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ABSTRACT

In the real world, data streams are ubiquitous – think of network
traffic or sensor data. Mining patterns, e.g., outliers or clusters,
from such data must take place in real time. This is challenging
because (1) streams often have high dimensionality, and (2) the data
characteristics may change over time. Existing approaches tend to
focus on only one aspect, either high dimensionality or the specifics
of the streaming setting. For static data, a common approach to deal
with high dimensionality – known as subspace search – extracts
low-dimensional, ‘interesting’ projections (subspaces), in which
patterns are easier to find. In this paper, we address both Chal-
lenge (1) and (2) by generalising subspace search to data streams.
Our approach, Streaming Greedy Maximum Random Deviation
(SGMRD), monitors interesting subspaces in high-dimensional data
streams. It leverages novel multivariate dependency estimators and
monitoring techniques based on bandit theory. We show that the
benefits of SGMRD are twofold: (i) It monitors subspaces efficiently,
and (ii) this improves the results of downstream data mining tasks,
such as outlier detection. Our experiments, performed against syn-
thetic and real-world data, demonstrate that SGMRD outperforms
its competitors by a large margin.
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1 INTRODUCTION

1.1 Motivation

Many sources generate streaming data: online advertising, transac-
tion processing in banks, sensor networks, self-driving cars, twitter
feeds, etc. Such streams have many dimensions, i.e., they are high-
dimensional. Think of predictive maintenance. Here, data is seen as
a stream of measurements from hundreds or thousands of sensors
in a production plant. Extracting patterns in this setting is advan-
tageous for many industrial applications and may lead to larger
production volumes or reduce operational costs.

A fundamental task of data analysis is to quantify the depen-
dence between dimensions. This information helps understanding
the data and often improves the result of subsequent tasks, e.g.,
outlier detection. With this in mind, researchers have proposed
subspace search methods, mainly for static data, to find interesting
low-dimensional projections. Such projections tend to have much
structure, i.e., high dependence among their dimensions. Subspace
search is state-of-the-art to deal with data of high dimensionality
and has numerous applications, including exploratory data mining
[5, 46], outlier detection [27, 48, 51], or clustering [8, 25, 36, 40, 52].

One can see subspace search as an ensemble feature selection
method [22], as the goal is to find several projections (subspaces),
not just one. The underlying assumption of subspace search is that
patterns (e.g., outliers, clusters) may hide in various subspaces [2],

and that, when restricting the search to a single subspace, one may
miss some patterns. In a nutshell, existing subspace search methods
consist of two building blocks:

(1) A quality measure to quantify the ‘interestingness’ of a sub-
space, i.e., the potential to reveal patterns. Intuitively, subspaces
with ‘structure’ are more likely to contain outliers or clusters [27].
That measure often is a multivariate measure of dependence.

(2) A search scheme to explore the set of subspaces. Since this
set grows exponentially with dimensionality, inspecting every sub-
space is not possible, and the search typically is a heuristic, i.e., a
trade-off between completeness of the search and result quality.

These two items tend to be specific for a given data mining algo-
rithm, e.g., a certain clustering method. The search then is helpful
for this particular algorithm, but does not generalise beyond [46].
Next, existing methods for subspace search tend to assume static
data. A straightforward generalisation to streams – i.e., repeating
the search periodically – is computationally expensive and limited
by the speed of new observations arriving.

In this paper, we facilitate subspace search for streams. The core
idea is to maintain a set of high-quality subspaces over time, by
updating subspace-search results continuously. Existing approaches
are much less efficient in practice, as we will show.

1.2 Challenges

Searching for subspaces is difficult with static data already, because
the number of subspaces increases exponentially with dimension-
ality. [2] compared the task of finding a pattern (e.g., an outlier)
in high-dimensional spaces to that of searching for a needle in a
haystack, while the haystack is one from an exponential number
of haystacks. At the same time, [48] showed that to ensure high-
quality results, the set of subspaces found must also be diverse, and
that earlier methods yield subspaces with much redundancy.

The streaming setting comes as an additional but orthogonal
challenge. Stream mining algorithms are complex and must satisfy
several constraints [15], which we summarise as follows:

C1: Efficiency. The algorithm must spend a short constant time
and a constant amount of memory to process each record.

C2: Single Scan. The algorithm may perform at most one scan
over the data – no access to past observations.

C3: Adaptation. Whenever the data distribution changes, the
algorithm must adapt, e.g., by forgetting outdated information.

C4: Anytime. The algorithm results must be available at any
point in time. The quality of those results must ideally be at least
as high as the quality of the results from a static system.

While a periodic recomputation of existing, static methods may
cope with C2 and C3, this is not efficient (C1). Additionally, results
may not be available in an anytime fashion (C4).

Considering these challenges, the analogy above becomes more
complex: The haystacks (subspaces) of interest are not only hidden
but also change over time, together with the location of the needle.
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Figure 1: Subspace Search in Data Streams with outliers.

Now, imagine that the needles of interest are the outliers in a
data stream. In high-dimensional data streams, the challenge is to
find the subspaces (‘haystacks’) in which outliers may be visible.
We illustrate this idea in Figure 1, with a fictitious data stream.
Each column is a snapshot of the latest observations at time 𝑡 and
each row represents a different 2-dimensional subspace 𝑆1, 𝑆2, 𝑆3.
The red squares are two outliers at each time step. As we can see,
𝑆1 is interesting for 𝑡 ∈ {1, 2, 3, 4}, as its structure is such that it
is prone to reveal outliers. In comparison, 𝑆2 is only interesting
at time 𝑡 = {1, 3}. In turn, 𝑆3 does not help to reveal outliers, as
the observations mostly are uniformly distributed in this subspace.
The difficulty is that there is an exponential number of potentially
interesting subspaces at any time.

1.3 Contributions

We facilitate subspace search in data streams. After formulat-
ing the problem, we propose a new subspace search method, called
Streaming Greedy Maximum Random Deviation (SGMRD).

We show that our method fulfils the above constraints. In-
spired by existing static methods [27, 48], SGMRD leverages a new
multivariate dependency measure and Multi-Armed Bandit (MAB)
algorithms to update the results of the search in data streams.

We perform extensive experiments, based on an assortment
of synthetic and real-world data. They show that (1) our approach
leads to efficient monitoring of relevant subspaces, and (2) such
monitoring also improves subsequent data mining tasks, such as
outlier detection. We compare our approach to competitive base-
lines and state-of-the-art methods.

We release our source code, experiments and documenta-

tion on GitHub
1, to help with the reproducibility of our study.

Outline: Section 2 covers related work, Section 3 our notation.
Section 4 formulates the problem of subspace search in data streams.
Section 5 presents our approach. Section 6 outlines the experimental
setup. Section 7 presents our results. Section 8 concludes.

1https://github.com/edouardfouche/SGMRD

2 RELATEDWORK

Many methods for subspace search exist, but almost all of them are
either coupled to a specific data mining algorithm or are limited
to the static setting. For example, various approaches for streams
[1, 29, 51, 52] only tend to work with a given static algorithm.
Other methods in turn [6, 27, 48, 50] decouple the search from the
actual task, but none of them can handle streams. The existing
work on subspace search mostly focuses on individual applications
[30, 37, 53], e.g., clustering or outlier detection, while ‘general-
purpose’ subspace search has received less attention.

To our knowledge, there exist two proposals to extend subspace
search to streams in a general way: HCP-StreamMiner [49] and
StreamHiCS [9]. But these approaches boil down to a periodic repe-
tition of the procedure in [27] on synopses of the stream. We will see
that our method outperforms these approaches. Greedy Maximum
Deviation (GMD) [48] is the approach most similar to ours. It uses a
so-called contrast measure [27] to quantify the interestingness of a
given subspace and builds a set of subspaces via a greedy heuristic.
However, GMD assumes static data.

Subspace search has been used in the past to improve the results
of data mining tasks such as outlier detection [27, 48, 51]. The
authors compare their results with full-space static outlier detectors.
We perform an analogous evaluation in the streaming setting and
compare our results against several baselines and state-of-the-art
stream outlier detectors, such as xStream [32] and RS-Stream [43].
See [21] for a survey of outlier detection in streams.

3 NOTATION

A data stream is a set of dimensions 𝐷 = {𝑠1, . . . , 𝑠𝑑 } and an open
list of observations 𝐵 = ( ®𝑥1, ®𝑥2, . . . ), where ®𝑥 𝑗 with 𝑗 ∈ N+ is a
vector of 𝑑 values, and we see a dimension 𝑠𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . ) with
𝑖 = {1, . . . , 𝑑} as an open list of numerical values.

Since the stream is virtually infinite, we use the sliding window
model: At any time 𝑡 ≥ 1, we only keep the 𝑤 latest observations,
𝑊𝑡 = ( ®𝑥𝑡−𝑤+1, . . . , ®𝑥𝑡 ). We call a subspace 𝑆 a projection of the
window𝑊𝑡 on |𝑆 | dimensions, with 𝑆 ⊆ 𝐷 and |𝑆 | ≤ 𝑑 . P(𝑆) is the
power set of 𝑆 , i.e., the set of all dimension subsets. We assume,
without loss of generality, that observations are equidistant in time.

Window-based approaches are useful to overcome the constraints
of streams, because they require a single scan of data (C2) and cap-
ture the most recent observations. Thus, algorithms based on such
synopses can adapt (C3) [20]. Note that one could easily adapt our
method to accommodate other summarisation techniques, such as
the landmark window or reservoir sampling [20].

4 PROBLEM FORMULATION

4.1 Dimension-based Subspace Search

Subspace search in the static setting has already been formalised
in the literature. The goal is to find a set of subspaces that fulfils a
specific notion of optimality. Such subspaces must at the same time
(1) be likely to reveal patterns (the ‘haystacks’ from the analogy
above) and (2) be diverse, i.e., have low redundancy with each other.

To this end, the idea is to deem a set of subspaces optimal if
adding or removing a subspace to/from this set makes the search
results worse. To ensure diversity, the notion of optimality of each
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Figure 2: Dimension-based subspace search versus other

methods on a toy data set (𝑑 = 10).

subspace must be tied to a specific dimension. This way, the result-
ing set may consist of the best subspaces w.r.t. each dimension, and
each dimension is represented in this manner. This is the essence
of what we call ‘dimension-based’ search.

To illustrate this, we show in Figure 2 an exemplary result from
a dimension-based search and from another scheme. Dimension-
based results are more diverse compared to other results, which tend
to over-represent some dimensions. Previous work [48] showed that
the diversity from dimension-based approaches is key to improve
the performance of subspace search algorithms.

Formally, we define a so-called Dimension-Subspace Quality
Function (D-SQF), to capture how much a dimension 𝑠𝑖 helps to
reveal patterns in a subspace 𝑆 :

Definition 1 (D-SQF). For any 𝑆 ∈ P(𝐷) and any 𝑠𝑖 ∈ 𝐷 , a
Dimension-Subspace Quality Function (D-SQF) is a function of type
𝑞 : P(𝐷) × 𝐷 ↦→ [0, 1] with 𝑞(𝑆, 𝑠𝑖 ) = 0,∀𝑠𝑖 ∉ 𝑆 .

𝑞(𝑆, 𝑠𝑖 ) = 1 means that 𝑆 has the maximum potential to reveal
patterns w.r.t. 𝑠𝑖 . Put differently, patterns may become more visible
as one includes 𝑠𝑖 in 𝑆 . This measure is asymmetric. For example,
the quality of subspace {𝑠1, 𝑠2} does not need to be the same w.r.t. 𝑠1
or 𝑠2. In turn, 𝑞(𝑆, 𝑠𝑖 ) = 0 means that 𝑆 cannot reveal any patterns
w.r.t. 𝑠𝑖 . By definition, 𝑞(𝑆, 𝑠𝑖 ) = 0 if 𝑠𝑖 is not part of 𝑆 because the
subspace cannot reveal any pattern in 𝑠𝑖 .

Recent studies [48, 50] instantiate such D-SQF as a measure of
correlation, which one can estimate without any ex-post evalua-
tion, i.e., it is not specific to any data mining algorithm. With this,
subspace search remains independent of any downstream task. We
can define a notion of subspace optimality:

Definition 2 (Optimal Subspace). A subspace 𝑆 ∈ P(𝐷) is
optimal w.r.t. 𝑠𝑖 ∈ 𝐷 and a D-SQF 𝑞 if and only if

𝑞(𝑆, 𝑠𝑖 ) ≥ 𝑞(𝑆 ′, 𝑠𝑖 ) ∀𝑆 ′ ∈ P(𝐷).
Then the optimal subspace set S∗ is the set of optimal subspaces

in 𝐷 w.r.t. each dimension 𝑠𝑖 ∈ 𝐷 :

Definition 3 (Optimal Subspace Set). A set S∗ is optimal w.r.t.
𝐷 and a D-SQF 𝑞 if and only if

∀𝑠𝑖 ∈ 𝐷, ∃𝑆 ∈ S∗ 𝑠 .𝑡 . ∀𝑆 ′ ∈ P(𝐷), 𝑞(𝑆, 𝑠𝑖 ) ≥ 𝑞(𝑆 ′, 𝑠𝑖 ).
Thus, the optimal set S∗ contains one subspace 𝑆 for each di-

mension 𝑠𝑖 ∈ 𝐷 , each one maximising the quality 𝑞 w.r.t. 𝑠𝑖 . I.e., we
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Figure 3: Evolution of Mutual Information between 10 sen-

sor pairs in an experimental power plant for one day of data.

can see S∗ as a mapping of each dimension 𝑠𝑖 ∈ 𝐷 to an optimal
subspace w.r.t. that dimension:

S∗ : 𝑠𝑖 ∈ 𝐷 ↦→ 𝑆 ∈ P(𝐷) 𝑠 .𝑡 . ∀𝑆 ′ ∈ P(𝐷) 𝑞(𝑆, 𝑠𝑖 ) ≥ 𝑞(𝑆 ′, 𝑠𝑖 ) .
Finding S∗ is NP-hard [33]. This is because one needs to assess

the D-SQF of a set whose size grows exponentially with the number
of dimensions. In fact, even finding a single optimal subspace is
NP-hard. Thus, existing techniques do not guarantee the optimality
of the results, but instead target at a good approximation of S∗,
while keeping the number of subspaces considered small.

This idea is suitable in the static setting [27, 50]. [48] showed
that it leads to diverse sets of subspaces with better downstream
mining results. Here, we propose a generalisation for streams.

4.2 Subspace Search in the Streaming Setting

The quality of subspaces, estimated via statistical correlation mea-
sures, may change over time, manifesting a phenomenon known as
‘concept drift’ [7]. Thus, in streams, the quality function 𝑞 is time-
dependent, and so we write S∗𝑡 and 𝑞𝑡 . Then the problem becomes
more complex — observe the following example:

Example 4.1 (Variation of Mutual Information). We obtained mea-
surement data from a power plant and computed the evolution of
correlation (estimated via Mutual Information) between a set of
10 sensor pairs for a single day. Figure 3 graphs the results. The
Mutual Information for pairs 1 and 2 remains stable for the whole
duration, while it is more volatile for pairs 3 to 6. The pairs 7 to 10
in turn show some change, but with less variance.

As the example shows, some subspaces remain optimal for a
longer period of time, while others frequently become sub-optimal.
So the difficulty is that, even if one finds the set of subspaces S∗𝑡 ,
there is no guarantee that this set is optimal at time 𝑡 + 1. Next, it
is impossible to even test the optimality of S∗𝑡 , because one would
need to evaluate an exponential number of subspaces.

Let us assume that the cost of evaluating the quality of a sub-
space is constant across different subspaces and time. This is the
case when considering existing correlation estimators. We define a
function E𝑡 : P(𝐷) × 𝐷 ↦→ {0, 1} such that E𝑡 (𝑆, 𝑠𝑖 ) = 1 if a given
search scheme computes 𝑞𝑡 (𝑆, 𝑠𝑖 ), else 0. We can now formulate
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subspace search in data streams as a multi-objective optimisation
problem at time 𝑡 with two conflicting objectives:

(1) Find a set S𝑡 which approximates S∗𝑡 well. I.e., minimise an
objective𝑂1 =

∑𝑑
𝑖=1

[
𝑞𝑡 (S∗𝑡 (𝑠𝑖 ), 𝑠𝑖 ) − 𝑞𝑡 (S𝑡 (𝑠𝑖 ), 𝑠𝑖 )

]
; the sum

of the differences between the quality of the optimal set and
the quality of the approximate set for each dimension.

(2) Reduce the computation of the search, i.e., minimise an ob-
jective 𝑂2 =

∑𝐷
𝑠𝑖

∑P(𝐷)
𝑆

E𝑡 (𝑆, 𝑠𝑖 ); the number of subspaces
for which one computes the quality at time 𝑡 .

If 𝑂1 = 0, then S𝑡 ≡ S∗𝑡 . Conversely, if 𝑂2 = 0, then choosing S𝑡
boils down to random guessing. Thus, 𝑂1 and 𝑂2 conflict. They
capture the trade-off between the quality of the set of subspaces
and the computation effort.

Definition 3 implies that the search is independent for each
dimension. Thus, to optimise 𝑂1, we must find a dimension-based
search algorithm, which for any dimension 𝑠𝑖 ∈ 𝐷 , returns a near-
optimal subspace 𝑆 w.r.t. the dimension. More formally:

Definition 4 (Dimension-based Search Algorithm). A search
algorithm, that is dimension-based, is a function Search𝑡 : 𝐷 ↦→
P(𝐷), which for any dimension 𝑠𝑖 ∈ 𝐷 , returns a subspace 𝑆 min-
imising 𝑞𝑡 (S∗𝑡 (𝑠𝑖 ), 𝑠𝑖 ) − 𝑞𝑡 (𝑆, 𝑠𝑖 ) at time 𝑡 .

Such an algorithm is associated with a cost, which depends
on the number of subspaces evaluated. I.e., each run of Search𝑡
negatively impacts objective 𝑂2. Thus, an additional challenge is
to find an update policy 𝜋 : 𝑡 ↦→ P(𝐷) to decide at any time for
which dimension(s) one should repeat the search. We define it as
follows:

Definition 5 (Update Policy). An update policy is a function
𝜋 : 𝑡 ↦→ P(𝐷).

The policy returns for any time 𝑡 a set of dimensions 𝐼𝑡 ∈ P(𝐷),
so that one repeats the Search𝑡 algorithm for 𝑠𝑖 ∈ 𝐼𝑡 .

Overall, to achieve subspace search in data streams, we must
come up with an adequate instantiation of the following elements:
• A D-SQF 𝑞𝑡 : P(𝐷) × 𝐷 ↦→ [0, 1].
• A dimension-based search algorithm Search𝑡 : 𝐷 ↦→ P(𝐷).
• An update policy 𝜋 : 𝑡 ↦→ P(𝐷).

Our approach, Streaming Greedy Maximum Random Deviation
(SGMRD), addresses the challenges described previously by instanti-
ating and combining each of these elements in a general framework.

5 SUBSPACE SEARCH IN DATA STREAMS

5.1 Our Approach: SGMRD

Figure 4 shows an overview of our framework, in two steps:
(1) Initialisation. We find an initial set of subspaces S0, using

the first 𝑤 observations in the stream. To do so, we run the
algorithm Search𝑡 for each dimension. The outcome of this
step is a set of subspaces 𝑆1, . . . , 𝑆𝑑 , one for each dimension.

(2) Maintenance. For any new observation in the stream, we
monitor the quality of subspaces 𝑞𝑡 (𝑆, 𝑠𝑖 ) for 𝑆 ∈ S𝑡 , and
decide, by learning a policy 𝜋 , for which dimension(s) we
repeat the search, i.e., algorithm Search𝑡 .

Our approach is general to some extent, as one could consider
various instantiations of each building block (Search, Monitor and

Update). With SGMRD, we instantiate the search function Search𝑡
as a greedy hill-climbing heuristic, 𝑞𝑡 as an efficient dependency
estimator and the policy 𝜋 as a Multi-Armed Bandit (MAB) algo-
rithm with multiple plays. We describe the specifics of each block
and explain our design decisions in the following sections.

5.1.1 Search. SGMRD’s initialisation searches for an initial set of
subspaces using the first observation window. Since finding the
optimal set (cf. Definition 3) is not feasible, we instantiate Search𝑡 as
a greedy hill-climbing heuristic. Our heuristic constructs subspaces
in a bottom-up, greedy manner. Algorithm 1 is our pseudo-code,
and Figure 5 illustrates our idea with a toy example.

In a first step (Line 1), we select the 2-dimensional subspace
maximising the quality w.r.t. 𝑠𝑖 . In our example, 𝑠𝑖 = 𝑠1, and the
subspace with the highest quality is {𝑠1, 𝑠2}. Then we iteratively
test whether adding the dimension associated with the next best
2-dimensional subspace containing 𝑠𝑖 (Line 4) increases the quality
of the current subspace (Line 5). If this is the case, we add it into the
current subspace (Line 6), otherwise, we discard it. In our example,
the heuristic first considers adding 𝑠3, then 𝑠4.

The advantage of only considering 2-dimensional subspaces for
selecting the next dimension is that it keeps the runtime of the
search linear w.r.t. the number of dimensions. More precisely, we
can see that the heuristic computes the quality of exactly (𝑑 −
1) + (𝑑 − 2) = 2𝑑 − 3 subspaces. Thus, the runtime of Algorithm
1 is in 𝑂 (𝑑). The search is independent for each dimension. At
initialisation, we run it for each dimension, so the initialisation is
in 𝑂 (𝑑2).

Algorithm 1 Search𝑡 (𝑠𝑖 )
Require: A dimension 𝑠𝑖 ∈ 𝐷
1: Smax ← 𝑠𝑖 ∪

(
arg max𝑠 𝑗 ∈𝑆 𝑞𝑡 (𝑠𝑖 ∪ 𝑠 𝑗 , 𝑠𝑖 )

)
2: 𝑆 ← 𝑆 \ Smax

3: while 𝑆 is not empty do

4: Scand ← arg max𝑠 𝑗 ∈𝑆 𝑞𝑡 (𝑠𝑖 ∪ 𝑠 𝑗 , 𝑠𝑖 )
5: if 𝑞𝑡 (Smax ∪ Scand , 𝑠𝑖 ) > 𝑞𝑡 (Smax , 𝑠𝑖 ) then
6: Smax ← Smax ∪ Scand
7: 𝑆 ← 𝑆 \ Scand
8: return subspace Smax ⊆ 𝐷

5.1.2 Monitor. So far, we did not discuss any concrete instantiation
of the quality 𝑞𝑡 . In practice, one has only a sample of observations,
and thus, the quality can only be estimated from a limited number
of points. In what follows, we describe a new method to estimate
the quality. Considering the constraints from the streaming setting
(cf. Section 1.2) and the nature of the required quality function, our
method must fulfil the following technical requirements:

Efficiency. Since the search includes estimating the quality of
numerous subspaces, the quality-estimation procedure must be
efficient, to cope with the streaming constraints (C1).

Multivariate. Since subspaces can have an arbitrary number of
dimensions, the quality measure must be multivariate. Traditional
dependency estimators in turn are bivariate [24].

Asymmetric. Since the quality values are specific for a given
dimension, the measure is not symmetric.

4



Accepted Manuscript to Information Systems, Volume 97, Elsevier Final authenticated version: https://doi.org/10.1016/j.is.2020.101705

Data Stream

…

Sd

S1
Subspaces

1. Initialisation 2. Maintenance

First Window

Update

Search Monitor
Searcht : qt : P(D) × D

π : t 7→ P(D)

D 7→ P(D) 7→ [0, 1]

Sliding Window

Search

Figure 4: SGMRD: A High-Level Overview. At any time, SGMRD delivers a set of high-quality subspaces 𝑆1, . . . , 𝑆𝑑 .

{s1, s2}

{s1, s2} < {s1, s2, s3}?

{s1, s2, s3} < {s1, s2, s3, s4}?{s1, s2} < {s1, s2, s4}?

{s1, s2} {s1, s2, s4} {s1, s2, s3} {s1, s2, s3, s4}

0.92{s1, s2}
S

0.85
0.83

{s1, s3}

{s1, s4}
No Yes

No NoYes Yes

D = {s1, s2, s3, s4}

qt (S, s1)

Figure 5: Example of search w.r.t. 𝑠1 with four dimensions.

We define the quality as a measure of non-independence in sub-
space 𝑆 w.r.t. 𝑠𝑖 . Observe the following definition of independence:

Definition 6 (Independence of Random Variables). A ran-
dom vector 𝑋 = {𝑋1, . . . , 𝑋𝑛} is independent if and only if 𝑝𝑋 =∏𝑛
𝑖=1 𝑝𝑋𝑖 , where 𝑝𝑋 is the joint distribution and 𝑝𝑋1 , . . . , 𝑝𝑋𝑛 are the

marginal distributions.

This implies that the marginal distributions of each variable 𝑋𝑖
must be equal to their conditional distribution w.r.t.𝑋 \𝑋𝑖 . By seeing
each dimension as a random variable, we can estimate the quality
as a degree of non-independence w.r.t. a dimension𝑋𝑖 , and quantify
it as the discrepancy between the empirical marginal distribution
𝑝𝑋𝑖 and the conditional distribution 𝑝𝑋𝑖 | (𝑋\𝑋𝑖 ) .

For the ease of discussion, let us consider 𝑞𝑡 ({𝑠1, 𝑠2}, 𝑠1). Then,

𝑞𝑡 ({𝑠1, 𝑠2}, 𝑠1) ∝ 𝑑𝑖𝑠𝑐
(
𝑝𝑠1 , 𝑝𝑠1 |𝑠2

)
, (1)

where 𝑑𝑖𝑠𝑐 is the discrepancy between both distributions.
To estimate this discrepancy, we propose a bootstrap method.

Iteratively, we take a random condition w.r.t. the dimensions 𝑆 \ 𝑠1
(i.e., restricting the other dimensions to a random interval) and
perform a statistical test between the sets of observations within
and outside of this random condition w.r.t. 𝑠1.

Figure 6 illustrates this idea with two subspaces showing an inde-
pendent 2-dimensional distribution and two subspaces with a linear
and quadratic dependence. As we can see, over three randomly cho-
sen conditions, the distributions of both sets of observations (see
the histograms) are very similar for the first two subspaces, while

s1

s2

s1 s1

s1

s2

s1 s1

s1

s2

s1 s1

s1

s2

s1 s1

Figure 6: Our approach to estimate subspace quality.
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they are markedly different for the other ones. Intuitively, subspaces
with dependence are more likely to reveal patterns such as clusters
or outliers, which are not visible in any other subspace.

To estimate 𝑞𝑡 , we average the discrepancies over 𝑀 iterations:

𝑞𝑡 (𝑆, 𝑠𝑖 ) = 1 − 1
𝑀

𝑀∑︁
𝑗=1
T

(
𝑝𝑆 |𝑐 𝑗 (𝑠𝑖 ) , 𝑝𝑆 |𝑐 𝑗 (𝑠𝑖 )

)
, (2)

where 𝑐 𝑗 (𝑠𝑖 ) is a random condition w.r.t. 𝑠𝑖 , and the 𝑐 𝑗 (𝑠𝑖 ) is its
complementary condition in the current window of data. The re-
sulting two sets of observations respectively are in dark blue and
light orange in the figure. T yields the p-value of a two-sample
Kolmogorov-Smirnov test. This test is adequate as it has high power
and it is non-parametric. However, other tests are possible as well,
see [45]. In the end, 𝑞𝑡 (𝑆, 𝑠𝑖 ) converges to 1 as the evidence against
independence between both conditional distributions increases. It
is efficient, because testing requires only linear time, while condi-
tioning requires a one-time sorting of the elements in the window.

Our examples in Figure 6 are limited to two dimensions for the
sake of illustration. However, one can easily extend this principle
to multiple dimensions, as in [27]. Based on Hoeffding’s inequality
[23], it is easy to show that our measure converges to its expected
value as the number of iterations 𝑀 increases, formally:

Pr ( |𝑞𝑡 (𝑆, 𝑠𝑖 ) − E(𝑞𝑡 (𝑆, 𝑠𝑖 )) | ≥ 𝜀) ≤ 2𝑒−2𝑀𝜀2
. (3)

See [17, 19] for the corresponding proof. This brings several advan-
tages: We can estimate the quality in quasi-linear time w.r.t. the
number of points and reduce the number of iterations 𝑀 to adapt
to the speed of streams. Thus, the approach is anytime (C4).

To monitor the quality estimates of each subspace in S𝑡 over
time, we smooth out the statistical fluctuations of the estimation
process via exponential smoothing with parameter 𝛾 . Preliminary
experiments showed that 𝑀 = 100 with 𝛾 = 0.9 leads to good
estimation quality and performance w.r.t. downstream tasks. The
outcome is a smoothed quality function 𝑄𝑡 : 𝐷 ↦→ [0, 1]:

𝑄𝑡+1 (𝑠𝑖 ) = 𝛾 · 𝑞𝑡 (S𝑡 (𝑠𝑖 ), 𝑠𝑖 ) + (1 − 𝛾) · 𝑞𝑡+1 (S𝑡 (𝑠𝑖 ), 𝑠𝑖 ) . (4)

5.1.3 Update. The initialisation step is relatively expensive, be-
cause one needs to run the search (Algorithm 1) for each dimension.

While running the search for every dimension optimises the
quality of the subspace set (Objective 𝑂1), it curbs efficiency (Ob-
jective 𝑂2). However, as in Example 4.1, the dependence between
dimensions can unexpectedly change over time. Thus, without
any assumption, it is not possible to exploit our knowledge from
step 𝑡 − 1. We mitigate the computational cost over time by only
repeating the search for a few dimensions at each time step.

The challenge is to find a policy 𝜋 : 𝑡 ↦→ P(𝐷) to decide at any
time step 𝑡 for which 𝐿 dimensions to repeat the search, where
𝐿 < 𝑑 is a budget per time step. The budget 𝐿 can either be set by
the user, or it is based on the computational time available between
two subsequent observations.

To solve this challenge, we cast the decisions of the policy 𝜋

as a MAB problem with multiple plays [28]. Multi-Armed Bandit
(MAB) models are useful tools to capture the trade-offs of sequential
decision making problems. In what follows, we use the common
notation from the bandit literature, as in [11]. We model each di-
mension 𝑠𝑖 ∈ 𝐷 as an ‘arm’. In each round 𝑡 = {1, . . . ,𝑇 }, the policy

𝜋 selects 𝐿 < 𝑑 arms 𝐼𝑡 ⊂ 𝐷 and runs the search for each 𝑠𝑖 ∈ 𝐼𝑡 .
Then there are two possible outcomes for each 𝑠𝑖 :

(1) Success: Search𝑡 (𝑠𝑖 ) yields a better subspace than S𝑡−1 (𝑠𝑖 ),
so we update S𝑡 (𝑠𝑖 ). The policy receives a reward of 1.

(2) Failure: Search𝑡 (𝑠𝑖 ) does not yield a better subspace, so we
set S𝑡 (𝑠𝑖 ) ← S𝑡−1 (𝑠𝑖 ). The reward is 0.

Since the rewards are binary, we can associate each arm 𝑠𝑖 ∈ 𝐷

with a Bernoulli distribution with unknown mean 𝜇𝑖 . The goal
of a multiple-play MAB algorithm is to find the top-𝐿 arms with
largest reward expectation 𝜇𝑖 from empirical observations with as
few trials as possible [28]. In our case, this means finding the 𝐿

dimensions for which one must repeat the search more frequently.
To find the best arms, we employ an algorithm known as Multiple-

Play Thompson Sampling (MP-TS) [28]. In a nutshell, Thompson
Sampling is a Bayesian inference heuristic which selects an arm
based on posterior samples of the expectations of each arm. Since
the Beta distribution is a conjugate prior for the Bernoulli distribu-
tion, Beta(𝛼𝑖 , 𝛽𝑖 ) is the prior belief for arm 𝑖 , and for each arm 𝑖 , we
maintain a pair of parameters 𝛼𝑖 , 𝛽𝑖 . At each step, we sample from
each Beta(𝛼𝑖 , 𝛽𝑖 ) distribution and play the arms with highest value.
Whenever we observe a success after playing arm 𝑖 , we increment
𝛼𝑖 , otherwise we increment 𝛽𝑖 . Assuming a uniform initial prior,
we initialise 𝛼𝑖 , 𝛽𝑖 = 1. The idea of Thompson Sampling traces back
to 1933 [47], but recent studies demonstrate its superiority over
other bandits in theory and practice [14, 26].

Intuitively, the behaviour of the policy 𝜋 is to explore in the begin-
ning, by playing various arms, and then to exploit the high-reward
arms, i.e., repeating the search for dimensions whose optimal sub-
space changes more frequently. Algorithm 2 is the pseudo-code for
our update step.

Algorithm 2 Update𝑡 (S𝑡 , 𝐿)
Require: A set of subspaces S𝑡 , the number of plays per round 𝐿.
1: for 𝑖 = 1, . . . , 𝐾 do

2: 𝜃𝑖 (𝑡 ) ∼ Beta(𝛼𝑖 (𝑡 ), 𝛽𝑖 (𝑡 ))
3: 𝐼𝑡 = arg max𝐾 ′⊂[𝐾 ],|𝐾 ′ |=𝐿

∑𝐾 ′
𝑖 𝜃𝑖 (𝑡 )

4: for 𝑖 ∈ 𝐼𝑡 do
5: 𝑆 ← Search𝑡 (𝑠𝑖 ) ⊲ Searching for a new subspace w.r.t. 𝑠𝑖
6: if 𝑞𝑡+1 (𝑆, 𝑠𝑖 ) > 𝑄𝑡+1 (S𝑡 (𝑠𝑖 ), 𝑠𝑖 ) and 𝑆 ≠ S𝑡 (𝑠𝑖 ) then
7: S𝑡+1 (𝑠𝑖 ) ← 𝑆 ; 𝛼𝑖 (𝑡 + 1) = 𝛼𝑖 (𝑡 ) + 1
8: else

9: S𝑡+1 (𝑠𝑖 ) ← S𝑡 (𝑠𝑖 ) ; 𝛽𝑖 (𝑡 + 1) = 𝛽𝑖 (𝑡 ) + 1
10: return S𝑡+1

5.1.4 SGMRD. Algorithm 3 summarises our approach as pseudo-
code. SGMRD finds an initial set of subspaces using the first window
(Line 3). Then SGMRD monitors and updates the set of subspaces
(Line 6 to 8) for each new observation ®𝑥𝑡+1.

Overall, our method, SGMRD, is efficient (C1), as our quality es-
timates can be computed in linear time. It also requires a single scan
of the data (C2), as we monitor subspaces over a sliding window.
By design, SGMRD adapts (C3) to the environment by updating the
subspace search results with parsimonious resource consumption,
and our experiments will confirm this. Finally, results are available
at any point in time (C4).
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Algorithm 3 SGMRD((𝐷, 𝐵), 𝑤 , 𝐿, 𝛾 )
Require: Data stream (𝐷, 𝐵), window size w > 0, 𝐿 > 0, 𝛾 ∈ (0, 1)
1: 𝑡 ← 𝑤 ⊲ 1. Initialisation

2: for 𝑠𝑖 ∈ 𝐷 do

3: S𝑡 (𝑠𝑖 ) ← Search𝑡 (𝑠𝑖 ) ⊲ Search
4: while 𝐵 has a new observation ®𝑥𝑡+1 do ⊲ 2. Maintenance

5: 𝑡 ← 𝑡 + 1
6: for 𝑠𝑖 ∈ 𝐷 do ⊲ Monitor
7: 𝑄𝑡 (𝑠𝑖 ) = 𝛾 · 𝑞𝑡−1 (S𝑡−1 (𝑠𝑖 ), 𝑠𝑖 ) + (1 − 𝛾 ) · 𝑞𝑡 (S𝑡 (𝑠𝑖 ), 𝑠𝑖 )
8: S𝑡 ← Update𝑡 (S𝑡−1, 𝐿) ⊲ Update
9: return at anytime the set of subspaces S𝑡

In addition to reducing the number of plays 𝐿, one can further
bring down the computational requirements of SGMRD by perform-
ing the update step (Line 8) only once every 𝑣 new observations.
For simplicity, we have described Algorithm 3 with 𝑣 = 1.

In our experiments, we will study the trade-off between the
quality of the results and the cost associated with our method.

5.2 Downstream Data Mining

High-quality subspaces can be useful for virtually any downstream
data mining task. For example, previous work [27, 34, 48, 50] lever-
ages subspaces to build ensemble-like outlier detectors. Other data
mining tasks are possible as well, such as clustering [1, 4, 29, 36, 52].
Our approach, SGMRD, yields a set of subspaces S𝑡 at any time.
While our approach is not tied to any specific data mining task, we
use outlier detection as an exemplary task in our evaluation.

The articles just cited apply an outlier detector to each subspace
in S𝑡 , and the final score is a combination of the individual scores.
The outcome is a ranking of objects by decreasing ‘outlierness’. In
the experiments that follow, we use the LOF detector because it is
a common baseline in the outlier detection literature [27].

The best combination of the individual scores depends on the
concrete application. Literature has discussed this extensively [3,
35]. Several studies [31, 38] argue that the average of the scores
with LOF yields the best results overall in the static case, so we
stick to this choice. The final outlier score of ®𝑥𝑡 is the average of
the scores from each subspace across every window containing ®𝑥𝑡 :

score ( ®𝑥𝑡 ) = 1
𝑤 · 𝑑

𝑤∑︁
𝑖=0

S𝑡−𝑖∑︁
𝑠𝑖

𝑠𝑐𝑜𝑟𝑒
S𝑡−𝑖 (𝑠𝑖 )
𝑊𝑡−𝑖

( ®𝑥𝑡 ) . (5)

Again, one may also reduce the computation effort of outlier detec-
tion by evaluating the scores only once every 𝑣 time steps.

6 EXPERIMENT SETUP

We evaluate the performance of our approach w.r.t. two aspects:
(1) the quality of subspace monitoring, i.e., how efficiently and ef-
fectively can SGMRD maintain a set of high-quality subspaces over
time, and (2) the benefits w.r.t. outlier detection, as an exemplary
downstream data mining task.

6.1 Evaluation Measures

6.1.1 Subspace Monitoring. Evaluating the quality of subspace
monitoring is difficult because finding S∗𝑡 is computationally infea-
sible for non-trivial data. Thus, based on the definition of objective

𝑂1 (cf. Section 4.2), we measure the regret and the average quality:

𝑅𝑇 =
1
𝑑

𝑇∑︁
𝑡=0

𝑑∑︁
𝑖=1

[
𝑄∗𝑡 (𝑠𝑖 ) −𝑄𝑡 (𝑠𝑖 )

]
, 𝑄𝑡 =

1
𝑑

𝑑∑︁
𝑖=1

𝑄𝑡 (𝑠𝑖 ), (6)

where 𝑄𝑡 (𝑠𝑖 ) is the quality w.r.t. 𝑠𝑖 as defined in Equation 4, and
𝑄∗𝑡 (𝑠𝑖 ) is the quality obtained when one always updates the corre-
sponding subspace, i.e., it the same as repeating the initialisation.
𝑅𝑇 is the regret, defined as the sum of the differences between
𝑄∗𝑡 (𝑠𝑖 ) and 𝑄𝑡 (𝑠𝑖 ) up to time 𝑇 . 𝑄𝑡 is the average quality at time 𝑡 ,
and 𝑄𝑇 is the average quality up to time 𝑇 .

To characterise the behaviour of our update strategy, we also
look at the relative update frequency 𝐹𝑇 (𝑠𝑖 ) for each dimension
𝑠𝑖 ∈ 𝐷 and the rate of successful updates𝑈𝑇 , as in Section 5.1.3, i.e.:

𝐹𝑇 (𝑠𝑖 ) =
𝑇∑︁
𝑡=0

1 [𝑠𝑖 ∈ 𝐼𝑡 ]
𝑇

, 𝑈𝑇 =

𝑇∑︁
𝑡=0

𝑑∑︁
𝑖=1

1 [𝐴𝑡 (𝑠𝑖 ) ∧ 𝐵𝑡 (𝑠𝑖 )]
𝑑 ·𝑇 , (7)

where 𝑠𝑖 ∈ 𝐼𝑡 means that SGMRD has selected dimension 𝑠𝑖 at time
𝑡 , and 𝐴𝑡 (𝑠𝑖 ) and 𝐵𝑡 (𝑠𝑖 ) are the conditions capturing whether the
search was successful (i.e., the new subspace is different and of
higher quality than the previous one):

𝐴𝑡 (𝑠𝑖 ) = S𝑡−1 (𝑠𝑖 ) ≠ S𝑡 (𝑠𝑖 ), (8)
𝐵𝑡 (𝑠𝑖 ) = 𝑄𝑡 (S𝑡−1 (𝑠𝑖 ), 𝑠𝑖 ) < 𝑞𝑡 (S𝑡 (𝑠𝑖 ), 𝑠𝑖 ) . (9)

6.1.2 Outlier Detection. By definition, outliers are rare, so the de-
tection of outliers is an imbalanced classification problem. We report
the area under the ROC curve (AUC) and the Average Precision
(AP), which are popular measures for evaluating outlier detection
algorithms. Outlier detectors typically ranks the observation by
decreasing ‘outlierness’, measured as a score. In most applications,
end users only check the top X% items. So we report the Recall (R)
and Precision (P) within the top X% instances, with X ∈ {1, 2, 5}.

6.2 Data Sets

We use an assortment of data sets for our evaluation. One is a data
set from a real-world use case, corresponding to measurements in
a pyrolysis plant. We also include four real-world data sets with
outlier ground truth: KDDCup99, Activity, Backblaze, Credit.
While the former two have frequently been used in the literature,
the latter two are our own addition to this benchmark. To cope with
the lack of publicly available data sets for outlier detection in the
streaming setting, we also generate three synthetic benchmark data
sets: Synth10, Synth20 and Synth50. We describe each data set in
detail hereafter; Table 1 summarises their main characteristics.

Table 1: Characteristics of the Benchmark Data Sets.

Benchmark # Instances # Dimensions % Outliers
Pyro 10,000 100 NA
KDDCup99 25,000 38 7.12
Activity 22,253 51 10
Backblaze 12,600 44 1
Credit 284,807 29 0.17
Synth10 10,000 10 0.86
Synth20 10,000 20 0.88
Synth50 10,000 50 0.81
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6.2.1 Real-World Data Sets.
• Pyro: This data set contains 10,000 measurements (one per

second) from a selection of 100 sensors, such as temperature
or pressure, in various components of a pyrolysis plant. We
use this data set to evaluate how well our method can search
for subspaces in data streams. However, there is no ground
truth, so we cannot use this data set for our downstream
data mining application.
• Activity: This data set, initially proposed in [41], describes

different subjects performing various activities (e.g., walking,
running), monitored via body-mounted sensors. Analogously
to [43], we took the walking data of a single subject and
replaced 10% of the data with nordic walking data, which we
marked as outliers. The rest of the elements are inliers. We
obtained the original data set from [16].
• KDDCup99: This data set was part of the KDD Cup Challenge

1999. It is a network intrusion data set. Analogously to [43],
we excluded DDoS (Denial-of-Service) attacks and marked
all other attacks as outliers. We take a contiguous subset of
25,000 data points. We obtained this data set from [16].
• Backblaze: Similarly as in [12], we obtained hard drive fail-

ure stats data from Backblaze2, a computer backup and cloud
storage service. We prepare a benchmark with the data from
Q1 2020. We select the hard drive model ST12000NM0007,
because of its relatively high failure rate, and downsample
the instances from the normal class such that the outliers
represent 1% of the total observations.
• Credit: This data set was released via the ‘credit card fraud

detection’ challenge3 [39]. It is highly imbalanced, with only
0.17% outliers. Also, it has comparably more instances.

6.2.2 Synthetic Benchmark Generation. In addition, we create three
data sets simulating concept drift [7] via random variations of
the data distribution over time. We generate 𝑛 + 1 distributions
Γ0, Γ1, . . . , Γ𝑛 , and sample from each distribution Γ𝑖 a number 𝑒 of
observations, while letting the distribution Γ𝑖 gradually drift to-
wards the distribution Γ𝑖+1 as we sample from it.

We initialise Γ0 ≡ U[0, 1] over the full space 𝐷 . Then we select
a set of distinct subspaces (i.e., the subspaces do not have any
dimension in common) from P(𝐷) for each other distribution, so
that 50% of the subspaces change from one distribution to the next
one. For each subspace and, with a small probability 𝑝 ∈ (0, 1),
we sample the next point from U[𝛿, 1] for each dimension with
𝛿 ∈ (0, 1) chosen randomly. We call this point an ‘outlier’. With
probability 1− 𝑝 , we sample the next point uniformly from the rest
of the unit hypercube – this is an ‘inlier’. Figure 7 illustrates this
principle with two dimensions. For the dimensions not part of any
subspace, every observations are i.i.d. inU[0, 1].

Outliers placed this way are said to be ‘non-trivial’ [27], since
they do not appear in any other subspace — they are ‘hidden’ in the
data. Our goal is to evaluate to what extent different approaches
can detect such outliers.

We generate three benchmark data sets with 𝑛 = 10 distributions
and 𝑒 = 1000 observations. We set 𝑝 < 0.01, since outliers are

2https://www.backblaze.com/b2/hard-drive-test-data.html
3https://www.kaggle.com/mlg-ulb/creditcardfraud
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Figure 7: The synthetic benchmark generation process.

rare by definition. Synth10, Synth20, Synth50 have 10, 20 and 50
dimensions respectively, with subspaces up to 5 dimensions.

Note that we release the code for our data generator and our
real-world benchmark data sets via our GitHub repository as well.

6.3 Baselines and Competitors

6.3.1 Subspace Monitoring. Our goal is to assess how effectively
SGMRD can handle the trade-off between computational cost and
monitoring quality. We compare SGMRD to several alternative
update strategies and against several baselines.
• SGMRD-TS uses MP-TS (cf. Section 5.1.3) as update strategy,

and we set 𝐿 = 1, unless noted otherwise.
• SGMRD-RD uses a random (RD) update strategy. We update

a single subspace per time step, chosen at random from the
current set.
• SGMRD-GD uses a greedy (GD) update strategy. We update

a single subspace per time step and choose the subspace with
the lowest quality.
• Batch repeats the initialisation of SGMRD periodically for

every batch of data with size 𝑤 = 1000.
• Init runs the initialisation and then keeps the same set of

subspaces for the rest of the experiment (no update).
• Gold repeats the initialisation of SGMRD at every step. This

baseline represents the highest level of quality that one can
reach with this instantiation of SGMRD, but it also is the
most expensive configuration. In fact, we can only afford to
run it on the Pyro data set.

6.3.2 Outlier Detection. We compare the results from SGMRD-TS
with the following detectors:
• RS-Stream is an adaptation of the RS-Hash [42] outlier de-

tector to the streaming setting, presented in [43]. It estimates
the outlierness of each observation via randomised hashing
over random projections. We reproduce the approach and
use the default parameters recommended by the authors.
• LOF [10] is a well-known outlier detector. We run it peri-

odically and average the scores over a sliding window. We
use the implementation from ELKI [44], which profits from
efficient index structures.
• xStream [32] is an ensemble outlier detector. xStream es-

timates densities via randomised ensemble binning from a
set of random projections. xStream declares the points ly-
ing in low density areas as outliers. We use the reference
implementation with the recommended parameters.
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• StreamHiCS [9] is an adaptation of [27], repeating the initial
search, based on the signals from a change detector on a data
synopsis. We use the reference implementation with the
recommended parameters.

We average the scores obtained from each detector over a sliding
window of size 𝑤 = 1000 for every 𝑣 = 100 time steps (cf. Section
5.2). For approaches based on LOF, such as ours, we repeat the
computation with parameter 𝑘 ∈ {1, 2, 5, 10, 20, 50, 100} and report
the best result in terms of AUC. The performance may vary widely
w.r.t. this parameter; this is a well-known caveat of LOF [13]. We
average every result from 10 independent runs. Each approach runs
single-threaded on a server with 20 cores at 2.2GHz and 64GB RAM.
We implement our algorithms in Scala.

7 RESULTS

7.1 Subspace Monitoring

We first evaluate the quality of monitoring from SGMRD. We set
𝑤 = 1000, 𝑣 = 2 and 𝐿 = 1, i.e., for each update strategy, SGMRD
only keeps the latest 1000 observations, and, for any new two obser-
vations, SGMRD attempts to replace one of the current subspaces.

As we can see in Figure 8, both SGMRD-TS and SGMRD-RD can
keep the average quality𝑄𝑡 close to that of Gold, our strongest and
most expensive baseline. In the beginning, SGMRD-TS seems to
perform slightly worse than SGMRD-RD, but after some time (once
SGMRD-TS has learned its update strategy), it tends to dominate
SGMRD-RD. We can see that Batch occasionally leads to the same
quality as Gold, but the quality drops quickly between the update
steps. SGMRD-GD is not much better than Init (no monitoring).

Figure 9 confirms our observations: While the regret of SGMRD-
TS is slightly worse than the one of SGMRD-RD at the beginning,
it becomes better afterwards. The other approaches lead to much
higher regret. For larger step size 𝑣 , we see that SGMRD-TS is
superior to SGMRD-RD. For smaller 𝑣 , the environment does not
change much between observations, and it is more difficult for ban-
dit strategies to learn which subspaces to update more frequently.

In Figure 10, the update frequencies give an intuition of how
the three strategies differ. As expected, RD updates each subspace
uniformly. GD tends to focus only on a few subspaces; most sub-
spaces are never replaced, although they may become suboptimal
as well. TS in turn tends to focus more on some subspaces, the ones
requiring more frequent updates.

Figure 11 shows that the average quality 𝑄𝑇 tends to decrease
as we increase the update step 𝑣 . However, the rate of successful
updates 𝑈𝑇 (Equation 7) increases. As 𝑣 increases, it is more likely
for any subspace to become suboptimal. For Batch,𝑈𝑇 is high, but
the quality 𝑄𝑇 is low. We observe the opposite for Gold. SGMRD
is a trade-off between these two extremes, and the strategy based
on TS appears superior to others, both w.r.t. 𝑄𝑇 and 𝑈𝑇 . Figure 12
shows that our observations are not only valid for the Pyro data set,
but also for other benchmarks. SGMRD-TS consistently achieves a
higher rate of successful updates than other approaches.

Figure 13 highlights an important drawback of previous methods:
The computation for batch-wise techniques is concentrated in a
few discrete time steps. For stream mining, it is better to distribute
computation uniformly over time. Computation-intensive episodes
can lead to long response times of the system, and this contradicts

Table 2: Comparison design alternatives (Pyro, 𝑣 = 1).

Baseline 𝐿𝑇 𝑄𝑇 𝑈𝑇 𝑅𝑇 /𝑇
SGMRD-TS 1 95.43 0.61 3.74
SGMRD-RD 1 95.20 0.54 3.97
SGMRD-GD 1 93.72 0.43 5.45
Batch NA 95.16 0.81 4.01
Init NA 92.50 NA 6.67
Gold 100 99.16 0.16 NA

the efficiency sought (C1) and anytime behaviour (C4). Besides
this, the system becomes unable to adapt to the environment (C3).

Next, we set 𝑣 = 100 and let 𝐿 vary to observe the trade-off
between quality of the subspaces and the efficiency of the search
in SGMRD-TS (see Figure 14). As 𝐿 increases, the cost of updating
subspaces increases linearly. Similarly, the quality 𝑄𝑇 increases
while the rate of successful updates 𝑈𝑇 decreases. As we can see
in Table 2, SGMRD-TS has the highest quality after Gold, the best
success rate𝑈𝑇 after Batch and the smallest average regret among
the baselines.

In conclusion, the experiments show that SGMRD is a useful
tool to monitor high-quality subspaces over time, and it is highly
versatile. Based on the available hardware, users can set the number
of updates per round, as with SGMRD-TS, to obtain the highest
quality for this budget. In the next section, we show that SGMRD-TS
helps to detect outliers and compare the results with state-of-the-art
outlier detectors for data streams.

7.2 Outlier Detection

Table 3: Outlier Detection Performance.

Approach AUC AP P1% P2% P5% R1% R2% R5%

Ac
ti

vi
ty

SGMRD 97.32 85.39 94.59 94.83 94.24 9.44 18.97 47.10

LOF 93.93 61.80 74.32 64.72 64.03 7.42 12.94 32.00
StreamHiCS 88.52 47.38 70.72 54.61 51.89 7.06 10.92 25.93
RS-Stream 95.95 68.23 71.62 72.58 75.00 7.15 14.52 37.48
xStream 77.71 20.41 3.60 10.14 16.31 0.36 2.02 8.13

Kd
dC

up
99 SGMRD 69.98 10.29 0.00 0.20 0.56 0.00 0.06 0.39

LOF 65.07 9.57 0.00 0.00 0.08 0.00 0.00 0.06
StreamHiCS 57.11 7.89 0.00 0.00 0.08 0.00 0.00 0.06
RS-Stream 43.21 5.73 0.00 0.00 0.08 0.00 0.00 0.06
xStream 52.70 8.23 0.00 0.20 0.08 0.00 0.06 0.06

Ba
ck

bl
az

e SGMRD 90.91 13.31 7.14 18.65 15.40 7.14 37.30 76.98

LOF 56.92 1.65 2.38 3.57 2.38 2.38 7.14 11.90
StreamHiCS 79.22 40.07 50.79 26.59 10.95 50.79 53.17 54.76
RS-Stream 80.55 7.17 7.14 13.49 9.37 7.14 26.98 46.83
xStream 76.86 3.69 1.59 3.17 6.19 1.59 6.35 30.95

Cr
ed

it

SGMRD 95.06 15.87 10.69 7.47 3.22 55.51 77.57 83.65

LOF 91.50 4.67 6.22 5.20 2.69 32.32 53.99 69.96
StreamHiCS 89.21 3.48 3.59 2.93 2.28 18.63 30.42 59.32
RS-Stream 85.13 1.63 2.27 2.49 1.86 11.79 25.86 48.29
xStream 94.62 9.10 10.83 6.48 3.18 56.27 67.30 82.51

Sy
nt

h1
0 SGMRD 92.70 59.93 50.00 26.00 12.00 58.14 60.47 69.77

LOF 88.77 31.44 33.00 18.50 10.40 38.37 43.02 60.47
StreamHiCS 88.81 31.16 33.00 19.00 10.40 38.37 44.19 60.47
RS-Stream 71.23 1.87 0.00 0.00 2.80 0.00 0.00 16.28
xStream 68.51 2.58 5.00 3.00 4.00 5.81 6.98 23.26

Sy
nt

h2
0 SGMRD 85.05 41.19 36.00 19.50 9.20 40.91 44.32 52.27

LOF 72.55 5.57 8.00 6.00 4.40 9.09 13.64 25.00
StreamHiCS 71.71 5.37 8.00 6.00 4.00 9.09 13.64 22.73
RS-Stream 48.39 0.80 0.00 0.00 0.00 0.00 0.00 0.00
xStream 63.64 1.58 1.00 1.50 2.20 1.14 3.41 12.50

Sy
nt

h5
0 SGMRD 75.87 31.27 27.00 16.00 7.60 33.33 39.51 46.91

LOF 61.38 1.08 0.00 0.50 0.60 0.00 1.23 3.70
StreamHiCS 63.90 12.00 11.00 6.00 3.40 13.58 14.81 20.99
RS-Stream 46.52 0.73 0.00 0.00 0.00 0.00 0.00 0.00
xStream 48.43 0.90 1.00 0.50 1.40 1.23 1.23 8.64
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Figure 8: Average Quality at time 𝑡 (Pyro, 𝐿 = 1, 𝑣 = 2).
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Figure 15: Outlier Detection Time (hatched: search time).

We leverage the subspaces obtained from SGMRD-TS to detect
outliers, as in Section 5.2. We set 𝑤 = 1000, 𝑣 = 1 and 𝐿 = 1.
Table 3 shows the results. Compared to our competitors, SGMRD
clearly leads to the best results w.r.t. each benchmark. Interestingly,
StreamHiCS appears to have higher recall and precision in the top
1-2%. We can see that LOF turns out to be our most competitive
baseline and often outperforms our competitors.

In Figure 15, we can see that our competitors, in particular RS-
Stream and xStream, are much faster than SGMRD, but they often
are not much better than random guessing. Most of the computation
required by SGMRD and StreamHiCS is due to the search. Nonethe-
less, one may reduce the required computation with SGMRD, e.g.,
increase 𝑣 , without decreasing detection quality by much.

8 CONCLUSIONS

Finding interesting subspaces is fundamental to any step of the
knowledge discovery process. We have proposed a new method,
SGMRD, to bring subspace search to streams. It does so by com-
bining an efficient greedy heuristic with novel multivariate quality
estimators and an efficient bandit-based strategy, to update the
results of subspace search over time.

Our experiments not only show that SGMRD leads to efficient
monitoring of subspaces, but also to state-of-the-art results w.r.t.
downstream data mining tasks, such as outlier detection, and one
may expect similar benefits for other mining tasks on data streams.

An administrator can control monitoring via two parameters:
the number of plays per round 𝐿 and the step size 𝑣 . While the
impact of a parameter value can be studied empirically, finding the
most adequate parameters for a specific problem is not trivial. In
future work, it would be interesting to extend our update policy
in order to automatically tune those parameters, and to deal with
their potential non-stationarity in the streaming setting. A possible
direction is to leverage the recent bandit models from [18].
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