
Privacy-Aware Data Cleaning-as-a-Service

Yu Huanga, Mostafa Milanib, Fei Chianga

aDept. of Computing and Software, McMaster University, Hamilton, Canada
bDept. of Computer Science, Western University, London, Canada

Abstract

Data cleaning is a pervasive problem for organizations as they try to reap value from their data.
Recent advances in networking and cloud computing technology have fueled a new computing
paradigm called Database-as-a-Service, where data management tasks are outsourced to large ser-
vice providers. In this paper, we consider a Data Cleaning-as-a-Service model that allows a client to
interact with a data cleaning provider who hosts curated, and sensitive data. We present PACAS:
a Privacy-Aware data Cleaning-As-a-Service model that facilitates interaction between the par-
ties with client query requests for data, and a service provider using a data pricing scheme that
computes prices according to data sensitivity. We propose new extensions to the model to define
generalized data repairs that obfuscate sensitive data to allow data sharing between the client and
service provider. We present a new semantic distance measure to quantify the utility of such re-
pairs, and we re-define the notion of consistency in the presence of generalized values. The PACAS
model uses (X,Y,L)-anonymity that extends existing data publishing techniques to consider the
semantics in the data while protecting sensitive values. Our evaluation over real data show that
PACAS safeguards semantically related sensitive values, and provides lower repair errors compared
to existing privacy-aware cleaning techniques.

1. Introduction

Data cleaning is a pervasive problem motivated by the fact that real data is rarely error free.
Organizations continue to be hindered by poor data quality as they wrangle with their data to
extract value. Recent studies estimate that up to 80% of the data analysis pipeline is consumed
by data preparation tasks such as data cleaning [1]. A wealth of data cleaning solutions have been
proposed to reduce this effort: constraint based cleaning that use dependencies as a benchmark to
repair data values such that the data and dependencies are consistent [2], statistical based cleaning,
which propose updates to the data according to expected statistical distributions [3], and leveraging
master data as a source of ground truth [4].

Recent advances in networking and cloud infrastructure have motivated a new computing
paradigm called Database-as-a-Service that lowers the cost and increases access to a suite of data
management services. A service provider provides the necessary hardware and software platforms
to support a variety of data management tasks to a client. Companies such as Amazon, Microsoft,
and Google each provide storage platforms, accelerated computational capacity, and advanced data

Email addresses: huang223@mcmaster.ca (Yu Huang), mostafa.milani@uwo.ca (Mostafa Milani),
fchiang@mcmaster.ca (Fei Chiang)

Preprint submitted to Elsevier August 4, 2020

ar
X

iv
:2

00
8.

00
36

8v
1

 [
cs

.D
B

]
 2

 A
ug

 2
02

0

analytics services. However, the adoption of data cleaning services has been limited due to pri-
vacy restrictions that limit data sharing. Recent data cleaning efforts that use a curated, master
data source share a similar service model to provide high quality data cleaning services to a client
with inconsistent data [4, 5]. However, these techniques largely assume the master data is widely
available, without differentiating information sensitivity among the attribute values.

*

male female

𝑙1
𝑔𝑒𝑛

𝑙0
𝑔𝑒𝑛

*

anesthetics

vasodilators local anesthetics

𝑙3
𝑚𝑒𝑑

𝑙2
𝑚𝑒𝑑

𝑙1
𝑚𝑒𝑑

𝑙0
𝑚𝑒𝑑

analgesic

v2-receptorinotropes

acetaminophenNSAID

naproxenibuprofen paracetamoltylenol

(b)(a)

addaprin dolex

(𝑏)(𝑎)

Figure 1: (a) DGHmed and (b) VGHmed.

(𝑏)

* (not released)

muscular and endocrine

musculoskeletalheadache

𝑙3
𝑑𝑖𝑎𝑔

𝑙2
𝑑𝑖𝑎𝑔

(𝑎)

𝑙1
𝑑𝑖𝑎𝑔

𝑙0
𝑑𝑖𝑎𝑔

digestive and circulatory system

tendinitismigrainesinus

artery diseasestomach disease

pylorospasmulcer hypotensionhypertension osteoarthritis

*𝑙2
𝑎𝑔𝑒

𝑙1
𝑎𝑔𝑒

[1,30] [91,120]

1 30 91 120…𝑙0
𝑎𝑔𝑒 … …

…

(b)(a)

Figure 2: (a) DGHage and (b) VGHage.

Example 1.1. A data broker gathers longitudinal data from hospital and doctors’ records, pre-
scription and insurance claims. Aggregating and curating these disparate datasets lead to a valuable
commodity that clients are willing to pay for gleaned insights, and to enrich and clean their indi-
vidual databases. Table 1 shows the curated data containing patient demographic, diagnosis and
medication information. The schema consists of patient gender (GEN), age (AGE), zip code (ZIP),
diagnosed illness (DIAG), and prescribed medication (MED).

A client such as a pharmaceutical firm, owns a stale and inconsistent subset of this data as shown
in Table 2. For example, given a functional dependency (FD) ϕ : [GEN,DIAG]→ [MED] on Table 2,
it states that a person’s gender and diagnosed condition determine a prescribed medication. That
is, for any two tuples in Table 2, if they share equal values in the [GEN, DIAG] attributes, then they
should also have equal values in the MED attribute. We see that tuples t1 - t5 falsify ϕ. Error cells
that violate ϕ are highlighted in light and dark gray, and values in bold are inaccurate according
to Table 1.

If the client wishes to clean her data with the help of a data cleaning service provider (i.e., the
data broker and its data), she must first match the inconsistent records in Table 2 against the curated
records in Table 1. This generates possible fixes (also known as repairs) to the data in Table 2. The
preferred repair is to update t2[MED], t3[MED] to ibuprofen (from m6), and t4[DIAG] = migraine
(from m3). However, this repair discloses sensitive patient information about diagnosed illness and
medication from the service provider. It may be preferable to disclose a more general value that

2

ID GEN AGE ZIP DIAG MED

m1 male 51 P0T2T0 osteoarthritis ibuprofen
m2 female 45 P2Y9L8 tendinitis addaprin
m3 female 32 P8R2S8 migraine naproxen
m4 female 67 V8D1S3 ulcer tylenol
m5 male 61 V1A4G1 migraine dolex
m6 male 79 V5H1K9 osteoarthritis ibuprofen

Table 1: Curated medical records (RSP)

ID GEN AGE DIAG MED

t1 male 51 osteoarthritis ibuprofen
t2 male 79 osteoarthritis intropes
t3 male 45 osteoarthritis addaprin
t4 female 32 ulcer naproxen
t5 female 67 ulcer tylenol
t6 male 61 migrane dolex
t7 female 32 pylorospasm appaprtin
t8 male 37 hypertension dolex

Table 2: Dirty client records w.r.t. ϕ.

ID GEN AGE ZIP DIAG MED

g1 * [31,60] P* osteoarthritis ibuprofen
g2 * [31,60] P* tendinitis addaprin
g3 * [31,60] P* migraine naproxen
g4 * [61,90] V* ulcer tylenol
g5 * [61,90] V* migraine dolex
g6 * [61,90] V* osteoarthritis ibuprofen

Table 3: Public table.

is semantically similar to the true value to protect individual privacy. For example, instead of
disclosing the medication ibuprofen, the service provider discloses Non-steroid anti-inflammatory
drug (NSAID), which is the family of drugs containing ibuprofen. In this paper, we explore how to
compute such generalized repairs in an interactive model between a service provider and a client to
protect sensitive data and to improve accuracy and consistency in client data.

State-of-the-Art. Existing work in data privacy and data cleaning have been limited to impu-
tation of missing values using decision trees [6], or information theoretic techniques [7], and studying
trade-offs between privacy bounds and query accuracy over differentially private relations [8]. In the
data cleaning-as-a-service setting, which we consider in this paper, using differential privacy poses
the following limitations: (i) differential privacy provides guarantees assuming a limited number of
interactions between the client and service provider; (ii) queries are limited to aggregation queries;
and (iii) data randomization decreases data utility.

Given the above limitations, we explore the use of Privacy Preserving Data Publishing (PPDP)
techniques, that even though do not provide the same provable privacy guarantees as differential

3

privacy, do restrict the disclosure of sensitive values without limiting the types of queries nor
the number of interactions between the client and service provider. PPDP models prevent re-
identification and break attribute linkages in a published dataset by hiding an individual record
among a group of other individuals. This is done by removing identifiers and generalizing quasi-
identifier (QI) attributes (e.g., GEN, AGE, ZIP) that together can re-identify an individual. Well-
known PPDP methods such as k-anonymity require the group size to be at least k such that an
individual cannot be identified from k − 1 other individuals [9, 10]. Extensions include (X,Y)-
anonymity that break the linkage between the set X of QI attributes, and the set Y of sensitive
attributes by requiring at least k distinct sensitive values for each unique X [11]. For example,
Table 3 is k-anonymous for k = 3 by generalizing values in the QI attributes. It is also (X,Y)-
anonymous for sensitive attribute MED for k = 3 since there are three distinct medications for each
value in the QI attributes X, e.g., values (∗, [31, 60], P∗) of X co-occur with ibuprofen, addaprin,
and naproxen of Y .

To apply PPDP models in data cleaning, we must also address the highly contextualized nature
of data cleaning, where domain expertise is often needed to interpret the data to achieve correct
results. It is vital to incorporate these domain semantics during the cleaning process, and into
a privacy model during privacy preservation. Unfortunately existing PPDP models only consider
syntactic forms of privacy via generalization and suppression of values, largely ignoring the data
semantics. For example, upon closer inspection of Table 3, the values in the QI attributes in records
g1− g3 are associated with the same family of medication, since ibuprofen, addaprin, and naproxen
all belong to the the NSAID class, which are analgesic drugs. In past work, we introduced a privacy-
preserving framework that uses an extension of (X,Y)-anonymity to incorporate a generalization
hierarchy, which capture the semantics of an attribute domain1 [12]. In Table 3, the medications in
g1− g3 are modeled as synonyms in such a hierarchy. In this paper, we extend our earlier work [12]
to define a semantic distance metric between values in a generalization hierarchy, and to incorporate
generalized values as part of the data repair process.

Example 1.2. To clean Table 2, a client requests the correct value(s) in tuples t1−t3 from the data
cleaning service provider. The service provider returns ibuprofen to the client to update t2[MED] and
t3[MED] to m6[MED] = ibuprofen. However, disclosing the specific ibuprofen medication violates
the requirements of the underlying privacy model. Hence, the service provider must determine when
such cases arise, and offer a revised solution to disclose a less informative, generalized value, such
as NSAID or analgesic. The model must provide a mechanism for the client and service provider
to negotiate such a trade-off between data utility and data privacy.

Technical Challenges.
1. Data cleaning with functional dependencies (FDs), and record matching (between the service

provider and client) is an NP-complete problem. In addition, it is approximation-hard, i.e.,
the problem cannot be approximately solved with a polynomial-time algorithm and a constant
approximation ratio [4]. We extend this data cleaning problem with privacy restrictions on the
service provider, making it as hard as the initial problem. In our earlier work, we analyzed the
complexity of this problem, and proposed a data cleaning framework realizable in practice [12].
In this paper, we extend this framework to consider a new type of repair with generalized values
that further protects sensitive data values.

1k-anonymity and extensions, e.g., l-diversity and t-closeness also do not consider the underlying data semantics.

4

2. Given a generalization hierarchy as shown in Figures 1 and 2, proposed repairs from a service
provider may contain general values that subsume a set of specific values at the leaf level. In
such cases, we study and propose a new (repair) semantics for data consistency with respect to
(w.r.t.) an FD involving general values.

3. By proposing generalized values as repair values, we lose specificity in the client data instance. We
study the trade-off between generalized versus specific repair values. Resolving inconsistencies
w.r.t. a set of FDs requires traversing the space of possible fixes (which may now include
general values). Quantifying the individual utility of a generalized value as a repair value, while
respecting data cleaning budgets from the client is our third challenge.

Our Approach and Contributions. We build upon our earlier work that introduced PACAS,
a P rivacy-Aware data Cleaning-As-a-Service framework that facilitates data cleaning between a
client and a service provider [12]. The interaction is done via a data pricing scheme where the service
provider charges the client for each disclosed value, according to its adherence to the privacy model.
PACAS includes a new privacy model that extends (X,Y)-anonymity to consider the data semantics,
while providing stronger privacy protection than existing PPDP methods. In this work, we present
extensions to PACAS to resolve errors (FD violations) by permitting updates to the data that are
generalizations of the true value to avoid disclosing details about sensitive values. Our goal is to
provide repair recommendations that are semantically equivalent to the true value in the service
provider data. We make the following contributions:
1. We extend PACAS the existing privacy-preserving, data cleaning framework that identifies

FD errors in client data, and allows the client to purchase clean, curated data from a ser-
vice provider [12]. We extend the repair semantics to introduce generalized repairs that update
values in the client instance to generalized values.

2. We re-define the notion of consistency between a relational instance (with generalized values)
and a set of FDs. We propose an entropy-based measure that quantifies the semantic distance
between two values to evaluate the utility of repair candidates.

3. We extend our SafeClean algorithm that resolves FD errors by using external data purchased
from a service provider. SafeClean proposes repairs to the data by balancing its data privacy
requirements against satisfying query purchase requests for its data at a computed price [12].
Given a cleaning budget, we present a new budget allocation algorithm that improves upon
previous, fixed allocations, to consider allocations according to the number of errors in which a
database value participates.

4. We evaluate the effectiveness of SafePrice and SafeClean over real data showing that by control-
ling data disclosure via data pricing, we can effectively repair FD violations while guaranteeing
(X,Y,L)-anonymity. We also show that our SafeClean achieves lower repair error than compar-
ative baseline techniques.
We provide notation and preliminaries in Section 2. In Section 3, we define generalized relations,

and their consistency w.r.t. a set of FDs, and present a new semantic distance function. We present
our problem definition, and review the PACAS system in Section 4. We discuss how data privacy is
enforced via data pricing in Section 5, and describe new extensions to our data cleaning algorithm
that consider generalized values in Section 6. We present our experimental results in Section 7,
related work in Section 8, and conclude in Section 9.

5

Table 4: Summary of notation and symbols.

Symbol Description

R,R relation and relational schema
A,B relational attributes
X,Y, Z sets of relational attributes
D,R database instance and database schema
ϕ, φ functional dependency and matching dependency
DomA, domA domain of attribute A
domA(l) sub-domain of attribute A in level l
DGHA,VGHA domain and value generalization hierarchies
≤ generalization relation for levels
� generalization relation for values, tuples, and relations
Q,G Simple query and generalized query (GQ)
l, L level and sequence of levels
S, CQ support set, and conflict set
B, Bi total and the budget for the i-th iteration
lmax generalization level
c, e database cell and error cell
δ distance function for values, tuples and relations

2. Preliminaries

2.1. Relations and Dependencies

A relation (table) R with a schema R = {A1, ..., An} is a finite set of n-ary tuples {t1, ..., tN}.
A database (instance) D is a finite set of relations R1, ..., Rm with schema R = {R1, ...Rm}. We
denote by small letters x, y, z as variables. Let A,B,C refer to single attributes and X,Y, Z as sets
of attributes. A cell c = t[Ai] is the i-th position in tuple t with its value denoted by c.value. We
use c to refer to the value c.value if it is clear from the context. A functional dependency (FD) ϕ
over a relation R with set of attributes R is denoted by ϕ : X → Y , in which X and Y are subsets
of R. We say ϕ holds over R, R |= ϕ, if for every pair of tuples t1, t2 ∈ R, t1[X] = t2[X] implies
t1[Y] = t2[Y]. Table 4 summarizes our symbols and notations.

A matching dependency (MD) φ over two relations R and R′ with schemata R = {A1, A2, ...}
and R′ = {A′1, A′2, ...} is an expression of the following form:∧

i∈[1,n]

R[Xi] ≈ R′[X ′i]→ R[Y] � R′[Y ′], (1)

where (Xi, X
′
i) and (Y, Y ′) are comparable pairs of attributes in R and R′. The MD φ states that

for a pair of tuples (t, t′) with t ∈ R and t′ ∈ R′, if t[X ′i] values are similar to values t′[X ′i] according
to the similarity function ≈, the values of t[Y] and t′[Y ′] are identical [5].

2.2. Generalization

Generalization replaces values in a private table with less specific, but semantically consistent
values according to a generalization hierarchy. To generalize attribute A, we assume a set of
levels LA = {lA0 , ..., lAh } and a partial order ≤A, called a generalization relation on LA. Levels lAi
are assigned with disjoint domain-sets dom(lAi). In ≤A, each level has at most one parent. The

6

domain-set dom(lAn) is the maximal domain set and it is a singleton, and dom(lA0) is the ground
domain set. The definition of ≤A implies the existence of a totally ordered hierarchy, called the
domain generalization hierarchy, DGHA. The domain set dom(lAi) generalizes dom(lAj) iff lAj ≤ lAi .

We use hA to refer to the number of levels in DGHA. Figures 1(a) and 2(a) show the DGH s for
the medication and age attributes, resp. A value generalization relationship for A, is a partial
order �A on DomA =

⋃
dom(lAi). It specifies a value generalization hierarchy, VGHA, that is a tree

whose leaves are values of the ground domain-set dom(lA0) and whose root is the single value in the
maximal domain-set dom(lAn) in DGHA. For two values v and v′ in DomA, v′ �A v means v′ is
more specific than v according to the VGH. We use � rather than �A when the attribute is clear
from the context. The VGH for the MED and AGE attributes are shown in Figures 1(b) and 2(b),
respectively. According to VGH of MED, ibuprofen � NSAID.

A value is ground if there is no value more specific than it, and it is general if it is not ground.
In Figure 1, ibuprofen is ground and analgesic is general. For a value v, its base denoted by base(v)
is the set of ground values u such that u � v. We use 0 ≤ level(v) ≤ hA to refer to the level of v
according to VGHA.

A general relation (table) is a relation with some general values and a ground relation has only
ground values. A general database is a database with some general relations and a ground database
has only ground relations. The generalization relation �A trivially extends to tuples. We give an
extension of the generalization relation to general relations and databases in Section 3.

The generalization hierarchies (DGH and VGH) are either created by the data owners with
help from domain experts or generated automatically based on data characteristics [13]. The
automatic generation of hierarchies for categorical attributes [14] and numerical attributes [15, 16,
17] apply techniques such as histogram construction, binning, numeric clustering, and entropy-based
discretization [13].

2.3. Generalized Queries

We review generalized queries (GQs) to access values at different levels of the DGH [12].
Definition 1 (Generalized Queries). A generalized query (GQ) with schema R is a pair G =
〈Q,L〉, where Q is an n-ary select-projection-join query over R, and L = {l1, ..., ln} is a set of
levels for each of the n values in Q according to the DGHs in R. The set of answers to G over R,
denoted as G(R), contains n-ary tuples t with values at levels in li ∈ L, such that ∃t′ ∈ Q(R) and
t generalizes t′, i.e. t′ � t.

Intuitively, answering a GQ involves finding the answers of Q(R), and then generalizing these
values to levels that match L. For a fixed size DGH, the complexity of answering G is the same as
answering Q.

Example 2.1. Consider a GQ G = 〈Q,L〉 with level L = {lGEN0 , lMED
1 } and query Q(RSP) =

ΠGEN,MED(σDIAG=migraine(RSP)) posed on relation RSP is Table 1. The query Q requests the gender
and medication of patients with a migraine. The answers to Q(RSP) are {(female, naproxen),
(male, dolex)}. The GQ G asks for the same answers but at the levels specified by L. Therefore
the answers to G are {(female, NSAID), (male, acetaminophen)}, which are generalized according
to L and Figure 1.

2.4. Privacy-Preserving Data Publishing

The most well-known PPDP privacy model is k-anonymity that prevents re-identification of a
single individual in an anonymized data set [9, 10].

7

Definition 2 (X-group and k-anonymity). A relation R is k-anonymous if every QI-group has
at least k tuples. An X-group is a set of tuples with the same values in X.

As an example, Table 3 has two QI-groups, {g1, g2, g3} and {g4, g5, g6}, and it is k-anonymous
with k = 3. k-anonymity is known to be prone to attribute linkage attacks where an adversary
can infer sensitive values given QI values. Techniques such as (X,Y)-anonymity aim to address this
weakness by ensuring that for each QI value in X, there are at least k different values of sensitive
values in attribute(s) Y in the published (public) data [18].

Definition 3 ((X,Y)-anonymity). A table R with schema R and attributes X,Y ⊆ R is (X,Y)-
anonymous with value k if for every t ∈ R, there are at least k values in Qt(R), |Qt(R)| ≥ k, where
Qt(R) = ΠY (σX=t[X](R)).

The query Qt(R) in Definition 3 returns distinct values of attributes Y that appear in R with
the values t[X]. Therefore, if the size of Qt(R) is greater than k for every tuple t, that means
every values of X are linked with at least k values of Y . Note that k-anonymity is a special case of
(X,Y)-anonyity when X is the set of QI attributes and Y is the set of sensitive attributes that are
also a key in R [18].

Example 2.2. For X = {GEN,AGE,ZIP}, Y = {MED} with k = 3, Table 3 is (X,Y)-anonymous
since each gi ∈ R, Qgi(R) is either {ibuprofen, addaprin, naproxen} or {tylenol, dolex, ibuprofen},
which means the values of X in each tuple gi are linked to k = 3 distinct values of Y (Qgi(R)
represents the set of distinct values of Y that are linked to the values of gi[X] in R). Table 3 is
not (X,Y)-anonymous with X = {DIAG} and Y = {MED}, since for g1, Qg1(R) = {ibuprofen} with
size 1 ≤ k.

The (X,Y)-anonymity model extends k-anonymity; if Y is a key for R and X,Y are QI and
sensitive attributes, respectively, then (X,Y)-anonymity reduces to k-anonymity.

The l-diversity privacy model extends k-anonymity with a stronger restriction over the X-
groups [19]. A relation is considered l-diverse if each X-group contains at least l “well-represented”
values in the sensitive attributes Y . Well-representation is normally defined according to the appli-
cation semantics, e.g., entropy l-diversity requires the entropy of sensitive values in each X-group
to satisfy a given threshold [19]. When well-representation requires l sensitive values in each Y
attribute, (X,Y)-anonymity reduces to l-diversity.

2.4.1. (X,Y,L)-anonymity.

In earlier work, we introduced (X,Y,L)-anonymity, which extends (X,Y)-anonymity to consider
the semantic closeness of values [12]. Consider the following example showing the limitations of
(X,Y)-anonymity.
Example 2.3. (X,Y)-anonymity prevents the linkage between sets of attributes X and Y in a
relation R by making sure that every values of Y appears with at least k distinct values of X in R.
For example, Table 3 is (X,Y)-anonymous with X = {GEN,AGE,ZIP}, Y = {MED}, and k = 3
because the values of X appear with three different values; (∗, [31, 60], P∗) co-occurs with ibuprofen,
addaprin, naproxen and (∗, [61, 90], V ∗) appears with tylenol, dolex, ibuprofen.

(X,Y)-anonymity ignores how close the values of Y are according to their VGHs. For example,
although ibuprofen, addaprin, naproxen are distinct values, they are similar medications with the

8

same parent NSAID according to the VGH in Figure 1. This means the value (∗, [31, 60], P∗) of
attributes X is linked to NSAID which defies the purpose of (X,Y)-anonymity.

(X,Y,L)-anonymity resolves this issue by adding a new parameter L for levels of Y . In (X,Y,L)-
anonymity, every values of X has to appear with at least k values of Y in the levels of L. For
example, Table 3 is not (X,Y,L)-anonymous if L = {lMED

1 } because (∗, [31, 60], P∗) appears with Y
values that all roll up to NSAID at level lMED

1 . Thus, to achieve (X,Y,L)-anonymity we need to
further suppress values in Table 3 to prevent the linkage between (∗, [31, 60], P∗) and NSAID.

Definition 4 ((X,Y,L)-anonymity). Consider a table R with schema R and attributes X,Y ⊆
R, and a set of levels L corresponding to attribute DGHs from Y . R is (X,Y,L)-anonymous with
value k if for every t ∈ R, there are at least k values in Gt(R), where Gt = 〈Qt, L〉 is a GQ with
Qt(R) = ΠY (σX=t[X](R)).

In Definition 4, the GQ Gt(R) returns the set of Y values in levels L that appear with the X
values of the tuples t. If the size of Gt(R) is greater than k, then every value of X appears with
at least k values of Y in the level L, which is the objective of (X,Y,L)-anonymity, as shown in
Example 2.3.

2.5. Data Pricing

High quality data is a valuable commodity that has lead to increased purchasing and selling of
data online. Data market services provide data across different domains such as geographic and
locational (e.g., AggData [20]), advertising (e.g., Oracle [21], Acxiom [22]), social networking (e.g.,
Facebook [23], Twitter [24]), and people search (e.g. Spokeo [25]). These vendors have become
popular in recent years, and query pricing has been proposed as a fine-grained and user-centric
technique to support the exchange and marketing of data [26].

Given a database instance D and query Q, a pricing function returns a non-negative real number
representing the price to answer Q [26]. A pricing function should have the desirable property
of being arbitrage-free [26]. Arbitrage is defined using the concept of query determinacy [27].
Intuitively, Q determines Q′ if for every database D, the answers to Q′ over D can be computed
from the answers to Q over D. Arbitrage occurs when the price of Q is less than that of Q′, which
means someone interested in purchasing Q′ can purchase the cheaper Q instead, and compute the
answer to Q′ from Q. For example, Q(R) = ΠY (R) determines Q′(R) = ΠY (σY <10(R)) because
the user can apply Y < 10 over Q(R) to obtain Q′(R). Arbitrage occurs if Q is cheaper than Q′

which means a user looking for Q′(R) can buy Q and compute answers to Q′. An arbitrage-free
pricing function denies any form of arbitrage and returns consistent pricing without inadvertent
data leakage [26]. A pricing scheme should also be history-aware [26]. A user should not be charged
multiple times for the same data purchased through different queries. In such a pricing scheme,
the data seller must track the history of queries purchased by each buyer and price future queries
according to historical data.

3. Generalized Relations

Using general values as repair values in data cleaning requires us to re-consider the definition
of consistency between a relational instance and a set of FDs. In this section, we introduce an
entropy-based measure that allows us to quantify the utility of a generalized value as a repair value,
and present a revised definition of consistency that has not been considered in past work [12].

9

3.1. Measuring Semantic Distance

By replacing a value v′ in a relation R with a generalized value v, there is necessarily some
information loss. We present an entropy-based penalty function that quantifies this loss [28]. We
then use this measure as a basis to define a distance function between two general values.

Definition 5 (Entropy-based Penalty [28]). Consider an attribute A in a ground relation R.
Let XA be a random variable to randomly select a value from attribute A in R. Let VGHA be
the value generalization hierarchy of the attribute A (the values of A in R are ground values from
VGHA). The entropy-based penalty of a value v in VGHA denoted by E(v) is defined as follows:

E(v) = P (XA ∈ base(v))×H(XA|XA ∈ base(v)),

where P (XA ∈ base(v)) is the probability that the value of XA is a ground value and a descendant of
v, XA ∈ base(v)). The value H(XA|XA ∈ base(v)) is the entropy of XA conditional to XA ∈ base(v).

Intuitively, the entropy H(XA|XA ∈ base(v)) measures the uncertainty of using the general value
v. E(v) measures the information loss of replacing values in base(v) with v. Note that E(v) = 0
if v is ground because H(XA|XA ∈ base(v)) = 0, and E(v) is maximum if v is the root value ∗ in
VGHA. E(v) is monotonic whereby if v � v′, then E(v) ≤ E(v′). Note that the conditional entropy
H(XA|XA ∈ base(v)) is not a monotonic measure [28].

Example 3.1. Consider the general value v = g1[AGE] =[31,60] in Table 1. Three ground values
51, 45 and 32 in base(v) appear in Table 1, which has total 6 records, so P (XAGE ∈ base(v)) = 3

6 = 1
2 .

According to Table 1, the conditional entropy is H(XA|XAGE ∈ base(v)) = 3× (− 1
3 × log 1

3) = 1.58
because 51, 45 and 32 each appear exactly once in the table. Therefore, the entropy-based penalty
of v is E(v) = 1

2 × 1.58 = 0.79.

Definition 6 (Semantic Distance Function, δ). The semantic distance between v and v′ in
VGHA is defined as follows:

δ(v, v′) =

{
|E(v′)− E(v)| if v � v′ or v′ � v
δ(v, a) + δ(a, v′) otherwise

in which a = lca(v, v′) is the least common ancestor of v and v′.

Intuitively, if v is a descendant of v′ or vice versa, i.e. v � v′ or v′ � v, their distance is the the
difference between their entropy-based penalties, i.e., |E(v′) − E(v)|. This is the information loss
incurred by replacing a more informative child value v with its ancestor v′ when v � v′. If v and v′

do not align along the same branch in the VGH, i.e. v 6� v′ and v′ 6� v, δ(v, v′) is the total distance
between v and v′ as we travel through their least common ancestor a, i.e. δ(v, a) + δ(a, v′).

Example 3.2. (Ex. 3.1 continued) According to Definition 6, δ([31, 60], 51) = |E([31, 60])−E(51)| =
|0.79 − 0| = 0.79 because 51 � [31, 60]. Similarly, δ([31, 60], 45) = 0.79. Also, δ(45, 51) =
δ(45, [31, 60]) + δ([31, 60], 51) = 1.58 because 45 and 51 do not belong to the same branch, and
[31, 60] is their least common ancestor.

The δ(v′v) distance captures the semantic closeness between values in the VGH. We extend the
definition of δ to tuples by summing the distances between corresponding values in the two tuples.
The δ function naturally extends to sets of tuples and relations. We use the δ(v′v) distance measure
to define repair error in our evaluation in Section 7.

10

3.2. Consistency in Generalized Relations

A (generalized) relation R may contain generalized values that are syntactically equal but are
semantically different and represent different ground values. For example, g1[AGE] and g2[AGE] in
Table 3 are syntactically equal (containing [31,60]), but their true values in Table 1 are different,
m1[AGE] = 51 and m2[AGE] = 45, respectively. In contrast, two syntactically different general
values may represent the same ground value. For example, although analgesic and NSAID are
different general values, they may both represent ibuprofen. The consistency between traditional
FDs and a relation R is based on syntactic equality between values. We present a revised definition
of consistency with the presence of generalized values in R.

Given a generalized relation R′ with schema R, and FD ϕ : A→ B with attributes A,B in R,
R′ satisfies ϕ (R′ |= ϕ), if for every pair of tuples t1, t2 in R′, if t1[A] and t2[A] are equal ground
values then t1[B] is an ancestor of t2[B] or vice-versa, i.e. t1[B] � t2[B] or t2[B] � t1[B]. Since a
general value v encapsulates a set of distinct ground values in base(v), relying on syntactic equality
between two (general) values, t1[B] and t2[B] is not required to determine consistency, since they
may be syntactically different but represent the same ground value. Our definition requires that
t1[B] be an ancestor of t2[B] (or vice-versa), which means they represent the same ground value.
This definition extends to FDs X → Y with a set of attributes X,Y in R. The definition reduces
to the classical FD consistency when R′ is ground. Assuming VGHs have fixed size, consistency
checking in the presence of generalized values is in quadratic time according to |R′|.

Example 3.3. Consider an FD ϕ : [GEN,DIAG] → [MED] that states two patients of the same
gender that are diagnosed with the same disease should be prescribed the same medication. Ac-
cording to the classic definition of FD consistency, t1 and t2 in Table 2 are inconsistent as t1 and
t2 are males with osteoarthritis, i.e. t1[GEN,DIAG] = t2[GEN,DIAG] = {male, osteoarthritis}, but
are prescribed different medications, i.e. t1[MED] = ibuprofen 6=intropes = t2[MED]. Under our
revised definition of consistency for a generalized relation, if we update t2[MED] to NSAID, which is
the ancestor of ibuprofen, then t1 and t2 are now consistent. In our revised consistency definition,
t1[MED] = ibuprofen � NSAID = t2[MED], indicating that the general value t2[MED] = NSAID
may represent the ground value t1[MED] = ibuprofen. However, if we were to update t2[MED] to
vasodilators, which is not the ancestor of t1[MED] = ibuprofen, then t1 and t2 remain inconsistent
under the generalized consistency definition, since the general value t2[MED] = vasodilators cannot
represent t1[MED] = ibuprofen.

4. PACAS Overview

We formally define our problem, and then review the PACAS framework [12], including exten-
sions for generalized repairs.

4.1. Problem Statement

Consider a client, CL, and a service provider, SP , with databases DCL, DSP containing single
relations RCL, RSP, respectively. Our discussion easily extends to databases with multiples rela-
tions. We assume a set of FDs Σ defined over RCL that is falsified. We use FDs as the benchmark
for error detection, but our framework is amenable to other error detection methods. The shared
generalization hierarchies are generated by the service provider (applying the techniques mentioned
in Section 2.2). The problem of privacy-preserving data cleaning is twofold, defined separately for

11

𝐷𝑆𝑃

Find E-Classes

Select

E-Class

Client (CL) Service Provider (SP)

Record Matching and Query

Generation

Data Pricing and

Validate Privacy

Query

Answering

𝐷𝐶𝐿

(a) (b)

𝑝 ≔ 𝑎𝑠𝑘𝑃𝑟𝑖𝑐𝑒(𝑟𝑖)

𝑝

𝑎𝑛𝑠𝑤𝑒𝑟 ≔ 𝑝𝑎𝑦(𝑝, 𝑟𝑖)

𝑎𝑛𝑠𝑤𝑒𝑟

Purchase

Data

Repair

E-Class

Figure 3: Framework overview.

CL and SP . We assume a generalization level lmax, which indicates the maximum level that values
in our repaired database can take from the generalization hierarchy.
Client-side: For every cell c ∈ RCL with value c.value, let c.value∗ be the corresponding accurate
value in RSP. A cell c is considered dirty if c.value 6= c.value∗. We assume the client can initiate a
set of requests r1, ..., rn to RSP in which each request ri is of the form ri = (t, A, l), that seeks the
clean value of database cell t[A] at level l in RSP. We assume

∑
i(price(ri)) ≤ B for a fixed cleaning

budget B. Let R∗CL be the clean version of RCL where for each cell, c.value = c.value∗. The problem
is to generate a set of requests r1, ..., rn, where the answers (possibly containing generalized values)
are used to compute a relation R′CL such that: (i) R′CL |= Σ, (ii) δ(R′CL, R

∗
CL) is minimal, and (iii)

for each c.value, its level l ≤ lmax.
In our implementation, we check consistency R′CL |= Σ using the consistency definition in

Section 3.2, and measure the distance δ(R′CL, R
∗
CL) using the semantic distance function δ (Defn. 6).

Service-side: The problem is to compute a pricing function price(ri) that assigns a price to each
request ri such that RSP preserves (X,Y,L)-anonymity.

4.2. Solution Overview

Figure 3 shows the PACAS system architecture consisting of two main units that execute func-
tions for CL and SP . Figure 3(a) shows the CL unit containing four modules. The first module finds
equivalence classes in RCL. An equivalence class (eq) is a set of cells in RCL with equal values in
order for RCL to satisfy Σ [2]. The next three modules apply an iterative repair for the eqs. These
modules select an eq, purchase accurate value(s) of dirty cell(s) in the class, and then repair the
cells using the purchased value. If the repairs contain generalized values, the CL unit must verify
consistency of the generalized relation against the defined FDs. The cleaning iterations continue
until B is exhausted or all the eqs are repaired. We preferentially allocated the budget B to cells in
an eq based on the proportion of errors in which the cells (in an eq) participate. Figure 3(b) shows
the SP unit. The Record Matching module receives a request ri = (t, A, l) from CL, identifies a
matching tuple t′ in RSP, and returns t′[A] at the level l according to the VGH. The Data Pricing
and Validate Privacy module computes prices for these requests, and checks whether answering
these requests will violate (X,Y,L)-anonymity in RSP. If so, the request is not safe to be answered.
The Query Answering module accepts payment for requests, and returns the corresponding answers
to CL.

12

5. Limiting Disclosure of Sensitive Data

The SP must carefully control disclosure of its curated and sensitive data to the CL. In this
section, we describe how the SP services an incoming client request for data, validates whether
answering this request is safe (in terms of violating (X,Y,L)-anonymity), and the data pricing
mechanism that facilitates this interaction.

5.1. Record Matching and Query Generation

Given an incoming CL request ri = (t, A, l), the SP must translate ri to a query that identifies
a matching (clean) tuple t′ in RSP, and returns t′[A] at level l. To answer each request, the SP
charges the CL a price that is determined by the level l of data disclosure and the adherence of
t′[A] to the privacy model. To translate a request r to a GQ Gr, we assume a schema mapping
exists between RSP and RCL, with similarity operators ≈ to compare the attribute values. This
can be modeled via matching dependencies (MDs) in SP [5].

Example 5.1. Consider a request r=(t2,MED, lMED
1) that requests the medication of the patient in

tuple t2 at level lMED
1 . To translate r into a generalized query Gr = 〈Qr, Lr〉, we use the values of the

QI attributes GEN and AGE in tuple t2. We define a queryQr(RSP) = ΠMED(σGEN=t2[GEN]∧AGE=t2[AGE]

(RSP)) requesting the medications of patients in RSP with the same gender and age as the patient
in tuple t2. The GQ Gr level is equal to the level of the request, i.e. Lr = {lMED

1 }. The query Qr

is generated from an assumed matching dependency (MD) RCL[GEN] = RSP[GEN] ∧ RCL[AGE] =
RSP[AGE] → RCL[MED] = RSP[MED] that states if the gender and age of two records in SP and
CL are equal, then the two records refer to patients with the same prescribed medication.

5.2. Enforcing Privacy

Recall from Section 2.4 that (X,Y,L)-anonymity extends (X,Y)-anonymity to consider the at-
tribute domain semantics. Given a GQ, the SP must determine whether it is safe to answer this
query, i.e., decide whether disclosing the value requested in ri violates (X,Y,L)-anonymity (defined
in Defn. 4). In this section, we formalize the privacy guarantees of (X,Y,L)-anonymity, and in the
next section, review the SafePrice data pricing algorithm that assigns prices to GQs to guarantee
(X,Y,L)-anonymity.

(X,Y,L)-anonymity applies tighter privacy restrictions compared to (X,Y)-anonymity by tuning
the parameter L (determined by the data owner). At higher levels of L, it becomes increasingly more
difficult to satisfy the (X,Y,L)-anonymity condition, while (X,Y,L)-anonymity reduces to (X,Y)-
anonymity at li = 0 for every li ∈ L. We formally state this in Theorem 5.1. (X,Y,L)-anonymity
is a semantic extension of (X,Y)-anonymity. Similar extensions can be defined for PPDP models
such as (X,Y)-privacy, l-diversity, t-closeness. Unfortunately, all these models do not consider the
data semantics in the attribute DGHs and VGHs [11].

Theorem 5.1. Consider a relation R and let X and Y be two subsets of attributes in R. Let L1

and L2 be levels of the attributes in Y with L1 ≤ L2, i.e. every level of L1 is lower than or equal to
its corresponding level in L2. The following holds for relation R with a fixed k > 1:

1. If R is (X,Y, L2)-anonymous it is also (X,Y, L1)-anonymous, but not vice versa (i.e. R can
be (X,Y, L1)-anonymous but not (X,Y, L2)-anonymous).

2. For any levels L of attributes in Y , if R is (X,Y,L)-anonymous, it is also (X,Y)-anonymous.

13

Figure 4: Possible relations I, conflict set CQ and admissible relations IQ for query Q.

Proof of Theorem 5.1. In the first item, if R is (X,Y, L2)-anonymous, then for every t, |Gt
1(R)| ≥

k in which Gt
1 = 〈Qt, L1〉. Considering Gt

2 = 〈Qt, L2〉, we can claim |Gt
2(R)| ≥ k, which proves

R is also (X,Y, L1)-anonymous. The claim holds because if Qt has n answers in levels of L1, it
will have fewer or equal number of answers in the higher level L2 since different values in levels of
L1 may be replaced with the same ancestors in the levels of L2. The second item holds because if
R is (X,Y,L)-anonymous it is also (X,Y, L⊥)-anonymous where L⊥ contains the bottom levels of
attributes in Y ; due to L⊥ ≤ L and item 1. If R is (X,Y, L⊥)-anonymous, then every value of X
appears with k ground values and we can conclude it is (X,Y)-anonymous. �

5.3. Pricing Generalized Queries.

PPDP models have traditionally been used in non-interactive settings where a privacy-preserving
table is published once. We take a user-centric approach and let users dictate the data they would
like published. We apply PPDP in an interactive setting where values from relation RSP are
published incrementally according to (user) CL requests, while verifying that the disclosed data
satisfies (X,Y,L)-anonymity [12]. We adopt a data pricing scheme that assigns prices to GQs by
extending the baseline data pricing algorithm defined in [29] to guarantee (X,Y,L)-anonymity. We
review this baseline pricing algorithm next.
Baseline Data Pricing. The baseline pricing model computes a price for a query Q over
relation R according to the amount of information revealed about R when answering Q [29].

Given a query Q over a relation R (a database with single relation R), the baseline pricing model
determines the price of Q based on the amount of information revealed about R by answering Q.
Let I be a set of possible relations that the buyer believes to be R, representing his initial knowledge
of R. As the buyer receives answers to Q(R), he gains new knowledge, allowing him to eliminate
relations R′ from I, which provide a different answer Q(R′) 6= Q(R). This set of eliminated
instances R′ is called the conflict set of Q denoted as CQ, and intuitively represents the amount
of information that is revealed by answering Q (Figure 4). As more queries are answered, the size
of I is reduced. We can apply a set function that uses CQ to compute a price for Q. We can
use the weighted cover set function with predefined weights assigned to the relations in I. Query
prices are computed by summing the weights for relations in CQ, which has been shown to give
arbitrage-free prices [29]. In practice, the set I is usually infinite making it infeasible to implement.
To circumvent this problem, a smaller, finite subset S called the support set is used to generate
arbitrage-free prices [29]. The support set is defined as the neighbors of R, generated from R via
tuple updates, insertions, and deletions. The values that are used to generate the support set are
from the same domain of the original relation R.

Several optimizations are applied to the baseline pricing, and its effectiveness is experimentally
justified [29]. Most importantly, the relations in the support set can be modeled by update op-

14

Algorithm 1: price(Q,D,S, w) [29]

Input : A query Q, a database D, support set S, weight function w
Output: Price to answer Q

1 p← 0;
2 for D′ ∈ S do
3 if Q(D′) 6= Q(D) then p← p+ w(D′) ;
4 end
5 return p;

erations. That is, we generate each relation in S from R by applying its corresponding update
operation and use the resulting relation to compute the value of the weighted function as the final
price. We roll-back the update to restore R, and continue this process to compute the weighted
function using other relations in S. We avoid storing all databases in S to enable more efficient
price computations.

Algorithm 1 provides pseudocode of the baseline algorithm. The algorithm takes query Q,
database D, a support set S, and a weight function w, and computes the price to answer Q over R.
The baseline algorithm is history-aware as input S excludes databases that were already considered
by past queries.
SafePrice Algorithm. We describe the SafePrice algorithm (originally introduced in [12])
that enforces (X,Y,L)-anonymity over R (equivalently RSP in our framework). We first present the
definition of a safe query, i.e., criteria for a GQ to preserve (X,Y,L)-anonymity.

Definition 7. (Safe Query) Consider a GQ G over a relation R with schema R, X,Y ⊆ R, and
levels L corresponding to attributes in Y . Let IG ⊆ I be the set of relations R′′ such that
G(R) = G(R′′). G is safe (or preserves (X,Y,L)-anonymity of R) with value k, if for every tuple
t ∈ R, there are at least k tuples in the set of answers {t′′ | ∃R′′ ∈ IG, t′′ ∈ Gt(R′′)} where
Gt = 〈Qt, L〉 is a GQ with Qt(R′′) = ΠY (σX=t[X](R

′′)).

In Definition 7, IG represents the set of relations that the buyer believes R is drawn from after
observing the answer G(R). If there are at least k tuples in the answer set of Gt over IG, this
indicates that the buyer does not have enough information to associate the values in X to less than
k values of Y at level L, thus preserving (X,Y,L)-anonymity. If the SP determines that a GQ is
safe, he will assign a finite price relative to the amount of disclosed information about R.

Algorithm 2 presents the SafePrice details. The given support set S represents the user’s
knowledge about relation R after receiving the answer to past purchased queries. We maintain a
set SG that represents all admissible relations after answering G and captures the user’s posterior
knowledge about R after answering G. We use SG to check whether answering G is safe. This is
done by checking over instances in SG whether values in X are associated with at least k values of Y
using the query Gt. The price for a query is computed by summing the weights of the inadmissible
relations in the conflict set CG = S \SG (Line 4). Similar to the baseline pricing, we use the support
set S and admissible relations SG rather than I and IG, respectively. We iterate over tuples t ∈ R
(Line 5), and check whether values in X are associated with less than k values in Y over relations
in SG. If so, we return an infinite price reflecting that query G is not safe (Line 8).

Proposition 1. If the input GQ is not safe, Algorithm 2 preserves (X,Y,L)-anonymity by returning
an infinite price.

15

Proof sketch: According to Definition 7, if G violates (X,Y,L)-anonymity then for t ∈ R, there are
less than k answers to Gt over relations in IG. Since SG ⊆ IG, there will be less than k answers
to Gt over relations in SG, meaning Algorithm 2 assigns infinite price to G in Line 8. Note that if
Algorithm 2 returns an infinite price, it does not imply G is unsafe (this only occurs when S = I).

Algorithm 2: SafePrice(G,R,S, w)

Input : G, R, S, w
Output: Price of G

1 p← 0; SG ← 0;
2 for T ∈ S do
3 if G(T) = G(R) then SG ← SG ∪ {T} ;
4 else p← p+ w(T) ;

5 for t ∈ R do
6 A← ∅;
7 for R′′ ∈ SG do A← A ∪Gt(R′′) ;
8 if |A| < k then return ∞;

9 return p;

Given the interactive setting between the CL and the SP , we must ensure that all (consecutively)
disclosed values guarantee (X,Y,L)-anonymity over R. We ensure that SafePrice is history-aware
by updating the support set S after answering each GQ. The SP uses the pricing function in
Algorithm 2 to update S to reflect the current relations R′ that have been eliminated by answering
the latest GQ. The SP implements AskPrice(ri, RSP) (cf. Figure 3) by translating ri to a GQ, and
then invoking SafePrice.

We assume that requesting a query price is free. We acknowledge that returning prices might
leak information about the data being priced and purchased. This problem is discussed in the
data pricing literature, particularly to incentivize data owners to return trustful prices when prices
reveal information about the data (cf. [30] for a survey on this issue). We consider this problem as
a direction of future work.

5.4. Query Answering

A CL data request is executed via the Pay(p, ri, RSP) method, where she purchases the value
in ri at price p. The Query Answering module executes Pay(p, ri, RSP) via SP accepts payment,
translates ri to a GQ, and returns the answer over RSP to CL. Lastly, SP updates the support set
S to ensure SafePrice has an accurate history of disclosed data values.

We note that all communication between CL and SP is done via the AskPrice and Pay methods
(provided by SP). We assume there is a secure communication protocol between the CL and SP ,
and that all data transfer is protected and encrypted. The model is limited to a single SP that sells
data at non-negotiable prices. We intend to explore general cases involving multiple SP providers
and price negotiation as future work.

6. Data Cleaning with Generalized Values

Existing constraint-based data repair algorithms that propose updates to the data to satisfy
a set of data dependencies assume an open-access data model with no data privacy restrictions

16

[2, 31, 32, 33, 34]. In these repair models, inadvertent data disclosure can occur as the space
of repair candidates is not filtered nor transformed to obscure sensitive values. A privacy-aware
data repair algorithm must address the challenge of providing an accurate repair to an error while
respecting data generalizations and perturbations to conceal sensitive values.

In earlier work, we introduced SafeClean, a data repair algorithm that resolves errors in a relation
RCL using data purchased from a service provider RSP [12]. The key distinctions of SafeClean from
past work include: (i) SafeClean interacts with the service provider, SP , to purchase trusted values
under a constrained budget B. This eliminates the overhead of traversing a large search space of
repair candidates; and (ii) SafeClean tries to obtain values with highest utility from SP for repairing
CL. However, the existing SafeClean algorithm grounds all purchased values thereby not allowing
generalized values in RCL. In this paper, we extend SafeClean to consider generalized values in
RCL by re-defining the notion of consistency between a relation and a set of FDs (Section 3.2), and
revising the budget allocation algorithm to requests according to the number of errors in which
cells in an equivalence participate (Section 6.4). In contrast, the existing SafeClean provides fixed
budget allocations. We give an overview of our cleaning algorithm and subsequently describe each
component in detail.

6.1. Overview

For a fixed number of FDs Σ, the problem of finding minimal-cost data repairs to RCL such that
RCL satisfies Σ is NP-complete [2]. Due to these intractability results, we necessarily take a greedy
approach that cleans cell values in RCL that maximally reduce the overall number of errors w.r.t.
Σ. This is in similar spirit to existing techniques that have used various weighted cost functions
[2, 35] or conflict hypergraphs [33] to model error interactions among data dependencies in Σ.

Given RCL and Σ, we identify a set of error cells that belong to tuples that falsify some σ ∈ Σ.
For an error cell e ∈ E , we define eq(e) as the equivalence class to which e belongs. An equivalence
class is a set of database cells with the same value such that Σ is satisfied [2]. We use eqs for two
reasons: (i) by clustering cells into eqs, we determine a repair value for a group of cells rather than
an individual cell, thereby improving performance; and (ii) we utilize every cell value within an eq
to find the best repair.

The SafeClean algorithm repairs FD errors by first finding all the eqs in RCL. The algorithm
then iteratively selects an eq, and purchases the true value of a cell, and updates all dirty cells in
the same class to the purchased value. The SP may decide that returning a generalized value is
preferred to protect user sensitive data in RSP. If so, then the CL must validate consistency of its
data including these generalized values. At each iteration, we repair the eq class with cells that
participate in the largest number of FD errors. At each iteration, SafeClean assigns a portion of
the budget B that is proportional to the number of errors relative to the total number of errors in
RCL (this new extension to SafeClean is discussed in Section 6.4). SafeClean continues until all the
eqs are repaired, or the budget is exhausted.
SafeClean Algorithm. Algorithm 3 gives details of SafeClean’s overall execution. The algorithm
first generates the set of eqs via GenerateEQs in Line 2. Equivalence classes containing only one
value are removed since there is no need for repair. In Line 7, SafeClean selects an equivalence
class eqi with cells participating in the largest number of violations for repair (further details in
Section 6.3). To repair the error cells in eqi, SafeClean generates a request ri using GenerateRequest
that requests a repair value for a cell in eqi (Line 8). This request is made at the lowest possible
level (less than lmax) at a price allowable within the given budget. The algorithm assigns a fraction
of the remaining budget, i.e. αi × B (B ≤ B is the remaining budget) to purchase data at each

17

Algorithm 3: SafeClean(RCL, RSP,Σ,B)

Input : RCL, RSP, Σ, B
Output: Clean R′CL

1 R′CL ← RCL;
2 EQ← GenerateEQs(R′CL,Σ);
3 B ← B;
4 for eq ∈ EQ do
5 if Resolved(eq) then EQ← EQ \ {eq};
6 while B > 0 and EQ 6= ∅ do
7 eq← Select(EQ);
8 ri ← GenerateRequest(eq, αi ×B,RSP);
9 if ri 6= null then

10 pi ← AskPrice(ri, RSP);
11 ui ← Pay(pi, ri, RSP);
12 B ← B − pi;
13 ApplyRepair(eq, ui);

14 EQ← EQ \ eq;

15 return R′CL

iteration. This fraction depends on the number of violations in eqi (cf. Section 6.4 for details).
If such a request can be satisfied, the value(s) are purchased and applied (Lines 10-13). If there
is insufficient budget remaining to purchase a repair value, then the eq cannot be repaired. In
either case, SafeClean removes eqi from EQ and continues with the next eq (Line 14). SafeClean
terminates when B is exhausted, or there are no eqs are remaining. We present details of eq
generation, selection, request generation, and data purchase/repair in the following sections.

6.2. Generating Equivalence Classes

The eqs are generated by GenerateEQs in Algorithm 4 that takes as input RCL and Σ, and
returns the set of eqs EQ. For every cell ci ∈ RCL, the procedure initializes the eq of ci as
eq(ci) = {ci}, and adds it to the set of eqs EQ (Line 2). We then iteratively merge the eqs of any
pair of cells c1 = t1[B], c2 = t2[B] if there is a FD ϕ : A→ B ∈ Σ, t1[A] = t2[A], and both t1[A] and
t2[A] are ground. The procedure stops and returns EQ when no further pair of eqs can be merged.

Algorithm 4: GenerateEQs(RCL,Σ)

Input : RCL, Σ,
Output: The set of equivalence classes EQ

1 EQ← ∅;
2 for ci ∈ RCL do EQ← EQ ∪ {{ci}} ;
3 for every t1, t2 ∈ RCL and ϕ : A→ B ∈ Σ do
4 if t1[A] = t2[A] then merge(EQ(t1[B]),EQ(t2[B])) ;
5 end
6 return EQ;

18

Example 6.1. Given FD ϕ : [GEN,DIAG] → [MED] in Table 2, since t1, t2 and t3 have the same
attribute values on GEN and DIAG, we merge t1[MED], t2[MED] and t3[MED] into the same EQ1.
Similarly, we cluster t4 and t5 into the same EQ2.

6.3. Selecting Equivalence Classes for Repair

In each iteration of Algorithm 3, we repair the cells in an eq eqi that will resolve the most errors
in RCL w.r.t. Σ. To achieve this goal, we choose eqi as the eq with cells participating in the
largest number of errors. For a cell cj ∈ RCL and an FD ϕ : A → B ∈ Σ, let E(RCL, ϕ, cj) be the
set of errors {t1, t2} w.r.t. ϕ and cj ∈ {t1[A], t1[B], t2[A], t2[B]}. For an eq eqi, let E(RCL, ϕ, eqi) =⋃

cj∈eqi
E(RCL, ϕ, cj) and E(RCL,Σ, eqi) =

⋃
ϕ∈Σ E(RCL, ϕ, eqi). The eq eqi returned by Select in

Line 2 of Algorithm 3 is the eq with the largest number of errors in E(RCL,Σ, eqi). In other words,
this is the number of tuple pairs that every cell in eqi participates, summed over all FDs in Σ.

Example 6.2. We continue Example 6.1 with EQ1 and EQ2. According to our error definition,
given FD ϕ : [GEN,DIAG] → [MED], EQ1 is involved in three errors with tuples ({t1, t2}, {t1, t3}
and {t2, t3}), while EQ2 has one error ({t3, t4}). Hence, our algorithm will select EQ1 to repair
first.

6.4. Data Request Generation

To repair cells in eqi, we generate a request ri = 〈c, l〉 by GenerateRequest (Algorithm 5) that
requests accurate and trusted value of a cell c ∈ eqi at level l from RSP. There are two restrictions
on this request: (i) the price must be within the budget αi×B, and (ii) the level l must be ≤ lmax.
The value αi is defined as follows:

αi =
E(RCL,Σ, eqi)∑

eqj∈EQ E(RCL,Σ, eqj)
.

In this definition, the allocated budget αi × B to each iteration is proportional to the number of
FD violations in eqi, and also depends on the total number of errors in RCL. This allocation model
improves upon previous work that decreases the budget allocated to the ith-request by a factor of
1
i , and does not adjust the allocation to the number of errors in which a cell participates [12]. Note
that if the price paid for ri (i.e. pi) is less than this allocated budget, the remaining budget carries
to the next iteration through B.

If there is no such request, GenerateRequest returns null, indicating that eqi cannot be repaired
with the allocated budget (Line 10). If there are several requests that satisfy (i) and (ii), we follow
a greedy approach and select the request at the lowest level with the price to break ties (Line 5).
For a cell ci ∈ eqi, LowestAffordableLevel in Line 3 finds the lowest level in which the value of ci can
be purchased from RSP considering the restrictions in (i) and (ii). Our greedy algorithm spends
most of the allocated budget αi × B in the current iteration. An alternative approach is to select
requests with the highest acceptable level (lmax) to preserve the budget for future iterations.

6.5. Purchase Data and Repair

To repair the cells in eqi, Algorithm 3 invokes Pay(ri, RSP) to purchase the trusted value ui and
replaces the value of every cell in eqi with ui in ApplyRepair. The algorithm then removes the eq
eqi from EQ and continues to repair the next eq. The algorithm stops when there is no eq to repair
or the budget is exhausted.

19

Algorithm 5: GenerateRequest(C, b,RSP)

Input : eq C, budget b and RSP.
Output: Request ri

1 l← lh; p←∞; c← null;
2 for ci ∈ C do
3 li ← LowestAffordableLevel(ci, b, lmax, RSP);
4 pi ← AskPrice(〈ci, li〉, RSP);
5 if li < l or (li == l and pi ≤ p) then
6 c← ci; l← li; p← pi;
7 end

8 end
9 if c 6= null then return 〈c, l〉;

10 return null;

Example 6.3. Continuing from Example 6.2, since EQ1 has the largest number of errors, we
purchase the trusted value from RSP to repair EQ1 first. If the purchased value is general value
NSAID, we update all cells in EQ1, i.e., t1[MED], t2[MED] and t3[MED] to NSAID to resolve the
inconsistency.

6.6. Complexity Analysis

We analyze the complexity of SafeClean’s modules:
• Identifying errors involves computing equivalence classes, and selecting an equivalence class for

repair. In the worst case, this is quadratic in the number of tuples in RCL.
• For each data request to resolve an error, executing SafePrice and pay rely on RSP, the support

set S, and the complexity of GQ answering. We assume the size of S is linear w.r.t the size of
RSP. The complexity of running GQs is the same as running SQL queries. Thus, all procedures
run in polynomial time to the size of RSP.

• In applyRepair, for each returned value from SP , we update the error cells in RCL for each
equivalence class and each FD, taking time on the order of O(|E||A||Σ|) for attribute domain
size |A|. We must update the affected cells in the equivalence class, and their dirty scores; both
taking time bounded by the number of cells in RCL. Hence, Algorithm 3 runs in polynomial time
to the size of RSP and RCL.

7. Experiments

Our evaluation focuses on the following objectives:
1. We evaluate the impact of generalized values on the repair error, and the runtime performance.

In addition, we study the proportion of generalized repair values that are recommended for
varying budget levels.

2. The efficiency and effectiveness of SafePrice to generate reasonable prices that allow SafeClean
to effectively repair the data.

3. We evaluate the repair error and scalability of SafeClean as we vary the parameters k, l, e and
B to study the repair error to runtime tradeoff.

20

Table 5: Data characteristics.

Clinical Census Food

|RCL| 345,000 300,000 30,000
n 29 40 11
|ΠA(R)| 61/73 17/250 248/70
|VGHA| 5/5 5/6 5/5

Table 6: Parameter values (defaults in bold).

Sym. Description Values

B budget 0.2, 0.4, 0.6, 0.8

|S| support set size 6, 8, 10, 12, 14

l generalization level 0, 1, 2, 3, 4

k #tuples in X-group 1, 2, 3, 4, 5

e error rate 0.05, 0.1, 0.15, 0.2, 0.25

4. We compare SafeClean against PrivateClean, a framework that explores the link between dif-
ferential privacy and data cleaning [8]. We study the repair error to runtime tradeoff between
these two techniques, and show that data randomization in PrivateClean significantly hinders
error detection and data repair, leading to increased repair errors.

7.1. Experimental Setup

We implement PACAS using Python 3.6 on a server with 32 Core Intel Xeon 2.2 GHz pro-
cessor with 64GB RAM. We describe the datasets, baseline comparative algorithm, metrics and
parameters. The datasets, their schema, and source code implementation can be found at [36].
Datasets. We use three real datasets. Table 5 gives the data characteristics, showing a range of
data sizes in the number of tuples (|RCL|), number of attributes (n), number of unique values in
the sensitive attribute A (|ΠA(R)|), and the height of the attribute VGHA (|VGHA|). We denote
sensitive attributes with an asterisk (*).
Clinical Trials (Clinical). The Linked Clinical Trials database describes patient demographics,
diagnosis, prescribed drugs, symptoms, and treatment [37]. We select the country, gender, source and
age as QI attributes. We define two FDs: (i) ϕ1 : [age, overall status, gender]→ [drug name*]; and (ii)
ϕ2 : [overall status, timeframe, measure] → [condition*]. We construct attribute value generalization
hierarchies (VGH) with five levels on attributes drug name and condition, respectively using external
ontologies (Bioprotal Medical Ontology [38], the University of Maryland Disease Ontology [39], and
the Libraries of Ontologies from the University of Michigan [40]). The average number of children
per node in the VGH is eight.
Census. The U.S. Census Bureau provides population characteristics such as education level, years
of schooling, occupation, income, and age [41]. We select sex, age, race, and native country as QI
attributes. We define two FDs: (i) ϕ3 : [age, education-num] → [education*]; and (ii) ϕ4 : [age,
industry code, occupation] → [wage-per-hour*]. We construct VGH on attributes wage-per-hour and
education by stratifying wage and education levels according to hierarchies from US statistics [42],
and the US Department of Education [43]. The average number of children per node is five.
Food Inspection (Food). This dataset contains violation citations of inspected restaurants in New
York City describing the address, borough, zipcode, violation code, violation description, inspection
type, score, grade. We define inspection type, borough, grade as QI attributes. We define two FDs:
(i) σ5 : [borough, zipcode] → [address*]; and (ii) σ6 : [violation code, inspection type] → [violation
description*]. We construct attribute VGH on address and violation description by classifying streets
into neighborhoods, districts, etc, and extracting topic keywords from the description and classifying
the violation according to the Food Service Establishment Inspection Code [44]. The average
number of children per node in the VGH is four.

For each dataset, we manually curate a clean instance RSP according to the defined FDs, verify
with external sources and ontologies, and is used as the ground truth. To create a dirty instance

21

RCL, we duplicate RSP to obtain RCL, and use BART, an error generation benchmarking tool for
data cleaning applications to inject controlled errors in the FD attributes [45]. We use BART to
generate constraint-induced errors and random errors, and define error percentages ranging from
5% to 25%, with respect to the number of tuples in a table. We use BART’s default settings for all
other parameters.
Comparative Baseline. The closest comparative baseline is PrivateClean, a framework that
explores the link between differential privacy and data cleaning [8]. PrivateClean provides a mech-
anism to generate ε-differentially private datasets on numerical and discrete values from which a
data analyst can apply data cleaning operations. PrivateClean proposes randomization techniques
for discrete and numeric values, called Generalized Randomized Response (GRR), and applies this
across all attributes. To guarantee a privatized dataset with discrete attributes is ε-differentially
private at confidence (1 − α), a sufficient number of distinct records is needed. In our compari-
son evaluation, we set α = 0.05, and the degree of privacy p = 0.5 (applied uniformly across the
attributes and equivalent to ε for discrete attributes [8]). Since PrivateClean does not directly
propose a data cleaning algorithm, but rather data cleaning operators, we apply the well-known
Greedy-Repair [2] FD repair algorithm to generate a series of updates to correct the FD violations.
We use the transform() operation to represent each of these updates in PrivateClean, and use the
source code provided by the authors in our implementation. We choose the Greedy-Repair algorithm
for its similarity to our repair approach; namely, to repair cells on an equivalence class basis, and
to minimize a cost function that considers the number of data updates and the distance between
the source and target values.
Metrics. We compute the average runtime over four executions. To measure the quality of the
recommended repairs, we define the repair error of a cell as the distance between a cell’s true value
and its repair value. We use the semantic distance measure, δ(v, v′), in Section 3.1, that quantifies
the distance between two values v (suppose a true value), and v′ (a repair value) in the attribute
value generalization hierarchy, and considers the distribution of v and v′ in the relation. We
assume a cell’s value, and its repair are both in the generalization hierarchy. The repair error of a
relational instance is computed as the sum of the repair errors across all cells in the relation. We
use the absolute value of the repair error in our experiments (denoted as δ). Similar to other error
metrics (such as mean squared error), lower error values are preferred.
Parameters. Unless otherwise stated, Table 6 shows the range of parameter values we use, with
default values in bold. We vary the following parameters to evaluate algorithm performance: (i)
the budget B; (ii) the size of the support set |S| in the pricing function; (iii) l (the lower bound of
generalization); (i) k, the number of tuples in an X-group; and (vi) the error rate e in RCL.

7.2. Generalized Values

We measure the proportion of generalized values that are returned for varying levels of the budget
B. Since a repair value may be returned at any level of the VGH, we compute the semantic distance
between the generalized value v and the corresponding ground value v′ in the CL. We normalize the
distance between (v, v′) into four ranges: [0-0.25], [0.25-0.5], [0.5-0.75], [0.75-1], where a distance of
zero indicates v and v′ are both ground values.

Figure 5 shows the relative proportions for varying B values over the clinical dataset. As
expected, the results show that the proportion of generalized values at the highest levels of the VGH
occur for low B values since we can only afford (cheaper) generalized values under a constrained
budget. In contrast, for B values close to 0.9, close to 85% of the repair values are specific, ground
values with a distance range of [0, 0.25], while the remaining 15% are generalized values at the next

22

 0

 20

 40

 60

 80

 100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

%
 o

f t
ot

al

budget B
[0-0.25]

[0.25-0.5]
[0.5-0.75]

[0.75-1]

Figure 5: Ratio of gen. values.

100 k

150 k

200 k

250 k

300 k

350 k

400 k

 5 10 15 20 25

δ

% of generalized values

Figure 6: Error vs. gen. values.

 50

 60

 70

 80

 90

 100

 110

 120

 5 10 15 20 25

m
in

ut
es

% of generalized values

Figure 7: Runtime vs. gen. values.

level. We observe that for B > 0.6 approximately 70% of the total repair values are very close to
the ground value (where distance is at [0-0.25]), indicating higher quality repairs.

We evaluate the impact on the runtime to repair error tradeoff when an increasing number
of generalized values occur in the repaired relation. We control the number of generalized values
indirectly via the number of error cells under a constrained budget B = 0.1 where it is expected
that close to all repair recommendations will be general values. Figure 6 and Figure 7 show the
repair error and runtime curves over the clinical data, respectively. As expected, we observe for an
increasing number of generalized values, the repair error increases as the constrained budget leads
to more values returned at the highest * generalized value, thereby increasing the distance between
ground-truth relation and repaired relation. In contrast, the increased number of generalized values
leads to lower runtimes due to the increased number of unsatisfied query requests.

7.3. SafePrice Efficiency and Effectiveness

0

50 k
100 k

150 k
200 k

250 k
300 k

350 k
400 k

 6 7 8 9 10 11 12 13 14

δ

|S|

Clinical
Census
Food

Figure 8: Repair error vs. |S|.

The SafePrice algorithm relies on a support set S to de-
termine query prices by summing the weights of discarded
instances from the conflict set C. These discarded instances
represent the knowledge gained by CL. We vary the size of
the initial S to determine its influence on the repair error (δ),
and the overall runtime. Figure 8 shows a steady decrease in
the repair error for increasing |S|. As |S| grows, the SP is
less restrictive to answer GQs and fewer requests are declined
at lower levels. As more requests are answered at these lower
levels, the repair error decreases. Figure 9 shows that the SafePrice runtime scales linearly with
increasing |S|, making it feasible to implement in practice. From Figures 8 and 9, we determine
that SafePrice achieves an average 6% reduction in the repair error at a cost of 16m runtime. This
is expected due to the additional time needed to evaluate the larger space of instances to answer
GQs. Comparing across the three datasets, the data sizes affect runtimes as a larger number of
records must be evaluated during query pricing. This is reflected in longer runtimes for the larger
clinical and census datasets.

7.4. SafePrice Parameter Sensitivity

We vary the parameters k, GQ level l, error rate e, budget B, and measure their influence on
SafeClean repair error and runtime over all three datasets. We expect that enforcing more stringent
privacy requirements through larger k and l values will result in larger repair errors. Figures 10 to
13 do indeed reflect this intuition.

23

 30

 60

 90

 120

 150

 6 8 10 12 14

m
in

ut
es

|S|

Clinical
Census
Food

Figure 9: Runtime vs. |S|.

0

50 k

100 k

150 k

200 k

250 k

300 k

350 k

400 k

 1 2 3 4 5

δ

k

Clinical
Census

Food

Figure 10: Repair error vs. k.

 20

 40

 60

 80

 100

 120

 1 2 3 4 5

m
in

ut
es

k

Clinical
Census

Food

Figure 11: Runtime vs. k.

0
50 k

100 k
150 k
200 k
250 k
300 k
350 k
400 k
450 k
500 k
550 k

 0 1 2 3 4

δ

level l

Clinical
Census

Food

Figure 12: Repair error vs. l.

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3 4

m
in

ut
es

level l

Clinical
Census

Food

Figure 13: Runtime vs. l.

0
50 k

100 k
150 k
200 k
250 k
300 k
350 k
400 k

 0.05 0.1 0.15 0.2 0.25

δ

e

Clinical
Census

Food

Figure 14: Repair error vs. e.

 20

 40

 60

 80

 100

 120

 140

 160

 0.05 0.1 0.15 0.2 0.25

m
in

ut
es

e

Clinical
Census

Food

Figure 15: Runtime vs. e.

0
50 k

100 k
150 k
200 k
250 k
300 k
350 k
400 k
450 k
500 k

 0.2 0.4 0.6 0.8

δ

budget B

Clinical
Census

Food

Figure 16: Repair error vs. B.

 20

 40

 60

 80

 100

 120

 140

 0.2 0.4 0.6 0.8
m

in
ut

es

budget B

Clinical
Census

Food

Figure 17: Runtime vs. B.

In Figure 10, SafeClean experiences larger repair errors for increasing k as generalizations to
conceal sensitive values become increasingly dependent on the attribute domain and its VGH i.e.,
(X,Y,L)-anonymity indicates there must be at least k values at a given level l in the VGH. Otherwise,
the data request is denied. Figure 11 shows that for increasing k, runtimes decrease linearly as
query requests to satisfy more stringent k become more difficult. On average, we observe that
an approximate 10% improvement in runtime leads to a 7% increase in the repair error for each
increment of k. Figures 12 and 13 show the repair error and runtime, respectively, as we vary
the query level parameter l. The repair error increases, particularly after l = 3 as more stringent
privacy requirements are enforced, i.e., l distinct values are required at each generalization level.
This makes satisfying query requests more difficult, leading to unrepaired values and lower runtimes,
as shown in Figure 13.

Figure 14 shows the repair error δ increases as we scale the error rate e. For a fixed budget,
increasing the number of FD errors leads to a decreasing budget for each FD error. This makes some
repairs unaffordable for the CL, leading to unrepaired values and an increased number of generalized
repair values. This situation can be mitigated if we increase the budget B. As expected, Figure
15 shows that the SafeClean runtime increases for an increasing number of FD violations, due to
the larger overhead to compute more equivalance classes, compute prices to answer queries, and to
check consistency in the CL.

Figures 16 and 17 show the repair error and runtime, respectively, as we vary the budget B.

24

For increasing budget allocations, we expect the SP to recommend more ground (repair) values,
and lower repair error values, as shown in Figure 16. Given the larger budget allocations, the SP
is able to answer a larger number of query requests, and must compute their query prices, thereby
increasing algorithm runtime. We observe that an average 14% reduction in the repair error leads
to an approximate 7% increase in runtime.

7.5. Comparative Evaluation

We compare SafeClean to PrivateClean, a framework for data cleaning on locally differen-
tially private relations [8]. Section 7.1 describes the baseline algorithm parameter settings and
configuration. Despite the differing privacy models, our evaluation aims to explore the influ-
ence of increasing error rates on the repair error δ, and algorithm runtimes using the Clini-
cal dataset. We hope these results are useful for practitioners to understand qualitative and
performance trade-offs between the two privacy models. For SafeClean, we measure total time
of the end-to-end process from error detection to applying as many repairs as the budget al-
lows. In PrivateClean, we measure the time to privatize the RCL, error detection, running the
Greedy-Repair FD repair algorithm [2], and applying the updates via the Transform operation.

100 k
150 k
200 k
250 k
300 k
350 k
400 k
450 k
500 k
550 k
600 k

 0.05 0.1 0.15 0.2 0.25
δ

e

SafeClean
PrivateClean

Figure 18: Comparative repair error.

 20

 40

 60

 80

 100

 120

 140

 160

 0.05 0.1 0.15 0.2 0.25

m
in

ut
es

e

PrivateClean
SafeClean

Figure 19: Comparative runtime.

For PrivateClean, we measure the repair error δ(v, v′) for
source value v and target (clean) value v′, as recommended
by Greedy-Repair, where both v, v′ are ground values.

Figure 18 shows the comparative repair error between
SafeClean and PrivateClean as we vary the error rate e. Safe-
Clean achieves an average −41% lower repair error than Pri-
vateClean. This poor performance by PrivateClean is ex-
plained by the underlying data randomization used in dif-
ferential privacy, which provides strong privacy guarantees,
but poor data utility, especially in data cleaning applications.
As acknowledged by the authors, identifying and reasoning
about errors over randomized response data is hard [8]. This
randomization may update rare values to be more frequent,
and similarly, common values to be more rare. This leads to
more uniform distributions (where stronger privacy guaran-
tees can be provided), but negatively impact error detection
and cardinality-minimal data repair techniques that rely on
attribute value frequencies to determine repair values [2]. We envision that SafeClean is a compro-
mise towards providing an (X,Y,L)-anonymous instance while preserving data utility.

SafeClean’s lower repair error comes at a runtime cost, as shown in Figure 19. As we scale
the error rate, SafeClean’s runtime scales linearly due to the increased overhead of data pricing.
Recall the pricing mechanism in Section 5.3, the price of query Q is determined by the query answer
over the relation D and its neighbors D′ in the support set S. In contrast, PrivateClean does not
incur such an overhead due to its inherent data randomization. There are opportunities to explore
optimizations to lower SafeClean’s overhead to answer query requests and compute prices to answer
each query. In practice, optimizations can be applied to improve overall performance, including
decreasing the parameter k according to application requirements, and considering distributed
(parallel) executions of query processing over partitions of the data. SafeClean aims to provide a
balanced approach towards achieving data utility for data cleaning applications while protecting
sensitive values via data pricing and (X,Y,L)-anonymity.

25

8. Related Work

Data Privacy and Data Cleaning. We extend the PACAS framework introduced in [12], which
focuses on repairs involving ground values. While the prior PACAS framework prices and returns
generalized values, the CL does not allow generalized values in its relation RCL. Instead, the CL
instantiates a grounding process to ground any generalized values returned by the SP . In this work,
we remove this limitation by re-defining the notion of consistency between RCL and the set of FDs
Σ to include generalized values. We have also extended the budget allocation scheme to consider
allocations according to the proportion of errors in which cells (in an equivalence class) participate.
This improves the PACAS framework to be more adaptive to the changing number of unresolved
errors instead of only assigning fixed allocations. Our revised experiments, using repair error δ as
a measure of accuracy, show the influence of generalized repairs along varying parameters towards
improved efficiency and effectiveness.

There has been limited work that considers data privacy requirements in data cleaning. Ja-
ganathan and Wright propose a privacy-preserving protocol between two parties that imputes
missing data using a lazy decision-tree imputation algorithm [6]. Information-theoretic metrics
have been used to quantify the information loss incurred by disclosing sensitive data values [57, 7].
As mentioned previously, PrivateClean provides a framework for data cleaning on local deferentially
private relations using a set of generic user-defined cleaning operations showing the trade-off be-
tween privacy bounds and query accuracy [8]. While PrivateClean provides stronger privacy bounds
than PACAS, these bounds are only applicable under fixed query budgets that limit the number
of allowed queries (only aggregation queries), which is difficult to enforce in interactive settings.
Our evaluation has shown the significant repair error that PrivateClean incurs due to the inherent
randomization needed in local differential privacy.

Ge et. al., introduce APEx, an accuracy-aware, data privacy engine for sensitive data exploration
that allow users to pose adaptive queries with a required accuracy bound. APEx returns query
answers satisfying the bound and guarantees that the entire data exploration process is differentially
private with minimal privacy loss. Similar to PACAS, APEx allows users to interact with private
data through declarative queries, albeit specific aggregate queries (PACAS has no such restriction).
APEx enable users to perform specific tasks over the privatized data, such as entity resolution.
While similar in spirit, APEx uses the given query accuracy bound to tune differential privacy
mechanisms to find a privacy level ε that satisfies the accuracy bound. In contrast, PACAS applies
generalization to target predicates in the given query requests, without randomizing the entire
dataset, albeit with looser privacy guarantees, but with higher data utility.
Dependency Based Cleaning. Declarative approaches to data cleaning (cf. [46] for a survey)
have focused on achieving consistency against a set of dependencies such as FDs and inclusion
dependencies and their extensions. Data quality semantics are declaratively specified with the
dependencies, and data values that violate the dependencies are identified as errors, and repaired [5,
47, 35, 48, 49, 58]. There are a wide range of cleaning algorithms, based on user/expert feedback [50,
51, 52], master database [4, 5], knowledge bases or crowdsourcing [53], probabilitic inference [54, 55].
Our repair algorithm builds upon these existing techniques to include data disclosure requirements
of sensitive data and suggesting generalized values as repair candidates.
Data Privacy. PPDP uses generalization and suppression to limit data disclosure of sensitive
values [9, 10]. The generalization problem has been shown to be intractable, where optimization,
and approximation algorithms have been proposed (cf. [11] for a survey). Extensions have proposed
tighter restrictions to the baseline k-anonymity model to protect against similarity and skewness
attacks by considering the distribution of the sensitive attributes in the overall population in the

26

table [11]. Our extensions to (X,Y)-anonymity to include semantics via the VGH can be applied to
existing PPDP techniques to semantically enrich the generalization process such that semantically
equivalent values are not inadvertently disclosed.

In differential privacy, the removal, addition or replacement of a single record in a database
should not significantly impact the outcome of any statistical analysis over the database [56]. An
underlying assumption requires that the service provider know in advance the set of queries over
the released data. This assumption does not hold for the interactive, service-based data cleaning
setting considered in this paper. PACAS aims to address this limitation by marrying PPDP and
data pricing in interactive settings.
Data Pricing. We use the framework by Deep and Koutris that provides a scalable, arbitrage-
free pricing for SQL queries over relational databases [29]. Recent work has considered pricing
functions to include additional properties such as being reasonable (differentiated query pricing
based on differentiated answers), and predictable, non-disclosive (the inability to infer unpaid query
answers from query prices) and regret-free (asking a sequence of queries during multiple interactions
is no more costly than asking at once) [26]. We are investigating extensions of SafePrice to include
some of these properties.

9. Conclusions

We present PACAS, a data cleaning-as-a-service framework that preserves (X,Y,L)-anonymity
in a service provider with sensitive data, while resolving errors in a client data instance. PACAS
anonymizes sensitive data values by implementing a data pricing scheme that assigns prices to
requested data values while satisfying a given budget. We propose generalized repair values as
a mechanism to obfuscate sensitive data values, and present a new definition of consistency with
respect to functional dependencies over a relation. To adapt to the changing number of errors in
the database during data cleaning, we propose a new budget allocation scheme that adjusts to the
current number of unresolved errors. We believe that PACAS provides a new approach to privacy-
aware cleaning that protects sensitive data while offering high data cleaning utility, as data markets
become increasingly popular. As next steps, we are investigating: (i) optimizations to improve the
performance of the data pricing modules; and (ii) extensions to include price negotiation among
multiple service providers and clients.

References

[1] H. Bowne-Anderson, What data scientists really do, Harvard Business Review.

[2] P. Bohannon, W. Fan, M. Flaster, R. Rastogi, A cost-based model and effective heuristic for re-
pairing constraints by value modification, in: Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), 2005, p. 143?154.

[3] T. Dasu, J. M. Loh, Statistical distortion: Consequences of data cleaning, Proceedings of the
VLDB Endowment 5 (11) (2012) 1674?1683.

[4] W. Fan, J. Li, S. Ma, N. Tang, W. Yu, Towards certain fixes with editing rules and master
data, The VLDB Journal 21 (2) (2012) 213?238.

[5] W. Fan, X. Jia, J. Li, S. Ma, Reasoning about record matching rules, Proceedings of the VLDB
Endowment 2 (1) (2009) 407?418.

27

[6] G. Jagannathan, R. N. Wright, Privacy-preserving imputation of missing data, Data and
Knowledge Engineering 65 (1) (2008) 40?56.

[7] F. Chiang, D. Gairola, Infoclean: Protecting sensitive information in data cleaning, Journal of
Data and Information Quality (JDIQ) 9 (4) (2018) 1–26.

[8] S. Krishnan, J. Wang, M. J. Franklin, K. Goldberg, T. Kraska, Privateclean: Data cleaning
and differential privacy, in: Proceedings of the 2016 International Conference on Management
of Data (SIGMOD), 2016, p. 937?951.

[9] L. Sweeney, K-anonymity: A model for protecting privacy, International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems 10 (5) (2002) 557–570.

[10] P. Samarati, Protecting respondents’ identities in microdata release, IEEE Transactions on
Knowledge and Data Engineering (TKDE) 13 (6) (2001) 1010–1027.

[11] B. C. M. Fung, K. Wang, R. Chen, P. S. Yu, Privacy-preserving data publishing: A survey of
recent developments, ACM Computing Surveys 42 (4) (2010) 14:1–14:53.

[12] Y. Huang, M. Milani, F. Chiang, PACAS: Privacy-aware, data cleaning-as-a-service, in: 2018
IEEE International Conference on Big Data (Big Data), 2018, pp. 1023–1030.

[13] J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques, 3rd Edition, Morgan
Kaufmann Publishers Inc., 2011.

[14] S. Lee, S.-Y. Huh, R. D. McNiel, Automatic generation of concept hierarchies using wordnet,
Expert Systems with Applications 35 (3) (2008) 1132–1144.

[15] U. M. Fayyad, K. B. Irani, Multi-interval discretization of continuous-valued attributes for
classification learning, in: International Joint Conference on Artificial Intelligence (IJCAI),
1993, p. 1022?1027.

[16] R. Kerber, Chimerge: Discretization of numeric attributes, in: Proceedings of the National
Conference on Artificial Intelligence (AAAI), 1992, p. 123?128.

[17] H. Liu, R. Setiono, Feature selection via discretization, IEEE Transactions on Knowledge and
Data Engineering (TKDE) 9 (4) (1997) 642–645.

[18] K. Wang, B. C. M. Fung, Anonymizing sequential releases, in: Conference on Knowledge
Discovery and Data Mining (KDD), 2006, p. 414?423.

[19] A. Machanavajjhala, D. Kifer, J. Gehrke, M. Venkitasubramaniam, l-diversity: Privacy beyond
k-anonymity, ACM Transactions on Knowledge Discovery from Data (TKDD) 1 (1) (2007) 1–
52.

[20] AggData locational data, https://www.aggdata.com/ (2009).

[21] Oracle Data Marketplace, https://www.oracle.com/ca-en/data-cloud/ (2018).

[22] Acxiom: Data, Identity Solution, https://www.acxiom.com/ (2018).

[23] Facebook Consumer Behaviour and Marketing, https://www.facebook.com/business/

insights (2018).

28

https://www.aggdata.com/
https://www.oracle.com/ca-en/data-cloud/
https://www.acxiom.com/
https://www.facebook.com/business/insights
https://www.facebook.com/business/insights

[24] Twitter Social Data, https://developer.twitter.com/en/enterprise (2018).

[25] Spokeo, https://www.spokeo.com/purchase (2006).

[26] M. Balazinska, B. Howe, D. Suciu, Data markets in the cloud: An opportunity for the database
community, Proceedings of the VLDB Endowment (PVLDB) 4 (12) (2011) 1482–1485.

[27] A. Nash, L. Segoufin, V. Vianu, Views and queries: Determinacy and rewriting, ACM Trans-
actions on Database Systems (TODS) 35 (3) (2010) 1–41.

[28] A. Gionis, T. Tassa, k-anonymization with minimal loss of information, IEEE Transactions on
Knowledge and Data Engineering (TKDE) 21 (2) (2009) 206–219.

[29] S. Deep, P. Koutris, QIRANA: A framework for scalable query pricing, in: Proceedings of
the ACM SIGMOD International Conference on Management of Data (SIGMOD), 2017, pp.
699–713.

[30] A. Roth, Buying private data at auction: The sensitive surveyor’s problem, ACM SIGecom
Exchanges 11 (1) (2012) 1–8.

[31] F. Chiang, R. J. Miller, Active repair of data quality rules, in: Proceedings of the International
Conference on Information Quality, (ICIQ), 2011, pp. 174–188.

[32] G. Beskales, I. F. Ilyas, L. Golab, Sampling the repairs of functional dependency violations
under hard constraints, in: Proceedings of the VLDB Endowment (PVLDB), 2010, pp. 197–
207.

[33] L. Golab, I. F. Ilyas, G. Beskales, A. Galiullin, On the relative trust between inconsistent data
and inaccurate constraints, in: IEEE International Conference on Data Engineering (ICDE),
2013, pp. 541–552.

[34] M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid, I. F. Ilyas, M. Ouzzani, N. Tang, Nadeef:
a commodity data cleaning system, in: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data (SIGMOD), 2013, pp. 541–552.

[35] M. Volkovs, F. Chiang, J. Szlichta, R. J. Miller, Continuous data cleaning, in: IEEE Interna-
tional Conference on Data Engineering (ICDE), 2014, pp. 244–255.

[36] PACAS: Experimental datasets and source code, https://pacas123.github.io/PACAS/.

[37] Linked Clinical Trials, https://old.datahub.io/dataset/linkedct (2016).

[38] Bioportal Medical Ontology, https://bioportal.bioontology.org/ontologies (2018).

[39] Disease Ontology, http://disease-ontology.org/ (2018).

[40] University of Michigan Library, Libraries of ontologies, https://guides.lib.umich.edu/

ontology/ontologies (2017).

[41] Census Income Database, https://archive.ics.uci.edu/ml/

machine-learning-databases/census-income-mld/census-income.html (2017).

[42] US Data and Statistics, https://www.usa.gov/statistics (2018).

29

https://developer.twitter.com/en/enterprise
https://www.spokeo.com/purchase
https://pacas123.github.io/PACAS/
https://old.datahub.io/dataset/linkedct
https://bioportal.bioontology.org/ontologies
http://disease-ontology.org/
https://guides.lib.umich.edu/ontology/ontologies
https://guides.lib.umich.edu/ontology/ontologies
https://archive.ics.uci.edu/ml/machine-learning-databases/census-income-mld/census-income.html
https://archive.ics.uci.edu/ml/machine-learning-databases/census-income-mld/census-income.html
https://www.usa.gov/statistics

[43] US Department of Education, https://www.ed.gov/ (2017).

[44] New York State Food Services Inspection, https://www.health.ny.gov (2017).

[45] P. Arocena, B. Glavic, G. Mecca, R. J. Miller, P. Papotti, D. Santoro, Messing up with bart:
error generation for evaluating data-cleaning algorithms, Proceedings of the VLDB Endowment
(PVLDB) 9 (2) (2015) 36–47.

[46] L. Bertossi, L. Bravo, Generic and declarative approaches to data quality management, in:
S. Sadiq (Ed.), Handbook of Data Quality: Research and Practice, Springer Berlin Heidelberg,
2013, pp. 181–211.

[47] F. Chiang, R. J. Miller, A unified model for data and constraint repair, in: IEEE International
Conference on Data Engineering (ICDE), 2011, pp. 446–457.

[48] S. Kolahi, L. Lakshmanan, On approximating optimum repairs for functional dependency
violations, in: International Conference on Database Theory (ICDT), 2009, pp. 53–62.

[49] I. F. Ilyas, X. Chu, Trends in cleaning relational data: Consistency and deduplication, Foun-
dations and Trends in Databases 5 (4) (2015) 281–393.

[50] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. Shavlik, X. Zhu, Corleone:
Hands-off crowdsourcing for entity matching, in: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD), 2014, pp. 601–612.

[51] J. Wang, T. Kraska, M. J. Franklin, J. Feng, Crowder: Crowdsourcing entity resolution,
Proceedings of the VLDB Endowment (PVLDB) 5 (11) (2012) 1483–1494.

[52] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, I. F. Ilyas, Guided data repair, Pro-
ceedings of the VLDB Endowment (PVLDB) 4 (5) (2011) 279–289.

[53] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, Y. Ye, KATARA: A data
cleaning system powered by knowledge bases and crowdsourcing, in: Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD), 2015, pp. 1247–1261.

[54] T. Rekatsinas, X. Chu, I. F. Ilyas, C. Ré, Holoclean: Holistic data repairs with probabilistic
inference, Proceedings of the VLDB Endowment 10 (11) (2017) 1190–1201.

[55] Z. Yu, X. Chu, Piclean: A probabilistic and interactive data cleaning system, in: Proceedings
of the International Conference on Management of Data (SIGMOD), 2019, pp. 2021–2024.

[56] C. Dwork, Differential privacy, in: International Colloquium on Automata, Languages and
Programming (ICALP), 2006, pp. 1–12.

[57] D. Huang, D. Gairola, Y. Huang, Z. Zheng, F. Chiang, PARC: Privacy-Aware Data Cleaning,
Proceedings of the ACM International on Conference on Information and Knowledge Manage-
ment (CIKM), 2016, pp. 2433–2436.

[58] S. Baskaran, A. Keller, F. Chiang, L. Golab, J. Szlichta, Efficient Discovery of Ontology Func-
tional Dependencies, in: Proceedings of the ACM International on Conference on Information
and Knowledge Management, CIKM, 2017, pp. 1847–1856

30

https://www.ed.gov/
https://www.health.ny.gov

	1 Introduction
	2 Preliminaries
	2.1 Relations and Dependencies
	2.2 Generalization
	2.3 Generalized Queries
	2.4 Privacy-Preserving Data Publishing
	2.4.1 (X,Y,L)-anonymity.

	2.5 Data Pricing

	3 Generalized Relations
	3.1 Measuring Semantic Distance
	3.2 Consistency in Generalized Relations

	4 PACAS Overview
	4.1 Problem Statement
	4.2 Solution Overview

	5 Limiting Disclosure of Sensitive Data
	5.1 Record Matching and Query Generation
	5.2 Enforcing Privacy
	5.3 Pricing Generalized Queries.
	5.4 Query Answering

	6 Data Cleaning with Generalized Values
	6.1 Overview
	6.2 Generating Equivalence Classes
	6.3 Selecting Equivalence Classes for Repair
	6.4 Data Request Generation
	6.5 Purchase Data and Repair
	6.6 Complexity Analysis

	7 Experiments
	7.1 Experimental Setup
	7.2 Generalized Values
	7.3 SafePrice Efficiency and Effectiveness
	7.4 SafePrice Parameter Sensitivity
	7.5 Comparative Evaluation

	8 Related Work
	9 Conclusions

