DQGHUV�����������LFF�FOHDQ�VK������������
G����LFF�����H[WUDFW�LGV�SDWWHUQV����������������������G LFF������VFULSWV�5HSDLU*RQ]DOR�������������LFF�(B:D�����ULFH5/(�GDW
G����G LFF�LQGH[HV�����������������������������������G LFF������5HSDLU6NLSSLQJ*RQ]DOR�������������LFF�(B:E�����ULFH5/(�GDW
G����G JFF�FOHDQ�VKFJR%XLOG�VKFJR6HDUFK�VK G LFF��������5HSDLU6NLSSLQJ0RIIDW*RQ]DOR�����LFF�1BS������ULFH5/(�GDW
G����LFF�II_docs.EliasFano_formato.ver.leeme G LFF��������5HSDLU6NLSSLQJ6DQGHUV*RQ]DOR����JFF�1BS������ULFH5/(�GDW
G����G LFF�LQGH[HV�����������������������������������G LFF�����VFULSWV�O]HQG�GHOWDBVDPSOH����������
G����G LFF�src G LFF���VFULSWV�YE\WHO]PD������������������
G����G LFF�FRPSLOH�VK��������������������������������G LFF���VFULSWV�VLPSOH���������������������
G����G JFF�Makefile G LFF���VFULSWV�SIRUGHOWD������������������
G����LFF�partitioned_elias_fano G LFF���VFULSWV�TP[�ELV
G����G LFF�partitioned_elias_fano.nopos G LFF�JR%XLOG6HDUFK&OHDQ�VK
G����G JFF�GRZQORDG�VK�������������������������������G LFF�JR%XLOG$OO�VK
G����LFF�FOHDQ�VK��������������������������������������G LFF�JR&OHDQ�VK
G����LFF�JROLQNV�VK������������������������������������G JFF�JR6HDUFK$OO�VK
G����JFF�Readme.howto.txt LFF�FOHDQ�VK
G������������������������������������������������������JFF�JROLQNV�VK
LFF�FRPSLOH$OO6RXUFHV�VK������������������������
JFF�UXQ([SHULPHQWV�VK�

Figure 6: Structure of the uiHRDC/indexes directory in the uiHRDC repository.

3.2.1. Indexes

Under uiHRDC/indexesdirectory, as it is shown in Figure 4, we can find a script runAllExperiments.sh
and two directories NOPOS and POS. Basically, that script enters both directories, and then runs two
scripts: one to compile the source codes (compileAllSources.sh) and another one to launch the exper-
iments (runExperiments.sh) in that directory. An interested reader should probably start by opening
those small scripts. These scripts are included in Figure 6, where we show the structure of directory
NOPOS (the structure of POS is almost identical).

Directory uiHRDC/indexes/NO-POS: Non-Positional Inverted Indexes. Under this directory, we can find
the scripts compileAllSources.sh and runExperiments.sh discussed above, a data directory were
links to uiHRDC/data will be created by the scripts under this directory, and finally two main parts:
i) EliasFano.OV14 with the sources and scripts needed to reproduce our experiments for techniques
EF-opt, Interpolative, varintG8IU, and OPT-PFD; and ii) Directories II docs and EXPERIMENTS that
include respectively the source code of the remaining inverted index variants and the corresponding
scripts to run the experiments. We include more details below.

• Our implementation and scripts within directories II docs and EXPERIMENTS. We have organized
the source code for our inverted indexes within II docs directory. In Figure 6, we can see a script
compile.sh and three subdirectories: ilists.imp, lib, and src. The implementation for all our
types of compressed posting list representations is contained within directory ilists.imp. Script
compile.sh will create a package for each of them and will move such package into lib directory.
Finally, the source code for our non-positional compressed inverted index, located within src

directory, will be linked with each of those posting list representations to obtain the final BUILD*
and SEARCH* binaries for each all our variants of non-positional inverted index.

In Figure 6, we can also see the contents of directory EXPERIMENTS/experiments20gb. Basi-
cally, there is a subdirectory for each technique with scripts goBuild.sh (to create the indexes),
goSeach.sh (to perform query operations), and clean.sh (to clean temporal stuff). Those tech-
niques are respectively (top-to-bottom in the figure): 1.4) Rice and RiceB, 1.5) Rice-Runs,
2.1) Vbyte and VbyteB, 2)Vbyte-CM and Vbyte-CMB, 3) Vbyte-ST and Vbyte-STB, 4.22) RePair,
4.33) RePair-Skip, 4.33.1) RePair-Skip-CM, 4.33.2) RePair-Skip-ST, 555) Vbyte-Lzend, 6)
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uiHRDC/self-indexes/

LFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF�collectResults
LFF�UXQ$OO([SHULPHQWV�VK LFF�O]��
LFF�/=����������������������������LFF�lzend
G LFF�evaluation LFF�rlcsa
G LFF�VFULSWV�������������������LFF�slp
G LFF�src LFF�wcsa
G JFF�UXQ([SHULPHQWV�VK���������LFF�wslp
LFF�6/3���������������������������LFF�FROOHFW5HVXOWV�S\
G LFF�evaluation LFF�FROOHFW5HVXOWV5/&6$�S\
G LFF�libcds LFF�FROOHFW5HVXOWV:&6$�VK
G LFF�VFULSWV�������������������LFF�FROOHFW5HVXOWV:6/3�S\
G LFF�slp JFF�JR&ROOHFW5HVXOWV�VK
G LFF�wslp
G JFF�UXQ([SHULPHQWV�VK����������
LFF�5/&6$����������������
G LFF�GDWD�������������
G LFF�rlcsa
G LFF�VFULSWV����������
G JFF�UXQ([SHULPHQWV�VK
JFF�:&6$��������������������������

LFF�GDWD����������������������
LFF�VFULSWV�VZFVD��LV���������
LFF�sourceCode
JFF�UXQ([SHULPHQWV�VK�

Figure 7: Structure of the uiHRDC/self-indexes directory in the uiHRDC repository.

Vbyte-LZMA, 7) Simple9, 8) PforDelta, and 9) QMX. In addition, a script goBuildSearchClean.sh
is in charge of entering each directory running the experiments for the corresponding technique.
The output of those experiments are data files containing both space and time statistics (see files
E Wa.1.5.riceRLE.dat, ...).

• Ottaviano&Venturini’s variants within directory EliasFano.OV14: This directory contains: i) A
subdirectory partitioned elias fano containing the source code from Ottaviano&Venturini’s
framework and a script to run the experiments corresponding to variants EF-opt, Interpolative,
varintG8IU, and OPT-PFD; and ii) two additional directories II docs.EliasFano formato.ver.leeme

and 2.1.extract.ids.patterns that contain source code and scripts to transform the text-based
patterns into the id-based patterns that will be used at query time. In this case, the output of the
experiments is written to a log-file and finally a Phyton script parses such file to gather the values
regarding space and time measures for each technique.

Directory uiHRDC/indexes/POS: Positional Inverted Indexes. As indicated above, the structure of this
directory is almost identical to that of directory uiHRDC/indexes/NO-POS. Therefore, we include no
further details here.

3.2.2. Self-Indexes

Under directory uiHRDC/self-indexes, as it is shown in Figure 7, we can find a script runAllExperiments.sh
and one directory for the different types of self-indexes. In particular, we find directories RLCSA, WCSA,
LZ (for LZ77-index and LZend-index) and SLP (for SLP and WSLP). In those directories we will find,
among others, the source code and scripts to run the experiments for each technique.

In addition, directory uiHRDC/self-indexes/collectResults contains scripts to process the log
files obtained when we run the script runAllExperiments.sh and create gnuplot-type data files for each
technique that are used to make up the final report for the experiments.

4. Deploying the Experimental Setup with Docker

For those readers interested in reproducing our experiments in their machine, we provide a Docker
environment that will allow them to:

1. Reproduce our test framework. We create a docker image with Ubuntu 14 (ubuntu:trusty) that
includes all the libraries and software requirements to compile/run our indexing alternatives and
also build the final report. These includes packages that are installed via apt such as: gcc-multilib,
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g++-multilib, cmake, libboost-all-dev, p7zip-full, openssh-server, screen, texlive-latex-base, and
texlive-fonts-recommended; and finally, snappy-1.1.115, which we included in a snappy-1.1.1.tar.gz
file, and gnuplot-qt, which in included in gnuplot-4.4.3.tar file. In addition, the contents of the
uiHRDC framework (downloaded from our repository) and copied into /home/user/uiHRDCdirectory
of our docker image.

2. Connect to an instance of our docker image using ssh/sftp. Basically, we expose port 22 and
create a user ’user’ with password ’userR1’ who can connect via ssh. This will allow the reader
to connect to the docker container as to any remote server and to retrieve the final report by sftp.
Once connected, user has sudo priviledges and, for example, can become root simply entering
sudo su.

3. Run doAll.sh script to automatically run all our experiments and generate our final report. This
script must be run by root user. Note that we have installed (via apt-get) screen virtual terminal
so that the user can disconnect from the docker container and still keep doAll.sh script running.

The minimum hardware requirements to run doAll.sh script would be to have a machine with
at least 32GB RAM (and 16GB swap) and around 200GB of free disk space (in the file system were
Docker keeps its files16). In our machine, i7-8700K@3.70GHz CPU (6 cores/12 siblings) with 64 GB of
DDR4@2400MHz memory and a 7200rpm SATA disk, it took around 40 hours to run all the experiments
from doAll.sh script.

4.1. Running the experiments: step-by-step

Below we show all the commands needed to use Docker17 to reproduce our framework within a Docker
container, then run the experiments within that container, and retrieve the final report (including also
the gnuplot-type result data files).

1. Create a temporal working directory (i.e. $TMP) and move to it: mkdir $TMP and cd $TMP

2. Clone the uiHRDC GitHub repository at https://github.com/migumar2/uiHRDC/. It will create a
directory $uiHRDC. Please rename it as $DIR. Then move to directory $DIR. Within $DIR you will
find a file Dockerfile and two directories: docker and uiHRDC.
$TMP> git clone https://github.com/migumar2/uiHRDC.git

$TMP> mv uiHRDC $DIR

$TMP> cd $DIR

3. Creating a docker image named repet: (you must be at $DIR directory)
$DIR> sudo docker build -t repet --rm=true . # Note: there is a final ‘dot’ (.)

4. Running a docker container named repet-exp that exports ssh/sftp port (22) via port 22222:
$DIR> sudo docker run --name repet-exp -p 22222:22 -it repet

Now, you can press CTRL+P CTRL+Q to detach from docker-container.

5. Connecting via ssh to the container and becoming root.
$DIR> ssh user@localhost -p 22222 # enter password userR1 when prompted.
$user@docker> sudo su # enter password userR1 when prompted.
$root@docker> screen -t EXPERIMENTS # optional, to launch screen virtual terminal.

6. Move to the working directory /home/user/uiHRDC where doAll.sh script is located.
$root@docker> cd /home/user/uiHRDC

7. Now we run doAll.sh script. $root@docker> sh doAll.sh

and wait until doAll.sh had completed.

8. If you want to retrieve the final report and the results (gnuplot-type data files) via sftp you must
grant access to those files to user user.
$root@docker>tar czvf /home/user/uiHRDC/report.tar.gz /home/user/uiHRDC/benchmark

$root@docker>chown user:user /home/user -R

15https://github.com/google/snappy
16If you experiment space issues, a simple workaround could be to check which is the directory where Docker creates its

images (e.g. /home/shared/docker/tmp/ or /var/lib/docker), and to replace it by a symbolic link pointing to a location
in a larger partition/disk.

17To install Docker, please refer to the installation guide for your host operating system:
https://docs.docker.com/install/. In our Ubuntu system it simply consisted in running “sudo apt-get install

docker.io”
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9. Now we can close the ssh session (or detach from the docker container).
$root@docker> exit

$user@docker> exit

10. Now we can connect by sftp or scp using again port 22222 to download /home/user/uiHRDC/report.tar.gz
from the docker container.
$DIR> sftp -P 22222 user@localhost:/home/user/uiHRDC # enter password userR1 when
prompted.
$sftp> get report.tar.gz

or alternatively:
$DIR> scp -P 22222 user@localhost:/home/user/uiHRDC/report.tar.gz . # use password
userR1

When decompressed, you will find the report here $DIR/benchmark/report/report.pdf and all
the gnuplot data files within $DIR/benchmark/report/figures directory.

11. Finally you can stop repet-exp container, and if needed remove it and also repet image:18

$DIR> sudo docker stop repet-exp

$DIR> sudo docker rm repet-exp

$DIR> sudo docker rmi repet

5. Conclusions and Future Work

We have briefly described all the techniques used in our original paper. In total, we had twenty
two variants of posting list representations available that were used to create both non-positional and
positional inverted indexes. In addition, we had six self-indexing techniques. Since those techniques have
their own configuration parameters, and in some cases dependencies of libraries/software, it would be
hard to replicate the results and to reuse our techniques by simply reading our original paper and cloning
the (GitHub) repository were we had made our sources available. To overcome those limitations, this
paper includes a detailed description of our replication framework uiHRDC. An interested reader could
find not only our source code, our document collections and the query patterns used in our experiments,
but also a set of related scripts. Those scripts permit us to replicate all our experiments with little effort
and, additionally, generate a PDF report (using python, gnuplot, and latex) that contains the figures
with the experimental results from our parent paper. In addition, we provide some configuration files to
create a Docker container that reproduces our test environment (including all the required dependencies),
and instructions regarding how to start the container, run the experiments, and finally download a copy
of the final report from the Docker container. We hope that the descriptions and instructions provided
along this paper will simplify the work of any reader interested in reusing the experiments from our
original paper.

An interesting line of future work is to redesign uiHRDC to facilitate that new indexes to be added
to the framework. The resulting benchmark framework would ensure reproducible experimentation for
ongoing research about compression and indexing of highly repetitive collections.

6. Revision Comments

We would like to thank the authors for providing this valuable reproducibility platform, which allows
both reproducing the results of its parent paper and encouraging the evaluation of new indexes for highly
repetitive document collections in an easy and systematic way. Undoubtedly, this will be a topic of active
research in the coming years given, for example, the cheapening of gene sequencing technology. Hence,
the public availability of this type of benchmarking platform is becoming imperative. For this reason,
we sincerely expect that uiHRDC sets an experimental standard for this line of research.

On the other hand, this work confirms again that the production of reproducible science is a difficult
task, thus reproducibility of any research work must be considered and planned since the very beginning
stages of development. Despite the reviewers reached a consensus about the reproducibility of the paper,
the rigorous review process raised some reproducibility issues that left us some significant lessons on the

18The reader can use sudo docker ps and sudo docker images to see respectively the active containers and existing
images.
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difficulties of producing fully reproducible science and developing such ambitious reproducible platform
as introduced herein. Next, we discuss our experience with this work as well as the lessons learned from
our review.

We fully support the choice of using Docker for this kind of reproducibility experiments. Using
a container makes it extremely simple to reproduce the experimentation framework, which otherwise
would require to install the dependencies and compile the tested codes manually. However, review
process unveiled other issues on the set-up and running of the uiHRDC experiments, which were fixed
by providing specific instructions solving them. For instance, authors added information in the output
report to warn the experimenter in those cases in which the experiments failed by lack of resources, as
well as to ensure that the folder used by Docker resides in a drive with enough memory, which might not
be the case for the default drive used by Docker.

In addition to the aforementioned set-up and running issues, some others arose with the experimen-
tation itself in a first review: (1) a significant mismatch in the ordering of time-axis results derived
from the uncertainty in the evaluation of running time values; (2) a difference in the compression ra-
tios obtained for the OPT-PFD indexing method; (3) missing values for Vbyte-Lzend and QMX-SIMD
methods derived from software problems which did not provide any warning to the experimenter; and
(4) differences of scaling between the original figures and those generated by uiHRDC, which made a
detailed checking process difficult. Subsequently, all experimentation issues detailed above were either
fixed or honestly and rigorously justified in the paper in a sample of best research practices. First,
time measurement was significantly improved by increasing the number of evaluations with the aim of
reducing its fluctuation. It worths to highlight that special attention should be put in any research for
the reproducibility of running time values and their conclusions. Second, a few code bugs were fixed
and the output experimentation report was extended to provide detailed information on the execution
of the experiments. This further information shown to be very useful to guide the review process, and
also to detect possible bugs for particular execution environments. Finally, axis scaling was revised to
match the original paper exactly, and a bug with gnuplot was fixed so the generated report is produced
with the same symbology of the parent paper. These later two issues highlight the importance of the
presentation of the results to properly communicate research findings in a clear way.

The uiHRDC framework is a first try of standardizing experiments that, in absence of such a frame-
work, would need to be repeated each time a new index is introduced in the literature. Thus, uiHRDC
will be a very valuable resource to the research community by avoiding this tedious and costly task,
which is also prone to errors.

As forthcoming activities, we invite the authors to extend uiHRDC with the aim of removing some
drawbacks that hinder the integration of new indexes in their platform. The main drawback is that
adding a new index is not trivial and requires editing several scripts; thus, any improvement in this sense
will contribute to turn uiHRDC into a standard for comparison by future researchers.
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[18] J. J. Lastra-Dı́az, A. Garćıa-Serrano, M. Batet, M. Fernández, and F. Chirigati. HESML: A scalable
ontology-based semantic similarity measures library with a set of reproducible experiments and a
replication dataset. Information Systems, 66:97 – 118, 2017.

[19] D. Lemire, L. Boytsov, and N. Kurz. Simd compression and the intersection of sorted integers.
Software: Practice and Experience (published online), 2015.

[20] J. Lin, M. Crane, A. Trotman, J. Callan, I. Chattopadhyaya, J. Foley, G. Ingersoll, C. Macdonald,
and S. Vigna. Toward Reproducible Baselines: The Open-Source IR Reproducibility Challenge. In
Proceedings of the 38th European Conference on IR Research, ECIR, pages 408–420, 2016.
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A. Compression Ratios

This appendix shows the exact compression ratios for all the techniques included in our uiHRDC frame-
work. The corresponding tuning parameters are provided for each case (× is used for those techniques
that do not require any parameter). Those values are included in Table 3.

Note that in the positional scenario, when the source text collection is compressed with Re-Pair, the
parent paper allowed the extraction of snippets consisting of either 80 or 13, 000 chars. We considered
sampling parameter values sample ct = {1, 2, 8, 32, 64, 256, 4096}. Table 4 shows the compression ratios
of the RePair-compressed text that corresponds to each sampling configuration. Yet, the plot included
in the parent paper (Fig.10-left) when 80 chars included only points for sample ct = {1, 2, 8, 32, 64}, and
when extracting 13, 000 chars (see Figure 3, or Fig.10-right in the parent paper) we tuned sample ct =
{1, 8, 32, 256, 4096}.
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Non-positional indexes

Method
Compression ratio

Value Parameterization

Vbyte 4.4592% ×

VbyteB 3.3522% lenBitmapDiv = 8

Vbyte-CM
4.4956% k = 32

4.7095% k = 4

Vbyte-CMB
3.3754% k = 32, lenBitmapDiv = 8

3.4996% k = 4, lenBitmapDiv = 8

Vbyte-ST
4.5147% B = 128

4.8650% B = 16

Vbyte-STB
3.3820% B = 128, lenBitmapDiv = 8

3.5488% B = 16, lenBitmapDiv = 8

Rice 3.0807% ×

RiceB 3.2235% lenBitmapDiv = 8

Simple9 0.9130% ×

PforDelta 0.9372% pfdThreshold = 100

QMX 4.8825% ×

Rice-Runs 0.3247% ×

Vbyte-LZMA 0.2030% minbcssize = 10

Vbyte-Lzend

0.1420% ds = 256

0.1437% ds = 64

0.1508% ds = 16

0.1790% ds = 4

Re-Pair 0.1040% ×

RePair-Skip 0.1097% repairBreak = 4×10−7

RePair-Skip-CM
0.1195% k = 64, repairBreak = 4×10−7

0.1212% k = 1, repairBreak = 4×10−7

RePair-Skip-ST 0.1279% B = 210, repairBreak = 4×10−7

EF-opt 0.4984% ×

OPT-PFD 0.7015% ×

Interpolative 0.5573% ×

varintG8IU 5.3144% ×

Positional indexes

Method
Compression ratio

Value Parameterization

Vbyte 35.1530% ×

Vbyte-CM 35.3805% k = 32

36.5899% k = 4

Vbyte-ST 35.4935% B = 128

37.4281% B = 16

Rice 36.7974% ×

Simple9 36.6233% ×

QMX 136.8762% ×

Vbyte-LZMA 9.7539% minbcssize = 10

RePair 20.0641% ×

RePair-Skip 21.3769% repairBreak = 5 × 10−7

RePair-Skip-CM 20.0786% k = 64, repairBreak = 5 × 10−7

20.8584% k = 1, repairBreak = 5 × 10−7

RePair-Skip-ST 21.7456% B = 256, repairBreak = 5 × 10−7

EF-opt 30.5630% ×

OPT-PFD 29.7424% ×

Interpolative 29.8820% ×

varintG8IU 37.9975% ×

RLCSA 2.4735% sample = 2048

2.8686% sample = 1024

3.6630% sample = 512

5.2489% sample = 256

8.4048% sample = 128

14.6924% sample = 64

27.2996% sample = 32

WCSA 8.8921% 〈sA, sAinv, sPsi〉 = 〈2048, 2048, 2048〉

9.4071% 〈sA, sAinv, sPsi〉 = 〈512, 512, 512〉

11.0718% 〈sA, sAinv, sPsi〉 = 〈128, 256, 128〉

15.8673% 〈sA, sAinv, sPsi〉 = 〈64, 128, 32〉

17.9458% 〈sA, sAinv, sPsi〉 = 〈32, 64, 32〉

25.6777% 〈sA, sAinv, sPsi〉 = 〈16, 64, 16〉

50.8565% 〈sA, sAinv, sPsi〉 = 〈8, 8, 8〉

SLP 3.2374% ×

WSLP 2.8962% ×

LZ77-index 1.8357% ×

LZend-index 2.3894% ×

Table 3: Summary of compression ratios for all indexes in the framework.

Compression ratio Parameterization

1.306% sample ct = 1
1.265% sample ct = 2
1.227% sample ct = 8
1.215% sample ct = 32
1.213% sample ct = 64
1.211% sample ct = 256
1.210% sample ct = 4096

Table 4: Summary of compression ratios for the RePair-compressed version of the text with different sampling values.
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B. Using Self-Indexes for other types (non-document oriented) of Highly-Repetitive Col-
lections

While self-indexes like WCSA or WSLP are designed to operate on words, the remaining approaches in
our benchmark can effectively operate on an universal scenario; i.e. they are able to exploit repetitiveness
underlying to any arbitrary sequence of chars.

Focusing on SLP, LZ77-index, and LZ-End, the implementations provided in uiHRDC can be easily
used to self-index any data collection. Scripts for indexing and searching can be reused, although
the number of parameters passed to locate changes. Currently, locate requires a parameter (called
doc boundaries) which sets the path to a file that contains the array of offsets that mark the beginning of
each document in the text. It is required to map absolute positions to (doc,offset) pairs which indicate
the position of each pattern occurrence within a document. However, this operation is not usually needed
in a general scenario, so the corresponding parameter is neither needed.

Therefore, to invoke locate in a general scenario we have simply to remove doc boundaries, and the
script will deliver absolute positions of the pattern in the text.
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