
Cracking In-Memory Database Index: A Case Study for
Adaptive Radix Tree Index

Gang Wu

Northeastern University

State Key Laboratory for Novel

Software Technology,Nanjing

University

Shenyang, China

wugang@mail.neu.edu.cn

Yidong Song

Northeastern University

Shenyang, China

2488951516@qq.com

Guodong Zhao

Northeastern University

Shenyang, China

1690253916@qq.com

Wei Sun

Baidu

Beijing, China

sunwei@baidu.com

Donghong Han

Northeastern University

Shenyang, China

handonghong@cse.neu.edu.cn

Baiyou Qiao

Northeastern University

Shenyang, China

qiaobaiyou@mail.neu.edu.cn

Guoren Wang

Beijing Institute of Technology

Beijing, China

wanggr@bit.edu.cn

Ye Yuan

Northeastern University

Shenyang, China

yuanye@mail.neu.edu.cn

ABSTRACT
Indexes provide a method to access data in databases quickly. It

can improve the response speed of subsequent queries by build-

ing a complete index in advance. However, it also leads to a huge

overhead of the continuous updating during creating the index.

An in-memory database usually has a higher query processing

performance than disk databases and is more suitable for real-

time query processing. Therefore, there is an urgent need to re-

duce the index creation and update cost for in-memory databases.

Database cracking technology is currently recognized as an ef-

fective method to reduce the index initialization time. However,

conventional cracking algorithms are focused on simple column

data structure rather than those complex index structure for in-

memory databases. In order to show the feasibility of in-memory

database index cracking and promote to future more extensive

research, this paper conducted a case study on the Adaptive

Radix Tree (ART), a popular tree index structure of in-memory

databases. On the basis of carefully examining the ART index

construction overhead, an algorithm using auxiliary data struc-

tures to crack the ART index is proposed. This makes it possible

to build up an ART index step by step with incessant queries, and

hence avoids the poor instant availability of a complete index

which is constructed once and for all, but is time consuming.

Furthermore, updating a cracking ART index is considered as

well. Extensive experiments show that the average initialization

time of the ART cracker index is reduced by 75%, and the query

response time gradually approaches the original ART algorithm

with the coming queries.

1 INTRODUCTION
With the increasing requirements for real-time transaction and

analysis processing, traditional disk-based data management

techniques are no longer applicable to these scenarios. In order

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

22nd International Conference on Extending Database Technology (EDBT), March

30-April 2, 2020, ISBN XXX-X-XXXXX-XXX-X on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

to meet the requirements for real-time performance of critical

business, in-memory database (IMDB) came into being. More

and more flexible and efficient in-memory data storage and ac-

cess methods are used to increase system throughput and reduce

response time.

As an important component of the database system, indexing

technology has always been a research hotspot in the field of

IMDB. A large number of index structures for memory data

are proposed. Compared with early work such as T tree [15],

CSB+ tree [21], and CSS tree [20], state-of-the-art in-memory

indexes like FAST [14], Masstree [19], BwTree [18], PSL [25] and

ART [16] achieve better performance by making good use of

concurrent synchronization and new hardware technologies [24].

The ART (Adaptive Radix Tree) is a representative one of these

indexes which shows a competitive small memory footprint and

overall performance especially for dense dataset by building a

trie structure tree with adaptive variable length type internal

nodes and supporting efficient SIMD processing [24].

Although indexes can improve query efficiency, for IMDB,

there aremore details to be considered, as it is inherently designed

to pursue more rapid system response. Firstly, the time overhead

of index construction cannot be ignored. Obviously, a one-time

construction of the entire index may cause the system to become

unavailable for a short period of time. Secondly, the effectiveness

of an index is largely determined by the actual query workload.

Indexes built in the absence of query workload information are

likely to be time-consuming, space-intensive, and what’s more

may even be of no use. Thirdly, index reconstruction due to data

updates can also increase system response time.

The database cracking technology [8] provides a way to solve

these problems. Instead of building a complete index in the pre-

processing stage, it builds and refines the index along with the

query processing. Thus, the cracker index also enables query

workload aware, and hence avoids the case of ineffective index-

ing. At the same time, such dynamic index construction mecha-

nism can better adapt to data updates. The philosophy behind the

database cracking is to delay unavoidable changes as far as pos-

sible [9]. However, as traditional database cracking technology

ar
X

iv
:1

91
1.

11
38

7v
1

 [
cs

.D
B

]
 2

6
N

ov
 2

01
9

was originally designed towards simple array alike column data

structures, it alone is uncompetitive compared to modern IMDB

indexes. Recent work [23] shows that the data lookup speed of

ART index is 3.6 times faster than the traditional database crack-

ing method after 1M queries. Therefore, an ideal solution might

be applying database cracking technology to modern IMDB index

construction to further improve the overall system responsive-

ness (considering the overhead of index construction and update,

and the index effectiveness). To the best of our knowledge, there

is currently no specific research on database cracking for complex

index structures. Thus, it is necessary to study the feasibility and

relevant general techniques of the complex index cracking. For

this reason, a preliminary case study is conducted on the ART

index in this paper, which will be representative for in-memory

index.

We studied the construction overhead of ART index and pro-

posed an algorithm that cracks ART with the help of auxiliary

data structures. The main contributions of this paper are as fol-

lows.

(1) We investigated the impact of data ordering on the con-

struction of ART index and the range lookup performance

of ART index. We found that cracking technology can im-

prove the construction of ART because ordered data come

into being gradually during the cracking process;

(2) We proposed a cracking algorithm for the Adaptive Radix

Tree with the help of auxiliary data structures which has a

low index initialization overhead and guarantees to even-

tually form a complete ART index in the process of con-

stant queries. The algorithm is easy to implement and

is applicable to other complex index structures that sup-

port range query. Furthermore, in order to improve the

update performance, caching and shuffling techniques are

introduced.

(3) Extensive experiments were conducted under different

workloads on two datasets, i.e., a synthetic dataset and

the YCSB [1] benchmark. The experimental results were

analyzed to show the feasibility of the proposed cracking

algorithm from the convergence speed, response time, and

selectivity.

The organization of this paper is as follows: Section 2 intro-

duces related work; Section 3 discusses the feasibility of cracking

ART index by analyzing the construction process of the index

and the characteristics of query processing on it; Section 4 de-

scribes the design and implementation of the ART cracker in

detail; Section 5 shows and analyzes the experimental results;

Finally, conclusions are given in Section 6.

2 RELATEDWORK
More and more index structures are proposed for in-memory

database systems. Rao et al. [21] proposed the Cache-Sensitive

B+-Tree (CSB+-Tree) that retains the good cache behavior of CSS-

Trees while at the same time being able to support incremental

updates. Hankins et al. [6] explored the effect of node size on the

performance of CSB+-trees and found that using node sizes larger

than acache line size (i.e., larger than 512 bytes) produces better

searchperformance. While trees with nodes that are of the same

size as a cache line have the minimum number of cache misses,

they found that TLB misses are much higher than on trees with

large node sizes, thus favoring large node sizes. Kim et al. [14]
proposed the Fast Architecture Sensitive Tree (FAST),a binary

tree logically organized to optimize for architecture features like

page size, cache line size, and SIMD width of the underlying

hardware.Additionally, they proposed to interleave the stages

of multiple queries in order to increase the throughput of their

search algorithm. However, both [16] and [22] indicate that ART

outperforms other main-memory optimised search trees such as

CSB+-Tree and FAST.

Adaptive Radix Tree (ART) index was first proposed in [16]. As

the example shown in Figure 1, ART index has two types of nodes

where the internal nodes provide mappings from partial key to

other nodes, and the leaf node stores the value corresponding to

the keyword. The height of the tree is only determined by the

maximum length of the indexed keyword rather than the number

of indexed keywords, and all keys are sorted lexicographically.

The capacity of an internal node changes adaptively with the

inserted keywords, which makes ART cache aware, and query ef-

ficient. In addition, by employing the path compression and lazy

expansion techniques, ART further reduces the space consump-

tion. ART index has been integrated in an in-memory database

system, HyPer [12], which shows better query performance than

other in-memory database index struc-tures. Recently, Leis V et
al. proposed the Optimistic Lock Coupling and Read-Optimized

Write EXclusion (ROWEX) protocols to deal with the synchro-

nization problem of ART index [17], which further improve the

performance of ART index and expand its application scope.

AND ANT ANY ARE ART

A

N R

D T Y E T

Internal Node

Internal Node

Internal Nodes

 Leaf Nodes

Figure 1: An example ART index structure [16].

The idea of database cracking was first proposed in [13] and

simulated with SQL statements, which showed the application

prospect of the algorithm. For an attribute to be cracked, the data-

base cracking technology first makes a copy (called the cracker

column) of the corresponding column, and then partially records

the tuples in the cracker column into tuple clusters (called the col-

umn slices) according to the continuously arrived range queries

on the attribute until the column is completely sorted. Figure

2 depicts the standard Database Cracking when executing two

queries. The tuples are clustered in three pieces from the range

predicate of Q1.The result of Q1 is then retrieved as a view on

Piece 2(i.e., indexing 10 < A < 14). Later, query Q2 requires a

refinement of Pieces 1 and 3(i.e., respectively indexing A > 7

and A < 16) and splitting each in two new pieces.More database

cracking implementation details are discussed in [8].

It shows good performance when the cracking algorithm is

embedded in MonetDB [7]. Recently, research on database crack-

ing technology has become more extensive and in-depth. In [9],

Idreos et al. discussed the problem of database cracking update.

In [5],Halim et al. proposed the Stochastic Database Cracking,it

13
16
4
9
2
12
7
1
19
3
14
11
8
6

(a)

Column A

4
9
2
7
1
3
8
6
13
12
11
16
19
14

(b)

Column A after Q1

4
2
1
3
6
7
9
8
13
12
11
14
16
19

(c)

Column A after Q2

Q1:select *

 from R

 where R.A>10

 and R.A<14

Q1:select *

 from R

 where R.A>7

 and R.A<16

A<=10

10<A<=14

A>=14

A<=7

7<A<=10

10<A<14

14<=A<=16

A>16

in
d

ex

in
d

ex
Figure 2: Database Cracking when executing two queries [8].

alleviates the sensitivity of the cracking process to the kind of

queries by introducing random physical reorganization steps for

efficient incremental index-building, while also taking the actual

queries into account. In [11],Idreos et al. proposes a series of

Hybrid Cracking algorithms based on the combination of Data-

base Cracking and Adaptive Merging [3, 4]. These hybrids are

intended to meet both the database cracking design goal of mini-

mizing initial per query overhead and also the adaptive merging

design goal of exploiting the concept of runs and merges to con-

verge quickly. In [10], a number of technologies such as Sideways

Cracking, Multi-projection Queries, and Tuple Reconstruction

were proposed to solve the problem of cross-column query in

column databases. The concept of tuple reorganization is put

forward in this paper as well. Moreover, the authors summarized

existing database cracking algorithms comprehensively in [23],

and further improved the original algorithm in terms of the con-

vergence speed, robustness and parallelism, and suggested that

the future development direction of database cracking is to adapt

to the changes of in-memory index structures.

3 FEASIBILITY ANALYSIS OF ART INDEX
CRACKING

In this section, we will present the necessity and possibility of

applying cracking technologies on ART index.

3.1 ART Index Construction Overhead
During the construction of the index, ART recursively maps each

part of the key to a child internal node along a path of the tree

from the root. In order to efficiently manage the size of the inter-

nal node, four internal node types with different capacities are

provided. An appropriate internal node type is selected according

to the number of its children, i.e., its fanout.
As we know, ART is a trie structure tree. It means that the tree

structure remains the same regardless of the node insertion order.

In other words, there will be no rebalancing of the tree. Although

different key insertion orders lead to the same ART structure, we

found that the order actually has a significant impact on the time

overhead of index construction.

Figure 3 shows our experimental results of the impact of key

insertion order on ART index construction. The experiment was

conducted on a commodity server with an Intel(R) Xeon(R) CPU

E7-4820 v4 @ 2.00GHz, 25600K L3 Cache, and 1TB RAM. We

prepared three sequences of integer data. They have the same

length N > 0, but the elements are distributed in different orders.

For the Ordered sequence, all elements are arranged in ascending

order within the range [1, N]; for the Disordered sequence, all

elements are randomly arranged within the range [1, N]; and

for the Even order sequence, all even elements are arranged in

ascending order within the range [1, 2N]. The index construction

time increases approximately linearly with the amount of data

inserted for all three cases. For the same amount of data, the

comparison of the time overhead of the three is Disordered >

Even order > Ordered. And their gaps also increase with the

amount of data. The index construction time for Disordered even

becomes twice of that for the Ordered when data amount to

reaching 90 million. Moreover, the experiment also shows that

larger data intervals (the case of Even order here) require more

index construction time.

The experiment is a good illustration of the fact that the con-

struction of the ART index is sensitive to the key insert order. As

we know, the data exchange between main memory and CPU

cache is through cache lines, i.e., fixed size (usually 32 or 64 bytes)
of blocks. Successively inserted disordered keys or evenly ordered

keys may cause them to span more ART tree nodes, which make

more different nodes to be visited in an insertion, and hence

cache misses occur more frequently. Since accessing the cache

is much faster than accessing the main memory, the cases of

disordered insertion and large interval insertion inevitably need

more index construction time.

Since keys are sorted gradually according to the continuously

arrived queries during the process of cracking, it is worthwhile

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7 8 9

In
it

ia
li

za
ti

o
n
 t

im
e

(s
)

Data volume (10 million)

Ordered

Disordered

Even order

Figure 3: The impact of key insertion order on ART.

applying the cracking technology to the construction of ART

index.

3.2 ART Range Query
The process of database cracking is driven by continuously issued

range queries. Therefore, it should be ensured that any data

structure to be cracked will support range queries. According

to [16], the ART index supports not only point queries but also

range scans. As child pointers are sorted in an internal node,

the range scan can be performed efficiently by returning all leaf

nodes in a subtree between lower and upper bounds of a range.

For conventional database cracking technology, the overall

query performance is bounded by the computational complexity

of the binary search on an ordered array, i.e., O(logN) where N
is the amount of data in the array. Fortunately, the number of

comparisons is only related to the path length of the key in the

ART index tree rather than the number of keys indexed, and the

path length is usually much smaller than logN . From this point

of view, to index a column, it seems faster to start with cracking

an ART index on the column than to crack the column directly.

4 ART INDEX CRACKING
In this section, we propose an ART index cracking method which

is based on the assumption that the time overhead of index con-

struction and maintenance cannot be ignored for large scale

IMDB where real-time query response is critical in the mean-

while. Although a completed ART index has excellent query

response performance, the initialization phase to construct the

index from scratch makes it unavailable for the scenarios that

require instant query response at any time. The ART index crack-

ing algorithm contributes a possible solution to the performance

trade-off between instant query and overall query. It can also

ensure the index effectiveness under unknown query workload.

The basic idea behind the ART index cracking algorithm is to use

auxiliary data structures to gradually construct an ART index

rather than a sorted column along with the range queries issued

on the column.

4.1 Components for ART Index Cracking
According to [8], Cracker Column and Cracker Index are the basic

components of the conventional database cracking algorithm.

Since our aim is to obtain a completed ART index rather than a

sorted column, we assemble a cracker index with an ART index

and an auxiliary data structure for maintaining the information

of column data organization. The components of our ART index

cracking algorithm are illustrated in Figure 4.

- Cracker Column is a copy of the database column from

which an ART index is constructed. From the perspective

of the ART index, it holds an array of keys to be indexed.

- Cracker Index is an auxiliary index structure to locate and

organize data in the cracker column into column slices

which are the clusters of data on the column identified by

range intervals, and to sort the column slices in a sorted

order. In conventional implementation, any structure that

supports search in sorted order (at least a total preorder)

is available, such as the red-black tree and the AVL tree.

As analyzed in 3.2, ART is available this case. In order to

provide a sound ART cracking function, the cracker index

here consists of two parts.

- ART Index is what to be gradually constructed from

scratch according to the continuously arrived range

queries on the column. Internal nodes collapsing tech-

niques are welcome.

- Range Lookup Table is used to record those column slices

which have already been indexed in the ART so that

the cracking algorithm can decide whether to return

the query results directly through the ART index or to

perform the standard cracking operation through the

cracker index. To achieve this goal, merged historical

query ranges and the corresponding covered column

slices are recorded as the keys and values in the range

lookup table.

The following points should be noted. Firstly, the column slices

are dynamic during the entire cracking process. A range query

on the cracker column may cause a column slice to be created by

splitting or removed by merging existing slices. Secondly, any

column slices covered by previous range queries has already been

kept in the range lookup table. This ensures the improvement of

overall query performance based on the strategy that uses the

ART index for related query evaluation as much as possible.

4.2 ART Index Cracking with Range Queries
Figure 3 illustrates the case of ART index cracking with three

consecutive range query processing. For the convenience of dis-

cussion, suppose queries occur on column A of table R, and the

data type of values in column A is Integer.

Since the range lookup table is empty when the first range

query Q1 (80 ≤ A ≤ 110) is issued, a cracker column will be

created by making a copy of the original column A. Then an

ART index is constructed to index all data in the cracker column

according to the lower bound and the upper bound of the range

query, i.e., 80 and 110 respectively. Hence, the cracker column is

split and rearranged into three column slices, P1 (A < 80), P2 (80

≤ A ≤ 110), and P3 (A > 110), which guarantees a sorted order

in the cracker column between the column slices, i.e., P1 < P2 <

P3, i.e., the lower bound index of P2 larger than the upper bound

index of P1 and the upper bound index of P2 lower than the lower

bound index of P3. All data in P2 satisfy the query, hence are

returned as the result set. Finally, the queried range [80, 110] and

the covered column slice P2 are recorded in the range lookup

table as a key-value pair.

Since there is no intersection between the query ranges of Q2

(220 ≤ A ≤ 300) and any queried ranges recorded in the range

lookup table ([80,110] currently), a similar cracking process was

conducted as that of Q1. Firstly, it can be infer that the result

50
30

190
250

150
100

380

280
320

50
30

320

190
250

150
100

380

280

50
30

320
150

280

250

380

190
100

Cracker Column

ART

P1

P2

P3

P1

P2

P3

P4

P5

P1

P2

P3

Range Lookup Table

P4

P5
P6

[80, 110]: P2

[80, 110]: P2

[220, 300]: P4

100 2

50 80

100

1 2 320

00 50 90 50 80

[80, 350]: P2~P5

Cracker Column

Cracker Column

Range Lookup Table

Range Lookup Table

ART

ART

Range Lookup Table

50
30

320
150

280

250

380

190
100

Cracker Column

Q1: 80 A 110

ResultSet1: {100 }

Q2: 220 A 300

ResultSet1: {250,280 }

Q3: 80 A 350

ResultSet1: {100,150,190,250,280,320}

Figure 4: The process of ART index cracking with three
range queries.

set must be included in the column slices larger than P2, i.e., P3
according to the key-value pair recorded in the range lookup

table, because the lower bound of Q2 is larger than the upper

bound of the only key, i.e., 110 < 220. This results in two more

column slices separated from P3, i.e., P4 (220 ≤ A ≤ 300) and P5

(A > 300). The result set consisting of all data from P4 is returned

and further inserted into the ART index. The range lookup table

is then updated with [220, 300] as a key and the corresponding

covered column slice P4 as its value.

For the range query Q3 (80 ≤ A ≤ 350) whose range stretches

over P2, P4, P3 and part of P5, with the former two column slices

having been recorded in the range lookup table, while P3 and

partial P5 not been visited and sorted yet, the algorithm will form

a union result set comprised of both the search results that are

obtained directly from the ART and the search results that are

obtained from P3 and P5 on cracker column. Note that a new

column slice P6 will be split from P5 with respect to the upper

bound value 350. At the end of the query process of Q3, those

data in P3 and new P5 are sorted and inserted into the ART index,

and the ranges in the range lookup table are replaced by a new

key-value pair, i.e., an interval [80, 350] and a merged column

slice across P2, P3, P4, and P5, because both [80,110] and [220,

300] can be covered by [80, 350].

In this way, the complete ART index is gradually constructed

by continuously arrived range queries. Through the analysis of

the above algorithm execution process, it can be seen that the

selectivity of range queries is an important factor to the perfor-

mance. On the one hand, the fewer tuples each query selects,

the faster the query response will be, but the longer it will take

to construct the complete ART index. On the other hand, the

more tuples each query selects, the slower the query response

will be, but the shorter time it will cost to construct the complete

ART index. Although it seems impractical that the build speed of

ART index depends on the range query selectivity, we should be

aware that it coincides with the philosophy of database cracking,

i.e., delaying unavoidable changes as far as possible. It means

that the ART index creation of cracking ART reflects the prac-

tical workload. The analysis of the impact of selectivity will be

discussed in detail in the experimental section.

As shown in Algorithm 1, given a range query [lb,ub] on a

column as the input, the algorithm outputs a set of values rs as
the range query result on the column col while cracking the ART
index art_idx . The algorithm of ART index cracking consists of

four phases, i.e., the initialization phase (line 2 ∼ 5), the range

search in the ART index (line 6 ∼ 13), the cracking phase (line

14 ∼ 23), and the finishing phase (line 24 ∼ 26).

If the the range lookup table tbl is empty, i.e., there is not any
range recorded in the table, the algorithm will first initialize the

ART index art_idx and the cracker column col (line 3 and 4).

After the inialization, the algorithm performs a range search in

the ART index guided by the range lookup table. It first finds out

all entries recorded in tbl whose key has non-empty intersection

hit_ranдe with [lb,ub] (line 8). For each found entry, perform

the range search hit_ranдe in the ART index and make rs union
with current results (line 10). Corresponding column slices in

each found entry are collected in a set hit_slices for use in the

next phase (line 11).

Entering the cracking phase, the algorithm iterates through all

the column slices in the cracker column col that are not indexed
in art_idx but intersected with [lb,ub] (line 15 and 16). Note

that there is only one complete slice across the entire cracker

column initially. All such intersections are collected in a set

Algorithm 1 ART Index Cracking with Range Queries

Require: CrackerColumn col , RangeLookupTable tbl ,
ARTIndex art_idx

1: function art_cracking([lb, ub])
2: if tbl .empty() then
3: art_idx .init()
4: col .init()
5: end if
6: hit_ranдe ← ∅,hit_slices ← ∅, rs_art ← ∅
7: for all entry ∈ tbl do
8: hit_ranдe ← entry.key ∩ [lb,ub]
9: if hit_ranдe , ∅ then
10: rs ← rs ∪ art_idx .scan(hit_ranдe)
11: hit_slices ← hit_slices ∪ entry.values
12: end if
13: end for
14: new_slices ← ∅
15: for all slice ∈ (col .slices() − hit_slices) do
16: if slice ∩ [lb,ub] , ∅ then
17: new_slice = slice ∩ [lb,ub]
18: new_slices ← new_slices ∪ {new_slice}
19: rs_db ← db_cracking(new_slice)
20: art_idx .insert(rs_db)
21: rs ← rs ∪ rs_db
22: end if
23: end for
24: key ← [lb,ub], value ← new_slices
25: tbl .insert_and_merge(key,value)
26: return rs
27: end function

new_slices for updating the range lookup table tbl in the last

phase (line 17 and 18). The traditional database cracking function

DB_CRACKING() is called for cracking each such intersection

(line 19). After callingDB_CRACKING(), new column slices are

sperated from the original ones, all values in the intersection are

sorted and returned in rs_db. Furthermore, values in rs_db are

inserted into the ART index art_idx (line 20), and union is made

between rs and rs_db (line 21).

In the finishing phase, a key-value pair is constructed by taking

[lb,ub] as key and all new column slices new_slices as value (line
24). The key-value pair is inserted into the range lookup table tbl
and merged with the existing entries (line 25). Taking the entry

in the lookup table in Figure 4 after executing Q3 for example,

the previous two entries with keys [80, 110] and [220, 300] are

merged with the new key-value pair [80, 350]:{P3, P5} to be a

new and only one entry [80, 350]:{P2, P3, P4, P5}. Finally, rs is
returned as the result set.

4.3 ART Index Cracking with Updates
The algorithm of ART index cracking with range query simply

considers the case where the column to be queried and indexed

is read-only. However, updates (insertions and deletions) to the

columns are inevitable in the actual database application scenario.

Index update overhead brought by this may result in a decrease

in database system response performance. Preliminary idea to

this problem is discussed below.

4.3.1 Caching. The basic idea is to delay the update opera-

tions by caching them until the arrived range query has an inter-

section with any cached update operations or until the cache is

full. An exception is that the updated data fall within any range

in the range lookup table, which will be handled immediately

by ART index. In this way, write lock contention is effectively

reduced.

For this purpose, a sorted list is used to cache the updated

data and their corresponding operation type (either insertion or

deletion) according to the data value. Assume that this simple

cache structure is rather small compared with the entire column,

so the cost of sorting is negligible. For the same data value, a

deletion after an insertion will both be removed from the list,

while an insertion after a deletion will cover the previous deletion.

Once the arrived range query has an intersection with any cached

update operations, all data in the intersection will be inserted or

deleted from the ART index, while all data in the query range

which are not in the sorted list cache will be cracked as stated

in Section 4.2. Finally, those update operations that have been

performed in the ART index are removed from the sorted list.

For the case when the sorted list (cache) is full, a range query

between the lower and upper bound of the data in the sorted list

is constructed and issued actively by the algorithm to trigger an

update process on the ART index. The process after that is just

the same as the previous case.

It should be noted that the data to be deleted in the sorted list

cache should be carefully examined and not to be returned in the

result set of a range query.

Although there is a more straightforward approach to perform

updates directly on the cracker column, the overhead of updating

the cracker column includes not only the maintenance of the

cracker column but also the maintenance of the ART index and

the range lookup table.

Algorithm 2 ART Index Cracking with Insert

Require: CrackerColumn col , RangeLookupTable tbl ,
ARTIndex art_idx , Cache cache

1: function insert_art_cracking(lb, ub,value)
2: next = point at the last position of col
3: cur = point at the first position of last slice
4: if value ∈ tbl then
5: art_idx .insert()
6: else
7: cache .insert()
8: end if
9: if cache is full then
10: result ← cache
11: else
12: result ← cache ∩ [lb,ub]
13: end if
14: if result , ∅ then
15: for all entry ∈ result do
16: while entry < cur_slice(cur) do
17: col[next] ← col[cur]
18: next ← cur
19: cur ← point at previous slice of cur
20: end while
21: col .insert(entry, cur)
22: tbl .update()
23: cache .update()
24: art_idx .updare()
25: end for
26: end if
27: end function

4.3.2 Shuffling. Obviously, the maintenance overhead of the

cracker column triggered by the update is not negligible. In order

to ensure the existing sorted order in the slices of the cracker

column, a naivemethod is tomove all the data behind the position

to be inserted or deleted backward or forward respectively. A

more practical technology, shuffling, has been introduced in [9].

[80, 350]: P2~P5[80, 350]: P2~P5

Cracker Column

Range Lookup Table

ART

Figure 5: Shuffling of the cracker column after the inser-
tion of 45.

Pseudo code for ART cracking with insert is shown in Algo-

rithm 2. The algorithm of ART index cracking with insert consists

of two phases, i.e., the cache insert phase (line 4 ∼ 8) and the

shuffing a cracker column in range search (line 9 ∼ 25), the

necessary data is initialized in lines 2 and 3.

If the value to be inserted is in the range lookup table tbl ,
it can be inserted directly into the ART index art_idx (line 5),

otherwise it is inserted into the cache cache to delay the update

(line 7).

The data in the cache cache is handled in (line 9 ∼ 13). If the

cache is full, all data needs to be inserted(line 10), otherwise the

intersection of the cache and the reached range query [lb,ub] is
processed(line 12). For all results result that satisfy the condition,
move the element through shuffling a cracker cloumn(line 16 ∼
20 and get the position to insert.Then the value is inserted into the

cracker cloumn and the range table tbl (line 21), cache cache(line
23),the ART index art_idx (line 24) are updated.

The Algorithm 2 is explained below by an example as shown in

Figure 5.When 45 in the cache is to be inserted, it first searches in

the range lookup table. Since 45 is smaller than the lower bound

of the key ([80, 350]) of the only entry, it can be inferred that 45

should be inserted in the column slice P1. Hence, according to

the shuffling algorithm [9], for each lower bound value of the

column slices that higher than P1, it is moved to the position of

the lower bound of the next column slice. As column slices P2,

P3, P4, and P5 are all indexed in the ART index, and they are

merged as one complete interval in the range lookup table, the

shuffling process is actually only happens in P6 and P2. Finally,

45 is inserted in the absent position that originally was owned

by 100. Although 100 is moved to the position behind 320 during

shuffling, the sorted order of data in [80,350] is still maintained

through the ART index. In this way, the shuffling technology only

needs two movements compared to the naive method requiring

7 movements.

Apparently, the shuffling technology can be adapted to dele-

tion operations in a similar way.

5 EXPERIMENTS
In this section, the advantages and disadvantages of standard

cracking, standard ART, and ART cracking algorithms in various

situations are compared through experiments.

The experimental settings are as follows. All algorithms were

implemented in C++ language. All experiments were conducted

on an Intel(R) Xeon(R) CPU E7-4820 v4 @ 2.00GHz server. The

server has 512GB RAM and 25600K L3 Cache. The operating

system is Ubuntu 18.04.4 LTS (GNU/Linux hp50 4.15.0-38-generic

x86_64). All experiments were performed in memory to simulate

the in-memory database.

In order to examine the performance of algorithms under

different scenarios, we designed two sets of experiments.

The first set of experiments follow the experimental design

and setting from [11] where the dataset is synthetic and the range

query pattern is as follows. If there is no special statement, the ex-

periment selects N non-repetitive integers randomly distributed

between [1,N] where N equals 10M, the query selectivity S is

0.0001N , and the workload type is random.

SELECT A FROM R
WHERE A ≥ low AND A ≤ hiдh;
The second set of experiments were conducted on YCSB (Ya-

hoo! Cloud Serving Benchmark) which is a popular benchmark

for evaluating different key-value and cloud database [1].

5.1 Space overhead
In order to compare the space overhead of the standard ART, the

standard database cracking, and the ART cracking. We did two

experiments on the synthetic dataset with the default setting,

i.e., N = 10M and non-repetitive integers randomly distributed

between [1,N]. For the first experiment, as shown in Figure 6, the

lower bound and upper bound of each query range were selected

with a fixed selectivity S = 0.005. For the second experiment, as

shown in Figure 7, the lower bound and upper bound of each

query range were generated randomly between [1,N].
As demonstrated in both experiments, the standard ART and

our ART cracking consume more space than the standard data-

base cracking, because the index structure of ART is more com-

plicated than that of database cracking (usually AVL or RBTree).

According to Figure 6, the space overhead of ART cracking in-

creases with the number of queries and has a trend over that of

ART. Different from cracking methods, the space overhead of

ART keeps unchanged. Comparing Figure 7 and Figure 6, we can

also find that the space overhead grows faster in a random query

range mode. The reason is that there is a higher probability of

generating a large query range for the random mode than that

for the fixed selectivity mode. As stated in Section 4.2, a larger

query range means more data to be indexed, and hence a larger

space consumption.

5.2 Response Time
In Figure 8, we compare the response time of the standard ART,

the ART cracking algorithm and the binary search algorithm in

the synthetic dataset and random query mode. The binary search

algorithm applies the quick sort to sort the array first, and then

use the binary search to find the result. We have the following

observations.

0

100

200

300

400

500

1 100

Sp
ac

e
o
v
er

h
ea

d
 (

M
B

)

10

Query Sequence

ART ART CRACK CRACK

Figure 6: Space overhead comparisons when selectivity S=
0.005

0

100

200

300

400

500

1 100

Sp
ac

e
o

v
er

h
ea

d
 (

M
B

)

10

Query Sequence

ART ART CRACK CRACK

Figure 7: Space overhead comparisons for random query
ranges

Firstly, compared with the binary search and the standard ART

algorithm, the initialization time of the binary search algorithm

and the standard ART algorithm is longer than that of the ART

cracking algorithm. This is due to the fact that the binary search

algorithm needs to sort the data first, and the standard ART takes

a lot of time to initialize the ART index as well. With the increase

of the number of queries, the response time of standard ART and

ART cracking algorithm increases linearly, while the increase of

the response time of the binary algorithm is not significant.

Secondly, when the number of queries exceeds 5000, the re-

sponse time of the ART cracking algorithm exceeds the binary

search algorithm because of the good performance advantage of

using binary search to perform range queries on ordered arrays.

As can be seen from the figure, when the number of queries

exceeds 8000, the response time of the ART cracking algorithm

exceeds the standard ART. The reason is that ART cracking algo-

rithm still needs a part of time to build a complete ART index,

but the maximum difference between ART cracking algorithm

and standard ART in response time is less than 1 second, and

this difference is gradually reduced as ART is built up.

In summary, ART cracking algorithm can avoid building a

complete ART index at one time and has a relatively low initial-

ization cost. At the same time, the hot data query is real-time,

0

2

4

6

8

10

12

0 10000 20000 30000 40000

A
cc

u
m

u
la

te
d

 R
es

p
o
n

se
 T

im
e

(s
)

Query Sequence

Binary Search ART ART CRACK

Figure 8: Response time comparisons for three algorithms

i.e., when the query arrives, it avoids the waiting overhead due

to the long time to initialize the ART.

5.3 Selectivity
The above experiments merely show the excellent performance

of the ART cracking algorithm under a fixed selectivity. However,

the impact of change to the selectivity cannot be ignored. On the

one hand, when the selectivity is high, the algorithm converges

quickly, while the initialization time is long, and the complete

index structure is established promptly which fails to show the

advantages of the ART cracking algorithm. On the other hand,

when the degree of selection is low, the algorithm takes a long

time to converge, while the initialization time is short. Especially

for the case of querying hot data, though the query is increased,

the cost of subsequent index maintenance is rather small.

0

1

2

3

4

5

6

7

8

1 E - 0 7 1 E - 0 6 1 E - 0 5 1 E - 0 4 1 E - 0 3 0 . 0 1 0 . 1

R
es

p
o
n
se

 t
im

e
(s

)

Selectivity

1 100 1000 10000 baseline

Figure 9: The effect of selectivity on the response time

In order to show the effect of selectivity on the performance of

the algorithm, we conducted an experiments with the synthetic

dataset and a random query mode. The selectivity is manipulated

constantly in accordance with the number of the ART query, and

the response time of the algorithm for different number of queries

is recorded. The experimental results are shown in Figure 9.

Firstly, the greater the degree of selection, the greater the

initialization time for the first execution of the algorithm will

be. And the response time increases with the increase of the

number of queries. Secondly, when the number of queries is

constant, the response time increases slowly at first, if the query

selectivity is small. It increased significantly as the selectivity

doubled. As can be seen from the figure, when the selectivity is

0.001 and 0.01, the response time changes significantly as the

number of queries increases. With the increase of selectivity, the

interval between range queries is increased by a large amount

compared with the smaller selectivity, and the overhead of ART

index initialization and ART range queries for ART cracking

algorithm is increased significantly. Therefore, the efficiency of

the ART cracking algorithm is influenced by the selectivity. The

appropriate selectivity will result in better performance for the

ART carcking algorithm, which is beneficial to the construction

of the ART index and the query response time.

5.4 Convergence Speed
As stated in Section 3.2, there are four phases in the ART cracking,

i.e., initialization, search ART, cracking, and finishing. Apparently,
the overall query efficiency will be greatly improved if the ART

index is completely constructed (or converged) as soon as pos-

sible. To measure the convergence degree of the algorithm, the

definition of the ART building rate R is given as follows.

R = key.size/N ∗ 100%

The tree building rate R is defined to be the ratio of the number

of keys indexed in the ART to the amount of data N after certain

times of range queries. The change in the rate of establishment

in a unit of time reflects the convergence speed of the algorithm.

The tree building rate R is an important indicator to measure

the performance of the algorithm. The more proximate the R
value is to 1, the closer the generated ART is to the complete index.

The degree of convergence of the algorithm depends on the query

execution. On the one hand, whatever the query pattern is, with

the increasing number of queries, the algorithm will gradually

converge to the complete index. Since the hot data will be queried

repeatedly, it has a good query performance even though the

tree building rate R is low. On the other hand, for the queries

with higher selectivity, they usually converge faster, i.e., the tree
building rate increase faster. In the extreme case, if the first query

selects all tuples, the ART cracking process will degenerate into

a standard ART query process, and hence the selectivity will

become the primary factor for algorithm convergence.

In this experiment, we utilized the synthetic dataset with de-

fault setting and the random query range mode, and observe the

convergence degree of the algorithm under different selection

degrees. The experimental results are shown in Figure 10. We

choose three different selectivity. When the selectivity is fixed,

as the number of queries increases, the tree building rate is grad-

ually approaching 1, and the rate of growth tends to be flat. This

is mainly because that as the number of queries increases, the

overlapping scope of the query range also increases. With a fixed

selectivity, the number of updated data each time is reduced, so

the change rate of the ART building also declines accordingly. At

the same time, it is noted that as the number of queries increases,

the algorithm converges gradually, and the larger the selection

rate, the faster the convergence of the algorithm will be. When

the number of queries reaches 10,000, the selectivity doubles

itself and the tree building rate increases by more than 30%.

5.5 Range Query Workload Modes
The impact of range query workload mode on the standard ART

is almost negligible, but it has an important impact on the ART

cracking algorithm, which will be shown in this section. For this

experiment, we consider the following range query workloads:

0

0.2

0.4

0.6

0.8

1

1.2

1 64

A
R

T
 B

u
il

d
in

g
 R

at
e

4 16

Query Sequence(1000)

0.0001

0.0002

0.0005

Figure 10: The effect of selectivity on the ART building
rate

(1) Random mode: the minimum of the range is randomly

generated, and the selectivi-ty is fixed.

(2) Sequential mode: the minimum of the range increases as

the number of queries increases, the maximum value is

randomly determined, and the query range may be over-

lapped.

(3) Distorted mode: The top 80% of the queries are concen-

trated on 20% of the data, and the hot data may be queried

multiple times.

(4) Two-way incremental mode: The query range expands on

both the left and right ends on the basis of the previous

query.

(5) One-way incremental mode: The minimum value of the

current query‘s range is the maximum value of last query‘s

range, and the selectivity is fixed.

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

R
es

po
ns

e t
im

e
s

Query Sequence 100

Random Distortion Sequence

Figure 11: Response time comparisons for different work-
load modes

The experimental results are shown in Figure 11. For sequen-

tial search, the algorithm converges quickly due to the large

degree of randomness of the range selection, thus maintaining

a high initialization cost. For distorted query, the response time

is relatively low at the first 80% of the time, and then increases

sharply in the latter part of the query. For random queries, as

the number of queries increases, the ART cracking algorithm

converges slowly and the overall response time is minimal.

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

R
es

po
ns

e t
im

e
s

Query Sequence 100

Two-way increment

One-way increment

Figure 12: Response time comparisons for two incremen-
tal workload modes

The experimental results for the two incremental modes are

shown in Figure 12. It can be seen that as the range of queries

increases, the response time of the two incremental query modes

increases almost linearly. This is mainly because there is no

overlap for the query range of this mode, hence the algorithm

degenerates into a standard cracking algorithm which updates

the ART each time and never use it in subsequent queries. For

the two-way incremental mode, the two ends are continuously

expanded, and the historical data is stored in the ART, however,

each query is inserted at both ends of the range, hence in addition

to the algorithm convergence, the overhead of the maintenance

algorithm is huge, so the response time increases.

From the two groups of experiments it can be concluded that

ART cracking algorithm depends on the change of the workload.

When the query is in incremental mode, the algorithm has a

lower initialization cost, but the subsequent response time is

far beyond the ART standard query. For other modes, the ART

cracking algorithm has both a lower initialization cost and a

lower query response time.

5.6 Per-query response times
Figure 13 shows the per-query response times for different meth-

ods in the synthetic dataset and random mode. Since the avail-

able ART implementations do not support bulk loading, the ART

cracking algorithm greatly reduces the time required to build

full indexes before data is accessed for the first time compared

to standard ART. At that same time, the response time of each

query in the ART cracking algorithm is very close to the standard

cracking algorithm.

5.7 Updates
The above experiments exhibit good performance of the ART

cracking algorithmwithout considering the update. However, the

update of the index in the actual scenario is inevitable. For this

reason, the YCSB benchmark is used to compare the impact of the

update on the ART cracking algorithm and the standard ART re-

spectively. YCSB workload is workload mode e,The experimental

results are shown in Figure 14 and Figure 15.

Figure 14 shows the impact of the insert operation on the

standard ART and ART cracking algorithms. The throughput of

the standard ART is significantly higher than that of the ART

cracking algorithm because the ART cracking has the overhead

of maintaining cracker columns and the range lookup table in

addition to maintaining the ART index compared to the standard

ART. At the same time, by using the general insertion method

1

10

100

1000

10000

100000

1000000

10000000

1 10 100 1000

Q
u

e
ry

 R
es

p
o

n
se

 T
im

e
(μ

s)

Query Sequence

ART ART CRACK CRACK

Figure 13: Per-Query Response Time of Different Algo-
rithms

for ART cracking comparison, we can see that using Shuffling

method can greatly reduce the impact of insertion on ART crack-

ing algorithm. The main reason is that the Shuffling method

greatly reduces the overhead of inserting cracker columns and

the range lookup table maintenance, so that it can achieve al-

most the same impact as the ART cracking algorithm without

insertion.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1000 3000 5000 7000 9000 11000

T
h

ro
u

g
h

p
u

t
(K

T
P

S
)

Query Sequence

ART Scan=0.8 insert=0.2

ART CRACK Scan=1

ART CRACK Scan=0.8 insert=0.2 Shuffling

ART CRACK Scan=0.8 insert=0.2 Normal

Figure 14: The effect of insertion on two algorithms for
the YCSB workload

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1000 3000 5000 7000 9000 11000

T
h

ro
u

g
h

p
u

t(
K

T
P

S
)

ART Scan=0.8 delete=0.2

ART CRACK Scan=1

ART CRACK Scan=0.8 delete=0.2 Shuffling

ART CRACK Scan=0.8 delete=0.2 Normal

Figure 15: The effect of deletion on two algorithms for the
YCSB workload

Figure 15 shows the impact of the delete operation on the

standard ART and ART cracking algorithms. The deletion has the

most obvious impact on the standard ART, even its throughput is

lower than that of the ART cracking with general deletion. When

the deletion operation is performed, the maximum overhead of

both standard ART and ART cracking is to maintain the cracker

column. However, the column slices information is maintained in

the ART cracking, the position of the element to be deleted can be

quickly located in the cracker column. Therefore, the throughput

of the ART cracking is slightly higher than that of the standard

ART. Similar to the insertion, using the Shuffling method reduces

such overhead.

In summary, by using Shuffing technology, the impact of up-

date on ART cracking algorithm is greatly reduced.

6 CONCLUSIONS AND FUTUREWORK
In order to cope with the huge overhead of in-memory data-

base index creation, this paper proposes an Adaptive Radix Tree

(ART) index cracking algorithm based on ART index structure,

which improves the instant query response speed by distributing

the complete index creation cost to each range query. The algo-

rithm adapts the conventional database cracking technique to

the ART index which enables the query to continuously establish

the complete ART index structure during the process to avoid

unnecessary initialization overhead and to have a high query

efficiency. The experimental results show the effectiveness of the

algorithm.

Undoubtedly, as a case study of the in-memory database index

cracking techniques, the experience and lessons learned from

the proposed ART index cracking approach are still very prelimi-

nary. Firstly, cracking in-memory index is a simple yet effective

technique. In contrast to building a complete index in the prepro-

cessing stage, cracking the in-memory index is more lightweight.

It does not penalise the first query heavily and also reduces un-

necessary initialization time for those cold data seldom visited.

It exhibits better performance when the selectivity is between

0.01% and 1% and the workload is random workloads. Secondly,

cracking in-memory index still has the same performance bot-

tlenecks as the standard database cracking, i.e., being sensitive
to the access patterns when the selectivity is too large or too

small, and the workload is too harsh. This remains a challenge

for cracking in-memory index.

The future research will focus on improving the convergence

and robustness of cracking in-memory index and the combination

of the range lookup table and the ART index to eliminate the

access overhead accross different data structure. Moreover, a

concurrent version of ART cracking is another direction of our

efforts. Both [2] and [17] are good references.

ACKNOWLEDGMENTS
Gang Wu is supported by the NSFC (Grant No. 61872072) and

the State Key Laboratory of Computer Software New Technol-

ogy Open Project Fund (Grant No. KFKT2018B05). Baiyou Qiao

is supported by the National Key R&D Program of China (No.

2016YFC1401900). Donghong Han is supported by the NSFC

(Grant No. 61672144). Guoren Wang is supported by the NSFC

(Grant No. U1401256, 61732003, 61332006 and 61729201). Ye Yuan

is supported by the NSFC (Grant No. 61572119 and 61622202)

andthe Fundamental Research Funds for the Central Universities

(Grant No. N150402005).

REFERENCES
[1] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and

Russell Sears. 2010. Benchmarking cloud serving systems with YCSB. In

In Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC 2010).
143–154. https://doi.org/10.1145/1807128.1807152

[2] Goetz Graefe, Felix Halim, Stratos Idreos, Harumi A. Kuno, and Stefan Mane-

gold. 2012. Concurrency Control for Adaptive Indexing. PVLDB 5, 7 (2012),

656–667. https://doi.org/10.14778/2180912.2180918

[3] Goetz Graefe and Harumi Kuno. 2010. Adaptive indexing for relational keys.

In Proceedings of the 26rd IEEE International Conference on Data Engineering
(ICDEW2010), 69–74. https://doi.org/10.1109/ICDEW.2010.5452743

[4] Goetz Graefe andHarumi Kuno. 2010. Self-selecting, self-tuning, incrementally

optimized indexes. EDBT, 371–381. https://web.eecs.umich.edu/~mozafari/

fall2015/eecs584/papers/self-tuning-index.pdf

[5] Felix Halim, Stratos Idreos, Panagiotis Karras, and Roland H C Yap. 2012. Sto-

chastic database cracking: towards robust adaptive indexing in main-memory

column-stores. VLDB Journal 5, 6, 502–513. http://vldb.org/pvldb/vol5/p502_

felixhalim_vldb2012.pdf

[6] Richard A Hankins and Jignesh M Patel. 2003. Effect of node size on the

performance of cache-conscious B + -trees. measurement and modeling of
computer systems 31, 1, 283–294.

[7] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd Mul-

lender, and Martin L. Kersten. 2012. MonetDB: Two Decades of Research in

Column-oriented Database Architectures. IEEE Database Engineering Bulletin
35, 1 (2012), 40–45. http://sites.computer.org/debull/A12mar/monetdb.pdf

[8] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2007. Database Crack-

ing. In In Proceedings of the Third Biennial Conference on Innovative Data Sys-
tems Research (CIDR2007). 68–78. http://cidrdb.org/cidr2007/papers/cidr07p07.
pdf

[9] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2007. Updating a

cracked database. In In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD2007). 413–424. https://doi.org/10.1145/

1247480.1247527

[10] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2009. Self-organizing

tuple reconstruction in column-stores. In In Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD2009). 297–308.
https://doi.org/10.1145/1559845.1559878

[11] Stratos Idreos, Stefan Manegold, Harumi A. Kuno, and Goetz Graefe. 2011.

Merging What’s Cracked, Cracking What’s Merged: Adaptive Indexing in

Main-Memory Column-Stores. PVLDB 4, 9 (2011), 585–597. https://doi.org/

10.14778/2002938.2002944

[12] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAP

main memory database system based on virtual memory snapshots. In In
Proceedings of the 27th International Conference on Data Engineering (ICDE2011).
195–206. https://doi.org/10.1109/ICDE.2011.5767867

[13] Martin L. Kersten and Stefan Manegold. 2005. Cracking the Database Store.

In In Proceedings of the Second Biennial Conference on Innovative Data Systems
Research (CIDR2005). 213–224. http://cidrdb.org/cidr2005/papers/P18.pdf

[14] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony D.

Nguyen, Tim Kaldewey, Victor W. Lee, Scott A. Brandt, and Pradeep Dubey.

2010. FAST: fast architecture sensitive tree search on modern CPUs and GPUs.

In In Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD2010). 339–350. https://doi.org/10.1145/1807167.1807206

[15] Tobin J. Lehman and Michael J. Carey. 1986. A Study of Index Structures

for Main Memory Database Management Systems. In In Proceedings of the
Twelfth International Conference on Very Large Data Bases (VLDB1986). 294–303.
http://www.vldb.org/conf/1986/P294.PDF

[16] V. Leis, A. Kemper, and T. Neumann. 2013. The adaptive radix tree: ARTful

indexing for main-memory databases. In In Proceedings of the 29th International
Conference on Data Engineering (ICDE 2013). 38–49.

[17] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. 2016.

The ART of practical synchronization. In In Proceedings of the 12th International
Workshop on Data Management on New Hardware (DaMoN 2016). 3:1–3:8.
https://doi.org/10.1145/2933349.2933352

[18] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-

Tree: A B-tree for new hardware platforms. In In Proceedings of the 29th IEEE
International Conference on Data Engineering (ICDE2013). 302–313. https:

//doi.org/10.1109/ICDE.2013.6544834

[19] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache craftiness

for fast multicore key-value storage. In In Proceedings of the Seventh EuroSys
Conference 2012 (EuroSys2012). 183–196. https://doi.org/10.1145/2168836.

2168855

[20] Jun Rao and Kenneth A. Ross. 1999. Cache Conscious Indexing for Decision-

Support in Main Memory. In In Proceedings of 25th International Conference
on Very Large Data Bases (VLDB1999). 78–89. http://www.vldb.org/conf/1999/

P7.pdf

[21] Jun Rao and Kenneth A. Ross. 2000. Making B+-Trees Cache Conscious inMain

Memory. In In Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data (SIGMOD2000). 475–486.

[22] Felix Martin Schuhknecht, Alekh Jindal, and Jens Dittrich. 2013. The Un-

cracked Pieces in Database Cracking. VLDB Journal 7, 2, 97–108. http:

//www.vldb.org/pvldb/vol7/p97-schuhknecht.pdf

[23] Felix Martin Schuhknecht, Alekh Jindal, and Jens Dittrich. 2016. An exper-

imental evaluation and analysis of database cracking. VLDB Journal 25, 1

https://doi.org/10.1145/1807128.1807152
https://doi.org/10.14778/2180912.2180918
https://doi.org/10.1109/ICDEW.2010.5452743
https://web.eecs.umich.edu/~mozafari/fall2015/eecs584/papers/self-tuning-index.pdf
https://web.eecs.umich.edu/~mozafari/fall2015/eecs584/papers/self-tuning-index.pdf
http://vldb.org/pvldb/vol5/p502_felixhalim_vldb2012.pdf
http://vldb.org/pvldb/vol5/p502_felixhalim_vldb2012.pdf
http://sites.computer.org/debull/A12mar/monetdb.pdf
http://cidrdb.org/cidr2007/papers/cidr07p07.pdf
http://cidrdb.org/cidr2007/papers/cidr07p07.pdf
https://doi.org/10.1145/1247480.1247527
https://doi.org/10.1145/1247480.1247527
https://doi.org/10.1145/1559845.1559878
https://doi.org/10.14778/2002938.2002944
https://doi.org/10.14778/2002938.2002944
https://doi.org/10.1109/ICDE.2011.5767867
http://cidrdb.org/cidr2005/papers/P18.pdf
https://doi.org/10.1145/1807167.1807206
http://www.vldb.org/conf/1986/P294.PDF
https://doi.org/10.1145/2933349.2933352
https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.1145/2168836.2168855
https://doi.org/10.1145/2168836.2168855
http://www.vldb.org/conf/1999/P7.pdf
http://www.vldb.org/conf/1999/P7.pdf
http://www.vldb.org/pvldb/vol7/p97-schuhknecht.pdf
http://www.vldb.org/pvldb/vol7/p97-schuhknecht.pdf

(2016), 27–52. https://doi.org/10.1007/s00778-015-0397-y

[24] Zhongle Xie, Qingchao Cai, Gang Chen, Rui Mao, and Meihui Zhang. 2018. A

Comprehensive Performance Evaluation of Modern In-Memory Indices. In

In Proceedings of the 34th IEEE International Conference on Data Engineering
(ICDE2018). 641–652. https://doi.org/10.1109/ICDE.2018.00064

[25] Zhongle Xie, Qingchao Cai, H. V. Jagadish, Beng Chin Ooi, and Weng-Fai

Wong. 2017. Parallelizing Skip Lists for In-Memory Multi-Core Database

Systems. In In Proceedings of the 33rd IEEE International Conference on Data
Engineering (ICDE2017). 119–122. https://doi.org/10.1109/ICDE.2017.54

https://doi.org/10.1007/s00778-015-0397-y
https://doi.org/10.1109/ICDE.2018.00064
https://doi.org/10.1109/ICDE.2017.54

	Abstract
	1 Introduction
	2 Related Work
	3 Feasibility Analysis of ART Index Cracking
	3.1 ART Index Construction Overhead
	3.2 ART Range Query

	4 ART Index Cracking
	4.1 Components for ART Index Cracking
	4.2 ART Index Cracking with Range Queries
	4.3 ART Index Cracking with Updates

	5 Experiments
	5.1 Space overhead
	5.2 Response Time
	5.3 Selectivity
	5.4 Convergence Speed
	5.5 Range Query Workload Modes
	5.6 Per-query response times
	5.7 Updates

	6 Conclusions and Future work
	Acknowledgments
	References

