
The University of Manchester Research

Schema mapping generation in the wild

DOI:
10.1016/j.is.2021.101904

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Mazilu, L., Paton, N. W., Fernandes, A. A. A., & Koehler, M. (2021). Schema mapping generation in the wild.
Information Systems, 101904. https://doi.org/10.1016/j.is.2021.101904

Published in:
Information Systems

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:27. Apr. 2024

https://doi.org/10.1016/j.is.2021.101904
https://research.manchester.ac.uk/en/publications/1f8f422e-cc0b-4840-a4f4-4d1939ed03c4
https://doi.org/10.1016/j.is.2021.101904

Schema Mapping Generation in the Wild

Lacramioara Mazilu, Norman W. Paton, Alvaro A.A. Fernandes, Martin
Koehler

aUniversity of Manchester, School of Computer Science, Oxford
Road, Manchester, M139PL, Greater Manchester, United Kingdom

Abstract

Schema mappings enable declarative and executable specification of transfor-
mations between different schematic representations of application concepts.
Most work on mapping generation has assumed that the source and target
schemas are well defined, e.g., with declared keys and foreign keys, and that
the mapping generation processes exist to support the data engineer in the
labour-intensive process of producing a high-quality integration. However,
organizations increasingly have access to numerous independently produced
data sets, e.g., in a data lake, with a requirement to produce rapid, best-effort
integrations, without extensive manual effort. As a result, there is a need
to generate mappings in settings without declared relationships, and thus on
the basis of inferred profiling data, and over large numbers of sources. Our
contributions include a dynamic programming algorithm for exploring the
space of potential mappings, and techniques for propagating profiling data
through mappings, so that the fitness of candidate mappings can be esti-
mated. The paper also describes how the resulting mappings can be used
to populate single and multi-relation target schemas. Experimental results
show the effectiveness and scalability of the approach in a variety of synthetic
and real-world scenarios.

Keywords: mapping generation, profiling data, dynamic programming
PACS: 0000, 1111
2000 MSC: 0000, 1111

Email addresses: lacramioaramazilu@gmail.com (Lacramioara Mazilu),
norman.paton@manchester.ac.uk (Norman W. Paton), fernandesaaa@gmail.com
(Alvaro A.A. Fernandes), koehler.martin@gmail.com (Martin Koehler)

Preprint submitted to Information Systems October 17, 2021

1. Introduction

A schema mapping generation algorithm constructs views for populating
a target database schema from source schemas. Such algorithms may be
informed by different information, such as schema matches, integrity con-
straints or instance data. The most substantial body of work on schema
mapping generation was initiated in the Clio project (as reviewed in [1]),
and has given rise to comprehensive results on subjects such as data ex-
change [2], merging of mappings [3], debugging of mappings [4] and mapping
verification [5]. This line of research has focused primarily on supporting
experts who are developing mappings between a single source schema and
target schema, where the source and the target are database schemas with
defined constraints, e.g., declared keys and foreign keys. In such a setting,
the goal is to provide tool support that helps experts curate matches and
develop mappings between (potentially complex) source and target schemas
[6]. However, with the growing availability of open data sets, and the emer-
gence of data lakes, mapping generation over independently-produced data
sets, with minimal explicit constraints, is arguably as important as it is for
schemas with declared keys and foreign keys.

More recently, the development of techniques for web data extraction,
the publication of extensive open data sets, and the adoption of data lakes
means that organisations typically have access to numerous sources in a do-
main of interest, and a requirement to integrate data on a topic at man-
ageable cost. In such a setting, the relevant data may come from data sets
from many independently-developed data sources, and thus the relationships
between these data sets are unlikely to be declared explicitly. Instead, rela-
tionships between independent data sets may be inferred by different means,
e.g., through data profiling [7]. The relationships that are inferred may in-
clude (partial) inclusion dependencies and candidate keys, and can also in-
clude inferred matches [8] between attributes in source and target tables.
Where there are many data sources, such relationships give rise to a large
space of candidate mappings, which are likely of variable utility. A mapping
generation algorithm must explore the space of candidate mappings, making
informed decisions as to which tables should be combined and how, based on
the available matches and profiling data.

In this paper, we tackle the problem of mapping generation over inde-
pendent data sets that come from different origins, i.e., without declared
relationships. We refer to this as mapping generation in the wild. For this,

2

we describe an approach to mapping generation that seeks to populate a
target schema using data from many source tables, potentially drawn from
different domains, informed by automatically produced profiling data. The
contributions of the paper are:

1. A dynamic programming algorithm that explores the space of candidate
mappings, identifying opportunities for combining source relations on
the basis of intra-source and inter-source information, viz. relational
metadata and profile data [7], respectively. Reflecting its algorithmic
basis, the proposal is referred to as Dynamap.

2. Rules for deriving profile data for mappings from their operands. As
mapping generation is informed by profiling data, in particular can-
didate keys and (partial) inclusion dependencies, it is important that
such profiling data can be propagated from source tables to candidate
mappings, without the expense of evaluating candidate mappings and
running a profiler (e.g. [9]) on their results. It is shown how to derive,
and occasionally estimate, profiling data on the results of unions, joins
and outer joins.

3. Techniques for pruning the space of candidate mappings. Where there
are many sources, there can be a combinatorial explosion in the number
of candidate mappings. We identify circumstances in which mappings
can be pruned from the search space, thus supporting the generation
of mappings that combine many source tables.

4. A method that populates a multi-relation target schema where the
mapping generation algorithm tries to satisfy schema constraints (such
as primary and foreign keys) when populating the target.

5. An empirical evaluation of the approach: (i) an exploration of appli-
cability on various iBench [10] scenarios; (ii) an evaluation with real
world data from two domains; and (iii) an analytical study with gen-
erated scenarios involving large numbers of sources. The experiments
investigate mapping quality, the time spent generating mappings, the
accuracy of inferred profiling data, and the impact of different pruning
strategies.

3

This work extends that in [11] through the addition of two components to
the search (Section 5) that tackle multi-relation target schemas that are sub-
ject to constraints. Also, we extend the set of experiments through five new
ones including i) a new real-world domain, ii) a variation of the real-world
experiment in [11], iii) an experiment for the efficiency of the pruning strate-
gies, and iv) various iBench scenarios with multi-relation target schemas with
constraints.

The remainder of this paper is structured as follows. Section 2 situates
Dynamap in relation to other work on mapping generation. Section 3 de-
scribes the problem we are tackling in this paper. Section 4 describes the
application of dynamic programming to mapping generation, the decision
procedure for combining sources in mappings, and the propagation of profil-
ing data through mappings. Also, as the search space can be prohibitively
large, Section 4 describes how less relevant portions of this space can be
pruned, and a fitness function that can be used to score candidate mappings.
Section 5 describes pre-processing and post-processing steps to the search
component that extend the applicability of the approach to multi-relation
target schemas. In Section 6, Dynamap is evaluated with respect to out-
put data and processing time on a set of real-world and synthetic scenarios.
Section 7 concludes.

2. Related Work

Schema mappings can be created manually if there are experts that un-
derstand the characteristics of the sources and of the desired target, such
as the data model descriptions, format and constraints. However, manual
authoring is labour-intensive, and the automation of schema mapping gen-
eration has been the subject of significant research and development effort.
Indeed, mapping generation has become ever more relevant considering the
growth in available datasets that need integration [6]. In this section, we
review work on mapping generation for databases, on mapping generation in
the wild, and on mapping generation as search.

Schema mapping generation. A schema mapping generator has the sig-
nature MapGen(S, T, MDS,MDT ,MDS→T)→M , where M is a set of gen-
erated mappings expressed in a query language; S is a (potentially singleton)
set of source schemas; T is the target schema; MDS is metadata about the
sources; MDT is metadata about the target; and MDS→T is metadata that
relates S to T . The mappings in M are often expressed as source-to-target

4

tgds [12], as this abstracts over the conceptual model underlying the database
system, but, in order to execute them over the data, they are typically trans-
lated into an executable query language, e.g., SQL. A mapping generation
operation such as MapGen could, for example, be made available as part of a
library of data preparation operations that support model management [13].

Schema mappings for databases. In relation to mapping generation for
databases, probably the most influential proposal is Clio [1], where MDS

and MDT include not only type information, but crucially also key and for-
eign key constraints; and MDS→T consists of pairwise associations between
attributes from S and T . Importantly, Clio was produced to support an in-
tegration expert in the development of schema mappings, and S is assumed
to be a single schema. As a result, although the Clio algorithm can be run
over multiple source schemas, the transformations used in mapping genera-
tion tend to assume that the source contains declared keys and foreign keys.

A significant body of work can trace its technical ancestry to Clio, though
typically retaining the assumptions that MDS includes declared foreign keys
and that mapping generation is being performed to support an expert in the
construction of a high-quality integration. For example, techniques have been
developed for the case where MDS→T includes instance-level data, where
these instances are typically provided by expert users, e.g.,[14]. Further
work has sought to support the debugging of schema mappings [4], or to
steer the mapping generation algorithm using feedback [15]. In this paper,
we compare Dynamap in experiments with ++Spicy [16], which presents
an environment for developing mappings, underpinned by an approach to
generating mappings that extends that of Clio in several ways, including in
relation to target constraints, e.g., keys [17].

Given a set of mappings, data exchange provides techniques for evaluating
these mappings in ways that minimize redundancy in the target [18], where
the redundancy results from the presence of multiple mappings that share
source and target tables. The approach to minimizing redundancy (viz.,
computing the core) may form part of mapping evaluation (e.g., [19, 20]),
or involve transformations to the mappings (e.g., [16, 21]). As such, data
exchange relates to mapping evaluation, and not to mapping generation, and
thus data exchange techniques can be used with different mapping generation
algorithms. Although in this paper the generation algorithm is cast in terms
of algebraic operators, these can be translated for evaluation using existential

5

rules that are implemented using the chase procedure, and indeed we have
an implementation of Dynamap that generates Vadalog [22]. Data exchange
has been investigated for different mapping languages, including those with
target constraints [18].

In contrast with work on Schema mappings for databases, in Dynamap, S
is expected to contain data from independent sources, and as a result MDS

does not include declared keys and foreign keys. Thus Dynamap has to
contend with less dependable relationships between source tables, and must
scale to generate mappings that correlate data from potentially numerous
sources.

Schema mappings in the wild. As discussed above, and, e.g., in [6],
Clio primarily support experts in the development of mappings between a
single source and a single target, e.g., building on declared foreign keys be-
tween source tables. In practice, this means that mapping generation can
benefit from precise and exhaustive descriptions of relationships within the
source schemas, as well as human-curated matches between the source and
the target. In contrast, mapping generation in the wild must contend with
arbitrary numbers of source schemas, where there may be no declared re-
lationships between the tables in the source schemas. As a result, a focus
for mapping generation research has shifted toward managing the resulting
uncertainty.

For example, UDI [23] describes an approach to generating mappings for
a mediated schema that is automatically inferred from the underlying data
sources. As a result, there is no pre-existing target schema, and the technical
focus is on aligning source attributes with counterparts to yield a mediated
schema, and not so much on the generation of mappings that combine data
from different sources. Also seeking to operate at web scale, Mahmoud and
Aboulnaga [24] cluster single table sources, and then map keyword queries
to the domains represented by the clusters. In such approaches, there is
an attempt to provide some measure of integration with little additional
information about the user’s requirements (e.g., T may not be provided)
and with little additional information about the sources (e.g., MDS may be
minimal). However, there is little evidence on how to combine data from
different sources, and thus mappings tend not to be expressive. In contrast
with these results, Dynamap builds on profiling data to inform the generation
of more expressive mappings (involving union, join and outer-join), and thus
has both to explore the resulting search space efficiently and to infer profiling

6

data for intermediate mappings.
The challenge of discovering tables that are related to a target has been

addressed by recent work, e.g., [25, 26, 27, 28]. A common approach is to
detect if attribute values coming from different sources are part of the same
domain. Based on this, it is determined whether the sources are candidates
to be joined or unioned to populate a target. This research addresses the
lack of declared relationships between the sources that could be found in well-
behaved schemas, e.g., foreign keys. This work is on a problem we share, but
the focus is on inferring relationships between the sources w.r.t. to a target,
which complements the focus in Dynamap on using (inferred) relationships
to build mappings between multiple sources and a target.

Given that the research focus has shifted to generating best-effort map-
pings, several proposals inform mapping generation in the wild using feedback
on results of candidate mappings (e.g., [29]). As such, MDT includes tuples
annotated as true positives, false positives or false negatives. In such work,
there is no assumption that there is a correct mapping to be found, but
rather alternatives are generated and scored by users based on the suitabil-
ity of their results. This work also complements Dynamap, in that feedback
could be collected on the mappings generated by Dynamap, for example to
identify which are the most relevant to the user.

There is some other work that seeks to combine data from numerous
structured data sources. For example, Data Tamer [30] targets the inte-
gration of enterprise data sets. However, the integration effort is focused
less on schema mapping than on the instance-level, through entity resolution
and fusion, with ongoing human input, for example in the form of training
data. The goals of the Data Civilizer project seem similar, although with
a greater emphasis on discovery and cleaning [31]. To date there are few
details on mapping generation in Data Civilizer, although alternative join
paths are associated with quality metrics, which may be presented to users.
In AutoPipeline[32], data integration pipelines are generated automatically,
informed by instance-level data used and produced by Python programs.
This work reflects the requirement for efficient data integration for data sci-
entists, but uses evidence that, in contrast with profiling data, is not always
readily available.

The work described in this paper has in common with the work on map-
ping generation for databases the fact that we assume a target schema is
given, and that we generate expressive mappings (i.e., that include project,
union, join and outer join operations). On the other hand, |S| can be greater

7

than 1 as we assume the data can come from various sources with different
schemas. In addition, we do not depend upon declared keys and foreign keys
in MDS, and instead make use of a wider range of (less dependable but
more widely available) results from data profiling [7]. In contrast with most
previous work related to mapping generation in the wild, we combine tables
using expressive mappings. This seems impractical without some additional
constraints on the problem, so instead of creating a mediated schema we
assume that the target T is given, and that we have access to profiling data
on sources [7].

Mapping generation as search. Other proposals view mapping gener-
ation as a search problem, using either generic or bespoke strategies. In
relation to generic strategies, Tupelo [33] is a mapping discovery algorithm
that performs search within the transformation space of example instances
based on a set of mapping operators. These operators combine to create com-
plex mappings that carry out structural transformations or manipulate the
data by creating relationships between schema components, e.g., attributes.
The mapping discovery is done using only the syntax and structure of the
input examples using a best-first search. Clio [1] and (++)Spicy [17] do not
use a classical search strategy. These are custom to solving the problem of
mapping generation. Their approaches are based on using key and foreign
key constraints from the source or/and the target schemas so as to combine
the sources with a view to satisfying the schema of the target subject to
constraints on it. For example, ++Spicy uses egds to join the sources in
various ways such that the target key constraints are populated with unique
data values. In relation to Dynamap, these approaches are complementary;
we contribute to work on mapping generation as search by scaling mapping
generation to large numbers of sources through pruning the search space,
and inferring profiling data on candidate mappings so that we have the same
types of profiling data for generated mappings as for profiled sources without
materializing any mappings.

3. Problem Statement

In this section we provide more details on the problem to be tackled in this
paper. The process of mapping generation is formalized as MapGen(S, T,
MDS,MDT ,MDS→T) → M , where M is a set of generated mappings, S
is a collection of source tables, from potentially many data sources, T is the

8

Figure 1: Mapping generation scenario for a simple target

target schema, MDS is metadata on the source tables, in particular can-
didate keys and (partial) inclusion dependencies, MDT is metadata on the
target tables in the form of schema constraints, including key and foreign
key constraints, MDS→T is metadata comprising source-to-target matches.
Typically, MDS and MDS→T will be generated by data profiling and schema
matching software, respectively. The generated mappings are selected on the
basis of their fitness, preferring mappings that provide many tuples with few
nulls.

In the remainder of this section we will pin down the challenges of map-
ping generation in the wild that we aim to address in this work. To describe
these, we use two running examples throughout the rest of the paper, and
illustrate the applicability of mapping generation for them. These are de-
picted in Figures 1 and 6. Both examples are from the real-estate domain,
exhibiting the same information and requiring in the target almost the same
data. Figure 2 contains an example of source tables from the two scenarios.
Each scenario exhibits different challenges for our tackled problem:

Simple target. Let us consider the scenario in Figure 1. The figure de-
picts four source relations with two real-estate data sources from Manch-
ester (MA) and Cambridge (CA), and two sources showing quality of life
indices, e.g., UK Deprivation (UKD) and UK Life Quality Indices (UKQ).
The sources do not have any declared relationships between one another as
each has a different origin: the two real-estate agencies are web-extracted
data, and the other two are open-government data supplied by different pub-

9

Figure 2: Example data with profiling data for sources

lic bodies. By simple target we mean a single-relation target schema with
no constraints: the chosen target has a schema with the table UK Realestate
(UKR), which is to be populated with values from the four source relations.
As a result, we need to combine the sources in ways that are suitable for
populating the target.

Challenges. The challenges raised by this scenario for the mapping
generation algorithm arise from the fact that there are no declared join paths
so there is no defined way of joining the sources. In Dynamap, we consider
how sources can be merged (using union, join or outer-join) to populate a
target table. However, there could be many ways of merging the sources, so
there is a question of which is the most suitable mapping for populating the
target. For example, in this scenario, the sources could be merged by i) first
unioning MA and CA and then joining their result with UKD (on postcode)
and UKR (on county); or ii) join CA with UKD (on postcode), MA with
UKD (on postcode), union their result, and then finally join with UKQ
(on county), etc. Decisions on which sources to join and how are informed
by profiling data, as illustrated in Figure 2, however mapping generation
must also decide how to join sources with candidate mappings, or how to
join candidate mappings with each other. This requires that profiling data
is able to be inferred for mappings. Furthermore, there is a combinatorial
explosion in the number of ways in which tables can be combined, leading to
the need to prune the search space without discarding promising candidates.
These challenges are addressed in Section 4.

10

Complex target. Let us consider the scenario in Figure 6. The figure de-
picts three source relations where each contributes different attributes to the
target: one real-estate data source (MA) and two sources showing quality of
life indices (UKD and UKQ). The sources are the same as the corresponding
ones in the simple target scenario. In this scenario, the chosen target con-
tains two tables, Area Info (AI) and UK Realestate (UKR), with primary
keys and that share a foreign key constraint.

Challenges. Similarly to the simple target scenario, we need to combine
the sources so as to obtain correlated data to populate the target; explor-
ing the space of ways of combining the sources is the same as for a Simple
target. The challenges created by this scenario come from the fact that the
mapping generation algorithm could create mappings that violate the tar-
get constraints, thus, they need to be taken into consideration. However,
for mapping generation in the wild, one cannot expect to have sources that
merge without violating the constraints, so the mapping generation algo-
rithm must aim to generate mappings that satisfy the target constraints as
much as possible. Note that, although a target schema may specify key or
foreign key constraints, the data obtained from the underlying sources may
not conform to such constraints. We address these challenges in Section 5.

4. Mapping Generation for a Simple Target

In this section we describe a proposal for schema mapping generation
between a (set of) source schema(s) and a simple target. By simple target,
we mean a target schema with a single target relation and no constraints.

The challenges identified in Section 3 for the simple target are addressed
through four research contributions: (i) a mapping generation search al-
gorithm based on the dynamic programming paradigm; (ii) a method for
merging autonomous sources based on inferred relationships using profile
data; (iii) a method for propagating profile data to intermediate mappings
that result from merging other mappings in the same search space; and (iv)
a technique that keeps the search space contained through a set of pruning
strategies.

4.1. Algorithm Overview

Figure 3 illustrates the components that contribute to mapping genera-
tion on a simple target, which are numbered as follows:

11

Figure 3: Dynamap for a Single Relation Target

1. Pre-Processing. The mapping generation process acts on a set of tab-
ular sources, with limited metadata. Each of these sources s that has
at least one match with the target gives rise to a single base Candidate
Mapping of the form πA(s), where each element as ∈ A is either i) a
match to the target, as → at, where as is an attribute in the source
and at is a matching attribute in the target; or ii) as is an attribute
that shares profiling data with other sources, i.e., may enable a merge
at some point in the search.

The input tables are also subject to profiling that infers candidate keys
and inclusion dependencies between sources. For the running example,
(partial) inclusion dependencies are illustrated in Figure 2. In addition,
database statistics are computed for the sources, i.e., relation sizes,
number of nulls and number of distinct values in the attributes. More
details about the profiling data, metadata and statistics are provided
in Section 4.2.

For example, for the sources and target in Figure 1, there are the
following base mappings:

πIncomeRank,County(UKQ)
πPostcode,Crimerank,County(UKD)
πPrice,Postcode,Street,County(CA)
πPrice,Postcode,Street(MA)

12

2. Choose Candidate Pairs. Pairs of candidate mappings can be merged
using union, join or outer-join to produce further candidate map-
pings. For example, given the source tables in Figure 2, all pairs of
base mappings from these source tables can be considered for merging:
{(MA,CA), (MA,UKD), (MA,UKQ), (CA,UKD), (CA,UKQ),
(UKD,UKQ)}. The resulting mappings can then be considered for
merging with the base mappings and each other. The space of po-
tential pairs is explored using Dynamic Programming, as described in
Section 4.3.

3. Consider Merge Options. Given a pair of candidate mappings from the
previous step, it is possible that they can be combined by union, join
or outer-join. For example, the base mappings for UKQ and MA are
candidates to be joined on postcode because profiling can identify that
Postcode is a candidate key for UKD and there is a (partial) inclusion
dependency between the Postcode attributes in the two tables. The
result of this step is referred to as an intermediate mapping. The details
on how operators are selected for merging mappings are provided in
Section 4.4.

4. Infer Profiling Data. Profiling data is inferred for the intermediate map-
pings. Note that this includes (partial) inclusion dependencies with all
sources and all candidate mappings. The new profile data is needed to
i) compute the fitness for the mapping, and ii) find merge opportunities
between the new mapping and the other already-generated mappings.
For example, we need to know inclusion dependencies for the Postcode
of the intermediate mapping that joins UKQ and MA, as we need
to know if this mapping can be joined with UKD and/or CA. The
derivation of profiling data is detailed in Section 4.5.

5. Compute Mapping Fitness. The inferred profiling data is then used to
compute a fitness value for the mapping. When there is more than one
way of combining the same tables, this is used to select a preferred ap-
proach, and the fitness is also used to select the top k overall mappings.
The fitness function is defined in Section 4.6.

6. Prune the Search Space. When new intermediate mappings are pro-
duced, it is possible that these mappings have characteristics that allow

13

the search space to be pruned. For example, a new mapping may sub-
sume an existing one. Cases where candidate mappings can be removed
from further consideration are discussed in Section 4.7.

Many plausible candidate mappings may be identified. As a result, there
is a need to select a subset of these mappings. In the current approach,
Dynamap outputs the best k mappings where k is an integer. The output
mappings merge subsets of i source relations, 1 ≤ i ≤ n, where n is the total
number of input source relations, which were obtained during the dynamic
programming search, and that are ranked according to their fitness.

4.2. Pre-Processing

Before mapping generation, a pre-processing step generates profiling data
for each source. The profile data includes statistics, such as the cardinality
of each relation, the number of distinct values for each attribute, and the
number of nulls for each attribute, as required for a fitness function to choose
between candidate mappings. Furthermore, access to the following profiling
data over the input sources (which could be produced using a tool such as
Metanome [9] or SINDY [34]) is assumed:
candidate keys – a column (or a combination thereof) that has unique
values in the relation in which it occurs;
(partial) inclusion dependencies – given two projections R and S with
identical arity over relations R′ and S ′, resp., we define the inclusion depen-
dency IR,S = R ⊆θR,S S, where θR,S represents the overlap of values between
attributes R and S, i.e., the ratio of distinct values from R included in the
values of S:

1. if R ∩ S = ∅, then θR,S = θS,R = 0, and, based on profiling evidence,
we say that R and S are disjoint and there is no inclusion dependency.

2. if R ∩ S = R, then θR,S = 1.0, and we say that, based on profiling
evidence, R ⊆ S and there is a (total) inclusion dependency from R to
S.

3. if R ∩ S 6= R and R ∩ S 6= S, then θR,S = V (R∩S)
V (R)

, where V (X) denotes
the number of distinct values in attribute X. If 0 < θR,S < 1, then the
inclusion dependency is partial. Note that θR,S 6= θS,R.

In addition to profiling data, we assume we have access to matches. In
our setting, a match is an association between a source attribute as and a
target attribute at, such that as is a candidate to provide values for at. In
support of mapping generation in the wild, we assume that matches can be

14

inferred [8]. Furthermore, in this section, as mapping generation combines
tables using union, join and outer-join operations, a mapping is a relational
algebra query over the source tables that projects attributes that belong to
the target; relational algebra also provides a foundation for the propagation
of profiling data.

4.3. Dynamic Programming for Choosing Candidate Pairs

Dynamic programming is a method that divides a complex problem into a
collection of simpler sub-problems, and then combines the sub-solutions into
a solution to the original compound problem. We use dynamic programming
for mapping generation as it systematically explores the search space, starting
with single-table mappings, and progressing incrementally to mappings that
involve more and more tables. In this context, we use the term merge to
represent the application of union, join or outer-join operators to tables or
mappings to yield a new mapping. For mapping generation, the dynamic
programming method is applied as follows.
• The compound problem is finding mappings involving multiple input

relations with attributes that match the same target relation. The
compound problem of merging multiple input relations is divided into
sub-problems that involve pairs of subsets of the input relations, and
then merging the results from each pair of sub-problems. For example,
for the tables in Figure 2, the compound problem is to generate a
mapping that combines the tables MA, CA, UKD and UKQ.
• A sub-problem involves trying to find a mapping for fewer relations

than in the initial input. Each sub-problem represents an iteration
in the mapping generation process. Given N initial source relations,
in each iteration i, 1 ≤ i ≤ N , the algorithm searches for the best
way to merge any i source relations. The mappings that result from
combining each subset of source relations characterize new relations
that are referred to as intermediate mappings, the collection of which
comprises the solution at iteration i. For example, for the compound
problem involving the 4 tables in Figure 2, the immediate sub-problems,
in iteration i = 3, involve generating mappings for the following sets of
3 tables: {MA,CA,UKD}, {MA,CA,UKQ}, {MA,UKD,UKQ},
{CA,UKD,UKQ}.

The mapping generation search starts with the recursive method of the al-
gorithm, GenerateMappings, listed in Algorithm 1. It is first called with

15

Algorithm 1 Mapping generation - the recursive method of dynamic pro-
gramming
1: function generateMappings(i)
2: if sub solution[i] exists then
3: return sub solution[i]
4: else
5: iteration maps← []
6: for j ← 1, ceil(i/2) do
7: b1← GenerateMappings(j)
8: b2← GenerateMappings(i− j)
9: new maps←MergeMappings(b1, b2)

10: iteration maps.add(new maps)

11: sub solution[i]← iteration maps

12: return sub solution[i]

i set to N , the total number of source relations. When running Gener-
ateMappings for iteration i, the sub-solutions from iterations j and (i− j)
are merged (lines 6-10). The resulting merged mappings for this iteration are
memoized as sub-solutions for iteration i (line 11) so that this sub-solution is
reused in subsequent GenerateMappings calls (lines 2-3). For i = 1, the
sub-solution represents the set of mappings where a mapping is generated
for each input relation that can (partially) populate t. This sub-solution
represents the base solution which is generated before the first call of Gen-
erateMappings.

After iteration N of Algorithm 1, a set of mappings which merge all or
subsets of the initial source relations is obtained. The schema of the output
mappings is that of the target relation.

Example 1. For the example in Figure 1, where N←4, in the last iteration
i ← 4, the algorithm tries to merge the mappings from iteration 3 with the
mappings from iteration 1, and then pair-wise merge the mappings from it-
eration 2. For example, assume that in iteration 2, the following mappings
were found (n.b., these are not the complete set), where merge abstracts over
the specific operation used to combine its operands:

m2,1 ← merge(MA,CA)
m2,2 ← merge(UKQ,UKD)
m2,3 ← merge(CA,UKD)

Then, in iteration 4, GenerateMappings tries to merge each of the

16

Algorithm 2 Merge pairwise the mappings from 2 sets of mappings
1: function mergeMappings(batch1, batch2)
2: new maps← []
3: for each map i in batch1 do
4: for each map j in batch2 do
5: operator ← ChooseOperator(map i,map j)
6: if operator not null then
7: new map← NewMapping(operator)
8: md← ComputeMetadata(new map)
9: if IsFittest(new map) then

10: new maps.add(new map)

11: return new maps

mappings with the other: (m2,1, m2,2), (m2,2, m2,3) and (m2,1, m2,3). Notice
that by merging m2,1 with m2,2, a mapping that covers all the input sources
is obtained.

MergeMappings (Algorithm 2) is called by GenerateMappings in
line 9. Its purpose is to combine batches of mappings from sub-solutions.
Specifically, given pairs of mappings map i and map j from batches of map-
pings from two iterations, MergeMappings calls ChooseOperator (line
5) to identify if map i and map j can usefully be merged. If so, then, on lines
7-8, NewMapping builds a new intermediate mapping for the chosen operator,
and ComputeMetadata computes its metadata, i.e., fitness value, and profile
data. IsFittest checks if the intermediate mapping has the highest fitness of
any mapping involving the same initial sources, if so, it is retained (lines
9-10).

4.4. Consider Merge Options

In this section, we describe how Dynamap decides which operator to use
for merging intermediate mappings. The output of this component is either
a relational operator (one of union, join, or full outer join) or null if no
merge opportunity is found. Whilst there is always a possible merge, not all
merges offer opportunities to properly populate the target. Because of this,
the algorithm checks whether a candidate merge satisfies a set of conditions,
and whether these conditions suggest that the merge would correlate the data
generated by the two input mappings and therefore be suitable for populating
the target.

We call this component ChooseOperator and formalize it in Algorithm
3. This method takes as input two parameters, viz., two (base) intermediate

17

Algorithm 3 Choose suitable merge operator
1: function ChooseOperator(map1, map2)
2: \\ t rel is the target relation and it’s a global variable
3: map1 ma← FindMatchesAttr(map1, t rel)
4: map2 ma← FindMatchesAttr(map2, t rel)
5: operator ← null
6: if DiffMatches(map1 ma,map2 ma) then
7: operator ← ChooseOperatorDiff(map1,map2)
8: else
9: operator ← Union(map1,map2)

10: return operator

mappings (map1 and map2), and operates in the global state through two
pieces of information, viz., the target relation(t rel) and the profile data (pd).

ChooseOperator decides how to combine two intermediate mappings
by considering how these relate to the given target table. Specifically, the
sets of matched target attributes are retrieved for each mapping w.r.t. the
target relation by a call to FindMatchesAttr1 (lines 3-4). Each input mapping
will have a corresponding set of matched target attributes. Matching differ-
ent target attributes means that the two sets of matched target attributes,
i.e., map1 ma, and map2 ma, may or may not be disjoint, i.e., they either (i)
both have matches that are for the same target attributes while also possibly
having matches for different target attributes, or (ii) they match entirely dif-
ferent target attributes in the same target relation, t rel. DiffMatches checks
whether the matches are for different target attributes. If they are, they be-
come candidates for joining, to be decided by ChooseOperatorDiff (line
7). If the matches are for the same target attributes, then the two mappings
are unioned (line 9). Finally, on line 10, the output, i.e., either an opera-
tor that merges the two input mappings, or null if no merge was found, is
returned.

Example 2. In Figure 1, the matches with the target for both the MA and
CA relations are postcode, price and street, so they are candidates for union-
ing. However, UKD has different matches, viz., postcode and crime rank, to
those of MA, and thus MA and UKD are candidates for joining.

1In this paper, if a method name is in this font, then its explanation was omitted due to
space limitations, but its purpose is briefly explained in the calling method’s explanation.

18

Algorithm 4 Generate operator when two mappings match different target
attributes
1: function ChooseOperatorDiff(map1, map2)
2: \\ t rel, pd(profile data) are global variables
3: op← null
4: subsumedMap← IsSubsumed(map1,map2)
5: if subsumedMap not null then
6: discard(subsumedMap)
7: return op

8: map1 keys← FindKeys(pd,map1)
9: map2 keys← FindKeys(pd,map2)

10: ind← MaxInd(pd,map1 keys,map2 keys)
11: if ind exists then
12: if ind.overlap = 1.0 then
13: op← Join(map1,map2, ind.attributes)
14: else
15: op← OuterJoin(map1,map2, ind.attributes)

16: else
17: map1 ind←MaxInd(map1 keys,map2.attributes)
18: map2 ind←MaxInd(map2 keys,map1.attributes)
19: ind← MaxCoef(map1 ind,map2 ind)
20: if ind exists then
21: if ind.overlap = 1.0 then
22: op← Join(map1,map2, ind.attributes)
23: else
24: op← OuterJoin(map1,map2, ind.attributes)

25: else
26: map1 mk ← FindMatchedKeys(map1, t rel)
27: map2 mk ← FindMatchedKeys(map2, t rel)
28: if SameMatches(map1 mk,map2 mk) then
29: op← OuterJoin(map1,map2, < map1 mk,map2 mk >)

30: return op

ChooseOperatorDiff (Algorithm 4) decides which join operator to
apply between pairs of mappings where the target attributes that are matched
in one mapping are disjoint or only partially overlapping with the target
attributes matched in the other. This method uses the same parameters as
ChooseOperator.

In lines 4-7, IsSubsumed determines whether, on attributes that match the
target, the profiling data has inclusion dependencies between an attribute in
one mapping and a corresponding attribute in the other mapping. If so, the
subsumed mapping is discarded from the set of kept mappings (for further

19

reference, in Section 4.3, we refer to the kept mappings as memoized sub-
solutions) and null is returned. In lines 8-9, FindKeys retrieves the candidate
keys from the profile data for both input mappings. Then, on line 10, MaxInd
retrieves from the profile data the (partial) inclusion dependency (ind) with
the highest overlap between a pair of keys from the two sets of candidate
keys (map1 keys and map2 keys). If there is a pair of overlapping keys, i.e.,
if ind exists (line 11), then the overlap is checked:

- if θ = 1.0, then the inclusion dependency is total and the chosen oper-
ator is join because a foreign key relationship is inferred between two
mappings on their candidate key attributes (lines 12-13);

- if θ ∈ (0, 1.0), then the inclusion dependency is partial and the operator
is a full outer join because a foreign key relationship cannot be inferred
so the algorithm joins the tuples that can be joined and keeps the
remaining data (lines 14-15).

In both cases, the join condition is built from the key attributes involved in
the chosen inclusion dependency.

If there is no overlap between the pairs of keys, the algorithm tries to
infer a foreign key relationship between a candidate key from one relation
and attributes of the other relation that may not be candidate keys (lines 17-
18). If there are several (partial) inclusion dependencies, MaxCoef compares
them and chooses the one with the highest overlap (line 19). If such an
inclusion dependency exists, the type of merge is decided by the overlap
level, as before.

Next, if a foreign key relationship cannot be inferred, then, on lines 26-
27, FindMatchedKeys retrieves the candidate keys from both mappings that
match target attributes and checks if they match the same target attributes
(line 28). If they do, then the two mappings are merged using full outer join,
where the join condition is on the attributes that meet the requirements
(line 29). The intuition behind this last step is that even if there is no
overlap between the attribute values of the two mappings, it could be that
there is instance complementarity between the two mappings, in which case
performing a full outer join vertically aligns the key attributes that match
the same target attributes.

4.5. Profiling Data Propagation

In searching the space of candidate mappings, Dynamap requires meta-
data about these mappings that indicates how they relate to each other (e.g.,

20

can they be joined or unioned), and a means of comparing their fitness. Dy-
namap assumes the availability of profiling data, in the form of cardinalities
(to compute mapping fitness), and in the form of keys and inclusion depen-
dencies (to inform how mappings can be combined). Such profiling data can
be obtained for source data sets using a profiling tool such as Metanome [9],
but must be derived for candidate mappings without the costly requirement
to materialize and profile intermediate mappings.

These characteristics are computed from the profile data of the parent
mappings and the operator used to combine the parent mappings. The result
sizes and the numbers of distinct values returned by relational operators can
be estimated using established techniques (e.g., [35]). However, estimating
properties of the relationships between mappings in the wild is the subject
of active investigation; for example, recent results have described proba-
bilistic approaches to estimating the unionability [27] and joinability [26] of
attributes in large data sets, indexed using Locality Sensitive Hashing. Such
solutions approximate relationship measures, e.g., overlap or containment,
between attributes using special hash functions applied on their extents. In
this paper, given that we do not materialize intermediate results to obtain
the attribute extents, we cannot use such hash-based approximation tech-
niques and, therefore, our focus is on propagating profiling data from source
tables through mappings. We propagate the profile data using specific for-
mulas for each type of merge, i.e., lossy and lossless merges, and we generate
profile data for new candidate mappings, including inferring the relationships
between the candidate mappings and other source tables.

4.5.1. Candidate Keys and Inclusion Dependencies

This section details how profile data in the form of candidate keys and
(partial) inclusion dependencies are propagated to the results of the algebraic
operators used in mappings, and thus how profile data can be propagated to
new candidate mappings.

Given an inclusion dependency S ⊂θS,Q Q, where S,Q are attributes in
different mappings, the inferred inclusion dependency is of the form R ⊂θR,Q
Q, where R is an attribute in the newly created intermediate mapping and
given that attribute S is a parent attribute of R. Given an inclusion depen-
dency Q ⊂θQ,S S, the inferred inclusion dependency is of the form Q ⊂θQ,R R,
given that S attribute is a parent attribute of R.

Tables 1 and 2 show the formulas for inferring overlaps (θ) when both
attributes from both parents are involved in the inclusion dependency, and

21

Dependent Referenced Conditions Overlap(s) for inferred inclusion
dependency

1 S(parent) P (parent) θR,P =
V (P)
V (R)

, θS,R = 1

2

S(parent) Q

θS,P = 0 θR,Q =
V (P)∗θP,Q+V (S)∗θS,Q

V (R)

3 θS,P = 1 θR,Q =
V (P)∗θP,Q

V (R)

4 θP,S = 1 θR,Q =
V (S)∗θS,Q

V (R)

5 θS,Q = 1 θR,Q =
V (S)−V (S)∗θS,P+V (P)∗θP,Q

V (R)

6 θP,Q = 1 θR,Q =
V (P)−V (P)∗θP,S+V (S)∗θS,Q

V (R)

7 θQ,P = 1 or θQ,S = 1 θR,Q =
V (Q)
V (R)

8 θP,Q = 0 θR,Q =
V (S)∗θS,Q

V (R)

9
θQ,S , θS,Q, θQ,P , θP,Q,
θP,S , θS,P ∈ (0, 1)

θR,Q =
V (S)∗θS,Q+V (P)∗θP,Q−V (S)∗θS,P

V (R)

10 X1(parent) Q θX,Q = θX1,Q

11

Q S(parent)

θS,P = 0 θQ,R =
V (P)∗θP,Q+V (S)∗θS,Q

V (Q)

12 θS,P = 1 θQ,R =
V (P)∗θP,Q

V (Q)

13 θP,S = 1 θQ,R =
V (S)∗θS,Q

V (Q)

14 θS,Q = 1 θQ,R =
V (S)−V (S)∗θS,P+V (P)∗θP,Q

V (Q)

15 θP,Q = 1 θQ,R =
V (P)−V (P)∗θP,S+V (S)∗θS,Q

V (Q)

16 θQ,P = 1 or θQ,S = 1 θQ,R = 1

17 θP,Q = 0 θQ,R =
V (S)∗θS,Q

V (Q)

18
θQ,S , θS,Q, θQ,P , θP,Q,
θP,S , θS,P ∈ (0, 1)

θQ,R =
V (S)∗θS,Q+V (P)∗θP,Q−V (S)∗θS,P

V (Q)

19 Q X1(parent) θQ,X = θQ,X1

Table 1: Inclusion dependencies propagation for lossless attribute merges

when one of the parents is involved in an inclusion dependency with another
attribute. The tables differ based on whether the merge of two parent at-
tributes, S and P, causes the loss of distinct values to the attribute R. In
both tables, the propagation formula is chosen based to the satisfied condi-
tions for the parent attributes (in Conditions column). Also, the notation
V (X) denotes the number of distinct values in attribute X.

The formulas in Tables 1 and 2 are derived based on set operations using
the following general expressions:
• to infer the number of distinct values in R:
V (R) = V (S) + V (P)− V (S ∩ P) for lossless merges and
V (R) = V (S ∩ P) for lossy merges
• to express the number of values contained by the intersection of two

sets, e.g., S and P :
V (S ∩ P) = θS,P ∗ V (S) = θP,S ∗ V (P)
• to infer the number of distinct values in the intersection of R and Q:

22

Dependent Referenced Conditions Overlap(s) for inferred inclusion depen-
dency

1 S(parent) P (parent) θS,P = 1 θR,P = 1, θS,R = 1

2 P (parent) S(parent) θS,P = 1 θR,S = 1, θP,R =
V (S)
V (P)

3 Q S or P (parent) θS,P = 1 θQ,R = θQ,S
4 S or P (parent) Q θS,P = 1 θR,Q = θS,Q
5 X1(parent) Q θS,P = 1 θX,Q = θX1,Q

6 Q X1(parent) θS,P = 1 θQ,X = θQ,X1

7 Y2(parent) Q θS,P = 1 θY,Q =

{
1, if θQ,Y2

∗ V (Q) > |r|
θY2,Q∗V (Y2)

|r| , otherwise

8 Q Y2(parent) θS,P = 1 θQ,Y =

{ |r|
V (Q)

, if θQ,Y2
∗ V (Q) > |r|

θQ,Y2
, otherwise

Table 2: Inclusion dependencies propagation for lossy attribute merges

Figure 4: Example for propagating inclusion dependencies

V (R ∩Q) = V (S ∩Q) + V (P ∩Q)− V (S ∩ P ∩Q)
• to infer the overlap values between R and Q:

i) θR,Q = V (R∩Q)
V (R)

ii) θQ,R = V (R∩Q)
V (Q)

.

Example 3. In Figure 2, assume the union of Manchester (M) and Cam-
bridge (C) sources, i.e., a new mapping:

r← πpostcode,street,price(M) ∪ πpostcode,street,price(C)
is created without any loss of values. The merge on postcode attributes is
represented in a new attribute R ← M.postcode ∪ C.postcode. Figure 4
shows the postcode distinct values in M , C and UKD (UK Deprivation)
and their overlaps: there are overlaps between the deprivation postcode and
the real-estate postcodes, e.g., θC,UKD = 0.33, θUKD,C = 0.25 etc., but not
between the postcode attributes of the two real-estate sources. Now that the
two real-estate sources are merged, the overlaps between the newly created
postcode attribute, R, and the deprivation postcode, UKD.postcode, needs to
be computed, i.e., θR,UKD.postcode, θUKD.postcode,R.

23

Lossless merge. Table 1 shows how to estimate the overlap when the
merge of the parent attributes is lossless, i.e., for the projected attributes
in a union operation, or for the join condition attributes of a full outer join
operation. By union we mean r ← m1 ∪ m2, where r is the result of m1

and m2. We use the notation r.R ← m1.S ∪ m2.P to represent R as a
new resulting attribute from the merge of S and P . Similarly, by full outer
join, we mean r ← m1 ./ S=P m2, where r.R ← m1.S ∪ m2.P . For both
operations, the overlaps of the parents, i.e., θQ,P , θP,Q, θS,Q, θQ,S ∈ (0, 1],
where Q ∈ schema(m3), m3 6= m1,m3 6= m2, need to be propagated for the
newly created attribute R with Q, i.e., compute θQ,R and θR,Q.

In Table 1, through X1 we generically represent a parent attribute that
was not used in the join condition of a full outer join, i.e., its values are not
merged with the values from the other parent mapping.

Lossy merge. Table 2 shows how to estimate the overlap when propagating
the inclusion dependencies when the merge of the parent attributes is lossy,
i.e., when the chosen operator is join and one of the relations may lose
attribute values. By join we mean r ← m1 ./S=P m2, and r.R ← m1.S ∩
m2.P , where R ⊆ schema(r). Similarly to the lossy merge, the overlaps θQ,R
and θR,Q beed to be computed.

In Table 2, through X1 we generically represent a parent attribute in
m1 that was not used in the join condition, i.e., its values are not merged
with any attribute values from m2, and m1 is the mapping that does not
lose attribute values. Through Y2 we generically represent a parent attribute
in m2 that was not used in the join condition, and m2 is the mapping that
potentially loses attribute values due to the merge.

Example 4. Continuing Example 3, where M and C are unioned, the par-
tial inclusion dependencies between these two relations and UKD need to be
propagated to the newly created mapping: r← πpostcode,street,price(M)∪
πpostcode,street,price(C). For union operations, the merge is lossless, so Ta-
ble 1 is used for new overlaps. For the propagation of M.postcode ⊂0.5

UKD.postcode into r.postcode ⊂θ UKD.postcode the overlap estimation (θ)
needs to be computed. In Table 1, the dependent attribute of the parent map-
ping is S, i.e., M.postcode, and the referenced attribute is not a parent, i.e.,
Q is UKD.postcode, while the other parent attribute P is C.postcode. The two
parent attributes (M.postcode and C.postcode) are disjoint, thus the condition
on the second row is satisfied (θS,P = 0), θ = 3∗0.334+4∗0.5

6
= 0.5.

24

Operator
Conditions for propagating
a candidate key (CK)

Union: r.X ← m1.X1 ∪m2.X2
- r.X is CK if m1.X1 & m2.X2 are
CKs and m1.X1 ∩m2.X2 = ∅

Join: r ← m1 ./X1=X2
m2, where X1 ⊆1 X2, - r.X is a CK if m1.X1 and m2.X2 are CKs.

Y1 ∈ schema(m1), Y1 6= X1 - r.Z is a CK if m1.X1 is a CK
Z2 ∈ schema(m2), Z2 6= X2 - r.Y is a CK if m2.X2 is a CK
Full Outer Join: r ← m1 ./X1=X2 m2 - r.X is a CK if X1, X2 are CKs

Table 3: Candidate keys propagation

Algorithm 5 Fitness function
1: function fitness(map)
2: atts← removeOutliers(map.attributes)
3: attr nulls = {〈a, count(v)〉|a← atts, v ← a.values, v = null}
4: max attr nulls = {max(n)|〈a, n〉 ← attr nulls}
5: return map.size−max attr nulls

Propagating candidate keys means detecting whether the unique con-
straint still holds. Candidate keys are identified if there is no possibility of
duplicates or null creation. The conditions for propagating the candidate
keys are depicted in Table 3.

4.6. Mapping Fitness

A fitness function is used to compare candidate mappings that share
source tables. Different fitness functions could be used; here the fitness of a
mapping is based on an estimate of the number of largely complete tuples
it will return, an approach that was found to be effective in practice. Fit-
ness is listed in Algorithm 5. Specifically, given a mapping with a list of
attributes, RemoveOutliers returns the set of attributes that are not outliers
with respect to the number of nulls they contain (line 2). Outliers are iden-
tified using the Median and Interquartile Deviation Method. Then, for the
remaining attributes, i.e., atts, the attribute predicted to have the most nulls
is identified (lines 3-4). The number of largely complete tuples in the map-
ping is then estimated to be the cardinality of the mapping minus the number
of nulls in the attribute with the most nulls. This fitness prefers mappings
with larger results (thus retaining more source data) and with fewer nulls.

The fitness function can be replaced, to prefer mappings with other char-
acteristics. Other options could prefer: the lowest ratio of estimated nulls,
which would favor mappings with as few nulls as possible; the highest num-
ber of distinct values on matched attributes, which would favor mappings

25

that bring data from sources that are as disjoint as possible; the highest car-
dinality, which would favor mappings that merge data from (possibly) many
sources; or the best coverage for the chosen target, which aims to populate
as many attributes as possible. Our fitness function is primarily used to
distinguish between alternative ways of combining the same source tables to
populate the target. In this setting, the fitness function prefers mappings
that provide many tuples with few nulls.

4.7. Pruning the Search Space

Mapping generation in the wild may have to contend with large numbers
of sources. While it is possible to use dataset discovery techniques [28] to
identify promising sources, the search space can still be problematic. In this
section we first present the algorithmic complexity of the approach, and then
describe techniques for reducing the number of candidate mappings consid-
ered within a search. The efficiency and impact of the proposed strategies is
evaluated in Section 6.5.

4.7.1. Algorithm Complexity

As explained in Section 4.3, dynamic programming is the method we
use for merging multiple smaller mappings to create larger mappings. For
an input of N source relations, in each iteration i (i ≤ N), the algorithm
generates intermediate mappings that merge subsets of i relations.

Although the maximum number of memoized mappings for an iteration i
is Ci

N , i.e., combinations of N relations taken i at a time, the algorithm tries
to merge many more pairs of mappings than are actually memoized: for each
iteration i, the algorithm tries to merge pairwise the mappings from previous
iterations j and i−j, where 1 ≤ j ≤ i

2
. Considering the maximum number of

mappings that can be generated in an iteration, and the number of pairs of
sub-solutions that are merged to compute the mappings for an iteration, the
algorithm makes a maximum total number of attempts at merging defined

by
∑N

i=1

∑ i
2
j=1C

j
NC

i−j
N .

The most complex operator search unfolds when searching for a way to
merge two mappings through a join (Algorithm 4). The algorithm analyses
all profiling data, i.e., inclusion dependencies and candidate keys for each
mapping. The search for keys in each mapping (FindKeys in Algorithm 4) is
a linear search as each attribute in the mapping is checked. The search for the
inclusion dependency that has the highest overlap (MaxInd in Algorithm 4)
reaches an upper limit when all the attributes of the two mappings are keys

26

and they pairwise share inclusion dependencies. In this worst scenario, when
merging a mapping with a maximum number of m attributes with another
mapping with the maximum number of attributes, the algorithm needs to
parse m ×m inclusion dependencies to pick the pair of attributes with the
maximum overlap.

Thus, the overall algorithm complexity can be approximated as a function
of the total number of sources (N) and the maximum number of attributes
that a mapping can have (m):

o(N,m) =
N∑
i=1

i
2∑
j=1

(Cj
NC

i−j
N m2) (1)

This upper limit would be reached if i) all the sources would be schema-
complementary w.r.t. the target schema so they would be merged through
joins, ii) all their attributes would be candidate keys, and iii) all attributes
would pairwise share inclusion dependencies.

Even though this worst case behavior will not be encountered in prac-
tice, the combinatorics of the problem mean that the approach can only
be practical if: i) the fraction of the mappings that can be combined by
MergeMappings is small – the fraction is a property of the integration
scenario; and ii) the search space is pruned to avoid the retention of less
promising candidate mappings.

4.7.2. Preliminaries

Let r,m1,m2 ∈ M , where r ← merged(m1,m2, t), M is the space of
mappings, and t a target relation. Let parents(r) ← {m1,m2}, where m1

and m2 are the two mappings that merged when creating r.

Let ancestors(r) ← {m1...mn}, where mi, i ∈ [1, n], are the initial input
relations that created r.

Let mergeable(m, t) be the set of mappings with which a mapping m ∈ M
could possibly merge w.r.t. target t.

Let joinable(m1,m2, t) and unionable(m1,m2, t) be true if m1 can join/union
with m2 w.r.t. target t, or false otherwise.

Let δ(U ⊂θ V) be the degree of degradation associated with an inclusion
dependency, showing how many times the overlap has been approximated
through propagation. After a new inclusion dependency is propagated, the
degree of degradation grows whenever a new overlap cannot be accurately

27

computed and must be approximated, otherwise the new degree of degra-
dation is equal to the one of the inclusion dependency from which it was
derived. For example, in Table 1 on rows 9 and 18, and in Table 2 on rows
7 and 8, the overlaps are approximated; the degradation increases by 1 if an
inclusion dependency is propagated using any of these formulas.

Let preserved(r,m1, t) be the set of preserved mappings for child mapping
r, parent m1, and target t. We define the set of preserved mappings as the
set of mappings with which a parent mapping had an opportunity to merge,
and now those mappings are transferred as merge opportunities to the child
mapping. Given a mapping n, where n is not a parent of r, with which the
parent mapping m1 has a merge opportunity (n ∈ mergeable(m1, t)), then
n may be a preserved mapping for the child mapping r if n has a merge op-
portunity with r (n ∈ mergeable(r, t)), as well. Also, the merge opportunity
between them needs to be as good as the merge between m1 and n. A merge
is considered as good as the previous merge if the degree of degradation of
the inferred inclusion dependencies to the child r does not increase. If the
degree of degradation of the inferred ind (δ(r.a1 ⊂ n.a2)) is equal with the
degradation of the propagated ind (δ(m1.a1 ⊂ n.a2)), then the merge oppor-
tunity m1 has with n is preserved under similar conditions between n and
r, thus n is a preserved mapping. The set of preserved mappings for child
mapping r, parent m1, and target t is formalized:

preserved(r,m1, t) = {n|n ∈ mergeable(m1, t)∧
n ∈ mergeable(r, t) ∧ n /∈ parents(r)∧

δ(r.a1 ⊂ n.a2) = δ(m1.a1 ⊂ n.a2)}

4.7.3. Pruning Techniques

In searching the space of candidate mappings, the sub-solutions produced
by each call to GenerateMappings (Algorithm 1) are memoized, so that
they can be reused in subsequent calls. As discussed in Section 4.7.1, the
number of intermediate mappings can grow rapidly, which in turn increases
the search space. This section identifies ways in which the search space can
be pruned, by retaining only promising mappings.

Removing unnecessary parent mappings. After a merge, parent map-
pings are discarded if the child mapping has better fitness, while preserving
the same merge opportunities as the parent. A parent mapping m1 is dis-
carded if:

28

- the child r has merge opportunities with all the mappings with which
the parent can merge, i.e.,
mergeable(m1, t) ⊂ preserved(r,m1, t) ∪ parents(r)

- and the fitness of r is at least the same as the fitness of m1:
fitness(m1) ≤ fitness(r)

Example 5. In iteration 2, after MA and CA are merged, mapping m2,1 ←
union(MA,CA) is created w.r.t. to target t. Now, Dynamap checks if the
parents can be discarded. The conditions for removing unnecessary parent
mappings are checked. First, Dynamap computes:

parents(m2,1) = {MA,CA}, fitness(m2,1) = 8, fitness(CA) = 4
mergeable(CA, t) = {UKD,UKQ,MA}, mergeable(m2,1, t) = {UKD,UKQ}
preserved(m2,1, CA, t) = {UKQ,UKD}
Now it is checked if the same merge opportunities are preserved for m2,1,

and this is true as
mergeable(CA, t) ⊂ {preserved(m2,1, CA, t) ∪parents(m2,1)}
and, in addition, fitness(CA) ≤ fitness(m2,1).
The inclusion dependencies between m2,1 and UKD are propagated using

formulas in cases 2 and 11 in Table 1, and with UKQ they are propagated
using formulas 8 and 17 in the same table. Their degradation did not in-
crease as these overlaps were not approximated. As both conditions that are
necessary for pruning are met, it can be concluded that CA can be discarded.

Preventing creation of superfluous mappings. This pruning technique
exploits the associativity and commutativity of union and join. Before a
merge, the algorithm detects whether the mapping that would be generated
is a superfluous variation of another mapping that was already memoized.
Let r be a memoized mapping, where m1 and m2 are the current candidates
for merging. The merge is superfluous if:

- r covers the same initial relations as m1 and m2:
ancestors(r) = ancestors(m1) ∪ ancestors(m2)

- r contains only union or only join operations, and that same type of
operation would be used to merge m1 and m2:
operations(r) = operations(m1)∧
operations(r) = operations(m2)∧
(operations(r) = join ∨ operations(r) = union)

Building on the same operation properties, viz., associativity and com-
mutativity, we also prevent the generation of join or union mappings that

29

would otherwise become redundant in future, i.e., generated in subsequent
iterations, equivalent or subsuming mappings. Let m1,m2,m3, r ∈M , where
m1 and m2 are the candidates for merging. The merge is superfluous if:

- the candidate join operation between m1 and m2 can be applied in a
subsequent iteration on the union of m2 with another mapping m3 and
m3 is also joinable with m1 w.r.t. t:
joinable(m1,m2, t)∧ joinable(m1,m3, t)∧ unionable(m2,m3, t)

- the candidate union mapping between m1 and m2 would become sub-
sumed by a future chain-union:
parents(r) = {m2,m3} ∧ operations(r) = union ∧ unionable(r,m1) ∧
unionable(m1,m2)

Pruning subsumed union mappings. Previously generated mappings
that are subsumed by a new mapping are discarded. In union-dominated
scenarios, mappings that are created in early iterations can become subsumed
in later iterations as the union operator gathers all their tuples in larger
extents. This type of pruning most often discards the parent mappings. In
this situation, the algorithm does not check whether the child has the same
merge opportunities as no data is lost through the merge. A subsumed union
mapping m is discarded upon the creation of a new mapping r if:

- the initial relations used in the creation of mapping m are included
in the set of initial relations used for mapping r: ancestors(m) ⊂
ancestors(r),

- and both m and r were created using only unions : operations(m) =
union ∧ operations(r) = union.

5. Mapping Generation for a Complex Target

Here, we describe a proposal for schema mapping generation between
a (set of) source schema(s) and a complex target. By complex target we
mean a target schema with multiple relations that have primary and for-
eign key constraints. In terms of the challenges outlined in Section 3, we
propose a method for generating mappings between source schemas that do
not have any explicitly declared relationships, while aiming to satisfy target
constraints involving primary keys and foreign keys.

Objectives of the approach include: i) to reuse the mapping generation
algorithm for simple target relations from Section 4; and ii) to minimise
the cost of mapping generation, by reducing the number of times simple
target mapping generation must be called. To meet these objectives, we use

30

Figure 5: Dynamap for a Complex Target Schema

universal target relations (UTRs) that comprise all target attributes in tables
linked through foreign keys, and then run simple target mapping generation
for these target tables. A similar approach was taken by Clio [1], where
they build several target tables that comprise the attributes of subsets of
tables with foreign keys. Our approach is to use a single target table for each
complete join path, and to generate mappings that partially populate the
target from the generated UTRs. Thus, our method captures the use cases
where the source schema can only partially populate the target, as does Clio.
Our approach covers these cases by building the mappings in a bottom-up
fashion, where the mappings generated at the beginning of the process are
likely to only partially cover the target, while the mappings output in the last
iteration are more likely to cover the entire target (if the pool of sources covers
all target attributes). In addition to these cases, i.e., generating mappings
between a single multi-table source schema and a multi-table target schema,
our approach also operates in the wild, i.e., with sources that may come from
multiple origins and whose relationships need to be inferred through profiling
data.

5.1. Algorithm Overview

Figure 5, illustrates the components that contribute to mapping genera-
tion on a complex target, which are numbered as follows:

31

Figure 6: Mapping generation scenario for a complex target

1. Target schema. The mapping generation process aims to populate a re-
lational schema that includes relationships represented as foreign keys.

2. Create Universal Target Graph (UTG). The UTG is a directed graph
with a node for each table in the target schema, and an edge for each
foreign key relationship, referring from the referenced to the dependent
table. The UTG supports the generation of labelled nulls. For the
example in Figure 6, the UTG includes Area Info and UK Realestate
nodes, and an edge from Area Info to UK Realestate. The creation of
the UTG is described in Section 5.2.

3. Create Universal Target Relation (UTR). A UTR is created for each
connected join path in the target. For example, for the example in
Figure 6, the UTR contains all the attributes from the Area Info and
UK Realestate tables. Simple target mapping generation is called once
for each UTR. The creation of the UTR is described in Section 5.2.

4. Alter UTR to include labelled nulls. The mappings generated for pop-
ulating the UTR do not know about the complex target schema. How-
ever, attributes that have null values in the UTR may be used in the
target to specify relationships using foreign keys. This step replaces

32

regular null values with labelled nulls, where these are required to cap-
ture relationships in the target. The addition of labelled nulls to the
UTR is described in Section 5.3. For the example in Figure 6, there
is no match for the Area ID attribute (in either table) so it will not
be populated with data from the sources. Thus, the values for this at-
tribute need to be inferred so that the foreign key relationship between
Area Info and UK Realestate tables is maintained.

5. Generate mappings from UTR to target tables. Each UTR may provide
data for several tables in the target. This step creates mappings from
the UTR to target tables, as described in Section 5.3.

6. Remove subsumed tuples. As the tuples in a target relation may have
been produced by several mappings, it is possible for the populated
target to contain tuples that subsume each other. As a final step, these
subsumed tuples are removed, as described in Section 5.3.

5.2. Universal Target Generation

This section describes the method for creating a universal target genera-
tion. This is formalized in Algorithm 6 and corresponds to Create Universal
Target in Figure 5. The universal target has two representations: as a re-
lation (UTR) and as a graph (UTG). Each representation has a different
purpose in creating the mappings for the initial target relations: the UTR is
used in the mapping generation search, where the UTR is the single target
relation for which mappings are sought, whereas the UTG is used in the de-
composition of the generated UTR mappings (Section 5.3). In Algorithm 6,
Compose takes as input a target schema (ts) and outputs a (set of) pair(s)
of universal target relation(s) together with the corresponding graph(s), i.e.,
the output (line 15) has the form [(utr1, utg1), . . . , (utrn, utgn)], where n is
the number of (disjoint) join graphs in the target schema. Dynamap gener-
ates a separate set of mappings for each pair (utr, utg) by running the search
component (Section 4) each time. The algorithm first creates the UTG, then
uses it to create the UTR.

Create Universal Target Graph. The purpose of the UTG is to determine
how to generate and decompose the UTR mappings. The UTG not only
preserves the initial format of the target relations, but provides an order for
altering each UTR mapping, which is important for creating labelled nulls,

33

and subsequently for preserving inclusion dependencies between the initial
relations. We use the definition of a directed-acyclic graph from [36]. In our
setting, the UTG components are: (i) the nodes are target relations; (ii) the
edges are represented by foreign keys; and (iii) the direction of an edge is
given by the foreign key: the direction is from the referenced to the dependent
relation. The direction of the edges determines the order in which labelled
nulls are created for each initial target relation (as described in Section 5.3).

The Create Universal Target Graph component is illustrated in Figure 5
and detailed in lines 4-10 in Algorithm 6). In lines 4-5, all target relations
are added to a graph, target graph. In lines 6-7, the declared foreign keys
are used to create the directed edges between the nodes. In line 8, Find-
ConnGraphs finds all connected graphs within target graph (one connected
graph per join graph).

Create Universal Target Relation. The UTR is used to create a single
table as target, a requirement for the mapping generation method described
in Section 4. In this way, the data in the sources is first aligned in the format
of the UTR and, then, we use the UTR to obtain the mappings for the initial
target relations bundled up in the UTR. Populating the UTR first, and then
splitting its data into the format of the target tables ensures that the source
data is first correlated, and then the correlation between different tuples is
maintained after for populating target tables and foreign keys.

The Create Universal Target Graph component is illustrated in Figure 5
and detailed in lines 11-13 in Algorithm 6. In order to create a UTR, the
algorithm uses one UTG (which is a representation of a join graph). By
following the edges in the UTGs, the algorithm creates each UTR as a single
new relation comprising all target attributes in all the relations in the graph
(lines 12-13). In Algorithm 6, the (UTR, UTG) pairs are created, added to
the final output (line 14) and returned (line 15).

Example 6. In Figure 6, the target schema comprises two relations, Area
Info (AI) and UK Realestate (UKR). A join path connects the two relations
as they share a foreign key, viz., UKR.Area ID → AI.Area ID. The cor-
responding UTR has the following schema:

UTR(Area ID, IncomeRank,City, Crimerank,
Prop ID, Postcode, Street, Price)

where the foreign key attributes are represented by one attribute, viz., Area ID.
If there was no foreign key between the relations, then the algorithm would

34

Algorithm 6 Generate UT
1: function compose(ts)
2: output uts← []
3: target graph← ()
4: for each tr in ts.relations do
5: target graph.addNode(tr)

6: for each fk in ts.foreign keys do
7: target graph.addEdge(fk)

8: conn graphs← FindConnGraphs(target graph)
9: for each cg in conn graphs do

10: utg ← cg
11: utr ← ()
12: for each tr in cg.nodes do
13: utr.addAttributes(tr.attributes)

14: output uts.addPair(utr, utg)

15: return output uts

create a UTR for each target relation, and the dynamic programming search
would be run twice.

5.3. Universal Target Decomposition

This section describes the method for decomposing the UTRs, i.e., the
method for populating the original target from the UTR. The decomposition
aims to satisfy the target constraints through the creation of labelled nulls
and removal of subsumed tuples. This part of mapping generation for a com-
plex target is illustrated by the Universal Target Decomposition component
in Figure 5 and is formalized in Algorithm 7.

Algorithm 7 (Decompose) takes as input an array of objects that ab-
stract over a set of UTR mappings (utr maps[]) and its corresponding uni-
versal target graph (utg). For simplicity, we will refer to each UTR mapping
object as being a UTR mapping, although it is just a representation of a
mapping that is used for creating the output mappings, i.e., the mappings
for each initial target relation. The number of output mappings for each UTR
mapping is equal to the number of initial target tables that were used in the
creation of the UTR. Each output mapping in output maps corresponds to
one node (i.e., one target table) in the UTG. Through TopoSort, in line 3, the
algorithm sorts the set of nodes in utg in topological sorted order [37]. The
purpose of the ordering is to generate labelled nulls for referenced relations

35

Algorithm 7 Decomposition of UTR mappings
1: function decompose(utg, utr maps[])
2: output maps← []
3: sorted nodes← TopoSort(utg.nodes)
4: for each utr map in utr maps do
5: for each tr in sorted nodes do
6: key ←FindPKey(tr)
7: skolem atts← tr.attributes− {key}
8: utr map←Skolemize(utr map, skolem atts, key)

9: for each tr in sorted nodes do
10: target map←Projection(utr map, tr.attributes)
11: target map←Subsumption(target map)
12: output maps.add(target map)

13: return output maps

before dependent relations. In lines 4-12, each UTR mapping is processed
and the mappings for each initial target relation are obtained. In lines 5-8,
the algorithm sequentially modifies the UTR mapping objects so that, when
the executable mappings are created, the attributes in the UTR that corre-
spond to keys in the initial target tables are populated with labelled nulls
where source-extracted data is missing. In lines 9-12, based on the skolem-
ized utr map, the algorithm creates a new mapping object for each initial
target relation by selecting corresponding attributes (equivalent to applying
projection on the view of an executed UTR mapping – Projection, in line 10).
Then, the new mapping object is modified so that, when the corresponding
mapping is executed, it does not produce subsumed tuples (Subsumption,
in line 11). The mappings for the initial target tables are added to the out-
put set (line 12) which is returned (line 13). Next, we explain Skolemize
for labelled nulls generation, and Subsumption for eliminating subsumed
tuples.

Labelled nulls generation. We describe an algorithm that populates a
multi-relation target schema where constraints such as candidate keys and
foreign keys are tackled by populating their corresponding attributes in ways
that take account of the constraints. In order to avoid redundant tuples,
when labelled nulls are created, we consider for each table all the attributes
in the tuple (without extending to any dependent/referenced relations). The
labelled nulls only replace null values, and leave the data unmodified if it
comes from sources. If an attribute is only partially populated, then the
labelled nulls only replace the missing values for that attribute. Through

36

the Skolemize function (line 8), the algorithm sequentially adds skolem
functions for each key constrained attribute in the UTR. The order in which
the key attributes are processed is given by the topological sorting of the
nodes in the UTG. We define Skolemize as:

skolemize(m, a[], apk) = {t|t ∈ m, t[pk]← coalesce(t[apk], fSKpk(t[a]))}
The above definition is explained as: skolemize takes as input (i) a map-

ping (object) m, (ii) a (sub)set of its attributes a ⊆ schema(m), and (iii) a
single attribute apk which is a primary key in one of the initial target tables,
apk 6∈ a. Then, for each tuple in m, replace the nulls on the primary key
(t[apk]) with labelled nulls generated by a skolem function fSKpk(t[a]) that
creates a unique value based on the values on attributes a for tuple t. Here,
we chose the function fSK to generate a hash value on the concatenation of
the non-null values from t[a]. The behaviour of the function can be changed,
though. The coalesce function is used to express that if the t[apk] value is
non-null, then it is left unmodified, otherwise it is replaced with a labelled
null.

Example 7. Consider a simplified case of the scenario in Figure 6 where
only Manchester matches the target. The corresponding UTR is in Exam-
ple 6. The mapping between Manchester Realestate (M) and the UTR is (for
simplicity, the unmatched source attributes are omitted):
∀c, s, pc, pr : M(c, s, pc, pr)→ ∃AID, IR,CR, PID :

UTR(AID, IR, c, CR, PID, pc, s, pr)
Given the target constraints, the first pass through Skolemize (lines 5-

8 in Algorithm 7) will add a skolem function that populates UTR.Aid from
which both AI.Aid and UKR.Aid will draw values when projection is applied
(line 10 - Algorithm 7):
∀c, s, pc, pr : M(c, s, pc, pr)→ ∃fAid, IR, CR, PID :

UTR(fAid(c), IR, c, CR, PID, pc, s, pr)
After altering the UTR mapping for Aid attributes, Algorithm 7 proceeds to
add the skolem function for UKR.P id:
∀c, s, pc, pr : M(c, s, pc, pr)→ ∃fAid, fPid, IR, CR :

UTR(fAid(c), IR, c, CR,
fPid(fAid(c)|pc|s|pr), pc, s, pr),

where a|b means that a is concatenated with b.
After the UTR is altered to generate labelled nulls, the mappings for the target
relations are the corresponding projections on the altered UTR as follows (for

37

Pid Aid Postcode Street Price

fPid(fAid(Manchester)|M15BD|PrincessRoad|950, 000) fAid(Manchester) M1 5BD Princess Road 950,000
fPid(fAid(Manchester)|M15EB|3CambridgeSt.|325, 000) fAid(Manchester) M1 5EB 3 Cambridge St. 325,000
fPid(fAid(Manchester)|M31NN|MirabelStreet|325, 000) fAid(Manchester) M3 1NN Mirabel Street 325,000
fPid(fAid(Manchester)|M31NP |MirabelStreet|165, 000) fAid(Manchester) M3 1NP Mirabel Street 165,000

Table 4: UK Realestate tuples after skolemization

Aid City

fAid(Manchester) Manchester

Table 5: Area Info tuples after skolemization

simplicity, the existential variables and the unmatched source attributes are
omitted).

The mapping for Area Info (AI) target table:
UTR(fAid(c), IR, c, CR, fPid(fAid(c)|pc|s|pr), pc, s, pr)→ AI(fAid(c), c)

The mapping for UK Realestate (UKR) target table:
UTR(fAid(c), IR, c, CR, fPid(fAid(c)|pc|s|pr), pc, s, pr)→

UKR(fPid(fAid(c)|pc|s|pr), fAid(c), pc, s, pr)
The resulting populated target relations are in Tables 4 and 5. Note that

there is only one tuple representing Manchester city in the Area Info rela-
tion, although in the initial Manchester table it appears several times (see
Figure 2). This is due to the fact that there is no other evidence to help
understand whether there is more than one Manchester city corresponding
to the tuples in UK Realestate. Were there more information on the tuples
in Area Info, the algorithm would generate different labelled nulls for the
different cities regardless of the name being the same.

Subsumed output tuples. By eliminating subsumed tuples, the gener-
ated mappings may come to satisfy candidate key constraints, which would
otherwise contain duplicate values.

After the labelled nulls are created for each key constrained attribute in
the UTR mapping, Dynamap alters the already modified UTR mappings
such that subsumed tuples are discarded when the mappings are material-
ized. This step is shown in Figure 5 as the third post-processing step, Alter
Mappings to Remove Subsumed Tuples, and as Subsumption in line 11 in
Algorithm 7. We consider a tuple to be subsumed if it satisfies the conditions
outlined in [38]:

A tuple t1 ∈ T , where T is a relation, subsumes another tuple t2 ∈ T if
(i) t1 and t2 have the same schema, (ii) t2 contains more null values than t1,
and (iii) t2 coincides in all non-null attribute values with t1.

38

Thus, we define the Subsumption method as:

subsumption(m) = {t|t ∈ m,X ∈ schema(m), 6 ∃t′ ∈ m s.t. |nulls(t′)| ≤
|nulls(t)| ∧ t[X] = t′[X] ∧ t[X] 6= null}

Example 8. Consider the following three tuples:
t1(1, 131 782,Manchester, Lancashire,⊥)
t2(1,⊥,Manchester, Lancashire,⊥)
t3(1,⊥,Manchester,GreaterManchester,⊥)
Tuple t1 subsumes tuple t2 as they have the same schema (belong to the

same relation), t2 has the same non-null values as t1, but t2 has one more
null than t1 (on the second attribute), thus t2 is subsumed by t1. Similarly, t3
has the same schema as t1 and t2 and some of the same values and nulls on
the same positions, but the non-null value on fourth position is not the same
as in t1 and t2. Thus, it cannot be concluded that it is subsumed by either of
these.

How do results on data exchange, for example relating to value invention [39]
or target constraints [40] carry forward into this setting? We note that in
our in the wild setting, we cannot make many assumptions about source or
target constraints. For example, the user may be of the view that the target
should satisfy some equality generating dependencies. However, in practice,
for example due to inconsistent value representations in different sources,
these may not hold for the retrieved data. Furthermore, key constraints in
the target may not be satisfied; different sources may provide alternative
views of the world that are not easily reconciled without resorting to entity
resolution techniques.

6. Evaluation

In this section we evaluate the performance of Dynamap on two types of
synthetic scenario (Sections 6.1 and 6.6) and two real-world scenarios (Sec-
tions 6.2 and 6.3). In Section 6.4 we evaluate the accuracy of the propagation
rules (Section 4.5), and in Section 6.5 we show the efficiency of the pruning
strategies (Section 4.7).
Setup. Dynamap and ++Spicy were run over the same sources, and the
same target. For storage, we used PostgreSQL 9.6. Given that ++Spicy uses
explicit schema constraints, based on the profile data, foreign keys between
the sources are inferred where possible, i.e., a candidate key shares a (full)

39

inclusion dependency with an attribute from another relation. Tuples in the
synthetic scenarios were generated using Datafiller [41]. The experiments
were run over an Intel Core i5 with 2×2.7 GHz, and 8 GB of RAM. We
report the results over the average of 10 runs when runtime is measured.
Evaluation metrics: iBench scenarios. We used a metric that was pre-
viously used in [10]: mappings that output less constants and less nulls are
considered to be desirable as it means that the data is correlated better.
Realcase scenarios. The result of the output mapping is compared with that
of a ground-truth mapping, reporting the precision, recall and f-measure at
the attribute value level, based on the following definitions:
A true positive is a correct non-null output value.
A true negative is a correctly output null, i.e., it was expected to be null in
the ground truth.
A false negative is a missing output value (a null).
A false positive is a non-null incorrect output value.
Mapping selection. For the experiments, for Dynamap, mappings were se-
lected by choosing from the fittest k mappings (Section 4.1) as few mappings
as possible such that all initial relations are involved. The mappings are se-
lected by applying the set-cover method [36] to the subsets of initial relations
merged in each mapping. For ++Spicy, we used the generated SQL script
that is considered to contain the best mappings that populate the chosen
target. In both cases, other mapping selection techniques could be applied,
e.g., considering properties of the extents of the mappings [42].
Comparison with ++Spicy. In this section, comparisons are drawn with
++Spicy [17] in terms of result quality and runtime performance. Dynamap
and ++Spicy were run over the same mapping task with the same input
sources, their output mappings were executed and the output tuples are
compared to the output of the ground truth. ++Spicy has been chosen as it is
publicly available, and represents the state-of-the-art in mapping generation
for databases; we think that ++Spicy does what it was designed to do rather
well. We note that ++Spicy was not designed to support mapping generation
in the wild, and thus that in places the comparison with Dynamap may not
seem entirely fair. However, this reflects the fact that mapping generation
in the wild presents new challenges, and we know of no other more suitable
system with which to conduct comparative evaluations.

40

(a) Simple target (b) Complex target

Figure 7: iBench experiments

6.1. iBench: Integration Metadata Generator

iBench [10] is a tool that generates data integration/exchange scenarios,
where the sources have explicit keys and foreign keys. Although not in the
wild, these scenarios are relevant for our purpose as they consist of a variety
of base case primitives that mapping generation algorithms should be able
to tackle. iBench denotes a primitive as a scenario that involves one source
schema and one target schema where a specific type of merge is needed
to transfer the data from the source to the target. The merge involves a
variation of copying and/or joining source relations to populate the target.

Here, the experiments follow the methodology presented in [10], where
iBench is used to compare several mapping generation algorithms. The mea-
sures proposed in [10] imply that the mappings that produce smaller target
instances produce less incompleteness, so they measure the size of the target
which consists of the number of atoms [3] that could be a constant or a null.
Simple target scenarios. The scenarios are built as:
Target. In order to keep the target schema fixed, we used a user defined
primitive where the target schema is given, and set the corresponding iBench
parameters to reuse 100% of the target schema. The target schema is a nine-
attribute target relation.
Input sources. Each generated scenario has 20 source relations with 4-12 at-
tributes, each with 400-600 tuples that are generated with Datafiller [41]. We
chose to create scenarios with only 20 input source relations as the purpose
of this experiment is to investigate specific mapping generation patterns, not
how the algorithm scales (which is investigated in Section 6.6). We used
the following iBench primitives: add attribute, add-delete, delete, copy and
merge-add.

41

In generating the different scenarios, we varied the number of primitives
so that the 20 input source relations created have 0% to 60% of their relations
linked by inclusion dependencies. In other words, the generated scenarios de-
pict cases where the source relations are mostly unionable w.r.t. the target
relation (but having different matches to the target) to cases where the num-
ber of relations that are joinable increases, i.e., by increasing the number of
source relations that are linked by inclusion dependencies. The reuse of the
source relations is set to 0%, i.e., each primitive has its own associated source
relations, as sharing the same source relation for several primitives changes
the target schema by adding target relations.
Matches. All sources will match the target; the matches are generated by
iBench according to the primitives.
Profile data. The profile data is generated according to the inclusion depen-
dencies in each scenario and the defined primary keys in each relation.
Results. The results are in Figure 7(a), where the output atoms of the
mappings generated by Dynamap are compared with the output of ++Spicy
mappings. It can be observed that for the scenario with 0% INDs, their
output is identical in terms of number of constants and nulls, but once the
scenarios start having relations with inclusion dependencies, their output is
slightly different. This difference comes from the fact that for the merge-add
primitives Dynamap outputs only the joined tuples, while ++Spicy outputs
all tuples, regardless of whether the tuples could be combined or not. Dy-
namap chooses the mappings that output only the merged tuples as it prefers
mappings that have fewer incomplete tuples, thus, the mappings that pro-
duce tuples that bring more nulls than constants are not produced. However,
either of these outputs could be considered to be reasonable. In terms of val-
ues, all Dynamap values were identical with the corresponding tuple values
of ++Spicy.

Complex target scenarios. We reproduced as closely as possible one of the
experiments in [10], where the number of foreign keys in the target schema is
varied using different primitives for vertical partitioning (VH, VI, and VNM)
and ADD primitives. In [10], they describe these primitives as part of Ontol-
ogy scenarios as each i) VH primitive creates two target relations in a HAS-A
relationship, ii) VI creates two target relations in an IS-A relationship, iii)
VNM creates three target relations in a many-to-many relationship, and iv)
ADD creates one target relation that copies a source relation, but needs more
attributes than that source.

42

Dataset Data for the target #DS #A #T
simple complex

Manchester real-estate street, price, city, postcode s name, price, c name, postcode 5 5-9 20 - 171
London real-estate street, price, city, postcode s name, price, c name, postcode 2 6-13 20-35
Oxford real-estate price, street, postcode price, s name, postcode 4 10-14 28-152
Manchester deprivation postcode, crimerank postcode, crimerank 1 28 391
London deprivation postcode, crimerank postcode, crimerank 1 28 54
Manchester & Oxford addresses street, city, postcode s name, c name, postcode 1 4 235

Table 6: Real-estate datasets

Figure 8: Real-estate target schema with constraints

Target schema. We set the number of target tables to 40, their arities to
vary between 3 and 7 attributes, and the corresponding iBench parameters
to reuse 0% of the target schema. For each iBench scenario, the number of
target constraints (foreign keys) varies from 0% to 50%. This means that the
scenarios shift from ADD-dominant scenarios to VP-dominant scenarios.
Input sources. Varying the number of primitives the number of sources ranges
from 40 source relations (with 0% target INDs) to 28 relations with (50%
target INDs), with arities from 3 to 7 attributes, and each relation has 400-
600 tuples that are generated with Datafiller [41].
Matches and profile data. Created as for simple target.
Results. The results are shown in Figure 7(b). The performance of both
algorithms is the same because the scenarios do not present any challenges,
i.e., there are no alternative ways of merging the sources: the sources are
disjoint, they are only vertically partitioned into two (for VI&VH primitives)
or three (for VNM primitive) foreign key tables, tasks which both algorithms
are able to perform successfully. In terms of attribute values, all output
values of Dynamap were identical with the corresponding ones of ++Spicy.
The only inessential difference is in the format of labelled nulls.

6.2. Real-estate Domain

In this section, we investigate a real world scenario in which web-extracted
datasets from the real-estate domain are combined with data from the UK
open government data portal. Below, we evaluate Dynamap for simple and
complex targets for data quality. These experimental results complement the

43

ones described in our previous work from [11], where we show that Dynamap
can successfully tackle simple target scenarios.

Scenarios. For both scenarios, we used the same input sources and profiling
data, but the target schema and the matches are changed accordingly. The
input sources and profiling data are described below.
Input sources. The input sources contain data from three categories: real-
estate data, deprivation and addresses. Details about the input datasets are
found in Table 6 where the first column states what the data represents, the
second and the third outline which information from the dataset is necessary
to populate the simple and the complex targets, respectively, the third col-
umn represents the number of input data sources that contain that type of
data, the fourth is the arity range, and the fifth represents the cardinality
range.
Profile data. To obtain the profile data on the input sources, HyUcc [9]
was run to detect the candidate keys, and SINDY [34] was run to obtain
the (partial) inclusion dependencies. The input profile data contains: 68
candidate keys, 1735 partial inclusion dependencies, and 509 full inclusion
dependencies. Given that ++Spicy uses explicit schema constraints, based
on the profile data, foreign keys are inferred where possible, i.e., if a candidate
key shares an inclusion dependency with another relation’s attribute then a
foreign key is inferred.
Simple target. The target is a single-relation target schema without con-
straints:

Target (postcode, city, street, price, crimerank)
Complex target. The target is a four-relation schema with constraints, i.e.
primary and foreign keys. This is depicted in Figure 8 where the primary keys
are underlined attributes and foreign keys are arrows from the dependent to
the referenced table.
Ground truth. The ground-truth mappings were created by a human expert.

Dynamap and ++Spicy were run over the same mapping task with the
same input sources, their output mappings were executed and the output
tuples are compared to the output of the ground truth.
Results for a simple target. The results of the two mappings against the
ground truth mapping can be seen in Figures 9(a) and 9(b).
Attribute level. The results at attribute level are shown in Figure 9(a). Both
algorithms perform similarly in terms of precision, i.e., close to all the at-
tribute values that Dynamap and ++Spicy output are the same as in the

44

(a) Attribute level (b) Tuple level

Figure 9: Performance of Dynamap and ++Spicy on a real-estate scenario for a simple
target

ground truth. The difference between their recall is caused by the fact that
Dynamap manages to correlate more data, which leads to fewer but more
complete tuples, while ++Spicy does not merge relations that match the
same target attributes unless those attributes can be used in the join condi-
tion.
Tuple level. The results at tuple level are depicted by Figure 9(b). Both
algorithms perform similarly in terms of total number of true positive tuples,
i.e., Dynamap produces 947, and ++Spicy outputs 1075. The difference
between their results comes from the fact that Dynamap manages to correlate
more data, which leads to fewer but more complete tuples. Also, all the TP
tuples from Dynamap are complete, i.e., all attribute values are the same as
in the ground truth tuples, while ++Spicy identifies only 538 complete tuples
and 537 incomplete TP tuples. Incomplete TP tuples are expected in the
ground truth, but they are only partially correct as some attribute values are
correct, but others are either missing or incorrect. The false positive tuples
that both produce are due to the fact that there are 46 tuples in each of their
outputs that have null on the key attribute and, thus, could not be compared
to any of the ground-truth tuples. This behavior reflects the fact that the
input sources are heterogeneous and autonomous so not everything can be
readily combined as in a well-behaved schema. The false negative tuples that
both Dynamap and ++Spicy produce stem from missing key values in the
sources. The additional false negatives produced by ++Spicy are created
because some of these tuples were candidates for joining, but they were not
merged, thus, producing more false negatives than Dynamap (as they also
have missing keys so cannot be correlated with ground-truth tuples).
Results for a complex target. The results of the two mappings against

45

(a) Attribute level (b) Tuple level

Figure 10: Performance of Dynamap and ++Spicy on a real-estate scenario for a complex
target

the ground-truth mapping can be seen in Figures 10(a) and 10(b).
Attribute level. Figure 10(a) shows the results at attribute level. In this
scenario, the results for the two algorithms are not significantly different as
they both manage to align most of the source tuples and populate the target
as expected. Some tuples produced by both algorithms were not expected
because there are agency properties that do not have a corresponding postcode
in the sources. Because of this, there is no value on postcode to compare
it to the ground truth tuples. However, they are the same (and correctly
transformed from the sources) for both algorithms. The low recall on the
performance of ++Spicy is due to false negatives. We explain below (at
tuple level) why these occur.

Tuple level. The results at tuple level are depicted in Figure 10(b). At tuple
level, it can be observed an increase in false negative tuples for ++Spicy. The
false negative tuples are actually tuples that ++Spicy manages to discard as
they are subsumed by other tuples. It manages to do so by using egds on
the postcode attribute and by materializing various combinations of tables,
thus, it manages to eliminate from the output the tuples that had overlap-
ping postcode values. The SQL script that ++Spicy creates materializes 119
intermediate relations in order to discard subsumed tuples. It would be un-
feasible for a human to hand craft such complicated scripts for the creation
of the ground truth, thus, the created ground truth is designed to correlate
data as best as it can without using materialized intermediate data. This sce-
nario is advantageous for ++Spicy which is designed to tackle especially well
scenarios where all available sources match the same target key attribute.
However, in a real-world data lake (with thousands of sources) this is unlikely

46

Dataset Data for the target #DS #A #T
simple complex

All schools dfe code, school name, headteacher dfe code, s name, ht name 1 16 99
Free meals eligibility dfe code, school name, elig. students dfe code, s name, pupils FSM eligible 1 4 85
Additional languages dfe code, school name, pupils EAL dfe code, s name, pupils EAL 6 3-6 24 - 88
Road & Safety training school name, school type s name, type name 1 3 46
Bikeability courses school name, bikeability courses s name, bikeability courses 1 6 87

Table 7: Schools domain datasets

Figure 11: Schools domain target schema with constraints

to happen. We show a different behaviour in a more challenging scenario in
Section 6.3.

Comparing the populated target tables separately, one major difference
between the two approaches is on the labelled nulls they generate. For in-
stance, the size of the city relation populated by Dynamap has 117 tuples
compared to 850 tuples in the case of ++Spicy. From the ++Spicy tuples,
609 have one non-null value and then an entirely empty row, e.g., 97 have
labelled nulls for primary keys, and 512 tuples have Manchester value on
c name but nulls on the other attributes. The creation of such redundant
labelled nulls happens because, even though the city information is missing,
there is information for the other attributes in a foreign key table, e.g., for
street info table. So it links two such tuples although tuple in city even
though there is no information in it. The creation of duplicate values hap-
pens because, the ++Spicy method for creating labelled nulls generates a
separate entry in City relation for each tuple that has different information
in it, e.g., price, or street name, in Manchester.

6.3. Schools Domain

Similarly to Section 6.2, we evaluate Dynamap on two scenarios with
real-world datasets with both simple and complex targets.
Scenarios. For both scenarios, we used the same input sources and profiling
data, but the target and the matches are changed accordingly.
Input sources. The data sources contain information about schools, more

47

specifically, about the facilities in those schools. Table 7 contains their de-
tails.
Profile data. The same method as in Section 6.2 was used to obtain the
profile data. The input contains 48 candidate keys, 681 partial inclusion
dependencies, and 47 full inclusion dependencies. Similarly to Section 6.2, we
created explicit foreign keys between the sources to give as input to ++Spicy.

Simple target. The target is a single-relation schema:
Target(dfe code, school name, school type, headteacher, #bikeability courses,

#pupils EAL, #eligible students).
Complex target. Figure 11 depicts the target comprising four relations with
constraints.
Ground truth. The ground-truth mapping was handcrafted by an expert.
Results for a simple target. The results of the two mappings against the
ground-truth mapping can be seen in Figures 12(a) and 12(b).
Attribute level. The results can be seen in Figure 12(a). The precision of
both mappings is high, i.e., the majority of their identified attribute values
match the ground truth. The discrepancy in recall happens because, although
++Spicy makes use of explicit join paths and removes redundancy by using
equality generating dependencies, these steps are not enough as this is not a
well behaved scenario. In this scenario, ++Spicy merges the relations with
matches to attributes that are keys in the target, and this reduces redundancy
in the output, but relations that do not have such matches are not merged
with the other relations. For example, All schools, Free meals eligibility and
Schools with additional languages all match the key target attributes, and
thus are joined, but Road and Safety Training and Bikeability only match
non-key target attributes, so ++Spicy does not consider them for merging
with the other relations. Dynamap follows join paths defined by partial
inclusion dependencies, and resorts to outer joins when foreign keys cannot
be inferred, and thus more fully combines data from the source tables.
Tuple level. In Figure 12(b), considering the completeness of the output tu-
ples, it can be observed that Dynamap outperforms ++Spicy. This is because
Dynamap combines the source tables almost as expected in the ground truth,
with only 8 partially correct tuples, whereas ++Spicy outputs 266 partially
correct tuples, and only 162 tuples with all information correct. This dis-
crepancy in the output quality happens for the same reason stated above (for
attribute level). Thus, ++Spicy is not able to correlate all the information
so it outputs mostly partially correct tuples (266), 40 tuples are considered

48

(a) Attribute level (b) Tuple level

Figure 12: Performance of Dynamap and ++Spicy on a schools scenario for a simple target

(a) Attribute level (b) Tuple level

Figure 13: Performance of Dynamap and ++Spicy on a schools scenario for a complex
target

incomplete false negative tuples as they have a few correct values, but mostly
null values where in the ground truth there were expected non-nulls.
Results for a complex target. The results of the two mappings against
the ground-truth mapping can be seen in Figures 13(a) and 13(b).
Attribute level. Figure 13(a) shows the results at attribute level. It can be
observed that ++Spicy seems to outperform Dynamap by 0.013 in precision.
This is because ++Spicy produces more tuples that have the same school
name than Dynamap as ++Spicy fails to do the expected joins with the
sources that do not match target keys, as ++Spicy uses target egds to re-
move redundancy [17]. However, although the data produced by ++Spicy is
missing some correct non-null values on those uncorrelated tuples, some null
values are considered as correct more than once (the ones that are expected
to be nulls in the ground truth), thus, increasing the number of true nega-
tives. In terms of recall, Dynamap has a better performance than ++Spicy
by 0.276. Dynamap does not achieve the maximum because it produces 249
false negatives. These FNs are produced as, although Dynamap joins the

49

Percentage of estimation θ with error in the range
[0.0, [0.1, [0.2, [0.3, [0.4, [0.5, [0.6, [0.7, [0.8, [0.9,
0.1) 0.2) 0.3) 0.4) 0.5) 0.6) 0.7) 0.8) 0.9) 1.0]

Realestate 93.3 3.1 1.1 0.8 0.6 0.5 0.4 0.3 0.1 0
Schools 56.6 19.4 10.3 8.7 2.4 1.8 0.5 0.3 0.1 0

Table 8: Error ranges

correct relations, not all joins are performed on the expected condition so
some tuples are not correlated as expected in the ground truth. ++Spicy
has a lower recall because it misses join opportunities as it relies on egds, a
technique that is not suitable in this scenario as not all sources match target
key attributes (as in Section 6.2). Thus, the number of false negative cell
values for ++Spicy (907) is 3.6 times higher than for Dynamap (249).

Tuple level. Figure 13(b) shows the results at tuple level which depict the
ability of both algorithms to correlate data in the target. The discrepancy
between the results of Dynamap and ++Spicy is caused by the same reason
as explained above. Also, in Figure 13(b), it can be observed that Dynamap
produces 39 false positives. This is because of the nature of the source data
in which the same entity has different representations, i.e., the names of the
schools (although correct) differ, in the output of Dynamap, but chosen from
another source to represent the same entity. Hence, there are 39 Dynamap
tuples that do not have a school name corresponding to the ground truth
because of variations in the name. The tuples without a ground-truth coun-
terpart are considered false positives in their entirety. One would say that
this can be a common scenario for mapping generation over autonomous
sources as many sources may contain data about the same entities, in differ-
ent formats.

6.4. Profiling Data Propagation Accuracy

In this section we investigate the accuracy of the propagated inclusion
dependencies (Section 4.5) for the scenarios in Sections 6.2 and 6.3. To
measure the accuracy, we materialized the intermediate mappings generated
in all iterations, and we used SINDY [34] to obtain the ground-truth inclusion
dependencies with accurate overlap. The results of the experiment can be
seen in Table 8, which identifies the percent of the estimated overlaps in
different error ranges.
Real-estate scenario. For this scenario, 112,147 inclusion dependencies
were compared to the ground truth that was generated using 785 material-
ized intermediate mappings. 83,617 overlaps were equal to the ground truth

50

Figure 14: Pruning strategies impact

overlaps, and 28,530 were different. It can be observed from Table 8 that
most differences were in the range [0, 0.1), (i.e., 20,964 of the 28,530 estimates
that were different from the ground truth), meaning that the estimates were
close to the true value. The mean average error over all overlaps is 0.025.
Schools scenario. For this scenario, 36,917 inclusion dependencies were
compared to the ground truth which was obtained from 116 materialized in-
termediate mappings. 9319 overlaps were equal to the ground-truth overlap,
and 27,598 were different. In Table 8, it can be observed that most estimates
had no error or an error below 0.1. The mean average error is 0.12. The
mean average error is larger than in the real estate scenario because only
≈6% of the inclusion dependencies in the schools scenario are full inclusion
dependencies, c.f. ≈23% for the real-estate scenario.

6.5. Effectiveness of Pruning Strategies

We show the effectiveness of the pruning strategies by measuring the run-
time with each pruning strategy active so as to quantify how each strategy
impacts on the overall run-time. The results are depicted in Figure 14. In
each case, the runtimes were capped to one hour.

We report runtimes for five different cases: with all pruning strategies
active (all), with none active (none), and, with each pruning strategy acti-
vated separately, i.e., removing unnecessary parent mappings (RUPM), pre-
venting creation of superfluous mappings (PCSM), and pruning subsumed
union mappings (PSUM). In each case, Dynamap generated the expected
mapping.

51

(a) Instance complementarity
scenarios

(b) Schema complementarity
scenarios

(c) Mixed scenarios

Figure 15: Runtime of mapping generation for synthetic data scenarios

Scenarios. The synthetic scenarios were created by increasing the number
of expected join and union operations in the ground truth, while keeping
them equal, e.g., the smallest scenario contains 5 unions and 5 joins, and the
largest contains 11 of each type of operation.
Results. In Figure 14, it can be observed that for the smallest two scenarios,
the pruning strategies do not significantly improve the running time as the
search space is not especially large. However, once the number of sources
increases beyond 19, the runtime starts to be affected by the combinatorial
properties of dynamic programming, such that for the largest scenario (23
sources) the runtime without pruning goes beyond one hour (not depicted in
Figure 14), whereas with all pruning strategies active it runs in less than a
second. The PCSM strategy has the highest impact of all. This significant
improvement is due to the fact that it can prevent the creation of map-
pings, thus, the search space is contained by not creating mappings that will
be discarded in subsequent iterations. PSUM and RUPM are effective at
removing already created, but unnecessary mappings. Nonetheless, the fact
that mappings are created and added to the search space considerably affects
subsequent iterations, thus increasing the runtime.

6.6. Scalability Experiments

In this section, we investigate the impact of specific properties of the in-
tegration scenarios on the runtime performance of Dynamap and ++Spicy.
The objective has been to provide scenarios that provide substantial search
spaces, over numbers of tables that might be identified by searches over data

52

lakes [28, 43, 27]. To this end, we developed Synthegrate2, a generator of
integration scenarios that provides control over schema properties, such as
arity, cardinality, number of candidate keys, number of source/target rela-
tions, and number of source schemas. It also allows control over the number
of expected join and union operations, reuse of join attributes in other merge
opportunities, and ratio of explicit foreign keys. Matches and profile data
are created automatically by Synthegrate, reflecting the database schemas
and the extents produced using Datafiller [41]. The ground truth mapping
is also created automatically by Synthegrate.

Synthegrate complements the functionality of iBench through its abil-
ity to create complex integration scenarios while keeping the target schema
fixed. In iBench, if the target schema is fixed then the number of scenarios
that can be created is rather limited. Complex iBench scenarios are mostly
generated by adapting the target schema to the new input parameters.

Figures 15(a), 15(b), and 15(c) show the processing time of Dynamap
and ++Spicy under different types of integration scenarios. The measured
runtime for Dynamap reflects the processing time to output the mapping
in the final iteration (if found) and the runtime for ++Spicy includes the
computation of core mappings. For both algorithms, the runtime measure-
ments include only the mapping generation and the generation of SQL scripts
(needed to evaluate the output). However, as explained in [16], the genera-
tion of the SQL script by ++Spicy can represent a significant amount of the
total running time. For all experiments, we fixed a timeout of one hour. If
the experiment was not completed by that time, it was stopped.
Instance complementarity scenarios. The number of union operations
in the correct mapping is varied. These scenarios are a synthetic represen-
tation of cases where the relations that need to be merged contain the same
type of information as is needed in the target.
Results. The mapping generation times for different numbers of union oper-
ations in the mapping scenario are in Figure 15(a). In terms of result quality,
the result tuples are exactly as in the ground truth for both algorithms. In
Figure 15(a), it can be seen that a mapping containing 500 unions has been
generated by Dynamap in less than a minute, while ++Spicy generates it in
≈ 22 minutes. The time increase for both algorithms comes from the fact
that, in such scenarios, all permutations of the input relations are reasonable

2https://github.com/MLacra/Synthegrate.git

53

https://github.com/MLacra/Synthegrate.git

candidate mappings. For Dynamap, this type of scenario provides a sig-
nificant test for the pruning techniques that prevent creation of superfluous
mappings, prune subsumed union mappings and remove unnecessary parent
mappings, without which the search space for Dynamap would have grown
following formula in Section 4.7.1.
Schema complementarity scenarios. In this type of scenario, we vary
the number of join operations in the correct mapping. These scenarios are
a synthetic representation of real-world cases where the relations that need
to be merged contain different attributes of the data that are needed in
the target, e.g., by bringing together information about a school from many
sources.
Results. The results can be seen in Figure 15(b). In terms of result quality,
the result tuples that Dynamap produces are exactly as in the ground truth
for all scenarios. On the scenarios with fewer join operations, we were able to
evaluate the output of ++Spicy and observe that it produces all the merged
tuples which appear in the ground truth, but also the tuples that were not
joined with other tuples and these are considered false positives as they were
not expected in the output. For the large scenarios we were not able to
execute the generated ++Spicy mapping on the input database.

In Figure 15(b), it can be seen that Dynamap generates a mapping con-
taining 50 joins in less than a minute, while ++Spicy runs in approximately
15 minutes. However, it seems unlikely that mappings with upwards of 50
joins will be common in practice. In this type of scenario both algorithms
have a similar approach for discovering the mapping, i.e., following foreign
key join paths between the sources. The time difference comes from the
fact that, although in this type of scenario the opportunities for combining
relations are fewer than in a union dominant case, Dynamap identifies op-
portunities for pruning that depend significantly on preventing creation of
superfluous mappings and removing unnecessary parent mappings, whereas
++Spicy tries to remove redundancy by combining the same sources in mul-
tiple variations.
Instance & schema complementarity scenarios. In this type of scenar-
ios, we vary the number of union and join operations expected in the correct
mapping. Through the variation of operators, unintentional merge oppor-
tunities were created as union relations can partially overlap with relations
that are expected to merge with other relations, i.e., through the partial (or
even full) overlap they can become candidates for joining although it was not
by design. These scenarios represent real-world cases where some but not all

54

relevant source relations contain the same type of information.
Results. The results can be seen in Figure 15(c). In terms of result quality,
the result tuples that Dynamap mapping produces are exactly as in the
ground truth in 10 out of 11 cases. ++Spicy does not produce the expected
tuples in any of the chosen scenarios (that ran under one hour): it identifies
the union opportunities, but not all the correct join opportunities, leading
to many output tuples padded with nulls. ++Spicy does not behave as
expected because the majority of the join-condition attributes do not match
the target key attributes, thus, ++Spicy is unable to use egds to merge the
sources, while Dynamap does not rely on matched target keys to identify
merge opportunities. The case where Dynamap generated only parts of the
expected mapping was the case with 50 join and 450 union operations. This
partial detection is due to the complexity of the scenario. In some cases, the
approximated profile data is close to the actual values, but not equivalent,
i.e., the overlaps of the inclusion dependencies can become partial instead of
full, thus, an expected join is detected as outer join.

In Figure 15(c), it can be seen that a mapping containing 550 join and
union operations was generated by Dynamap in less than 7 minutes, while
++Spicy runs in over an hour. For the scenario with 50 join and 450 union
operations, the running time for Dynamap is significantly reduced. This is
because, as explained in Section 4.5, the propagation of the profile data is
influenced by the chosen operators. In this case, some mappings became
unavailable to merge with other mappings as less profile information was
transferred to them from the parent mappings because of the use of a full
outer join instead of a join. This scenario provides a significant test for
the pruning techniques that prevent creation of superfluous mappings, prune
subsumed union mappings and remove unnecessary parent mappings, without
which the search space would have grown much more rapidly than is reflected
in Figure 15(c).

7. Conclusions

Schema mapping generation is important for reducing the currently pro-
hibitive cost of data preparation. The proliferation of data sets, for example
in data lakes, motivates the development of schema mapping generation al-
gorithms for large and heterogeneous repositories. In such settings, schema
mapping generation involves a search over a large space of candidate map-
pings.

55

Schema mapping generation has been cast as a search problem before.
For example, in Clio [1], mapping generation involved searching the space of
join paths in source and target tables, and, for example, in both Tupelo [33]
and S4 [44] search algorithms are developed for exploring a space of candi-
date operator applications, informed by example instances. However, such
proposals have been developed primarily for mapping from a single (poten-
tially complex), but well-defined multi-table schema. In our setting, where
there may be a plethora of multi-table schemas, originating from various
publishers, we must depend on less reliable profiling information to describe
source tables and the relationships between them, with a view to identifying
promising ways of populating the target from the sources.

Here we revisit the contributions from the introduction, to make explicit
the contributions made to understanding of mapping generation in the wild:

1. A dynamic programming algorithm that explores the space of candi-
date mappings. A dynamic programming algorithm has been chosen
as it systematically explores the space of candidates, creating n-table
mappings from combinations of mappings with fewer tables. The ex-
ploratory approach reflects the fact that we cannot build on declared
relationships in the wild, as has been the focus of schema mapping
generation in databases, building on Clio [1].

2. Rules for deriving profile data for mappings from their operands. Map-
ping generation proposals can be characterised in terms of the evidence
they use, and this has been diverse, including declared schemas [1], ex-
ample instances [14] and feedback [45]. In this paper, we use (readily
available) inferred profiling data on candidate keys and (partial) in-
clusion dependencies to provide information on when tables can be
joined. However, although such information can be derived on base
tables [9], deriving profiling data on all candidate mappings would be
prohibitively expensive. To solve this problem, we have developed sys-
tematic techniques for propagating profiling data on keys and inclusion
dependencies through mappings. Such techniques can be used inde-
pendently of the rest of Dynamap.

3. Techniques for pruning the space of candidate mappings. Although
the dynamic programming based search is systematic in its exploration
of the space of mappings, there can be a combinatorial explosion in
the number of candidate mappings. Mapping generation in the wild

56

needs to scale to large numbers of sources and complex mappings. We
have identified situations in which portions of the search space can
be pruned, for example in the context of subsumed mappings, while
retaining the systematic exploration of the space provided by dynamic
programming,

4. A method that populates a multi-relation target schema. Contributions
(1) to (3) provide systematic, scalable mapping generation informed
by profiling data for single-table targets. To retain the benefits of the
single-table approach for targets with multiple tables, including foreign
keys, we have proposed an approach that: i) creates a universal target
relation from a complex target; ii) applies single-table Dynamap to
that target; and iii) maps the data from the universal target relation
to the tables of the target. This approach retains the performance
benefits of Dynamap for single-table targets, and takes into account
target constraints, allowing for the reality that data in the wild may
not satisfy declared constraints in the target.

5. An empirical evaluation of the approach: We have carried out an ex-
tensive evaluation that uses a variety of real-world and synthetic data
sets to explore the following features of the proposal: i) the quality of
the results produced by generated mappings; ii) scalability of mapping
generation; iii) accuracy of inferred profiling data; and iv) the impact
of different pruning strategies. These experiments provide extensive
evidence that, building on readily-available profiling data, Dynamap
provides dependable results on mapping generation in the wild.

Acknowledgements

We are pleased to acknowledge the support of the Engineering and Phys-
ical Sciences Research Council, United Kingdom, through the VADA Pro-
gramme Grant [EP/M025268/1].

References

[1] R. Fagin, L. M. Haas, M. Hernandez, R. J. Miller, L. Popa, Y. Vele-
grakis, Clio: Schema mapping creation and data exchange, in: Con-
ceptual Modeling: Foundations and Applications, Springer, 2009, pp.

57

http://dx.doi.org/10.1007/978-3-642-02463-4_12

198–236. doi:10.1007/978-3-642-02463-4_12.
URL http://dx.doi.org/10.1007/978-3-642-02463-4_12

[2] M. Arenas, P. Barceló, L. Libkin, F. Murlak, Foundations of Data Ex-
change, Cambridge Univ. Press, 2014.

[3] B. Alexe, M. Hernández, L. Popa, W.-C. Tan, Mapmerge: Correlating
independent schema mappings, The VLDB Journal 21 (2) (2012) 191–
211. doi:10.1007/s00778-012-0264-z.
URL http://dx.doi.org/10.1007/s00778-012-0264-z

[4] L. Chiticariu, W. C. Tan, Debugging schema mappings with routes, in:
VLDB, 2006, pp. 79–90.

[5] A. Bonifati, G. Mecca, A. Pappalardo, S. Raunich, G. Summa, Schema
mapping verification: the spicy way, in: EDBT, 2008, pp. 85–96.

[6] P. A. Bernstein, L. M. Haas, Information integration in the enterprise,
CACM 51 (9) (2008) 72–79. doi:10.1145/1378727.1378745.
URL http://doi.acm.org/10.1145/1378727.1378745

[7] Z. Abedjan, L. Golab, F. Naumann, Profiling relational data: a survey,
VLDB J. 24 (4) (2015) 557–581.

[8] E. Rahm, P. A. Bernstein, A survey of approaches to automatic
schema matching, VLDB J. 10 (4) (2001) 334–350. doi:10.1007/

s007780100057.
URL https://doi.org/10.1007/s007780100057

[9] T. Papenbrock, Y. Bergmann, M. Finke, J. Zwiener, F. Naumann, Data
profiling with metanome, Proc. VLDB Endow. 8 (12) (2015) 1860–1863.
doi:10.14778/2824032.2824086.
URL http://dx.doi.org/10.14778/2824032.2824086

[10] P. C. Arocena, B. Glavic, R. Ciucanu, R. J. Miller, The ibench integra-
tion metadata generator, PVLDB 9 (3) (2015) 108–119.

[11] L. Mazilu, N. W. Paton, A. A. Fernandes, M. Koehler, Dynamap:
Schema mapping generation in the wild, in: SSDBM, New York, USA,
2019, pp. 37–48. doi:10.1145/3335783.3335785.
URL https://doi.org/10.1145/3335783.3335785

58

https://doi.org/10.1007/978-3-642-02463-4_12
http://dx.doi.org/10.1007/978-3-642-02463-4_12
http://dx.doi.org/10.1007/s00778-012-0264-z
http://dx.doi.org/10.1007/s00778-012-0264-z
https://doi.org/10.1007/s00778-012-0264-z
http://dx.doi.org/10.1007/s00778-012-0264-z
http://doi.acm.org/10.1145/1378727.1378745
https://doi.org/10.1145/1378727.1378745
http://doi.acm.org/10.1145/1378727.1378745
https://doi.org/10.1007/s007780100057
https://doi.org/10.1007/s007780100057
https://doi.org/10.1007/s007780100057
https://doi.org/10.1007/s007780100057
https://doi.org/10.1007/s007780100057
http://dx.doi.org/10.14778/2824032.2824086
http://dx.doi.org/10.14778/2824032.2824086
https://doi.org/10.14778/2824032.2824086
http://dx.doi.org/10.14778/2824032.2824086
https://doi.org/10.1145/3335783.3335785
https://doi.org/10.1145/3335783.3335785
https://doi.org/10.1145/3335783.3335785
https://doi.org/10.1145/3335783.3335785

[12] C. Beeri, M. Y. Vardi, A proof procedure for data dependencies, J. ACM
31 (4) (1984) 718–741. doi:10.1145/1634.1636.
URL http://doi.acm.org/10.1145/1634.1636

[13] S. Melnik, E. Rahm, P. A. Bernstein, Rondo: A programming plat-
form for generic model management, in: A. Y. Halevy, Z. G. Ives,
A. Doan (Eds.), Proceedings of the 2003 ACM SIGMOD Interna-
tional Conference on Management of Data, ACM, 2003, pp. 193–204.
doi:10.1145/872757.872782.
URL https://doi.org/10.1145/872757.872782

[14] B. Alexe, B. ten Cate, P. G. Kolaitis, W. C. Tan, Characterizing schema
mappings via data examples, ACM Trans. Database Syst. 36 (4) (2011)
23:1–23:48. doi:10.1145/2043652.2043656.

[15] A. Bonifati, U. Comignani, E. Coquery, R. Thion, Interactive mapping
specification with exemplar tuples, in: ACM SIGMOD, 2017, pp. 667–
682.

[16] G. Mecca, P. Papotti, S. Raunich, Core schema mappings: Scalable core
computations in data exchange, Inf. Syst. 37 (7) (2012) 677–711.

[17] B. Marnette, G. Mecca, P. Papotti, S. Raunich, D. Santoro, ++spicy:
An opensource tool for second-generation schema mapping and data
exchange, PVLDB 4 (12) (2011) 1438–1441.
URL http://www.vldb.org/pvldb/vol4/p1438-marnette.pdf

[18] R. Fagin, P. G. Kolaitis, R. J. Miller, L. Popa, Data exchange: semantics
and query answering, Theor. Comput. Sci. 336 (1) (2005) 89–124. doi:
10.1016/j.tcs.2004.10.033.
URL https://doi.org/10.1016/j.tcs.2004.10.033

[19] R. Fagin, P. G. Kolaitis, L. Popa, Data exchange: Getting to the core,
ACM Trans. Database Syst. 30 (1) (2005) 174–210. doi:10.1145/

1061318.1061323.
URL http://doi.acm.org/10.1145/1061318.1061323

[20] G. Gottlob, A. Nash, Efficient core computation in data exchange, J.
ACM 55 (2) (2008) 9:1–9:49. doi:10.1145/1346330.1346334.
URL http://doi.acm.org/10.1145/1346330.1346334

59

http://doi.acm.org/10.1145/1634.1636
https://doi.org/10.1145/1634.1636
http://doi.acm.org/10.1145/1634.1636
https://doi.org/10.1145/872757.872782
https://doi.org/10.1145/872757.872782
https://doi.org/10.1145/872757.872782
https://doi.org/10.1145/872757.872782
https://doi.org/10.1145/2043652.2043656
http://www.vldb.org/pvldb/vol4/p1438-marnette.pdf
http://www.vldb.org/pvldb/vol4/p1438-marnette.pdf
http://www.vldb.org/pvldb/vol4/p1438-marnette.pdf
http://www.vldb.org/pvldb/vol4/p1438-marnette.pdf
https://doi.org/10.1016/j.tcs.2004.10.033
https://doi.org/10.1016/j.tcs.2004.10.033
https://doi.org/10.1016/j.tcs.2004.10.033
https://doi.org/10.1016/j.tcs.2004.10.033
https://doi.org/10.1016/j.tcs.2004.10.033
http://doi.acm.org/10.1145/1061318.1061323
https://doi.org/10.1145/1061318.1061323
https://doi.org/10.1145/1061318.1061323
http://doi.acm.org/10.1145/1061318.1061323
http://doi.acm.org/10.1145/1346330.1346334
https://doi.org/10.1145/1346330.1346334
http://doi.acm.org/10.1145/1346330.1346334

[21] B. ten Cate, L. Chiticariu, P. G. Kolaitis, W. C. Tan, Laconic schema
mappings: Computing the core with SQL queries, PVLDB 2 (1) (2009)
1006–1017.

[22] L. Bellomarini, E. Sallinger, G. Gottlob, The vadalog system: Datalog-
based reasoning for knowledge graphs, PVLDB 11 (9) (2018) 975–987.
doi:10.14778/3213880.3213888.
URL http://www.vldb.org/pvldb/vol11/p975-bellomarini.pdf

[23] A. D. Sarma, X. Dong, A. Y. Halevy, Bootstrapping pay-as-you-go data
integration systems, in: ACM SIGMOD, 2008, pp. 861–874.

[24] H. A. Mahmoud, A. Aboulnaga, Schema clustering and retrieval for
multi-domain pay-as-you-go data integration systems, in: ACM SIG-
MOD, 2010, pp. 411–422.

[25] A. Das Sarma, L. Fang, N. Gupta, A. Halevy, H. Lee, F. Wu, R. Xin,
C. Yu, Finding related tables, in: SIGMOD, New York, NY, USA, 2012,
pp. 817–828. doi:10.1145/2213836.2213962.
URL http://doi.acm.org/10.1145/2213836.2213962

[26] E. Zhu, F. Nargesian, K. Q. Pu, R. J. Miller, LSH ensemble: Internet-
scale domain search, PVLDB 9 (12) (2016) 1185–1196. doi:10.14778/
2994509.2994534.
URL http://www.vldb.org/pvldb/vol9/p1185-zhu.pdf

[27] F. Nargesian, E. Zhu, K. Q. Pu, R. J. Miller, Table union search on open
data, PVLDB 11 (7) (2018) 813–825. doi:10.14778/3192965.3192973.
URL http://www.vldb.org/pvldb/vol11/p813-nargesian.pdf

[28] A. Bogatu, A. A. A. Fernandes, N. W. Paton, N. Konstantinou, Dataset
discovery in data lakes, in: 36th IEEE International Conference on
Data Engineering, ICDE, IEEE, 2020, pp. 709–720. doi:10.1109/

ICDE48307.2020.00067.
URL https://doi.org/10.1109/ICDE48307.2020.00067

[29] K. Belhajjame, N. W. Paton, S. M. Embury, A. A. A. Fernandes,
C. Hedeler, Incrementally improving dataspaces based on user feedback,
Inf. Syst. 38 (5) (2013) 656–687. doi:10.1016/j.is.2013.01.006.
URL http://dx.doi.org/10.1016/j.is.2013.01.006

60

http://www.vldb.org/pvldb/vol11/p975-bellomarini.pdf
http://www.vldb.org/pvldb/vol11/p975-bellomarini.pdf
https://doi.org/10.14778/3213880.3213888
http://www.vldb.org/pvldb/vol11/p975-bellomarini.pdf
http://doi.acm.org/10.1145/2213836.2213962
https://doi.org/10.1145/2213836.2213962
http://doi.acm.org/10.1145/2213836.2213962
http://www.vldb.org/pvldb/vol9/p1185-zhu.pdf
http://www.vldb.org/pvldb/vol9/p1185-zhu.pdf
https://doi.org/10.14778/2994509.2994534
https://doi.org/10.14778/2994509.2994534
http://www.vldb.org/pvldb/vol9/p1185-zhu.pdf
http://www.vldb.org/pvldb/vol11/p813-nargesian.pdf
http://www.vldb.org/pvldb/vol11/p813-nargesian.pdf
https://doi.org/10.14778/3192965.3192973
http://www.vldb.org/pvldb/vol11/p813-nargesian.pdf
https://doi.org/10.1109/ICDE48307.2020.00067
https://doi.org/10.1109/ICDE48307.2020.00067
https://doi.org/10.1109/ICDE48307.2020.00067
https://doi.org/10.1109/ICDE48307.2020.00067
https://doi.org/10.1109/ICDE48307.2020.00067
http://dx.doi.org/10.1016/j.is.2013.01.006
https://doi.org/10.1016/j.is.2013.01.006
http://dx.doi.org/10.1016/j.is.2013.01.006

[30] M. Stonebraker, D. Bruckner, I. F. Ilyas, G. Beskales, M. Cherniack,
S. B. Zdonik, A. Pagan, S. Xu, Data curation at scale: The data tamer
system, in: CIDR, 2013, pp. –.
URL http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper28.

pdf

[31] R. C. Fernandez, et al., A demo of the data civilizer system, in: ACM
SIGMOD, 2017, pp. 1639–1642.

[32] J. Yang, Y. He, S. Chaudhuri, Autopipeline: Synthesize data
pipelines by-target using reinforcement learning and search, CoRR
abs/2106.13861 (2021). arXiv:2106.13861.
URL https://arxiv.org/abs/2106.13861

[33] G. H. L. Fletcher, C. M. Wyss, Data mapping as search, in: EDBT’06,
2006, pp. 95–111. doi:10.1007/11687238_9.
URL http://dx.doi.org/10.1007/11687238_9

[34] S. Kruse, T. Papenbrock, F. Naumann, Scaling out the discovery of
inclusion dependencies, in: BTW, 2015, pp. 445–454.
URL http://subs.emis.de/LNI/Proceedings/Proceedings241/

article24.html

[35] H. Garcia-Molina, J. Widom, J. D. Ullman, Database System Imple-
mentation, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1999.

[36] A. V. Aho, J. E. Hopcroft, The Design and Analysis of Computer Al-
gorithms, 1st Edition, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1974.

[37] A. B. Kahn, Topological sorting of large networks, Commun. ACM 5 (11)
(1962) 558–562. doi:10.1145/368996.369025.
URL http://doi.acm.org/10.1145/368996.369025

[38] J. Bleiholder, S. Szott, M. Herschel, F. Kaufer, F. Naumann, Subsump-
tion and complementation as data fusion operators, in: EDBT ’10, 2010,
pp. 513–524. doi:10.1145/1739041.1739103.
URL http://doi.acm.org/10.1145/1739041.1739103

[39] P. C. Arocena, B. Glavic, R. J. Miller, Value invention in data exchange,
in: SIGMOD, 2013, pp. 157–168.

61

http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper28.pdf
http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper28.pdf
http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper28.pdf
http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper28.pdf
https://arxiv.org/abs/2106.13861
https://arxiv.org/abs/2106.13861
http://arxiv.org/abs/2106.13861
https://arxiv.org/abs/2106.13861
http://dx.doi.org/10.1007/11687238_9
https://doi.org/10.1007/11687238_9
http://dx.doi.org/10.1007/11687238_9
http://subs.emis.de/LNI/Proceedings/Proceedings241/article24.html
http://subs.emis.de/LNI/Proceedings/Proceedings241/article24.html
http://subs.emis.de/LNI/Proceedings/Proceedings241/article24.html
http://subs.emis.de/LNI/Proceedings/Proceedings241/article24.html
http://doi.acm.org/10.1145/368996.369025
https://doi.org/10.1145/368996.369025
http://doi.acm.org/10.1145/368996.369025
http://doi.acm.org/10.1145/1739041.1739103
http://doi.acm.org/10.1145/1739041.1739103
https://doi.org/10.1145/1739041.1739103
http://doi.acm.org/10.1145/1739041.1739103

[40] B. Marnette, G. Mecca, P. Papotti, Scalable data exchange with func-
tional dependencies, Proc. VLDB Endow. 3 (12) (2010) 105116. doi:

10.14778/1920841.1920859.
URL https://doi.org/10.14778/1920841.1920859

[41] F. Coelho, Datafiller 2.0.0 – data generation tool, Avail-
able:https://www.cri.ensmp.fr/people/coelho/datafiller.html
[Accessed:2018-07-16] (2013).

[42] E. Abel, J. A. Keane, N. W. Paton, A. A. A. Fernandes, M. Koehler,
N. Konstantinou, J. C. C. Ŕıos, N. A. Azuan, S. M. Embury, User
driven multi-criteria source selection, Inf. Sci. 430 (2018) 179–199. doi:
10.1016/j.ins.2017.11.019.
URL https://doi.org/10.1016/j.ins.2017.11.019

[43] R. Castro Fernandez, Z. Abedjan, F. Koko, G. Yuan, S. Madden,
M. Stonebraker, Aurum: A data discovery system, in: ICDE, 2018,
pp. 1001–1012. doi:10.1109/ICDE.2018.00094.

[44] F. Psallidas, B. Ding, K. Chakrabarti, S. Chaudhuri, S4: top-k
spreadsheet-style search for query discovery, in: T. K. Sellis, S. B. David-
son, Z. G. Ives (Eds.), Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data, ACM, 2015, pp. 2001–2016.
doi:10.1145/2723372.2749452.
URL https://doi.org/10.1145/2723372.2749452

[45] A. Bonifati, R. Ciucanu, S. Staworko, Learning join queries from user
examples, ACM Trans. Database Syst. 40 (4) (2016) 24:1–24:38. doi:

10.1145/2818637.
URL https://doi.org/10.1145/2818637

62

https://doi.org/10.14778/1920841.1920859
https://doi.org/10.14778/1920841.1920859
https://doi.org/10.14778/1920841.1920859
https://doi.org/10.14778/1920841.1920859
https://doi.org/10.14778/1920841.1920859
https://www.cri.ensmp.fr/people/coelho/datafiller.html
https://doi.org/10.1016/j.ins.2017.11.019
https://doi.org/10.1016/j.ins.2017.11.019
https://doi.org/10.1016/j.ins.2017.11.019
https://doi.org/10.1016/j.ins.2017.11.019
https://doi.org/10.1016/j.ins.2017.11.019
https://doi.org/10.1109/ICDE.2018.00094
https://doi.org/10.1145/2723372.2749452
https://doi.org/10.1145/2723372.2749452
https://doi.org/10.1145/2723372.2749452
https://doi.org/10.1145/2723372.2749452
https://doi.org/10.1145/2818637
https://doi.org/10.1145/2818637
https://doi.org/10.1145/2818637
https://doi.org/10.1145/2818637
https://doi.org/10.1145/2818637

	Introduction
	Related Work
	Problem Statement
	Mapping Generation for a Simple Target
	Algorithm Overview
	Pre-Processing
	Dynamic Programming for Choosing Candidate Pairs
	Consider Merge Options
	Profiling Data Propagation
	Candidate Keys and Inclusion Dependencies

	Mapping Fitness
	Pruning the Search Space
	Algorithm Complexity
	Preliminaries
	Pruning Techniques

	Mapping Generation for a Complex Target
	Algorithm Overview
	Universal Target Generation
	Universal Target Decomposition

	Evaluation
	iBench: Integration Metadata Generator
	Real-estate Domain
	Schools Domain
	Profiling Data Propagation Accuracy
	Effectiveness of Pruning Strategies
	Scalability Experiments

	Conclusions

