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COOL: A Framework for Conversational OLAP

Matteo Francia, Enrico Gallinucci, Matteo Golfarelli∗

DISI – University of Bologna, Via dell’Università 50, 47522 Cesena, Italy

Abstract

The democratization of data access and the adoption of OLAP in scenarios
requiring hand-free interfaces push towards the creation of smart OLAP inter-
faces. In this paper, we introduce COOL, a framework devised for COnversa-
tional OLap applications. COOL interprets and translates a natural language
dialogue into an OLAP session that starts with a GPSJ (Generalized Projec-
tion, Selection, and Join) query and continues with the application of OLAP
operators. The interpretation relies on a formal grammar and on a repository
storing metadata and values from a multidimensional cube. In case of ambigu-
ous or incomplete text description, COOL can obtain the correct query either
through automatic inference or user interactions to disambiguate the text. Our
tests show very promising results in terms of effectiveness, efficiency, and user
experience. Besides adding novel support to the interpretation and translation
of complete analytical OLAP sessions, COOL achieves an average accuracy of
94% in the interpretation of GPSJ queries from real datasets.

Keywords: Natural language processing, OLAP

1. Introduction

Nowadays, one of the most popular research trends in computer science is
the democratization of data access, analysis, and visualization, which means
opening them to end-users lacking the required vertical skills on the services
themselves [3, 22, 30]. Smart personal assistants [16] (Alexa, Siri, etc.) and
auto-machine-learning services [32] are examples of such research efforts that
are now on corporate agendas [6].

In particular, interfacing natural language processing (either written or spo-
ken) to database systems opens to new opportunities for data exploration and
querying [20]. Actually, in the area of data warehouse, OLAP (On-Line Ana-
lytical Processing) itself is an “ante litteram” smart interface, since it supports
the users with a “point-and-click” metaphor to avoid writing well-formed SQL
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queries. Nonetheless, the possibility of having a conversation with a smart as-
sistant to run an OLAP session (i.e., a sequence of related OLAP queries) opens
to new scenarios and applications. It is not just a matter of further reducing
the complexity of posing a query: a conversational OLAP system must also
provide feedback to refine and correct wrong queries, and it must have memory
to relate subsequent requests. A reference application scenario for this kind of
framework is augmented business intelligence [12], where hand-free interfaces
are mandatory.

In this paper, we propose COOL, a COnversational OLap framework able
to convert a natural language text into a GPSJ query and to support query
disambiguation and OLAP navigation. GPSJ [17] is the main class of queries
used in OLAP since it enables Generalized Projection, Selection, and Join op-
erations over a set of tables. Although some natural language interfaces to
databases have already been proposed, to the best of our knowledge this is the
first proposal addressing full-fledged OLAP analytical sessions through a natural
language interface.

In our vision, the desiderata for an OLAP smart interface are the following.

#1 It must be automated and portable: it must exploit cubes metadata (e.g.,
hierarchy structures, role of measures, attributes, and aggregation opera-
tors) to increase its understanding capabilities and to simplify the user-
machine interaction process.

#2 It must handle OLAP sessions rather than single queries: in an OLAP
session the first query is fully described by the text, while the following
ones are implicitly/partially described by an OLAP operator (e.g., drill
down, roll up, slice and dice) and require to handle the context and to
have memory of the previous queries.

#3 It must be robust with respect to user inaccuracies in using syntax, OLAP
terms, and attribute values; also, it must be able to exploit implicit infor-
mation.

#4 It must be easy to configure on a data warehouse (DW) without a heavy
manual definition of the lexicon.

More technically, our text-to-SQL approach is based on a grammar driving
the parsing of natural language descriptions of GPSJ queries. The recognized
entities include a set of typical query terms (e.g., group by, select) and the
domain-specific terms and values automatically extracted from the DW (see
desiderata #1 and #4). Robustness (desiderata #3) is one of the main goals
for COOL and is pursued in all the interpretation steps: lexicon identification
is based on a string similarity function, multi-word terms are handled through
n-grams, and alternative query interpretations are scored and ranked. To sum
up, the main contributions of this paper are:

1. a list of features and desiderata for an effective conversational OLAP sys-
tem;
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2. an original approach to translate a natural language analytical session
into an OLAP session that starts with a well-formed GPSJ query (Full
query step in Figure 1) and that refines the GPSJ query with known
OLAP operators (OLAP operator step in Figure 1); in particular:

• we discuss the architectural view of the approach;

• we define a formal grammar for both full GPSJ queries and OLAP
operators;

• we analyze the specificities of natural language interfaces in the
OLAP context;

• we formalize the retrieval and resolution methods of OLAP-specific
ambiguities in natural language queries.

3. a set of tests to verify the efficiency and effectiveness of our approach. In
particular, we carried out tests with real users to assess how well (i.e.,
quick, simple, and accurate) COOL supports interactions.

Ultimately, COOL contributes to the democratization of data by extending
the number of scenarios to carry out OLAP analysis (e.g., in augmented BI [12],
natural language is the only means to express queries) and by reducing the skill
level required to analyze the data. In particular, users are able to effectively
carry out OLAP queries: (i) without any knowledge of querying languages like
SQL or MDX, (ii) without any knowledge of complex analytical tools, and (iii)
with minimum education about OLAP and the multidimensional model.

The remainder of the paper is organized as follows. Section 2 provides an
overview of COOL by sketching the functional architecture and the interpreta-
tion steps. Section 3 presents the contents of the MR, while the following sections
introduce the core steps within the Intepretation step, i.e., Tokenization

& Mapping (Section 4), Parsing (Section 5), and Checking & Annotation

(Section 6). The remaining steps Disambiguation & Enhancement and SQL

generation are respectively discussed in Section 7 and Section 8. In Section 9,
a large set of tests assesses the effectiveness, efficiency, and user experience
of COOL. Section 10 discusses related works on natural language interface to
database systems. Finally, Section 11 draws the conclusions and discusses the
evolution of COOL.

2. Overview of COOL

Figure 1 sketches a functional view of the architecture. Given a DW, that is
a set of multidimensional cubes together with their metadata, we distinguish
between an offline phase (to initialize and configure the system) and an online
phase (to enable the user interaction).

2.1. The Offline Phase

The offline phase extracts the DW-specific terms used by users to express
the queries. Such information is stored in the metadata repository of COOL
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Figure 1: A functional architecture of COOL. Grayed-out elements are out of the paper scope.

(MR), which relies on the Dimensional Fact Model (DFM) expressiveness [15].
Noticeably, this phase runs only when the DW undergoes modification either
in the cube schemas or in their instances. More in detail, the Automatic MR

feeding process extracts the categorical attribute values and metadata from the
cubes (e.g., attribute and measure names, table names, hierarchy structures)
and possibly extends them with synonyms, automatically extracted from open
data ontologies (Wordnet [26] in our implementation) to widen the language
understood by COOL1. Besides the domain-specific terminology, the MR also
includes the set of standard OLAP terms that are domain-independent and that
do not require any feeding (e.g., group by, where, select). Further enrichment can
be optionally carried out manually (i.e., by the Manual MR enrichment step)
when the application domain involves a non-standard vocabulary (i.e., when
the physical names of tables and columns do not match the words of a standard
vocabulary). A closer look to the contents of the MR is given in Section 3.

2.2. The Online Phase

The online phase runs every time a natural language query is issued to
COOL. The spoken query is initially translated to text by the Speech-to-text

software module. This task is out of scope in our research and we exploited
the public Web Speech API in our implementation (https://wicg.github.
io/speech-api/).

The uninterpreted text is then analyzed by the Interpretation step that
actually consists of two alternative steps: Full query is in charge of interpreting
the texts describing full queries (which typically happens when an OLAP session
starts), while OLAP operator modifies the latest query when the user states an

1The automatic procedure extracts every synonym in batch from Wordnet; thereafter, the
imported synonyms can be updated or deleted through the manual procedure.
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Figure 2: Interpretation of natural language; the MR is involved in all steps. The
Interpretation steps are replicated for both Full query and OLAP operator.

OLAP operator during an OLAP session. The switch between the two steps to
manage the conversation (i.e., a user/COOL dialog) is modeled by two states:
engage and navigate.

• Engage: this is the initial state, in which the system expects a full query
to be issued and whose interpretation is demanded to Full query. When
COOL achieves a successful interpretation (i.e., it is able to run the query)
it switches to the navigate state.

• Navigate: the dialogue evolves by iteratively applying OLAP operators
that refine the query (i.e., which define an OLAP session). The manage-
ment of these steps is demanded to OLAP operator until a reset command
is applied, making COOL return to the engage state.

On one hand, understanding a single OLAP operator is simpler since it
involves less elements than a complete GPSJ query. On the other hand, it
requires to have memory of previous queries (stored in the Log) and to under-
stand which part of the previous query must be modified. Both Full query

and OLAP operator follow the computational steps represented in Figure 2: (i)
Tokenization & Mapping (see Section 4), (ii) Parsing (see Section 5), and (iii)
Checking & Annotation (see Section 6), but provide different implementations
of (ii) and (iii).

Due to natural language ambiguities, speech-to-text inaccuracies and wrong
query formulations (e.g., applying count operator on a measure or group-
ing by a descriptive attribute), part of the text can be misunderstood. The
Disambiguation & Enhancement step solves ambiguities (if any) by asking ap-
propriate questions to the user. The reasons behind the misunderstandings are
manifold, including (but not limited to): ambiguities in the aggregation operator
to be used; inconsistency between attribute and value in a selection predicate;
identification of relevant elements in the text without understanding their role
in the query.

The output of the previous steps is a data structure (i.e., a parse tree) that
models the query and that can be automatically translated into an SQL query
by exploiting the DW structure stored in the MR. Finally, the obtained query
is run on the DW and the results are reported to the user by the Execution
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& Visualization software module. Such a module could exploit a standard
OLAP visualization tool or it could implement voice-based approaches [34] to
create an end-to-end conversational solution. The visual interaction could rely
on the DFM, which natively provides a graphical representation for multidimen-
sional cubes and queries: such representation is conceptual and user-oriented,
and its effectiveness is confirmed by its adoption in commercial tools [18] for
both modeling and descriptive purposes. Although we have built a prototype
to enable the evaluation of COOL (see Section 9), the discussion of this module
is out of the scope of the paper.

3. The Metadata Repository

The Metadata Repository (MR in Figure 1) relies on the basic expressiveness
of the DFM [15], which includes the following concepts.

• A fact (or cube) is a concept relevant to decision-making that typically
models a set of events. Each event (or cube cell) is defined through a set
of coordinates called dimensions that define the fact granularity.

• A hierarchy is a directed acyclic graph whose nodes are dimensional at-
tributes and whose arcs model many-to-one relationships. A hierarchy is
rooted in a dimension.

• A dimensional attribute (or simply attribute) describes a hierarchy. We
can say that an attribute a is finer/coarser than an attribute b if there
exists a path in the hierarchy from a to b (i.e., a rolls up to b) / b to a (i.e.,
b drills down to a). An attribute that stores relevant information but on
which it makes no sense to aggregate on is called descriptive attribute.

• A measure is a numerical property of a fact and quantitatively describes an
aspect of the fact. Each measure is associated with one or more aggregation
operators that specify how to aggregate several cells.

The content of MR can be divided into entities and structural information.
Entities compose the translated lexicon (i.e., the Interpretation step directly
looks for their occurrence in the user’s text), while structural information sup-
ports the interpretation (e.g., patterns necessary to recognize dates and num-
bers) and enables consistency checks on the interpreted query and the SQL
generation (e.g., DW schema). More in detail, an entity E = 〈t1, ..., tr〉 is a
sequence of textual words (i.e., a single distinct meaningful element of speech
or writing). We refer to the set of all entities in the MR as E = {E1, ..., Em}.
Additionally, several synonyms can be stored for each entity (Table 1), enabling
COOL to cope with slang and different shades of the text.

Orthogonally, entities and structural information are either domain-agnostic
or domain-dependent. The domain-agnostic content includes those keywords and
patterns that are typically used to express a query.
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Figure 3: Simplified DFM representation of the Foodmart Sales cube.

• Intention keywords: entities expressing the role of the subsequent part
of text. Examples of intention keywords are group by, select and where.

• Operators: entities including logic (not, and, or), comparison (=, <>,>
,<,≥,≤) and aggregation operators (e.g., sum, avg, min, max).

• Patterns of dates and numbers: structures used to automatically
recognize dates and numbers in raw text.

The MR domain-dependent content is automatically collected by querying
the DW and its data dictionary and is stored in a QB4OLAP [9] compatible
repository.

• DW element names: entities corresponding to measures, dimensional
attributes and fact names.

• DW element values: entities corresponding to values from categorical
attributes (together with their frequency), and to statistical values (e.g.,
minimum and maximum) for numerical attributes.

• Hierarchy structure: information about the roll up relationships be-
tween attributes.

• Aggregation operators: information about the operators applicable to
each measure and the default one.

• DB tables: information about the structure of the database implement-
ing the DW, including table and attribute names, primary and foreign key
relationships.

Example 1 (Cube, Entities, and Synonyms). In the Sales fact schema in
Figure 3, Product and Store are dimensions, Month is a dimensional attribute
and Name is a descriptive attribute. StoreSales and UnitSales are measures. It
is possible to aggregate StoreSales using sum and avg aggregation operators. An
example of GPSJ query would ask to “return the total quantity sold by month
and type only for Italian stores”. Drilling down from Type to Product means
grouping on a finer attribute. Conversely rolling up from Month to Year means
grouping on a coarser attribute. Finally, we can further slice and dice by adding

7



Table 1: Sample of domain-agnostic and domain-specific entities with their synonyms.
Domain-specific entities refer to the Sales cube from Figure 3.

Domain Type Entity Synonym samples

Agnostic

Intention keyword
where in, on, such that, filter
group by by, for each, per

Operator
=; ≥ equal to; greater than
sum total, amount
avg average, medium

Specific
DW element name

Sales transactions
UnitSales quantities
Gender sex

DW element value Drink beverage

a filter on a specific Category of products. With reference to the Sales cube,
Month and UnitSales are domain-specific entities, while avg is a domain-agnostic
entity. Examples of synonyms for avg are “average” and “medium”. �

4. Tokenization & Mapping

A raw text T can be modeled as a sequence of tokens (i.e., single words)
T = 〈t1, ..., tz〉. The goal of this step is to identify in T the entities, i.e., the
only elements that will be involved in the Parsing step. Turning a text into a
sequence of entities means finding a mapping between tokens in T and E .

Definition 1 (Mapping function & Mapped sequence). A mapping
function M(T ) is a partial function that associates sub-sequences (or n-
grams)2 from T to entities in E such that:

• sub-sequences of T have length n at most;

• the mapping function determines a partitioning of T ;

• a sub-sequence T ′ = 〈ti, ..., tl〉 ∈ T (with |T ′| ≤ n) is associated with an
entity E if and only if Sim(T ′, E) > α (where Sim() is a similarity func-
tion, later defined) and E ∈ TopN(E , T ′) (where TopN(E , T ′) is the set of
N entities in E that are the most similar to T ′ according to Sim(T ′, E)).

The output of a mapping function is a sequence M = 〈E1, ..., El〉 on E that we
call a target sequence. A target sequence is said to be valid if the fraction of
mapped tokens in T is higher than a given threshold β. We call M the set of
valid target sequences.

2The term n-gram is used as a synonym of sub-sequence in the area of text mining.
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Several target sequences might be obtained from T since Definition 1 admits
sub-sequences of variable lengths (corresponding to different partitionings of
T ) and associates the top similar entities to each sub-sequence. This increases
interpretation robustness (since it allows to choose, in the next steps, the best
text interpretation out of a higher number of candidates), but it can lead to an
increase in computation time. The generated target sequences differ both in
the number of entities involved and in the specific entities mapped to a token.
In the simple case where multi-token mappings are not possible (i.e., n = 1 in
Definition 1) the number of generated target sequences for a raw text T , such
that |T | = z, is:

z∑
i=dz·βe

(
z

i

)
·N i (1)

The formula counts the possible configurations of sufficient length (i.e., higher
or equal to dz ·βe) and, for each length, counts the target sequences determined
by the top similar entities. Since the number of candidate target sequences is
exponential, we consider only the most significant ones through α, β, and N :
α imposes sub-sequence of tokens to be very similar to an entity; N further
imposes to consider only the N entities with the highest similarity; finally, β
imposes a sufficient portion of the text to be mapped.

The similarity function Sim() is based on the Levenshtein distance (i.e., one
of the most used and representative character-based distance functions [37])
and keeps token permutation into account to increase its robustness (e.g., sub-
sequences 〈P.,Edgar〉 and 〈Edgar,Allan, Poe〉 must result similar). Given two
token sequences T and W with |T | = l, |W | = m such that l ≤ m it is:

Sim(〈t1, ..., tl〉, 〈w1, ..., wm〉) =

max
D∈Disp(l,m)

∑l
i=1 sim(ti, wD(i)) ·max(|ti|, |wD(i)|)∑l
i=1 max(|ti|, |wD(i)|) +

∑
i∈D̂ |wi|

where wD(i) is a token from W at the index D(i), D ∈ Disp(l,m) is an l-

disposition of {1, ...,m}, D̂ is the subset of values in {1, ...,m} that are not
present in D, and sim(ti, wD(i)) is the similarity between the pair of tokens,
calculated as 1−NLD(ti, wD(i)), with NLD() being the normalized Levenshtein
distance [21]. Function Sim() weights token similarity based on their lengths
(i.e., max(|ti|, |wD(i)|) and penalizes similarities between sequences of different
lengths that imply unmatched tokens (i.e.,

∑
i∈D̂ |wi|).

Example 2 (Token similarity). Figure 4 shows some of the possible to-
ken dispositions for the two token sequences T = 〈P.,Edgar〉 and W =
〈Edgar,Allan, Poe〉. The disposition determining the highest similarity is sur-
rounded by a dashed rectangle; the similarity is 0.46 and it is calculated as

Sim(T,W ) =
sim(P., Poe)|Poe|+ sim(Edgar,Edgar)|Edgar|

|Poe|+ |Edgar|+ |Allan|

�
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Figure 4: Token dispositions: arcs denote the correspondence of tokens for a specific disposi-
tion (the bolder the line, the higher the similarity). The disposition determining the maximum
similarity is shown in a dashed rectangle.

We assume the best interpretation of the input text to be the one where
(1) all the entities discovered in the text are included in the query (i.e., all the
entities are parsed through the grammar), and (2) each entity discovered in the
text is perfectly mapped to one sub-sequence of tokens T (i.e., Sim(T,Ei) = 1).
The two previous statements are modeled through the following score function.
Given a target sequence M = 〈E1, ..., Em〉, we define its score as

Score(M) =

m∑
i=1

SimM (Ei) (2)

where SimM (Ei) is an abbreviation to indicate the similarity between Ei and
the corresponding sub-sequence of tokens T on M .

The score is higher when M includes several entities with high values of
SimM . Although at this stage it is not possible to predict if a target sequence
will be fully parsed, it is apparent that the higher is its score, the higher is the
probability to determine an optimal interpretation. As it will be explained in
Section 6, sorting the target sequences by descending score also enables pruning
strategies to be applied.

Example 3 (Tokenization & Mapping). With reference to Ta-
ble 1, given the set of entities E and a tokenized text T =
〈medium, sales, in, 2019, by, the, region〉, examples of target sequences M1

and M2 are:

M1 =〈avg,UnitSales,where, 2019, group by, region〉
M2 =〈avg,UnitSales,where, 2019, group by, Regin〉

where “medium” is mapped to avg since “medium” is a known synonym of the
aggregation operator avg, “in” is mapped to where since “in” can express time-
related predicates, “the” is discarded being a stop word, and “region” is mapped
to the attribute Region in M1 and to the value “Regin” in M2 (where “Regin”
is a value of attribute Customer that holds a sufficient similarity). �

5. Parsing

Parsing is the process of analyzing a sequence of entities (i.e., a target se-
quence) to determine its syntactical structure with respect to a formal gram-
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mar. Parsing outputs a data structure called parse tree that is used by COOL
to translate a target sequence into SQL.

5.1. Full Query Parsing

In Full query, Parsing is responsible for the interpretation of a complete
GPSJ query stated in natural language. Parsing a full query means searching
in a target sequence the complex syntax structures (i.e., clauses) that build-up
the query. Given a target sequence M , the output of a parser is a parse tree
PTM , i.e. an ordered tree that represents the syntactic structure of the target
sequence according to the grammar described in Figure 5. To the aim of parsing,
entities are terminal elements in the grammar.

As a GPSJ query consists of 3 clauses (measure, group by, and selection), in
our grammar we identify four types of derivations3:

• Measure clause 〈MC〉: this derivation consists of a list of mea-
sure/aggregation operator pairs.

• Group by clause 〈GC〉: this derivation consists of a sequence of attribute
names preceded by the entity “group by”.

• Selection clause 〈SC〉: this derivation consists of a Boolean expression
of simple selection predicates 〈SSC〉 preceded by the entity “where”.

• GPSJ query 〈GPSJ〉: this derivation assembles the final query. Only
the measure clause is mandatory since a GPSJ could aggregate a single
measure with no selections. The order of the clauses is irrelevant; this
implies the proliferation of derivations due to permutations.

As shown in Figure 5, some derivations admit also partial forms (e.g., a
measure clause 〈MC〉 missing its aggregation operator 〈Agg〉); in these cases, the
Disambiguation & Enhancement step will try to infer the omitted derivations
(see Section 6).

The GPSJ grammar is LL(1)4 [4], is not ambiguous (i.e., each target sequence
admits, at most, a single parse tree PTM ) and can be parsed by a LL(1) parser
with linear complexity [4]. If the input target sequence M is fully parsed, PTM
includes all the entities as leaves. Conversely, if only a portion of the input
belongs to the grammar, an LL(1) parser produces a partial parsing, meaning
that it returns a parse tree including the portion of the input target sequence
that belongs to the grammar (i.e., the PT rooted in 〈GPSJ〉). The remaining
entities can be either singletons or complex clauses that were not possible to

3A derivation in the form 〈X〉 ::= e represent a substitution for the non-terminal symbol
〈X〉 with the given expression e. Symbols that never appear on the left side of ::= are named
terminals. Non-terminal symbols are enclosed between 〈〉, while terminal symbols are enclosed
between “ ”.

4The rules presented in Figure 5 do not satisfy LL(1) constraints for readability reasons.
It is easy to turn such rules into an LL(1) compliant version, but the resulting rules are much
harder to be read and understood.
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〈GPSJ〉 ::= 〈MC〉〈GC〉〈SC〉 | 〈MC〉〈SC〉〈GC〉 | 〈SC〉〈GC〉〈MC〉 | 〈SC〉〈MC〉〈GC〉
| 〈GC〉〈SC〉〈MC〉 | 〈GC〉〈MC〉〈SC〉 | 〈MC〉〈SC〉 | 〈MC〉〈GC〉
| 〈SC〉〈MC〉 | 〈GC〉〈MC〉 | 〈MC〉

〈MC〉 ::= (〈Agg〉〈Mea〉 | 〈Mea〉〈Agg〉 | 〈Mea〉 | 〈Cnt〉〈Fct〉 | 〈Fct〉〈Cnt〉
| 〈Cnt〉〈Attr〉 | 〈Attr〉〈Cnt〉)+

〈GC〉 ::= “group by” 〈Attr〉+
〈SC〉 ::= “where” 〈SCA〉
〈SCA〉 ::= 〈SCN〉 “and” 〈SCA〉 | 〈SCN〉
〈SCN〉 ::= “not” 〈SSC〉 | 〈SSC〉
〈SSC〉 ::= 〈Attr〉〈Cop〉〈Val〉 | 〈Val〉〈Cop〉〈Attr〉 | 〈Attr〉 “in” 〈Val〉+

| 〈Val〉+ “in” 〈Attr〉 | 〈Attr〉〈Val〉+ | 〈Val〉+ 〈Attr〉 | 〈Val〉
〈Cop〉 ::= “ = ” | “ <> ” | “ > ” | “ < ” | “ ≥ ” | “ ≤ ”

〈Agg〉 ::= “sum” | “avg” | “min” | “max” | “stdev”

〈Cnt〉 ::= “count” | “count distinct”

〈Fct〉 ::= Domain-specific facts

〈Mea〉 ::= Domain-specific measures

〈Attr〉 ::= Domain-specific attributes

〈Val〉 ::= Domain-specific values

Figure 5: Backus-Naur representation of the Full query grammar. Entities from the MR are
terminal symbols. “+” identifies a list of at least 1 symbol.

connect to the main parse tree. We will call parse forest PFM the union of
the parse tree with residual clauses. Obviously, if all the entities are parsed,
it is PFM = PTM . Considering the whole forest rather than the simple parse
tree enables disambiguation and errors to be recovered in the Disambiguation

& Enhancement step (see Section 7). To keep the terminology simple, we will
refer to the parser’s output as a parse forest independently of the presence of
residual clauses.

Example 4 (Parsing). Figure 6 reports the parsing outcome for the two target
sequences in Example 3. M1 is fully parsed, thus its parse forest corresponds
to the parse tree (i.e., PTM1

= PFM1
). Conversely, in M2 the last token is

wrongly mapped to the attribute value Regin rather than to the attribute name
Region. This prevents the full parsing and the parse tree PTM2 does not include
all the entities in M2 (i.e., PTM2

6= PFM2
). �

5.2. OLAP Operator Parsing

In OLAP operator, Parsing is responsible for searching in a target sequence
the syntactic structures of the OLAP operators that build-up the conversation.
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�Mea��Agg� “where” “group by” �Attr�

�MC� �SC� �GC�

�GPSJ�

�SCA�

�SCN�

�SSC�

�Val�

Region�M1 = �avg, UnitSales, where, 2019, group by,

(a) The entire target sequence is parsed (i.e., PFM =
PTM ).

�Mea��Agg� “where” “group by”

�MC� �SC�

�GPSJ�

�SCA�

�SCN�

�SSC�

�Val�

�SCA�

�SCN�

�SSC�

�Val�

�SC�

Regin�M2 =� avg, UnitSales, where, 2019, group by,

(b) “group by” 〈Val〉 cannot be parsed.

Figure 6: Parse forests from Example 3.

〈OPERATOR〉 ::= 〈DRILL〉 | 〈ROLLUP〉 | 〈SAD〉 | 〈ADD〉 | 〈DROP〉
| 〈REPLACE〉

〈DRILL〉 ::= “drill” 〈Attr〉from “to” 〈Attr〉to | “drill” 〈Attr〉
〈ROLLUP〉 ::= “rollup” 〈Attr〉from “to” 〈Attr〉to | “rollup” 〈Attr〉
〈SAD〉 ::= “slice” 〈SSC〉
〈ADD〉 ::= “add” (〈MC〉 | 〈Attr〉 | 〈SSC〉)
〈DROP〉 ::= “drop” (〈MC〉 | 〈Attr〉 | 〈SSC〉)

〈REPLACE〉 ::= “replace” (〈MC〉old “with” 〈MC〉new
| 〈Attr〉old“with” 〈Attr〉new | 〈SSC〉old “with” 〈SSC〉new)

Figure 7: Backus-Naur representation of the OLAP operator grammar. Entities from the MR

are terminal symbols. We omit the derivations 〈MC〉, 〈Attr〉, 〈SSC〉 that are in common with
Figure 5. Decoration of non-terminals with subscript is used for the sake of description.

Our conversation steps are inspired by well-known OLAP visual interfaces (e.g.,
Tableau5). To apply an OLAP operator, COOL must be in state navigate (i.e.,
a full GPSJ query has been already successfully interpreted). By definition, the
previously interpreted query corresponds to a parse tree PTC that acts as a con-
text for the operator; in particular, PTC is used by the Checking & Annotation

step to verify the consistency of the OLAP operator and by the Disambiguation
& Enhancement step to implicitly solve ambiguities. For the sake of explana-
tion, we assume that PTC takes the form 〈GPSJ〉 ::= 〈MC〉〈GC〉〈SC〉 (even if
〈GC〉 and/or 〈SC〉 can be missing), and with a slight abuse of notation we adopt
the set notation to denote that a clause is contained in another clause (e.g.,
〈Attr〉 ∈ 〈GC〉 and 〈GC〉 ∈ 〈GPSJ〉).

The whole grammar is described in Figure 7 (we do not report grammar
derivations 〈Attr〉, 〈MC〉 and 〈SSC〉 in common with Figure 5) and introduces
the following derivations.

• Drill down 〈DRILL〉: this derivation substitutes the coarser attribute

5https://www.tableau.com/
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〈Attr〉from ∈ 〈GC〉 with a finer attribute 〈Attr〉to.

• Roll up 〈ROLLUP〉: this derivation substitutes the finer attribute
〈Attr〉from ∈ 〈GC〉 with a coarser attribute 〈Attr〉to.

• Slice and dice 〈SAD〉: this derivation specifies a new selection predicate
〈SSC〉 ∈ 〈SC〉.

• Add 〈ADD〉: this derivation adds a measure/attribute/selection clause to
the corresponding clause 〈MC〉/〈GC〉/〈SC〉 ∈ 〈GPSJ〉.

• Drop 〈DROP〉: this derivation drops a measure/attribute/selection clause
from the corresponding clause 〈MC〉/〈GC〉/〈SC〉 ∈ 〈GPSJ〉.

• Replace 〈REPLACE〉: this derivation combines Add and Drop to sub-
stitute an existing old clause, either measure, attribute or selection, for a
new one.

Similarly to the GPSJ grammar (Figure 5), the OLAP operator grammar admits
partial forms for Drill down and Roll up (e.g., only a single attribute 〈Attr〉
is provided in a 〈DRILL〉 clause) that the Checking & Annotation step will
try to complete (see Section 7). Also note that the Add and Drop operators
respectively behave as Drill down and Roll up when applied to attributes;
otherwise, they behave as Slice and dice when applied to selection clauses.
Finally, when Slice and dice or Add refer to an already existing selection
clause, we append the new member to such clause (if needed, we replace the
comparison operator “ = ” with “in”).

Example 5 (Conversational OLAP Session). Given the parse tree from
Figure 6a, an example of conversation is the following (Figure 8). At first the
user issues the natural language sentence “Drill down region to city”, COOL
parses such sentence (Figure 8a), recognizes a drill down operation and mod-
ifies the previous parse tree (Figure 8b). Then, the user asks to “replace the
unit sales with the sum of store sales”. Despite the aggregation operation is
not specified, COOL recognizes the measure clause (Figure 8c) to be substituted
and replaces it with the new one (Figure 8d). Finally, the user asks to “slice
on milk” (Figure 8e): COOL automatically infers the attribute containing the
value “milk” and combines the new condition with the previous existing clause
(Figure 8f). �

6. Parse Forest Checking and Annotation

The Parsing step does not always output a parse forest that can be directly
translated into executable SQL code. Indeed, syntactic adherence to the gram-
mar does not guarantee the conformance of the full query (or OLAP operator)
with multidimensional structure and constraints. As it happens for compilers,
parsing, and type checking (i.e., verifying and enforcing the constraints of data
types) are kept separated to reduce the overall complexity.
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M1 = �drill, Region, to, City�

�Attr�

�DRILL�

�Attr�“drill” “to”

(a) Parse “Drill down region
to city”.

City�

�Mea��Agg� “where” “group by” �Attr�

�MC� �SC� �GC�

�GPSJ�

�SCA�

�SCN�

�SSC�

�Attr� �Val��Cop�

M = �avg, UnitSales, where, Year, =, 2019, group by,

(b) Drill down Region to City w.r.t. Figure 6a.

M2 = �replace, UnitSales, with, sum, StoreSales�

�Mea�

�REPLACE�

�Agg�

�MC�

�Mea�

�MC�

“replace” “with”

(c) Parse “Replace unit sales with
the sum of store sales”.

�Mea��Agg� “where” “group by”�Attr�

�MC� �SC� �GC�

�GPSJ�

�SCA�

�SCN�

�SSC�

�Attr� �Val��Cop�

City�M = �sum, StoreSales,where, Year, =, 2019, group by,

(d) Replace Avg UnitSales with Sum StoreSales.

M3 = �slice,Milk �

�SLICE�

�SSC�

�Val�“slice”

(e) Parse “Slice on milk”.

�Mea��Agg� “where” “group by”�Attr�

�MC� �SC� �GC�

�GPSJ�

�SCA�

�SCN�

�SSC�

�Attr� �Val��Cop�

�SCN�

�SSC�

�Val��Cop��Attr�

City�M = �sum, StoreSales,where, Year, =, 2019, group by,Product, =, Milk,

(f) Add a new slice on Product = Milk.

Figure 8: A conversational session modifies the parse tree from Figure 6a.

In this step, COOL seeks for these problems, and annotates the parse forest
accordingly. Two types of annotations are possible.

• Ambiguity : an inconsistency solvable through disambiguation. Ambigu-
ities are solvable either automatically by COOL or by interacting with the
user (e.g., “sum unit sales for Salem”, but Salem is member of both City
and StoreCity);

• Error : an inconsistency that does not admit solution and that can be only
notified to the user (e.g., “remove unit sales”, but the measure UnitSales
is not included in 〈GPSJ〉).

Checking & Annotation is responsible for searching problematic clauses
(i.e., subtrees) in the parse forest and annotating them. Depending on the
type of the clause, Checking & Annotation evaluates the conformance of the
clause to the multidimensional structure and constraints and marks the subtrees
failing such constraints.

We now describe the allowed annotations for the parse forests produced by
Full query and OLAP operator.
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Table 2: Full query annotations.

Type Name Gen. derivation example Example
Ambiguity AA 〈SSC〉 ::= 〈Val〉 “sum unit sales for Salem”, but Salem is mem-

ber of City and StoreCity
Ambiguity AAO 〈MC〉 ::= 〈Mea〉 “unit sales by product”, but sum and avg are valid

aggregations
Ambiguity AVM 〈SSC〉 ::= 〈Attr〉〈Cop〉〈Val〉 “sum unit sales for product New York”, but

New Y ork is not a Product
Ambiguity MV 〈MC〉 ::= 〈Agg〉〈Mea〉 “sum prices per store”, but Price is not additive
Ambiguity AV 〈GC〉 ::= “group by” 〈Attr〉+ “average prices by name”, but Product is not in

〈GC〉
Ambiguity UC – “average unit sales by Regin”, but Regin is not

an attribute

6.1. Full Query Annotation

In Full query, Checking & Annotation searches PT for problematic
clauses (i.e., subtrees) in a depth-first fashion [33]. Table 2 reports the an-
notations resulting from failing checks.

• Ambiguous attribute (AA): the 〈SSC〉 clause has an implicit attribute
but the parsed value belongs to multiple attribute domains.

• Ambiguous aggregation operator (AAO): the 〈MC〉 clause has an
implicit aggregation operator but the measure is associated with multiple
aggregation operators.

• Attribute-value mismatch (AVM): the 〈SSC〉 clause includes a value
that does not belong to the domain of the specified attribut.

• Violation of a multidimensional constraint on a measure (MV):
the 〈MC〉 clause contains an aggregation operator that is not allowed for
the specified measure.

• Violation of a multidimensional constraint on an attribute (AV):
the 〈GC〉 clause contains a descriptive attribute without the corresponding
dimensional attribute6.

• Unparsed clause (UC): A clause has been properly parsed, but the
parser was not able to connect it to the 〈GPSJ〉 derivation. Thus, a parse
forest including a 〈GPSJ〉 derivation and one or more dangling clauses has
been returned.

6.2. OLAP Operator Annotation

Although the OLAP operator grammar returns simpler parse trees than Full

query, annotating an OLAP operator is more complex since the parse tree must
be internally coherent and also compliant to the previous query context, i.e. the

6According to DFM a descriptive attribute is an attribute that further describes a dimen-
sional level (i.e., it is related one-to-one with the level), but that can be used for aggregation
only in combination with the corresponding level.
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latest full query to which the OLAP operator should be applied. Let PTC be
the parse tree for the previous query context, and let PT be the parse tree of
the OLAP operator. In OLAP operator, Checking & Annotation extends the
checks in Section 6.1 by searching also for possible inconsistencies between each
clause in PTC and PT . Checking is achieved in a depth-first fashion [33] and
exploits the PTC structure to reduce the search space (e.g., it is meaningful to
search for a 〈SSC〉 only within the 〈SC〉 ∈ 〈GPSJ〉). As a consequence, checking
an OLAP operator requires additional constraints and annotations with respect
to the ones defined in Section 6.1 (Table 3):

• Not Existing Clause (NEC): PT references a clause that should be
present in PTC , but that is missing. For example, 〈Attr〉from in the
〈DRILL〉 and 〈ROLLUP〉 derivations must exist in 〈GC〉 of PTC ;

• Already Existing Clause (AEC): PT cannot be applied as it references
an element that is already present in PTC , while it should not be there.
For example, 〈Attr〉to in the 〈DRILL〉 and 〈ROLLUP〉 derivations cannot
exist in 〈GC〉 of PTC ;

• Invalid drill (ID): it is impossible to drill down on 〈Attr〉from in a
〈DRILL〉 derivation, since 〈Attr〉from is already the finest attribute in the
hierarchy.

• Forbidden Attribute (FA): it is impossible to drill down/roll up on a
descriptive attribute.

• Hierarchy mismatch (HM): 〈Attr〉from and 〈Attr〉to in the 〈DRILL〉 (or
〈ROLLUP〉) derivation belong to two different hierarchies.

• Hierarchy structure mismatch (HSM): 〈Attr〉from in the 〈DRILL〉 (or
〈ROLLUP〉) derivation is finer (or coarser) than 〈Attr〉to.

• Branching ambiguity (TO): it is impossible to infer 〈Attr〉to in a
〈DRILL〉 (or 〈ROLLUP〉) derivation due to the presence of a branch in
the hierarchy.

• Rolling ambiguity (FR): it is impossible to infer 〈Attr〉from in a 〈DRILL〉
(or 〈ROLLUP〉) derivation due to the presence of multiple finer (or coarser)
attributes in 〈GC〉.

6.3. Parse Forest Scoring

A textual query generates several parse forests, one for each target sequence.
In our approach, only the most promising one is proposed to the user in the
Disambiguation & Enhancement step. This choice comes from two main mo-
tivations:

• Proposing more than one alternative queries to the user can be confusing
and makes it very difficult to contextualize the disambiguation questions.
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Table 3: OLAP operator annotations.

Type Name Gen. derivation example Example
Ambiguity TO 〈DRILL〉 ::= “drill” 〈Attr〉 “drill down from year”
Ambiguity FR 〈DRILL〉 ::= “drill” 〈Attr〉 “drill down to year” but 〈GC〉

contains Month and Quarter
Error NEC 〈DROP〉 ::= “drop” 〈MC〉 “remove unit sales” but Unit-

Sales is not in 〈GPSJ〉
Error AEC 〈ADD〉 ::= “add” 〈MC〉 “add max unit sales” but max

UnitSales is already in 〈GPSJ〉
Error ID 〈DRILL〉 ::= “drill” 〈Attr〉 “drill down from product”
Error FA 〈DRILL〉 ::= “drill” 〈Attr〉 “drill down from name”
Error HM 〈DRILL〉 ::= “drill” 〈Attr〉from “to” 〈Attr〉to “drill down from product to

city”
Error HSM 〈DRILL〉 ::= “drill” 〈Attr〉from “to” 〈Attr〉to “drill down from product to

type”

• Proposing only the most promising choice makes it easier to create a base-
line query, even though the optimal derivation could be missed. The base-
line query can still be improved by adding or removing clauses through
further interactions enabled by the OLAP operator step.

Definition 2 (Parse Forest Score). Given a target sequence M and the cor-
responding parse forest PFM , we define its score as Score(PFM ) = Score(M ′)
where M ′ is the sub-sequence of M belonging to the parse tree PTM that includes
non-annotated and ambiguous entities only.

The parse forest holding the highest score is the one proposed to the user.
This ranking criterion is based on an optimistic-pessimistic forecast of the out-
come of the Disambiguation & Enhancement step. On one hand, we optimisti-
cally assume that the ambiguities belonging to PTM will be positively solved in
the Disambiguation & Enhancement step and the corresponding clauses and
entities will be kept. On the other hand, we pessimistically assume that non-
parsed clauses belonging to PFM will be dropped. Errors (i.e., OLAP operators
that cannot be applied to a full query) do not contribute to the score.

The rationale of our choice is that an ambiguous clause in the parse tree is
more likely to be a proper interpretation of the text. As shown in Figure 10, a
totally pessimistic criterion (i.e., excluding from the score all the annotated en-
tities) would carry forward a too simple, but non-ambiguous, forest; conversely,
a totally optimistic criterion (i.e., considering the score of all the entities in
PFM ) would make preferable a large but largely non-parsed forest. Please note
that the bare score of the target sequence (i.e., the one available before parsing)
corresponds to a totally optimistic choice since it sums up the scores of all the
entities in the target sequence.

The ranking criterion defined above enables the pruning of the target se-
quences to be parsed as shown by Algorithm 1. Reminding that target sequences
are parsed in descending score order, let us assume that, at some step, the best
parse forest is PFM ′ with score Score(PFM ′). If the next target sequence to be
parsed, M ′′, has score Score(M ′′) < Score(PFM ′), we can stop the algorithm
and return PFM ′ since the score of M ′′ is an upper bound to the (optimistic)
score of the corresponding parse forest.
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�Mea��Agg� “where” “group by” �Attr�

�MC� �SC� �GC�
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�SCA�

�SCN�

�SSC�

�Attr� �Val��Cop�

Region�M1 = �avg, UnitSales, where, Year, =, 2019, group by,

Figure 9: Parse forest enhancement: the implicit attribute Year has been added to M1 from
Figure 6a.

pessimistic

optimistic-pessimistic

optimistic

M = �avg, UnitSales, where, Product, =, New York, group by, Regin�

�Mea��Agg� “where” “group by”

�MC� �SC�

�GPSJ�

�SCA�

�SCN�

�SSC�

�Val�

�SCA�

�SCN�

�SSC�

�Val�

�SC�

�Cop��Attr�

AVM

unparsed

Figure 10: Portion of the parse forest contributing to its score depending on the adopted
scoring criterion.

Algorithm 1 works as follows. At first, target sequences are sorted by their
score (Line 1), the best parse forest is initialized, and the iteration begins. While
the set of existing target sequences is not exhausted (Line 3), the best target
sequence is picked, removed from the set of candidates, and its parse forest is
generated (Lines 4–6). The current forest replaces the best one if it proves to
be better than the latter (Line 7), i.e., if score(PFM ) > score(PF ∗) or, in case
of a tie, if the number of annotations in PFM is lower than the one in PF ∗. In
this case, the current forest is stored (Line 8) and all the target sequences with
a lower score are removed from the search space (Line 9) as the pruned target
sequences cannot produce parse forests with a score greater than what has been
already parsed.

Note that, as Score() requires a parse forest and the Parsing step always
produces a parse forest (which might coincide with the parse tree), Score(),
ranking and pruning work for both Full query and OLAP operator steps.

7. Parse Forest Disambiguation and Enhancement

If no ambiguities or errors were found in the previous steps, the parse forest
coincides with a parse tree7 that can be directly translated into an executable

7As unparsed clauses are annotated as ambiguities, if no ambiguities are found then all
clauses are included in the parse tree.
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Algorithm 1 Selection of the parse forest

Require: M: set of valid target sequences
Ensure: PF ∗: best parse forest

1: M← sort(M) . sort target sequences by score
2: PF ∗ ← ∅
3: while M 6= ∅ do . while search space is not exhausted
4: M ← head(M) . get the target sequence with highest score
5: M←M\ {M} . remove it from M
6: PFM ← parse(M) . parse the target sequence
7: if PFM is better than PF ∗ then
8: PF ∗ ← PFM . store the new parse forest
9: M←M\ {M ′ ∈M, score(M ′) ≤ score(PF ∗)}

. remove target sequences with lower scores from M
return PF ∗

SQL query. Conversely, if COOL detects an error, the only possible solution is to
return an informative warning to the user in order to help her resubmit a correct
command. If none of the above apply, an annotated parse forest is returned. An
annotation does not necessarily imply an interaction with the user to be solved.
Indeed, COOL tries to minimize the number of such interactions by exploiting
the MR, previous activities of the user stored in the Log, and (when applicable)
the parse tree of the previous query PTC . At the end of the Disambiguation &

Enhancement step, the ambiguous parse forest is reduced to a non-ambiguous
parse tree as all the ambiguities are solved in this step (existing unparsed clauses
are either added to 〈GPSJ〉 or dropped).

We identify three ways to solve ambiguities: implicit, default-based, and
user-based.

Implicit. Refers to the cases where the parse forest does not include all the
information necessary to produce the SQL code, but the missing parts can
be automatically inferred either from PTC or the MR since only one solution
is possible. In this case, the parse forest is automatically completed and no
interaction with the user is required. Examples of automatic inference are the
following.

• Implicit aggregation operator in 〈MC〉: the aggregation operator in
a 〈MC〉 clause is implicit and the measure is associated with a single ag-
gregation operator.

• Implicit attribute in 〈SSC〉: the 〈SSC〉 clause has an implicit attribute
and the parsed member belongs to a single attribute domain.

• Implicit comparison operator in 〈SSC〉: the 〈SSC〉 clause has both
attribute and member(s). We assume “ = ” as 〈COP〉 if 〈SSC〉 has a single
member, otherwise we assume “in” as 〈COP〉 (Figure 9).
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Table 4: User interaction templates and actions for user-based ambiguity solution. The line
splits annotations related to full-query interpretation from those related to OLAP-operator
interpretation.

Name Template Action
AA 〈Val〉 is member of these attributes [...] Pick attribute/drop
AAO 〈Mea〉 allows these operators [...] Pick operator/drop
AVM 〈Attr〉 and 〈Val〉 domains mismatch, possible values are [...] Pick value/drop
MV 〈Mea〉 does not allow 〈Agg〉, possible operators are [...] Pick operator/drop
AV Impossible to group by on 〈Attr〉 without 〈Attr〉 Add attribute/drop
UC 〈GC〉 There is a dangling grouping clause 〈GC〉 Add to 〈GPSJ〉/drop
UC 〈MC〉 There is a dangling measure clause 〈MC〉 Add to 〈GPSJ〉/drop
UC 〈SC〉 There is a dangling predicate clause 〈SC〉 Add to 〈GPSJ〉/drop
TO 〈Attr〉from can be generalized/specialized to [...] Pick attribute/drop
FR 〈Attr〉to can be specialized/generalized from [...] Pick attribute/drop
NEC The specified clause does not exist in 〈GPSJ〉 Alert & drop
AEC The specified clause already exists in 〈GPSJ〉 Alert & drop
ID Cannot drill down from the finest attribute 〈Attr〉 Alert & drop
FA Cannot roll up/drill down on descriptive attribute 〈Attr〉 Alert & drop
HM 〈Attr〉from and 〈Attr〉to belong to different hierarchies Alert & drop
HSM 〈Attr〉from is coarser/finer than 〈Attr〉to Alert & drop

• Implicit attribute in 〈DRILL〉 (or 〈ROLL〉): the 〈DRILL〉 (or 〈ROLL〉)
clause has an implicit attribute, and, based on the previous query context
PTC , it is necessary to infer its role (from or to) to complete the OLAP
operator. Given the attribute 〈Attr〉 in the 〈DRILL〉 (or 〈ROLL〉) operator,
if Attr ∈ 〈GC〉, we assume from as the role of 〈Attr〉, and 〈Attr〉to is inferred
as the finer (or coarser) attribute of 〈Attr〉. Otherwise, if Attr /∈ 〈GC〉, we
assume to as the role of 〈Attr〉, and 〈Attr〉from is inferred as the coarser
(or finer) attribute of 〈Attr〉.

Default-based. Refers to the cases where more than one solution can be applied
to complete the parse tree but either a default solution has been defined in the
MR or it can be inferred from the Log according to the previous user disambigua-
tions. In this case, the preferred solution is applied and the user interaction is
limited to evidencing it as hint. The user can optionally manually refine this
solution. More details on this case are provided later in this section.

User-based. Refers to the remaining cases where no automatic solutions apply.
In this case, a user interaction is required to disambiguate. Table 4 reports
the user interaction templates and actions for user-based ambiguity resolutions.
Each template allows to either provide the missing information or to drop the
annotated clause. Templates are standardized and user choices are limited to
keep the interaction easy. This allows also unskilled users to obtain a baseline
query.

As for default-based ambiguities, if the Log highlights a recurring choice in
the way of solving ambiguities, COOL infers a preference and this knowledge
can be leveraged to reduce the number of user interactions, turning a user-
based solution in a smoother default-based one. To this end, similarly to [12],
at each disambiguation step d we store in the Log L a triple d = (A, T, T ∗),
where d.A is the annotation name, d.T is the annotated subtree and d.T ∗ is the
disambiguated subtree (eventually empty if the user dropped T ). Given L, the
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Algorithm 2 Log-based Disambiguation

Require: PFM : annotated parse forest, τ : frequency threshold
Ensure: PF ∗M : partially solved annotated parse forest

1: PF ∗M ← PFM . Initialize the parse forest
2: for each d ∈ annotations(PFM ) do . Iterate over its annotated subtrees
3: T ∗ = argmaxT ′f((d.A, d.T, T ′)) . Get most frequent disambiguation
4: if f((d.A, d.T, T ∗)) ≥ τ then . If frequency is higher than threshold
5: Replace d.T with T ∗ in PF ∗M . ... replace it
6: Annotate T ∗ as hint . ... annotate the subtree as hint
7: return PF ∗M

log-based disambiguation frequency is defined as the ratio between the number
of times in which a certain replacement is chosen to resolve an ambiguity and
the number of times in which the ambiguity occurred.

f(d) =
|{d′ ∈ L s.t. d′.A = d.A, d′.T = d.T, d′.T ∗ = d.T ∗}|

1 + |{d′ ∈ L s.t. d′.A = d.A, d′.T = d.T}|

Given the frequency threshold τ , Algorithm 2 shows the automatic disambigua-
tion process. Given an annotated parse forest (Line 1), the algorithm iterates
over the annotated subtrees (Line 2). For each annotation, the algorithm picks
the disambiguation with the highest frequency (Line 3). If the frequency is
higher than a given threshold (Line 4), then the algorithm replaces the anno-
tated subtree with the frequent one within the parse forest (Line 5) and marks
it as a hint (Line 6).

Example 6 (Log-based disambiguation). Given the target sequence M =
〈sum,UnitSales,where, New Y ork〉, Parsing outputs a parse forest where the
subtree T ′ = SSC(New Y ork)8 corresponding to the SSC clause New Y ork
(where New Y ork is a member of both StoreCity and CustomerCity) is annotated
with an ambiguous attribute AA annotation. Given a threshold τ = 0.5 and the
Log

L = {(AA, SSC(New Y ork), SSC(StoreCity,=, New Y ork)),

(AA, SSC(New Y ork), SSC(StoreCity,=, New Y ork)),

(AA, SSC(New Y ork), SSC(CustomerCity,=, New Y ork)), ...}

the subtree T ′ is automatically replaced with T ∗ = SSC(StoreCity,=, New Y ork)
as f((AA, SSC(New Y ork), SSC(StoreCity,=, New Y ork))) = 2

4 = 0.5 ≥ τ .
�

8Elements between brackets represent children of the parent node. The node SCC is the
parent of the node New Y ork.
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8. SQL Generation

SQL generation translates a full-query parse tree into an executable SQL
query9. If an OLAP operator has been submitted, the context parse tree PTC
must be updated according to the OLAP operator parse tree PT . All the OLAP
operators can be implemented atop the addition/removal of new/existing nodes
in PTC . As in Section 6.2, we apply a depth-first search algorithm to retrieve
the clauses interested by the OLAP operator. We recall that adding a new
clause to 〈GPSJ〉 (e.g., “add city” requires to add the attribute City) requires
to append the new clause to the existing 〈MC〉/〈GC〉/〈SC〉 (and to create it if
it does not exist in 〈GPSJ〉). Note that an 〈SSC〉 is appended with the Boolean
and operator as in Figure 8f. Conversely, when dropping a clause produces an
invalid parent clause (e.g., an empty 〈GC〉 or an unbalanced 〈SSA〉) in the parse
tree, it is sufficient to remove the parent clause from 〈GPSJ〉.

Given a full query parse tree PT , the generation of its corresponding SQL
requires to fill in the SELECT, WHERE, GROUP BY and FROM statements. The SQL
generation applies to both star and snowflake schemas [15] and is done as follows:

• SELECT: measures and aggregation operators from 〈MC〉 are added to the
query selection clause together with the attributes in the group by clause
〈GC〉;

• WHERE: predicates from the selection clause 〈SC〉 (i.e., values and their
respective attributes) are added to the query predicate;

• GROUP BY: attributes from the group by clause 〈GC〉 are added to the query
group by set;

• FROM: measures and attributes/values identify, respectively, the fact and
the dimension tables involved in the query. Given these tables, the join
path is identified by following the referential integrity constraints (i.e., by
following foreign keys from dimension tables imported in the fact table).

Example 7 (SQL generation). Given the GPSJ query “sum the unit sales
by type in the month of July”, its corresponding SQL is:

SELECT Type, sum(UnitSales)

FROM Sales s JOIN Product p ON (s.pid = p.id)

JOIN Date d ON (s.did = d.id)

WHERE Month = "July"

GROUP BY Type

�

9Notice that a full-query parse tree is also translatable into MultiDimensional eXpressions
(MDX), i.e., the standard OLAP query language [35]; in this paper, we translate it into SQL
since the latter is more widely supported and our experiments rely on a relational OLAP
(ROLAP) implementation.
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9. Experimental Tests

In this section, we evaluate COOL in terms of effectiveness, efficiency, and
user experience. On one hand, effectiveness and efficiency evaluate COOL’s
capabilities to correctly interpret a text in a time compatible with real-time
interaction. On the other hand, user experience evaluates how well COOL helps
the user in formulating OLAP sessions. Indeed, there is no point in creating a
natural language interface that is not easy to use (also by inexperienced users).

To evaluate COOL against heterogeneous cubes, tests are carried out on
Foodmart10 and SSB [27] schemas, with 8.7 · 104 and 6 · 106 facts, respectively.
As to Foodmart, the Automatic MR feeding module populated the MR with 1
cube, 39 attributes, 1.3 · 104 entities. As to SSB, the Automatic MR feeding

module populated the MR with 1 cube, 50 attributes, and 3.3 · 105 entities. 50
additional synonyms are added in the Manual MR enrichment step for both
datasets (e.g., “for each”, “for every”, “per” are synonyms of the group by
statement).

To the best of our knowledge, no standard benchmark exists for natural
language GPSJ queries. Nonetheless, [8] describes a real-word benchmark for
generic analytics queries. 110 queries out of 147 (i.e., 75% of the benchmark)
turned out to meet the GPSJ expressiveness, confirming how general and stan-
dard GPSJ queries are. Since queries in [8] refer to private datasets, we mapped
them to both the Foodmart and SSB schemas; we preserved the structure of
the original queries (e.g., word order, typos, etc.). For each query, we man-
ually defined the ground truth, i.e. the parse tree resulting from the correct
text interpretation. More than one correct parse trees might exist; for instance,
once parsed, “sum sales by category and month” and “sum sales by month and
category” produce two different parse trees representing the same full query.

9.1. Effectiveness

Effectiveness is evaluated as the parse tree similarity TSim(PT, PT ∗) be-
tween the parse tree PT produced by COOL and the manually-defined ground
truth PT ∗. Parse tree similarity is based on the tree distance [38]: it ranges
in [0, 1] and it keeps into account both the number of correctly parsed entities
(i.e., the parse tree leaves) and the tree (i.e., query) structure (e.g., the selec-
tion clauses “(A and B) or C” and “A and (B or C)” refers to the same parsed
entities but underlie different tree structures).

Table 5 summarizes the parameters considered in our approach: token sub-
sequences have maximum length n, each sub-sequence is associated with the top
N similar entities with similarity higher than α, and only the target sequences
covering at least a percentage β of the tokens in T is covered. We set n to the
maximum number of words representing an entity in the MR; e.g., for Foordmart,

10A public dataset about food sales between 1997 and 1998 (https://github.com/
julianhyde/foodmart-data-mysql).
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Table 5: Parameter values for testing.

Symbol Meaning
N Num. of top similar entities
α Token/entity minimum similarity
β Sentence coverage threshold
n Maximum sub-sequence length

n = 4 as no entity in the MR is longer than 4 words. The value of β is fixed to
70% based on an empirical evaluation of the benchmark queries.

Since COOL is the first proposal addressing OLAP sessions, there is no di-
rect competitor to base the comparison. Although the approaches proposed in
[20, 36, 29] are potentially applicable to our domain, it was impossible to run a
comparison against them since (i) the implementations are private and the pro-
vided descriptions are far from making them reproducible, (ii) despite the avail-
ability of natural language datasets (e.g., the ones used in [20]), these datasets
are hardly compatible with multidimensional constraints and GPSJ queries, and
(iii) some of these approaches require ad-hoc knowledge (e.g., domain-specific
ontologies) that are not publicly available.

9.1.1. Effectiveness Without Disambiguation

Figures 11 and 12 depict the performance of our approach varying the num-
ber of retrieved top similar entities (i.e., N ∈ {2, 4, 6}) or the similarity threshold
(i.e., α ∈ {0.4, 0.5, 0.6, 0.7}). Values are reported to the best of the top-k trees
(i.e., the k trees with the highest score). We remind that only one parse forest
is involved in the Disambiguation & Enhancement step; nonetheless, for test-
ing purposes, it is interesting to see if the best parse tree belongs to the top-k
ranked ones. For the Foodmart dataset, effectiveness slightly changes by vary-
ing N and α, and it ranges respectively in [0.88, 0.92] and [0.86, 0.92]. Similarly,
for the SSB dataset, effectiveness ranges in [0.88, 0.90] (when varying N) and in
[0.88, 0.92] (when varying α). In both cases, the best results are obtained when
more similar entities are admitted (i.e., lower α, higher N), and more candidate
target sequences are generated. Independently of the chosen thresholds, the re-
sults of COOL are very stable (i.e., the effectiveness variations are limited), even
by considering only the top-1 query. Noticeably, Foodmart and SSB schemas
provided very similar results.

Even in the presence of typos, the robustness of our similarity function allows
COOL to match the correct entities. However, since entities in the metadata
repository can cause conflicts while selecting the correct ones for the interpre-
tation, Figure 13 depicts how effectiveness changes varying the entities in the
MR. For both datasets, we manually ensured that the MR contains the entities
necessary to correctly interpret the dataset—almost 100 considering members,
attributes, operators, etc.—and randomly add the remaining entities until all
are considered (the average results are shown). Noticeably, increasing the MR

size has no impact on the average effectiveness; the correct entities are not al-
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(a) Foodmart (with α = 0.4). (b) SSB (with α = 0.7).

Figure 11: Effectiveness varying the number of top-N similar entities and top-k queries re-
turned.

(a) Foodmart (with N = 6). (b) SSB (with N = 6).

Figure 12: Effectiveness varying the similarity threshold α and the number of top-k queries
returned.

tered by the presence of other entities. Although it is true that a textual token
likely matches more entities, this really depends on the dataset and benchmark
at hand. When the quality of the spoken/written English is high (e.g., few
typos or text matches DW entities with high similarity) it is intuitive to verify
that COOL matches the right entities (we remind that queries from [8] are a
real-world benchmark).

These results confirm the following points.

• The choice of proposing only one query to the user does not negatively im-
pact on performance (while it positively impacts on interaction complexity
and efficiency).

• Our scoring function properly ranks parse tree similarity to the correct
interpretation for the query since the best ranked is in most cases the
most similar to the correct solution.

26



(a) Foodmart (with k = 1, N = 6, and α = 0.4). (b) SSB (with k = 1, N = 6, and α = 0.7).

Figure 13: Effectiveness as a function of the number of entities in the MR.

(a) Foodmart (with k = 1, N = 6, and α = 0.4). (b) SSB (with k = 1, N = 6, and α = 0.7).

Figure 14: Effectiveness as a function of the number of required disambiguation steps.

• COOL preserves stable effectiveness even against different schemas.

• Our similarity function is robust enough to rule out entities that are similar
to the correct ones (even in case of natural language with typos).

9.1.2. Effectiveness With Disambiguation

Only 58 queries out of 110 are not ambiguous and produce parse trees that
can be fed as-is to SQL generation and Execution & Visualization. This
means that 52 queries—despite being very similar to the correct tree, as shown
by the aforementioned results—are not directly executable without disambigua-
tion (we recall the ambiguities from Table 2). Indeed, of these 52 queries, 38
contain one ambiguity annotation, 12 contain two ambiguity annotations, and
2 contain three or more ambiguity annotations.

Figure 14 depicts the performance when the best parse tree undergoes it-
erative disambiguation (i.e., consequent correcting actions are applied). To do
so, we consider the best configuration with near-real-time efficiency (see Sec-
tion 9.2). As to Foodmart, given N = 6 and α = 0.4, the effectiveness increases
from 0.89 up to 0.93. As to SSB, given N = 6 and α = 0.7, the effective-
ness increases from 0.89 up to 0.94. Overall, unsolved differences between user
parse trees PT and the ground truth PT ∗ are mainly due to missed entities in
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(a) Foodmart (with N = 6 and α = 0.4). (b) SSB (with N = 6 and α = 0.7).

Figure 15: Number of generated, distinct and parsed target sequences varying the number |M |
of entities in the optimal tree. Given all the target sequences generated in the Tokenization

& Mapping step, some target sequences are identical and only the distinct ones are kept. The
ranking and scoring functions further prune the actually computed target sequence.

the target sequences (e.g., a word contains too many typos to be resolved or a
synonym is missing in the MR).

9.2. Efficiency

In Section 4, we have shown that the search space of target sequences in-
creases exponentially in the text length. Figure 15 confirms this result on both
datasets, showing the number of target sequences as a function of the number
of entities |M | included in the optimal parse tree PT ∗. Note that |M | is strictly
related to the number of tokens in the text |T |. Since a target sequence can
be generated by multiple mappings, we only consider distinct target sequences.
Then, we only parse the most promising distinct target sequences by exploiting
our scoring function. Noticeably, pruning rules strongly limit the number of
target sequences to be actually parsed.

We ran the tests on a machine equipped with Intel(R) Core(TM) i7-6700
CPU @ 3.40GHz CPU and 8GB RAM, with COOL implemented in Java. Tests
are run in the worst-case scenario, i.e. when all the entities in the MR are
present. Queries are executed against enterprise data marts hosted on Oracle
11g and their performance depends on the underlying multidimensional engine
and on the complexity of the query itself. We emphasize that the execution time
corresponds to the time necessary for the interpretation, and not to the time
to execute the queries. Since the execution time increases with the number of
entities |M | included in the optimal parse tree, we assess how efficiency changes
by increasing |M |, N , and α.

Since the similarity function (introduced in Section 4) between a string T and
an entity W is based on the Levenshtein distance (with complexity O(|T |·|W |)),
we want to reduce the number of similarity comparisons necessary to get the
entities similar to T . In the case of linear search, such number is O(|MR|). To
reduce this complexity, we leverage the BK-tree data structure [35] to perform
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(a) Foodmart (with k = 1 and N = 6). (b) SSB (with k = 1 and N = 6).

Figure 16: Efficiency as a function of the minimum similarity threshold α.

(a) Foodmart (with k = 1 and α = 0.4). (b) SSB (with k = 1 and α = 0.7).

Figure 17: Efficiency as a function of the top N similar entities.

approximate string matching with a complexity of O(log(|MR|)) (note that this
tree is computed during the offline phase). As a result, α affects the overall
efficiency: the lower is α, the more entities are taken into account. Figure 16
shows the average execution time by varying |M | and α. Since the execution
increases for lower similarity values (α), for bigger datasets (such as SSB) it is
necessary to increase the minimum α (e.g., to 0.7) to keep the overall efficiency
in the order of (a few) seconds. As shown in Section 9.1, this has a slight impact
on effectiveness.

Noticeably, Figure 17 shows that the effect of selecting more entities (i.e.,
higher N) on the average execution time is almost negligible.

While we run our tests against the entire MR, it is worth reasoning on what
happens by increasing the number of attributes/members. Since the perfor-
mance of COOL is based on two aspects (i.e., mapping and parsing), increasing
the number of attributes/members could affect the number of mappings due to
the wider search space for entity similarity (Equation (1)). However, as we pick
a fixed number of synonyms, this does not affect parsing since the number of
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Table 6: Results of user evaluation in terms of average accuracy TSim(), average elapsed
time T (in seconds), and average number of user interactions I; the Skill column distinguishes
users based on their familiarity with OLAP.

Full query OLAP operator

Id Skills TSim(PTu
s , PT

∗
s ) Ts(s) Is TSim(PTu

e , PT
∗
e ) Top(s) Iop

sa
Low 0.98 141 0.57 0.96 144 0.29
High 0.94 145 0.33 0.93 128 0.39

sb
Low 0.92 92 1.43 0.70 102 0.29
High 0.93 95 0.56 0.79 114 0.18

sc
Low 0.91 98 1.58 0.90 51 0.00
High 0.94 99 0.78 0.93 56 0.12

sd
Low 0.84 200 2.60 0.84 - -
High 0.79 129 2.00 0.87 45 0.14

se
Low 1.00 49 0.20 1.00 - -
High 1.00 40 0.14 1.00 - -

sf
Low 0.79 271 3.50 0.79 - -
High 0.82 121 1.57 0.89 39 0.14

sg
Low 0.91 136 3.25 0.86 114 0.25
High 0.93 50 0.50 1.00 46 0.08

Overall
Low 0.91 141 1.88 0.86 102 0.21
High 0.91 97 0.84 0.92 71 0.18

generated target sequences does not change.

9.3. User Experience Evaluation

The main goal of a natural language interface is to enable a user to easily
formulate a command. To this end, we tested COOL with 55 users, mainly
students in data science and in engineering management, with knowledge of
business intelligence and data warehousing varying from none to advanced. On
a scale from 1 (very poor) to 5 (very high), on average, users scored 3.60 +− 0.7
their familiarity with the English language. On a scale from 1 (none) to 5 (very
high), 16 users showed no familiarity with the OLAP paradigm, while 39 users
showed medium to very-high familiarity.

For the sake of testing, we implemented a web application (Figure 18) in
which users submit written or spoken descriptions of full queries/OLAP opera-
tors. For this test, we only considered the Foodmart schema. User interaction
is also supported by the DFM visual representation of the Foodmart schema.
From our experience, the DFM easily allows non-expert users to visualize the en-
tire cube expressivity without the need to know the underlying physical schema,
such as which measures and attributes can be queried, as well as to intuitively
infer how attributes aggregate (without the need to know the meaning of func-
tional dependencies). Additionally, this visual metaphor combines well with the
visualization of ambiguously/correctly interpreted entities (as later discussed).

Two types of tests (formal-based and goal oriented) have been conducted
with an increasing complexity. Formal-based tests assess the capability of users
to generate natural language OLAP sessions given the formal content of each
query. By doing so, no natural language bias is introduced by the tests. Goal-
oriented tests assess the capability of users to formulate natural language OLAP
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(a) The non-ambiguous query “return the medium costs for Beer and Wine by gender” is issued.
Elements highlighted in green have been understood by COOL.

(b) The ambiguous query “return the medium costs in USA” is issued. COOL asks to the user if
USA is member of Country or StoreCountry or if USA should be dropped (ambiguity AA in Table 4).
Elements highlighted in yellow require user-based disambiguation.

Figure 18: User interface of COOL implemented for the testing purpose.

sessions in English after being provided with the description of analytic goals
in Italian (users were asked not to use translating tools). By doing so, no
formal bias is introduced by the tests, as users are required to understand and
submit the OLAP sessions necessary to achieve each of the goals. A 10-minute
tutorial was presented to show the users how COOL works and how the tests are
organized. We emphasize that—besides the content of a GPSJ query—users are
not required to be knowledgeable of any other formal concept or programming
language (e.g., SQL or MDX). To support this (democratization) claim, we split
users into two groups depending on their familiarity (low or high) with OLAP.
All KPIs are averaged on users within the same group (Table 6). Following the
previous effectiveness evaluation, we set α = 0.4, β = 70%, N = 6 and n = 4.

We first introduce the two types of tests and we finally draw the overall
evaluation.

9.3.1. Formal-based

The following testing protocol has been adopted.

• Users undergo 3 OLAP sessions {sa, sb, sc} with increasing complexity.
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Each OLAP session is composed of three steps (q, op′, op′′), where q is a
full query and op′ and op′′ are the OLAP operators that are iteratively
applied to the full query. In each OLAP session, we provided three formal
queries (q, q′, q′′), with q′ (or q′′) slightly changing from q (or q′). At first,
users were asked to produce the natural language description of the full
query q. Then, by difference with the following query, users were asked to
understand which OLAP operator op changed q (or q′) to q′ (or q′′), and
to issue the natural language description of op to COOL.

• At each step, users are asked to issue the natural language description
in English to COOL. If fully parsed, COOL visualizes the query result
as a pivot table (Figure 18a). Otherwise, the disambiguation process
starts, and users are asked to disambiguate what COOL was not capable
of inferring automatically (Figure 18b).

• When all ambiguities (if any) are solved, the next step in the session is
proposed.

• Users explicitly end the OLAP session after running q′′.

Example 8 (OLAP session). Given the formal full query

q = {{avg StoreCost}, {gender}, category = “Beer and Wine”}

a user is asked to produce a natural language description of the query, such as
“return the medium costs for Beer and Wine by gender”. As COOL is capable
of fully interpreting this query (Figure 18a), the next formal query

q′ = {{avg StoreCost}, {gender,month}, category = “Beer and Wine”}

is presented to the user. The user is asked to understand which OLAP operator
can be applied to q to produce q′ and to issue its natural language description
to COOL. Note that the applicable OLAP operator is not unique. For instance,
depending on the familiarity with the OLAP paradigm, the user may choose
either to “drill down to month” or to “add the month”. �

We call PTus the parse tree of the first full query issued by the user (i.e., the
user description of q), and PTue the parse tree of the last full query modification
(i.e., when the user ends the session). We call PT ∗s and PT ∗e our ground truth,
i.e. the parse trees corresponding to q and q′′. Note that there is not a sin-
gle correct/predefined path driving the OLAP session. For instance the OLAP
session can diverge/converge from/to the ground truth (e.g., a full query that
does not comprehend all the necessary entities can be completed with conse-
quent OLAP operators); users can concatenate 〈ADD〉 and 〈REMOVE〉 instead
of the 〈REPLACE〉 operator; or some disambiguation steps might be necessary
to complete the session due to ambiguities or inaccuracies.

For each OLAP session, we evaluate both the starting full query and the
consequent OLAP operators. We adopt the following key performance indicators
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(KPIs): accuracy TSim(), interpretation time T , extra user interactions I (in
the optimal case I = 0; i.e., the interpretation discloses no ambiguities that
require user interactions). In detail:

• Full query. TSim(PTus , PT
∗
s ) measures how good is the interpretation

of the full query; Ts adds up the time it takes for the user to formulate
the query and COOL to interpret it; and Is counts the number of user
interactions to produce a fully-parsed full query.

• OLAP operator. TSim(PTue , PT
∗
e ) measures how close the user query

is to the correct query after applying the OLAP operators. For each
OLAP operator op, Top sums the time it took for the user to formulate
the operator, and for COOL to interpret them and to apply it to the user
full query; and Iop counts the number of user interactions to produce a
fully-parsed OLAP operator.

9.3.2. Goal oriented

This type of test assesses the capability of users to understand four analytic
goals (in Italian) and to formulate their own (English) natural language OLAP
sessions (sd, se, sf , and sg); users are asked not to use translating tools. While
the formal-based tests directly provided the analytic steps that users have to
follow, in these tests users are free to issue a full query and (optionally) opt
for OLAP operators in case of need. In principle, all the analytic goals can be
fulfilled via a single full query (i.e., PT ∗s = PT ∗e ).

Example 9. An example of an analytic goal to be interpreted into an English
natural language query is “Scrivi una query (in inglese) che ti permetta di capire
quale sia la famiglia di prodotti che ha venduto più unità nel 1997” (which
literally translates to “Write a query (in English) that allows you to understand
which is the product family who sold the most units in 1997”). Interestingly,
some users provided interpretations aimed to solve the analytic goal in a step.
For instance “Get the product family which has the highest unit sales in 1997”
or “Show me the sum of unit sales in 1997 by product family”. Other users
preferred to issue a shorter full query and to enrich it using OLAP operators.
For instance the full query “Show the unit sales” has been later refined using
“add the product family” and “filter on 1997”. �

9.3.3. Overall Evaluation

The average accuracy for full query interpretation is comparable for both
experienced and inexperienced users (for sa, sd users with no/low OLAP skills
performed even better). Similar considerations on accuracy also hold for the av-
erage accuracy of the OLAP operator, where experienced OLAP users perform
slightly better (due to the higher familiarity with the OLAP analysis). As to the
formal-based tests (sa, sb, and sc), the average accuracy for full query interpre-
tation is 0.94 for both skill levels. The decrease in accuracy TSim(PTus , PT

∗
s )

from sa to sc for inexperienced users is justified by the increasing complexity of
the initial full query. These considerations also hold for the average accuracy of
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the OLAP operator (besides some vocabulary issues on sb solvable by enrich-
ing the metadata repository). As to the goal-oriented tests (sd, se, sf , and sg),
inexperienced users tend to prefer single and longer full queries, at the cost of
higher complexity in expressing the query; indeed, they take almost an inter-
action more while writing a full query. Conversely, experienced users are also
fine with providing smaller full queries and then refining the results by issuing
OLAP operators. At the end of the OLAP session, the average similarity for
inexperienced users is 0.87 while it is 0.94 for experienced users, showing that—
as expected—experienced users have a better capability in understanding and
solving analytic tasks. The accuracy drop in sd, sf is due to vocabulary issues
solvable by enriching the metadata repository.

As to automatic disambiguation (i.e., hints), 79% of ambiguities have been
correctly resolved by COOL (i.e., the proposed hints match the user choice).
Log-based disambiguation is very effective since most users submit correct
queries. This further reinforces log-based disambiguation; its effectiveness could
decrease if users’ choices were less focused.

The time necessary to interpret a full query is higher for inexperienced users
(141 seconds vs 97 seconds). While the formal-based tests provided very similar
times for both types of users, goal-oriented tests show that the time necessary
to understand the analytic goal is higher for inexperienced users (supporting
the claim mentioned before). Noticeably, for all users, the time required for
the OLAP operator sensibly decreases along with increasing familiarity with
COOL (the same happens for the full query, but the effect is compensated by
the increasing complexity).

We conclude that:

• the small number of extra interactions—together with the high accuracy
that consolidates the results in Section 9.1—proves COOL’s robustness
in natural language interpretation (we recall that misinterpreted clauses
count as unparsed ambiguities). In turn, this enables users to issue com-
plete queries and OLAP operators in either 1 or 2 interactions (i.e., 0 or
1 extra interactions);

• both experienced and inexperienced users achieve comparable accuracy
results, supporting our claim on democratization: no formal background
nor programming language is needed to perform OLAP sessions. Still,
results show that experienced users are more efficient in understanding
and interpreting analytic tasks.

10. Related Works

Conversational business intelligence can be classified as a natural language
interface (NLI) to business intelligence systems to drive analytic sessions. De-
spite the plethora of contributions in each area, to the best of our knowledge,
no approach lies at their intersection.
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NLIs to operational databases enable users to specify complex queries with-
out previous training on formal programming languages (such as SQL) and soft-
ware; a recent and comprehensive survey is provided in [1]. Overall, NLIs are
divided into two categories: question answering and dialog. While the former are
designed to operate on single queries, only the latter are capable of supporting
sequences of related queries as needed in OLAP analytic sessions. However, to
the best of our knowledge, no dialog-based system for OLAP sessions has been
provided so far. The only contribution in the dialog-based direction is [23],
where the authors provide an architecture for querying relational databases;
with respect to this contribution we rely on the formal foundations of the mul-
tidimensional model to drive analytic sessions (e.g., according to the multidi-
mensional model it is impossible to group by a measure, compute aggregations
of categorical attributes, aggregate by descriptive attributes, ensure drill-across
validity). Also differently from [23], the results we provide are supported by ex-
tensive effectiveness and efficiency performance evaluation that completely lack
in [23]. Finally, existing dialog systems, such as [28], address the exploration of
linked data. Hence, they are not suitable for analytics on the multidimensional
model.

As for question answering, existing systems are well understood and differen-
tiate for the knowledge required to formulate the query and for the generative
approach. Domain agnostic approaches solely rely on the database schema.
NaLIR [20] translates natural language queries into dependency trees [25] and
transforms promising trees by brute force until a valid query can be generated.
In our approach, we rely on n-grams instead of dependency trees since the lat-
ter cannot be directly mapped to entities in the metadata repository (i.e., they
require tree manipulation) and are sensible to the query syntax (e.g., “sum
unit sales” and “sum the unit sales” produce two different trees with the same
meaning). SQLizer [36] generates templates over the issued query and applies
a “repair” loop until it generates queries that can be obtained using at most a
given number of changes from the initial template. Domain-specific approaches
add semantics to the translation process through domain-specific ontologies and
ontology-to-database mappings. SODA [5] uses a simple but limited keyword-
based approach that generates a reasonable and executable SQL query based on
the matches between the input query and the database metadata, enriched with
domain-specific ontologies. ATHENA [29] and its recent extension [31] map
natural language into an ontology representation and exploit mappings crafted
by the relational schema designer to resolve SQL queries. Analyza [7] integrates
the domain-specific ontology into a “semantic grammar” (i.e., a grammar with
placeholders for the typed concepts such as measures, dimensions, etc.) to anno-
tate and finally parse the user query. Additionally, Analyza provides an intuitive
interface facilitating user-system interaction in spreadsheets. Unfortunately, by
relying on the definition of domain-specific knowledge and mappings, the adop-
tion of these approaches is not plug-and-play as an ad-hoc ontology is rarely
available and is burdensome to create.

In the area of business intelligence, the road to conversation-driven OLAP is
not paved yet. The recommendation of OLAP sessions to improve data explo-
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ration has been well-understood [2] also in domains of unconventional contexts
[11] where hand-free interfaces are mandatory. Recommendation systems focus
on integrating (previous) user experience with external knowledge to suggest
queries or sessions, rather than providing smart interfaces to BI tools. To this
end, personal assistants and conversational interfaces can help users unfamil-
iar with such tools and SQL language to perform data exploration. However,
end-to-end frameworks are not provided in the domain of analytic sessions over
multidimensional data. QUASL [19] introduces a QA approach over the multidi-
mensional model that supports analytical queries but lacks both the formaliza-
tion of the disambiguation process (i.e., how ambiguous results are addressed)
and the support to OLAP sessions (with respect to QA, handling OLAP sessions
requires to manage previous knowledge from the Log and to understand whether
the issued sentence refines the previous query or is a new one). Complementary
to COOL, [34] recently formalized the vocalization of OLAP results.

To summarize, the main differences between our approach and previous work
are the following.

1. The implementation of an end-to-end general-purpose dialog-driven frame-
work named COOL, supporting full-fledged OLAP sessions.

2. The definition of the framework’s functional architecture and the formal-
ization of its steps.

3. The enforcement of multidimensional constraints on GPSJ queries by the
means of (i) a formal grammar ensuring syntactic validity, and (ii) a type
checker ensuring consistency (e.g., it is impossible to assign the “sum”
aggregation operator to a non-additive measure).

4. A plug-and-play implementation that allows COOL to run on top of ex-
isting data warehouses with no impact on it; furthermore, the integration
with external knowledge is supported but not mandatory.

Being a NLI, this work builds on fundamental notions of Natural Language
processing (NLP), such as tokenization, parsing, and disambiguation. We refer
the reader to a referential contribution in the areas of Natural Language Pro-
cessing [24] to further delve into this subject. With respect to the single steps
of the approach, we remark the following differences.

• Our parsing technique Section 5 is based on a novel formal grammar, used
to interpret OLAP queries and OLAP operations expressed in natural
language and to obtain parse trees. Among related approaches: [5] relies
on a limited keyword-based technique; [29] uses a similar technique, even
though its grammar is not specific to OLAP and is aimed at mapping
text tokens to ontology concepts; [20, 36, 7] rely on standard natural
language parsers where the produced dependency trees are sensible to
small linguistic variations in the user query.

• By analyzing the specificities of natural language interfaces in the OLAP
context, we formally define and retrieve the ambiguities that may arise
in OLAP queries and operations (Section 6). With respect to related
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approaches, this allows us to discover and manage ambiguities that are
related more to the OLAP metaphor rather than to natural language per
se.

• Related work deals differently with the disambiguation activity. [36] relies
on a completely automatic and probabilistic method to resolve ambigui-
ties, whereas [7] always prompts the user. [20] adopts a hybrid approach by
distinguishing easy ambiguities (automatically solvable) from hard ambi-
guities (requiring user interaction); [5, 29] also adopt an automatic solving
technique, but by relying on a domain-specific ontology. COOL integrates
these methods by i) implicitly solving some ambiguities (also thanks to
the OLAP specific parsing and annotation techniques), ii) inferring the
solution from the log whenever possible, and iii) by asking the user when
no solution has been found (Section 7).

• Every related approach defines its own way to generate SQL queries from
the data structure parsed from the user query. The technique we discuss
in Section 8 is specifically tied to our novel grammar.

• The techniques we adopt for tokenization and mapping (Section 4) are not
specific to OLAP; nonetheless, a detailed explanation of tokenization and
mapping is important to introduce basic concepts that are later used and
to ensure the reproducibility of the approach.

We sketched the idea of Conversational OLAP in [10]; this paper largely ex-
tends the previous contribution by (i) proposing and implementing a solution for
the interpretation and disambiguation of OLAP operators, (ii) providing a log-
based ambiguity resolution mechanism that automatically resolves ambiguities
by learning the most frequent disambiguations, (iii) providing a visual interface
to handle the interaction, designed on top of the DFM model (see Section 9),
and (iv) carrying out extensive tests with real users to assess the usability of
COOL.

11. Conclusions and Future Works

In this paper, we proposed COOL, a conversational OLAP framework sup-
porting the translation of a natural language conversation into an OLAP session.
COOL supports both the interpretation of GPSJ queries and OLAP operators.

Besides proposing a technical solution and a reference architecture, the con-
tribution of the paper lies in the discussion of specific issues related to conversa-
tional OLAP systems. Since its conception, OLAP analysis aims to allow users
to analyze data without requiring technological skills. Conversational OLAP
represents a step forward in this direction. We believe that conversational OLAP
can be particularly useful in the context of hand-free applications such as the
ones we proposed in [13]: adding conversational capabilities to an augmented
OLAP solution would be highly desirable whenever the user is working in the
field (e.g., a warehouse or a factory) and is not in front of a computer. To close
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the loop, we are working towards enabling access to OLAP results in a conver-
sational and hand free fashion. The idea is to create query summaries that can
fit an augmented reality device or that can be returned through a short vocal
message. In this direction, the main research challenges are about (i) identifying
the most interesting information out of the possibly large amount of information
returned by the query (i.e., applying mining techniques to reduce the cardinality
of the returned results as in [13, 14]); and (ii) identifying the right storytelling
and the user-system interactions [34].
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