
Keyword Aware Influential Community Search in Large
Attributed Graphs

Md. Saiful Islam
BUET, Bangladesh

saifulislam@cse.buet.ac.bd

Mohammed Eunus Ali
BUET, Bangladesh

eunus@cse.buet.ac.bd

Yong-Bin Kang
Swinburne University of

Technology, Australia

ykang@swin.edu.au
Timos Sellis

Swinburne University of
Technology, Australia

tsellis@swin.edu.au

Farhana M. Choudhury
Melbourne University,

Australia
fchoudhury@unimelb.edu.au

ABSTRACT
We introduce a novel keyword-aware influential community
query (KICQ) that finds the most influential communities
from an attributed graph, where an influential community is
defined as a closely connected group of vertices having some
dominance over other groups of vertices with the expertise
(a set of keywords) matching with the query terms (words
or phrases). We first design the KICQ that facilitates users
to issue an influential CS query intuitively by using a set
of query terms, and predicates (AND or OR). In this con-
text, we propose a novel word-embedding based similarity
model that enables semantic community search, which sub-
stantially alleviates the limitations of exact keyword based
community search. Next, we propose a new influence mea-
sure for a community that considers both the cohesiveness
and influence of the community and eliminates the need for
specifying values of internal parameters of a network. Fi-
nally, we propose two efficient algorithms for searching in-
fluential communities in large attributed graphs. We present
detailed experiments and a case study to demonstrate the
effectiveness and efficiency of the proposed approaches.

PVLDB Reference Format:
Md. Saiful Islam, Mohammed Eunus Ali, Yong-Bin Kang, Timos
Sellis, and Farhana Murtaza Choudhury. Keyword Aware Influ-
ential Community Search in Large Attributed Graphs. PVLDB,
12(xxx): xxxx-yyyy, 2019.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

1. INTRODUCTION
Communities serve as a basic structure for understand-

ing the organization of many real-world networks or graphs.
These networks include academic networks like DBLP, so-
cial networks like Facebook or Twitter, biological networks
like protein-protein interactions, and many more. Finding

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. xxx
ISSN 2150-8097.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

n2

n3

n4

n5

n6

n7

n8

n9 n10

n11

n12

n13

n14

n15

n16

n17

n18

n19

n20

n1

(DB, 0.7
ML, 0.8)

(DB, 0.9
ML, 0.8)

(PR, 0.4)

(DB, 0.3
ML, 0.2)

(DB, 0.6
ML, 0.7
PR, 0.3)

(DB, 0.2
ML, 0.2
PR, 0.1)

(PR, 0.5)(ML, 0.2)

(ML, 0.3)

(PR, 0.3)

(PR, 0.6)

(PR, 0.4) (PR, 0.5)

(PR, 0.9)

(PR, 0.2)

(PR, 0.8)

(ML, 0.7)
(DB, 0.7)

(PR, 0.8)
(ML, 0.8)

C3

C2

C4
C1

Figure 1: An attributed author-author graph, where each
vertex has an associated list of attributes (keywords) and
influences denoting her expertise. Different types cf com-
munities are marked as C1 − C4.
communities from such large graphs has received significant
attention in recent years due to its diverse practical appli-
cations that include event organization [38], friend recom-
mendation [33], and e-commerce advertisement [22]. Tradi-
tionally, community search (CS) on a large graph involves
finding a community around a given query vertex that sat-
isfies query parameters like connectivity and cohesiveness
constraints [13, 12, 18, 38]. For example, by using such
techniques, one can find a community from the DBLP net-
work for an author as a query, where the community should
be a connected subgraph and each member should be con-
nected to at least two other members in the community.
More recent research works [27, 25] have focused on finding
influential communities from a graph. The common goal
of finding influential communities is to find a closely con-
nected group of users (vertices) who have some dominance
over other users in the graph in a particular domain.
In this paper, we consider large attributed graphs where

vertices (e.g., authors) are augmented with attributes (e.g.,
keywords) and propose a novel and efficient solution for find-
ing influential communities that address the following gaps
in the previous works:
First, traditional CS works on an attributed graph re-

quire an input query vertex, and then find a group of neigh-
boring vertices whose keywords have high similarity with
the query vertex keywords. The resultant communities sat-
isfy the required structural constraints [13, 18] (e.g., C1 in
Figure 1 with n3 as the query vertex, and parameter k = 4

1

ar
X

iv
:1

91
2.

02
11

4v
1

 [
cs

.S
I]

 4
 D

ec
 2

01
9

where k-truss is the structural constraint). A major limita-
tion of such CS techniques is that the user needs to define
the query vertex and the structural properties of the com-
munity explicitly, which might not be possible or suitable in
many application domains. A couple of recent studies [46, 4]
tried to address these limitations by finding cohesive (i.e.,
k-core or triangle density) communities having close simi-
larity with query keywords. However, they do not consider
the influence of individuals in different keywords (e.g., C1

in Figure 1 is highly cohesive in terms of structure and key-
word, but two highly influential vertices n1, n2 are ignored
since influence is not considered) and also do not support
flexible conjoining (using AND or OR predicates) of query
keywords.
Second, existing works on influential community search

only work on non-attributed graphs and also require specific
values of structural parameters. For example, [27] requires
users to mention the value of k while finding k-core based
communities; similarly, [25] requires the values of the mini-
mum number of vertices m in a community and the maxi-
mum distance p between any two vertices while finding an
mp-clique based community. Although such parameters al-
low high customization in search, we argue that the choice
of these parameters highly depends on the internal structure
of the graph in practice. For example, if k is set to a high
value (e.g., 4) in a small graph (Figure 1), no community
is returned by [27] because there is no 4-core in this graph;
and if k is low (e.g., 2), the community returned (e.g., C2 in
Figure 1) does not have high cohesiveness. Similarly, given a
query vertex, [25] only returns the desired community under
specific constraints of parameter values (e.g., C4 in Figure 1
with parameters m ≤ 6 and p = 2), which is impractical for
an external user. Thus flexibility in fixing parameters while
searching for desired communities is crucial.
Third, existing approaches to quantifying a community

in terms of influence do not consider a comprehensive set
of parameters that can affect the strength of a community.
For example, the influence of a community is defined as the
minimum influence among all members in [27]; thus, a mem-
ber with low influence can severely affect the influence of a
community. We argue that an influence measure that con-
siders both cohesiveness, the influence of individuals, and
the size of the community should be considered while rank-
ing communities, as all these factors contribute to the overall
ranking of a community.
To fill the above research gaps and to support a new set

of applications, we present a novel parameter free influential
CS query, namely Top-r Keyword-aware Influential Com-
munity Query (KICQ). To illustrate, let us consider an
attributed graph of researchers, as shown in Figure 1. Here,
vertices n1 − n20 are authors who published papers in field
of studies relevant to “Machine Learning (ML)”, “Database
(DB)”, and “Pattern Recognition (PR)”. An aspirant Ph.D.
student may be interested in finding the most influential
community who are working in “ML” or “DB.” The KICQ
returns the community C3 as shown in Figure 1 as the
most influential community (see Section 5 for the influential
metric) since the members of the community have influence
in either “ML” or “DB”, the community is dense and also
contains highly influential members.
The KICQ can be useful for retrieving influential com-

munities in other social networks, where a user is connected
with her friends/followers, and her preferences are extracted

from her posts/likes/shared contents. From such a network,
one event organizer may want to find the most influential
communities who have interests in “music or movies”. Simi-
larly, a tour operator may want to identify the groups who
have “travel” as their interests as potential customers.
A major challenge in realizing such a query (i.e., KICQ)

comes from the fact that communities and their influences
need to be computed and compared on the fly based on
the set of keywords in the query, and thus existing pre-
computation based approaches are not suitable for our pur-
pose. Our major contributions are the following:
First, we design KICQ in such a way that enables users

to issue an influential community search query intuitively
by merely using a set of query terms (words or phrases),
and predicates (AND or OR) (addressing the first limita-
tion). In this context, we propose a novel word-embedding
based keyword similarity model that enables semantic com-
munity search, which substantially alleviates the limitations
of exact keyword based community search. For example, a
user may use “song” instead of “music,” where exact search
fails to retrieve the relevant communities if the attributed
graph contains “music” as a keyword. This approach is of
independent interest in enhancing any knowledge graph with
semantically meaningful sets of words. (Section 4)
Second, we propose a new influence measure for a com-

munity that considers both the cohesiveness and influence of
the community and eliminates the need for specifying values
of internal parameters of a network (addressing the second
limitation). The influence measure also captures the influ-
ence of individual members in a better intuitive sense rather
than the influence of the community being dominated by the
minimum influence of a member (addressing the third lim-
itation). We demonstrate the effectiveness of the proposed
measure in a case study. (Section 5)
Third, we propose two efficient algorithms for searching

influential communities in a large, attributed graph. The
basis of the first algorithm is pruning the communities that
cannot be a part of the answer set based on the computed
scores of already explored subgraphs. The second one is
a novel tree-based approach, where we augment the tree
with influence score bounds for each keyword and prune the
unnecessary branches of the tree based on the scores of the
explored community. (Section 6)
Fourth, we conduct comprehensive experiments with real

datasets to evaluate our proposed algorithms. The experi-
mental results show that our algorithms are highly efficient
and effective in retrieving keyword aware influential com-
munities compared to the state-of-the-art influential com-
munity search technique. (Section 7)

2. RELATED WORKS
Finding communities from large graphs has been an en-

gaging research direction for a long time. Although the defi-
nition of community varies among different studies, cohesive
subgraphs like maximal cliques [8], k-core [7], k-truss [40],
etc. form the basis of modeling communities. The task of
finding communities can be divided into two major classes:
community detection (CD), and community search (CS).
Recently, Li et al. [27] introduced the notion of influential
community that has piqued interest from the research com-
munity. CS and CD problems are studied on both simple
and attributed graphs.

2

CS Approaches Simple graph Attributed graph
Keyword Others

Basic CS [10, 17, 38, 1, 44, 45, 28] [13, 18, 9, 46, 21, 4] [6, 12, 41, 49]
Influential CS [27, 5, 47, 3, 25] - [26]

Table 1: Existing community search works

Team formation, another relevant domain, is the task of
finding a subset of available individuals to complete a project
which requires a specific set of skills, which can be viewed
as a set coverage problem usually with a minimum commu-
nication cost objective [23, 24]. These works differ from CS
as a team does not need to be a cohesive subgraph.

2.1 Community detection
In CS, communities are defined based on the query, and

CS solutions aim to find communities efficiently in an online
manner. CD methods usually use global criteria to detect
all the communities from an entire graph, where the focus
is more on quality (e.g., cohesiveness) than efficiency. Link
based analysis was popular in initial studies [16] that did
not consider attributes in a graph. Clustering based tech-
niques [48, 35, 20, 43], and topic modeling [29, 36] are used
in recent studies on attributed graphs. However, none of
the studies enables a user to find specific communities of
her interest, which is the main focus of our study.

2.2 Community search
We present different directions of CS studies in Table 1.

Most of the basic CS studies on simple graphs [10, 17, 38, 1,
44, 45] find communities containing given query vertices. Li
et al. [28] studied persistent communities in a temporal net-
work, in which every edge is associated with a timestamp.
Li et al. [27] introduced the notion of influential CS where
vertices are assigned an influence score, and the influence
of a community is modeled as the minimum influence of the
members. Chen et al. [5] and Bi et al. [3] developed faster al-
gorithms to solve the same problem. Zheng et al. [47] studied
influential CS in an undirected weighted graph, where the
weight of an edge represents the semantic intimacy between
two vertices. Li et al. [25] defined a community in terms
of kr-clique and designed algorithms to retrieve the most
influential community. All of these studies ignore rich in-
formation of vertices found in attributed graphs and require
several vertices or internal parameters as part of a query,
which is very difficult for a user who does not have enough
knowledge of the graph.
There are several studies on CS in attributed graphs. Fang

et al. [13] proposed the ACQ algorithm to find subgraphs
satisfying structural and keyword cohesiveness. Huang et
al. [18] also explored attribute driven CS in terms of k-
truss. Chen et al. [6] studied CS in an attributed graph
where each vertex has a profile: a set of keywords arranged
in a tree structure. Chobe et al. [9] employed keyword search
techniques to facilitate CS in attributed graphs. However,
these studies also require a set of vertices and/or internal pa-
rameters as part of the query. Few recent works [46, 4, 46]
study keyword-based CS that take a set of keywords as in-
put and return a subgraph as the community that has the
best match with the given set of query keywords. In these
works, the cohesiveness of the subgraph is measured differ-
ently, i.e., k-core in [46], triangle density in [4], and average
proximity in [21]. To decide a single best-matched subgraph,
they define functions that consider the presence or absence
of keywords and structural cohesiveness in the subgraph.

These studies are different from ours as they only consider
the presence or absence of keywords in different vertices of
the subgraph and cannot be adapted for the scenario where
we need to rank the communities and each vertex has a
certain degree of influence in each keyword. There are CS
studies on spatial graphs [12, 41, 49] as well, which are of
different interest to our problem.
Li et al. [26] studies skyline community search where each

vertex is associated with a d-dimensional influence score.
However, their study is designed for low values of d (i.e.,
d < 5). With d = 5, their algorithms require more than 103

seconds in a graph with half a million vertices. This study
cannot be extended for an attributed graph where vertices
are associated with influence scores in multiple keywords,
because there can be millions of keywords (dimension) in
such an attributed graph. Also, this approach aims to find
communities with a global objective function, and there is
no way to search communities of specific interest.

3. PROBLEM DEFINITION AND SYSTEM
OVERVIEW

We first define the attributed graph, proposed commu-
nity model and keyword aware influential community query
(KICQ), and then present the overview of the system.

Definition 1. (Attributed graph) An attributed graph
G+(V,E,A) is an undirected graph, where V is the set of
vertices and E is the set of edges. Each vertex v is associated
with a set of tuples of the form Av = {(wi, sv(wi))}, where
wi is a keyword and sv(wi) ∈ [0, 1] is the influence score of
vertex v in keyword wi.

We consider the connected components of maximal k-
cores as the influential communities, where the influence
is defined as Equation 2 (see Section 5). k is termed as
cohesion factor in this paper.

Definition 2. (maximal k-core) Let H be a subgraph of
G+, induced by the set of vertices VH ⊆ V . Let the degree
of a vertex v in H is denoted by degH(v). H is a k-core if
∀v∈VHdegH(v) ≥ k, where k is a non-negative integer. H
is a maximal k-core if there is no super k-core in G+ that
contains H.

Now, we define the keyword-aware influential community
query, KICQ as follows.

Definition 3. (KICQ) Let G+(V,E,A) be an attributed
graph, q(T, P) be a query tuple where T = {t1, t2, · · · , tn}
is a set of terms (i.e., words or phrases) and P is a predi-
cate (AND, OR) for conjoining the query terms, kmin be the
minimum cohesion factor of the resultant community, and r
be a positive integer specifying the number of top commu-
nities to be returned. Then, KICQ finds r most influential
communities H1, H2, ..., Hr from G+.

An overview of our system is presented in Figure 2. The
system is mainly divided into two phases. First, we con-
struct a keyword-aware attributed graph from a social net-
work corpus that may consist of a combination of structured
and/or unstructured (i.e., text) data. In an academic do-
main, the corpus can be scientific publications of researchers
(e.g., authors, titles, abstracts, author-provided keywords,

3

STEP 2
Augmenting keywords

Generating word
embeddings for terms and

keywords

Measuring semantic
similarity between terms

and keywords

Social
Network
Corpus

STEP 1
Constructing attributed

graph

Extracting entities of
vertices and edges

Adding keywords (i.e.
attributes) to vertices

Associating keywords with
semantically related terms

and keywords

Attributed graph construction and keyword augmentation

Keyword-aware
attributed graph

being used

generates

Augmented
keywords

STEP 2

Computing query relevance
scores of vertices

STEP 1

Augmenting the query by
finding relevant keywords

in the attributed graph

Keyword-aware influential community search

Query: q(T, P)

- T: set of
terms

- P: predicate
(AND/OR)

Constructing Keyword-
aware Influential

Community Query: KICQ
(X, P, r, kmin)

Finding the relevant
vertices to the query and

assigning a relevance
score to each vertex

PRUNED-
EXPLORE

BASIC-
EXPLORE

TREE-
EXPLORE

STEP 3

Top-
communities

Top-
communities

Top-
communities

Figure 2: The overview of our system

etc). Second, we focus on searching keyword-aware influ-
ential communities using the constructed attributed graph,
given a query as a set of terms and predicates.
The distinctive features of the first phase are as follows:

STEP 1 : First, we build an attributed graph from a do-
main corpus by extracting entities of possible vertices
and edges to represent the social network.

STEP 2 : To enable keyword-aware influential community
search, we augment keywords with their semantically
related terms and keywords. We build word embed-
ding vectors [31] as an external knowledge source for
associating keywords in the graph with semantically
related terms and/or keywords. The semantic relat-
edness is estimated by exploiting the word embedding
vectors. The output of this step is a graph, called
keyword-aware attributed graph.

Further, the unique features of the second phase of our sys-
tem can be briefly highlighted below:

STEP 1 : Initially, a query raised by a user is given in the
form of a pair q(T, P) consisting of a set of query terms
T , and a predicate P . The terms need to match with
the keywords in the attributed graph to find meaning-
ful communities. We acknowledge the difficulty faced
by the users to put the exact terms while raising a
query. For example, it is highly likely that some of the
users will input “song” instead of “music”. To help the
users to easily raise a query, we augment each query
term with a semantically meaningful set of keywords.
The output of this step is a KICQ.

STEP 2 : Given aKICQ query, our objective is to find the
vertices relevant to the query and then compute their
query relevance scores (Equation 1). Relevance score
of vertices are used to compute the scores of poten-
tial influential communities. We argue that a measure
that rewards both the cohesiveness of the community
and high influence of the members, and does not re-
quire user input of any internal parameters (e.g., k in
k-core) is more preferable than the existing influence
measures. We propose a linear weighted summation of

the cohesiveness of the community and the total influ-
ence of the members of the community to estimate the
overall score of a community (Section 5).

STEP 3 : Given the augmented query and the influential
score function, our focus is now to retrieve top-r most
influential communities relevant to the query. Since
we are the first to propose the keyword-aware influ-
ential community search problem, and existing pre-
computation based approaches are not suitable to re-
trieve communities for any given query, we first present
a basic solution named BASIC-EXPLORE followed by two
efficient algorithms: PRUNED-EXPLORE and TREE-EXPLORE.

4. KEYWORD AUGMENTATION
In a social network, one’s expertise in various fields can

be represented by a collection of terms (words or phrases).
There are millions of such terms in a large network and it
is difficult for users to come out with the exact terms while
raising a query. We propose a semantic keyword similarity
model that can augment any term with relevant keywords.
This model is used to extend the keywords in the attributed
graph, and associate appropriate keywords for each term in
the query.

4.1 Semantic keyword similarity model
Finding semantically related keywords of a term is not

trivial. Basic preprocessing like removing whitespaces and
stopwords are not sufficient. Two or multiple terms with
a slight syntactic difference can indicate the same keyword
(e.g., “error detection and error correction” and “error detec-
tion and correction”). Even two different terms can represent
the same keyword (e.g., “AI” and “artificial intelligence”) or
can be semantically similar (e.g., “neural network” and “deep
learning”).
We adopt Word2Vec [30] model to generate an embed-

ding vector of any given word. We train this model with a
domain corpus (e.g., scientific publications in an academic
domain) after stopword removal, tokenization, and lemmati-
zation [34]. A keyword/term can be thought of as a phrase
containing one or many words. In our approach, the rep-
resentative vector is formed using the average of the em-
bedding vectors of the constituent words. Now, given any
two terms t1 and t2, we denote their embedding vectors as
xt1 and xt2 , respectively. To estimate a similarity between
these two terms, denoted as S(t1, t2), we can use widely used
cosine similarity of their embedding vectors xt1 , xt2 [32].
We also propose a new similarity, which yields an attributed
graph of better quality.
indirect cosine: Given a term t, its vector V t is denoted
as V t = [(wt1, s

t
1), (wt2, s

t
2), · · · , (wtL, stL)], where wti is the ith

most similar word to xt, sti is the corresponding similarity
score, and L is the number of similar terms of t.
Given two terms t1 and t2, we construct a vocabulary,

U combining words of V t1 , and V t2 . Formally, U = {w :
(w, s) ∈ V t1 ∪ (w, s) ∈ V t2}. To simplify our notation, let
U = {w1, w2, · · · , wn}, where n = |U |. Now, we define an-
other vector SV t = [s1, s2, · · · , sn], where si is the similarity
score of term t to word wi ∈ U , which can be found from V t.
If (wi, si) /∈ V t, si is set to 0. Finally, S(t1, t2) is calculated
as the cosine similarity of SV t1 and SV t2 .
Finally, for any term t, we calculate its similarity with all

the keywords in the given attributed graph, and find M -top

4

most relevant keywords Xt ranked based on the similarity
scores. M is a system configurable parameter. By default,
M is set to 10.

4.2 Constructing attributed graph
In attributed graph G+, a vertex v is associated with a

set of keywords. For all vertices, we extend each keyword t
with its M -top most relevant keywords Xt using the seman-
tic similarity model. For any keyword w ∈ Xt, the influence
score of vertex v, sv(w) = sv(t) since w and t are semanti-
cally similar.

4.3 Augmenting keywords for KICQ
A query q(T, P) consists of a set of terms T = {t1, t2, · · · ,

tn} and a predicate P . First, the semantic similarity model
is used to augment each term ti with the set of relevant
keywords Xti . Then the system parameters r and kmin are
used to formulate the keyword aware influential community
query,KICQ(X,P, r, kmin) whereX = {Xt1 , Xt2 , · · · , Xtn}.

5. INFLUENTIAL COMMUNITY MEASURES
We design a scoring function that considers connectiv-

ity, cohesiveness, influence of individuals and the community
size, and assigns a score for ranking the candidate commu-
nities given a query.
First, for a given query, we redefine the influence of a ver-

tex based on its relevance to the query. The query relevance
score γv of a vertex v is estimated as follows: each vertex
v in the attributed graph is annotated with keywords and
their influence score for the corresponding keywords, i.e.,
(wi, sv(wi)). To estimate the relevance score, γv ∈ [0, 1],
we need to consider the list of semantic keywords X and
the predicate P in the KICQ query. Formally, we use the
following definition for computing γv:

γv = fXti∈X [gw∈Xti sv(w)] (1)

Here, f and g are two aggregate functions: g combines
the relevance of the vertex for the semantic keywords of a
query term, and f combines the relevance scores in all terms
considering the predicate P . We use g as the aggregate
function, MAX ; whereas we use f asMIN for AND predicate
and MAX for OR predicate, respectively. MIN aggregate
ensures that a vertex has high relevance to all the terms,
while MAX only requires high relevance to any of the terms.
Now, we use a linear weighted summation of the cohe-

siveness and influences to calculate the overall score of a
community. Let H = (VH , EH) is a subgraph of attributed
graph G+(V,E,A). If H is a community (connected com-
ponent of maximal k-core), then the score of H is:

ζ(H) = β × k
max-deg(G+)︸ ︷︷ ︸

Cohesiveness score

+(1− β)×
∑
v∈VH

γv

|V |︸ ︷︷ ︸
Influence score

(2)

Here, max-deg(G+) is the maximum degree of all vertices
in G+. Both the cohesiveness and the influence score of a
community are normalized within [0, 1], and the preference
parameter β ∈ [0, 1] defines the importance of one score
relative to the other.
Since we model a community using connected k-core, con-

nectivity and cohesiveness is ensured. max-deg(G+) and
|V | is constant for attributed graph G+. Thus the influence
score of community H depends on

∑
v∈VH

γv which prefers
large community with highly influential individuals. Also

as long as some low influential members do not disrupt the
cohesiveness of the community, the score of this community
is not penalized, which is the case in [27]. We acknowledge
that such a measure is not unique, and other measures can
be explored in the future. However, experiments using real
datasets and the case study presented in Section 7.5 demon-
strate that our proposed influence measure can capture co-
hesive communities with highly influential members.

6. ALGORITHMS FOR INFLUENTIAL COM-
MUNITY SEARCH

In this section, we present algorithms for finding r most
influential communities from the attributed graph G+ for a
given KICQ(X,P, r, kmin). Since the notion of influential
community changes with different sets of query keywords,
existing pre-computation based approach [27, 25] cannot be
adapted for this purpose.

6.1 A straightforward approach, BASIC-EXPLORE
A straightforward approach to answer KICQ on a large

graph is as follows. First, we extract the subgraph, which
we call the query essential subgraph, Gq, containing vertices
and edges that are relevant to the query. Then we find all
the connected components of maximal k-core subgraphs for
all possible values of k. Finally, we return the top r com-
munities having the highest influential community scores as
per Equation 2.
Finding Gq. The query essential subgraph, Gq(Vq, Eq, γ)

is a subgraph of the attributed graph G+(V,E,A) induced
by Vq, the set of vertices with a non-zero query relevance
score. In Gq, each vertex v is annotated with its relevance
score γv, and Eq is the set of edges between any two ver-
tices in Vq. To efficiently generate the Gq, we maintain an
inverted index, where for each keyword w, a list ILw of the
vertices that contain w is stored. Thus, for a given KICQ
query, Vq can be obtained by,

Vq =

{⋂
Xti∈X

[
⋃
w∈Xti

ILw], if P = AND⋃
Xti∈X

[
⋃
w∈Xti

ILw], otherwise
(3)

After retrieving Vq, we compute the query relevance score
of each vertex v ∈ Vq (Equation 1) and retrieve Eq that
denotes the connections between all pairs of vertices in Vq.
Finding k-cores and most influential communities.

Algorithm 1 outlines the procedure basic-explore for find-
ing r most influential communities from Gq. First, we com-
pute core decomposition for all vertices in Gq using the
O(|Eq|) algorithm proposed by Batagelj et al. [2]. A pri-
ority queue Q is used to hold our solution. We initial-
ize Q with r empty communities having 0 score. In our
case, a community must be at least kmin-core. Again, the
maximum cohesion factor of a community in Gq can be
max-deg(Gq), since there is no vertex in Gq with a higher
degree. Thus we need to first find all connected compo-
nents of maximal k-cores from Gq, where the value of k is
in range [kmin,max-deg(Gq)]. Then, we compute the in-
fluential scores of each computed community, and finally,
maintain the top-r communities in Q ordered by the scores
of the communities.
Time complexity. Finding the relevant vertices and cal-

culating their relevance score can be done in O(|Vq| × Nw)

5

Algorithm 1 BASIC-EXPLORE (Gq)
1: compute core decomposition for all vertices in Gq
2: initialize a priority queue Q with r empty communities (score 0)
3: for k = kmin to max-deg(Gq) do
4: Hk = maximal k-core in Gq
5: CCk = set of connected components in Hk
6: for all h(Vh, Eh) ∈ CCk do
7: ζ(h) = score of h
8: if ζ(h) > rth best score then
9: Q.pop()
10: Q.push(h)

time, where Nw =
∑
Xi∈X |Xi| is the total number of rele-

vant keywords. If the graph is implemented with adjacency
list, Eq can be obtained in O(|Vq|) time by taking union of
adjacency list and Vq for each vertex. So, time complex-
ity for computing Gq is O(|Vq| ×Nw). Core decomposition
of Vq is done in O(|Eq|) time. The operations (push, pop)
performed in the priority queue takes O(log r) time. So,
the time required for initializing Q is O(r log r). Exploring
a maximal k-core requires computing its connected compo-
nents (O(|Vq| + |Eq|)), obtaining k-core vertices (O(|Vq|)),
computing scores of each connected components, and updat-
ing the priority queue Q. For any community h(Vh, Eh), the
run-time for computing its score is bounded by O(|Vh|) =
O(|Vq|) (simplified). So, if Nk is the number of influential
communities with cohesion factor k, then the runtime of ex-
ploring all k-cores is bounded by O(max-deg(Gq)× ((|Vq|+
|Eq|) +Nk × (|Vq|+ log(r))). Considering |Vq| > log(r), the
bound can be simplified as O(max-deg(Gq) × |Vq|2) for a
dense graph 1. Since, this dominates the time complexity of
finding Gq, we can conclude that, the overall complexity of
BASIC-EXPLORE is O(max-deg(Gq)× |Vq|2).

6.2 Pruned exploration approach, PRUNED-EXPLORE
The major bottleneck of BASIC-EXPLORE is that it needs

to explore all maximal k-cores, for different values of k, and
find the connected components of each maximal k-core sub-
graph. Such exploration is computationally expensive for a
large graph. Instead of directly exploring the subgraphs to
compute the maximal k-core and its connected components
(communities), we first estimate the upper bound score of
the communities of the corresponding subgraph. This bound
can be used to prune a large number of redundant subgraphs
that cannot be a part of the top-r influential communities.
First, we find the query essential subgraph Gq, compute

core decomposition, and initialize priority queue Q as de-
scribed in Section 6.1. Now, we need to explore Gq to
retrieve communities for all possible values of k. As dis-
cussed before, the value of k must be between kmin and
max-deg(Gq). We propose the following lemmas, which
pave the foundation of our pruning.

Lemma 1. Let, H(VH , EH) be a subgraph of Gq. For any
community in H, the maximum influence score can be the
sum of the query relevance scores of all vertices in H. Thus,
without computing the vertices of k-core subgraph, we can
calculate the upper bound of the score of any community in
H for a particular value of k as follows.

ζ∗k(H) = β × k
max-deg(G+)

+ (1− β)×
∑
v∈VH

γv

|V | (4)

1Nk < |Vq| and for any dense graph G(V,E), |E| is O(|V |2)

Algorithm 2 PRUNED-EXPLORE (H, k)
Input: Subgraph of Gq H = (VH , EH), cohesion factor k.
1: min-deg(H) = min

vεVH

(degH(v))

2: if min-deg(H) > k then
3: k = min-deg(H)

4: Hk = maximal k-core in H
5: CCk = set of connected components of Hk
6: for all h ∈ CCk do
7: if actual score, ζ(h) > rth best score then
8: Q.pop()
9: Q.push(h)
10: for k′ = k + 1 to max-deg(Gq) do
11: if upper bound score, ζ∗

k′ (h) > rth best score then
12: PRUNED-EXPLORE(h, k′)
13: break

Lemma 2. IfH = (VH , EH) is a subgraph andmin-deg(H) =
min
v∈VH

(degH(v)) > k, then any community in H must be at

least min-deg(H)-core.

According to Lemma 1, we can prune a subgraph if its
upper bound score is lower than the rth best score of already
retrieved communities from Gq. Moreover, Lemma 2 helps
us to avoid the computation of certain cores from Gq.
Now, we develop a recursive procedure pruned-explore

to search for influential communities inGq. Algorithm 2 out-
lines the procedure. Initially, pruned-explore(Gq, kmin) is
called to extract communities with minimum cohesion fac-
tor. In later steps, the procedure is recursively called to
extract communities with higher cohesion factors.
Let us consider that we want to find communities with co-

hesion factor k, from a subgraph H(VH , EH) of Gq. In lines
1-3, we determine the minimum degree of the vertices in H,
min-deg(H). If min-deg(H) > k, we set k = min-deg(H)
and directly compute such k-cores (according to Lemma 2).
In lines 4-5, we find the set of connected components of
maximal k core of H, denoted by CCk. The loop in line 6
runs for each connected component. We update the prior-
ity queue if any connected component’s score is higher than
the current top-r communities in lines 7-9. We explore the
connected component for higher values of k in lines 10-13.
We use Lemma 1 to prune exploration for the values of k
for which the upper bound of the score is lower than the rth

best community. When the procedure terminates, the queue
holds the final top-r communities.

6.3 Keyword indexed tree exploration, TREE-EXPLORE
Though the above PRUNED-EXPLORE can prune a large num-

ber of subgraphs based on the derived upper bounds, it still
explores subgraphs and their connected components with
low cohesiveness, which usually do not contain the most
influential communities. This exploration can be costly, es-
pecially in a scenario where the query essential graph, Gq,
turns out to be very large. So, we propose a novel index,
namely keyword indexed core-label tree (KIC-tree), that pre-
computes and organizes the connected components of max-
imal k-core subgraphs hierarchically with computed upper
bound of influence scores for each keyword.
The key idea of our KIC-tree based KICQ comes from

the following observations:
(i) Top communities are structurally cohesive and thereby

can be retrieved by exploring the subgraphs of higher cohe-
sion factors. Thus, if k-cores are precomputed, disregarding
the associated keywords, we can still prune the subgraphs
with low k value.

6

n1 n2 n3 n4

n5 n6 n7 n8

n9 n16

n1 n2 n3 n4

n6 n7 n8 n9
n5 n16

n1 n2 n3 n4

n6 n7 n8

n3 n4 n6

n7 n8

Root

k = 1

k = 2

k = 3

-
kmax = 3

n3 n4 n6 n7 n8
kmax = 3

n1 n2
kmax = 3

n9
kmax = 3

n5 n16
kmax = 1

ke
yw

or
d

re
l

V
er
ti
ce
s

m
ax

In
Sc
or
e

m
ax

O
ut
Sc
or
e

DB n1, n2 2.7 1.1
ML n1, n2 3.2 1.6
PR - 0 0.4

u1

u2

u3

u4

u5

Figure 3: KIC-tree for the subgraph (shaded) in Figure 1.

(ii) Communities are represented using connected maxi-
mal k-cores which are nested, i.e., by definition, a (k + 1)-
core is also a k-core (k ≥ 0). This property helps to store
all the connected components of maximal k-cores in com-
pressed tree-based structures as shown in previous works
ICP-index [27], CL-tree index [13].
(iii) We can compute the upper bounds for both the com-

ponents: influence and cohesiveness, of the the scoring func-
tion, and use these upper bounds to prune the search space
during query time.
We first discuss the basic structure of the KIC-tree index.

Then we present the upper bounds for individual keywords
and aggregate them for a set of keywords and predicates
(in KICQ) for an upper bound score of a node. We also
show how the cohesiveness score can be bounded based on
a pre-computed structure alone. Finally, we present our
TREE-EXPLORE algorithm for influential community search
using the KIC-tree. In this section, we use the term “node”
to exclusively indicate a tree node.

6.3.1 KIC-tree index
The KIC-tree index organizes the connected components

of k-cores into a space-efficient tree structure. We adopt
the concept of compressed tree based structure of previous
works (e.g., CL-tree index [13]), and augment the structure
with derived bounds to prune the search space.
Figure 3 shows an example KIC-tree for the subgraph

shown as the shaded region in Figure 1. The left shows the
hierarchical representation of all maximal k-core connected
components in the subgraph. We refer this tree as the un-
compressed tree. The right figure shows KIC-tree index, a
more compact representation of the left tree, which removes
the graph vertices present in its descendant nodes ensuring
that each graph vertex appears exactly once.
Let u be a KIC-tree node and subtree(u) be the subtree

rooted at u. The structure of u is as follows:
(i) k, the cohesion factor; (ii) vertexSet, the set of com-

pressed graph vertices at node u; (iii) childNodes, the set
of child nodes of u; (iv) kmax, the maximum cohesion factor
of any connected component contained by the subtree(u);
(v) iList, an inverted list containing the upper bounds of
influence scores for all keywords appeared in subtree(u).
For each keyword w that appears in subtree(u), the in-

verted list u.iList[w] contain the following elements:
(i) relV , a set of graph vertices in u.vertexSet containing

the keyword w;
(ii) maxKNScore, the upper bound of influence score

component by only considering keyword w in a community
(i.e., a connected component) contained by the subtree(u),

where the community must include at least one vertex present
in node u containing the keyword w;
(iii) maxKDScore, the upper bound of influence score

component by only considering keyword w of a community
contained by the subtree(u), where the community does not
include any vertex from u.vertexSet (i.e., all vertices of the
community come from the descendent nodes of u).
We computemaxKNScore andmaxKDScore as follows.
For a node u, let childV be the set of graph vertices stored

at the descendent nodes of u, and allV be the set of graph
vertices at subtree(u) (i.e., all the vertices in node u and
its descendent nodes). If u is a leaf node, u.childV = ∅.
Otherwise, u.childV =

⋃
p∈u.childNodes p.vertexSet. On the

other hand, in all cases, u.allV = u.vertexSet
⋃
u.childV .

Now, if there is no relevant graph vertex in node u for
keyword w, then we set maxKNScore as 0. Otherwise,
the upper bound is the sum of influence scores of all graph
vertices in u.allV . Formally,

u.iList[w].maxKNScore =

{
0, if u.iList[w].relV = ∅∑
v∈u.allV (sv(w)), otherwise

Here, sv(w) is the influence score of vertex v for keyword w.
Now, maxKDScore is the maximum influence score com-

ponent among the communities represented by the descen-
dant nodes of u. u.iList[w].maxKDScore = 0 if u is a
leaf node. Otherwise, we can use the computed values of
maxKNScore to compute the maxKDScore as follows.

u.iList[w].maxKDScore = maxp∈u.childNodes p.iList[w].maxKNScore

Figure 3 (right) shows an example tree, where the table
inside the ellipse represents the iList of the corresponding
node. For simplicity, we only show the iList for node u3.

6.3.2 Complexity analysis for index construction:
We use the advanced method proposed by Fang et. al.

[13] that compresses the tree and for each node u, computes
u.iList[w].relV for all the relevant keywords of u. The time
complexity of this method is O(|E| ×α(|V |)), where α(|V |),
the inverse Ackermann function, is less than 5 for all re-
motely practical values of |V |. For each iList[w] entry, we
also need to compute the two upper bounds maxKNScore
andmaxKDScore. If Amax is the maximum number of key-
words associated with a graph vertex, the time complexity
for computing maxKNScore is O(Amax × |V |). Comput-
ing maxKDScore for a node u only requires visiting its
childNodes which is non-dominant. So, overall time com-
plexity for index construction is O(|E|×α(|V |)+Amax×|V |).
In iList, we need additional space to store two upper

bound scores (constant space) for each keyword. The space
cost is still dominated by storing relV ertices in iList. So,
the space complexity remains O(Ā× |V |) as in [13], which
is proportional to the graph size.

6.3.3 Computing upper bound scores for a query
Given a KICQ(X,P, r, kmin) query, we need to compute

an upper bound influence score of a community denoted by
Sinf and the maximum possible cohesiveness score of that
community, Sk by using the precomputed upper bounds in
KIC-tree. Then the upper bound of the total score of that
community can be computed as maxScore = β × Sk + (1−
β)× Sinf (as in Equation 2).
We define two upper bounds for the communities inside

subtree(u): (i)maxNodeScore, the maximum possible score

7

of any community that can be exclusively found by exploring
the connected k-core stored at node u and (ii)maxDesScore,
the maximum possible score of any community that can be
found by exploring the descendant nodes of u.
Computing maxNodeScore: For any community con-

tained exclusively by node u, there must be at least one
vertex v that is stored at u. Now, for any vertex v exclusive
to node u, u.k is the maximum core number. So, a sub-
graph containing v can be at most u.k-core (irrespective of
any keyword) and the upper bound of cohesiveness score of
any community contained by the node can be computed as
Sk = u.k/max-deg(G+).
Now, for each keyword w, u.iList[w].maxKNScore al-

ready defines the upper bound of influence score component
for any community in the subgraph exclusively contained
by node u (considering the single keyword w). We combine
these bounds for considering all the keywords in the KICQ
query and compute the maximum influence score as:
Sinf = 1

|V | × FXti∈X(
∑
w∈Xti

u.iList[w].maxKNScore)

Here F is an aggregate function that combines the influ-
ence scores of the community for multiple terms depending
on the predicate P and division by |V | normalizes the score
within [0,1]. For the queries with OR predicate, a top com-
munity can be formed by joining multiple communities pre-
computed for a single term, and these communities may have
disjoint vertex set. So, it is safe to consider F as a summa-
tion aggregate. For the same reason,

∑
is explicitly used

to combine the semantic keywords of a term. Again, for
the queries with AND predicate, any graph vertex forming
a community for a single term must be present in commu-
nities of other terms as well. So, F can be safely considered
as minimum aggregate.
Computing maxDesScore: For any community con-

tained by the descendant nodes of u, the maximum cohesion
factor is u.kmax and the upper bound of cohesiveness score
is Sk = u.kmax/max-deg(G+).
Again, for keyword w, u.iList[w].maxKDScore already

defines the upper bound of influence score component for
any community contained by the descendant nodes. We
combine these bounds for considering all the keywords in
the KICQ query and compute the maximum influence score
similarly as computing maxNodeScore, i.e.,
Sinf = 1

|V | × FXti∈X(
∑
w∈Xti

u.iList[w].maxKDScore)

6.3.4 TREE-EXPLORE algorithm
We follow a best-first exploration strategy. Since the leaf

nodes contain the communities with high cohesiveness while
nodes near root contain communities with low cohesiveness,
we explore the KIC-tree in a post-order manner. Likewise
the previous exploration algorithms (e.g., PRUNED-EXPLORE),
a priority queue Q initialized with r empty communities is
used to store the results. The exploration algorithm, which
we call TREE-EXPLORE is developed based on the following
pruning techniques:
(i) Subtree pruning: For any node u, we examine the

u.maxDesScore before visiting its children. If it is less than
the rth best score, then none of the communities to be found
in the descendent nodes can score higher than the current
rth top community. Therefore, we can skip visiting the de-
scendant nodes of u.
(ii) Node pruning: Before exploring the pre-computed

connected k-core subgraph at any node u, we examine the
u.maxNodeScore. If it is less than the rth best score, we

Algorithm 3 TREE-EXPLORE (u, U)
Input: Tree node u, query relevant nodes U .
1: if u is an internal node then
2: Compute influence score component Sinf and cohesiveness

score component Sk for u.maxDesScore
3: u.maxDesScore = β × Sk + (1− β)× Sinf
4: if Sinf > 0 and u.maxDesScore > rth best score then
5: for each p ∈ (u.childNodes ∩ U) do
6: TREE-EXPLORE(p, U)
7: if u.k < kmin then
8: return
9: Compute influence score component Sinf and cohesiveness score

component Sk for u.maxNodeScore
10: u.maxNodeScore = β × Sk + (1− β)× Sinf
11: if Sinf = 0 or u.maxNodeScore < rth best score then
12: return
13: u.Vrel = compute relevant graph vertices in the subtree rooted

at u
14: Compute query relevance score of all vertices in u.Vrel
15: Compute u.Erel, the edges among u.Vrel
16: Construct subgraph H(u.Vrel, u.Erel), each vertex annotated

with relevance score
17: modified-pruned-explore(H, kmin, u.k)

can safely prune this exploration.
Algorithm 3 outlines the pseudocode for the KIC-tree

traversal. The inverted list that we have used to find the Gq
is adopted for computing U , the set of tree nodes relevant to
a query. Initially, the recursive procedure tree-explore(u,
U) is called with u being the root of the KIC-tree.
For any internal node u, we first compute and examine

the influence score component, Sinf , and the cohesiveness
score component, Sk of u.maxDesScore. If Sinf is 0, the
descendants of u do not contain any graph vertex relevant to
the query, and therefore we do not need to visit subsequent
nodes across the subtree. If Sinf > 0 and u.maxDesScore
is greater than the current rth best score, then we visit its
children (lines 1-6).
Now we want to explore the pre-computed connected k−

core subgraph represented by node u. If the cohesion factor
k in node u is less than kmin, then we prune exploring the
subgraph. Otherwise, we compute the influence score com-
ponent (Sinf) and the cohesiveness score component (Sk)
of u.maxNodeScore. If Sinf is 0, then the node does not
contain any graph vertex relevant to the query, and we can
safely skip exploring the subgraph. Again, we skip the ex-
ploration if u.maxNodeScore is less than the current rth

best score (lines 7-12).
If the exploration of the connected k-core subgraph can-

not be pruned, we first need to find all the relevant graph
vertices, u.Vrel present in the subgraph (line 13). Since
KIC-tree compresses these graph vertices by removing ones
present at descendant nodes, we need to decompress in a
bottom-up manner. At any node u, the relevant graph ver-
tices u.Vrel can be computed like the vertices inQEG (Equa-
tion 3) just by replacing ILw with u.iList[w].relV . For any
internal node u, we need to add the relevant graph vertices
in child nodes to u.Vrel.
Now we compute the relevance score of each vertex v ∈

u.Vrel (Equation 1) and then compute the edges among these
vertices, thereby construct the subgraph H(u.Vrel, u.Erel)
(lines 14-16).
The procedure modified-pruned-explore(H, k, kmax) is a

slightly modified version of the procedure pruned-explore(H, k)
that takes an extra argument kmax, the maximum value of
cohesion factor for sub-graph H. Lines 10-13 in Algorithm
2 are replaced by the following:
10: for k′ = k + 1 to kmax do

8

11: if ζ∗
k′ (h) > rth best score then

12: modified-pruned-explore(h, k′, kmax)
13: break
Since no graph vertex at u belongs to any k-core with

cohesion factor higher than u.k, here kmax = u.k. Initially,
k = kmin. So, modified-pruned-explore(H, kmin, u.k) is
called to explore the subgraph H (line 17).

7. EXPERIMENTAL STUDY
In this section we present experiments to evaluate the per-

formance of our proposed algorithms.

7.1 Experimental setup
All the community search algorithms are implemented in

JAVA. Experiments were run on a virtual environment of
OzSTAR2 supercomputer with two cores of Intel Gold 6140
CPU @ 2.30 GHz 2.30GHz, 192 GB RAM, and 400 GB SSD.
We assume that the graph and all the indexes will fit in the
memory. For the simplicity of presentation, we use shorter
names for our algorithms: BASIC, PRUNE, and TREE to rep-
resent BASIC-EXPLORE, PRUNED-EXPLORE, and TREE-EXPLORE
respectively. We present the average results of 100 queries.
We use two large real datasets: OAG (Open Academic

Graph)3 [39] and Gowalla4 that reflect the real life appli-
cation scenarios. In OAG dataset, we represent first 1 million
authors as vertices and 15, 677, 940 co-authorship relations
among the authors as edges. We choose 1, 000 most frequent
author-provided keywords as the set of keywords for the at-
tributed graph and then apply our semantic similarity
model to extend the keywords as mentioned in Section 4.1.
In Gowalla dataset, users and friendship among them are
modeled as vertices and edges, and the location ids are con-
sidered as keywords. There are 407, 533 vertices, 2, 209, 169
edges, and 2, 727, 464 keywords in this attributed graph. For
both datasets, the influence score of a user for a certain key-
word is modeled as the user’s percentile rank considering
the number of citations or check-ins. To generate a query
for OAG datasets, first, we choose 1-3 query terms from the
most frequent 10, 000 author-provided keywords, and then
augment each keyword with its semantically similar key-
words using our semantic keyword similarity model. For
Gowalla dataset, we choose a set of locations within a range
of 5km as query terms.
We vary different parameters as shown in Table 2. When

one parameter is varied, other parameters are fixed at their
default values.
We have uploaded the constructed attributed graphs in a

public repository5. The repository also contains a detailed
description of datasets, query setting, and the semantic
similarity model and its evaluation.

7.2 Evaluation of semantic similarity model
In Section 4.1, we presented two approaches for finding

semantic similarity between two terms or keywords. Here,
we empirically evaluate which approach is the most effec-
tive. As the ground truth, we use widely used semantic
similarity measure [37] that is based on the intrinsic infor-
mation content of two concepts in a given taxonomy. As the
taxonomy, we use the taxonomy provided by the 2012 ACM
2https://supercomputing.swin.edu.au/ozstar/
3https://aminer.org/open-academic-graph
4http://www.yongliu.org/datasets/index.html
5https://github.com/saiful1105020/VLDB-2020-Additional-Contents

Parameter Range Default
Dataset OAG, Gowalla OAG
Dataset size
(vertices)

300K, 500K, 700K,
900K, 1M

500K

Number of
keywords

100, 250, 500, 750, 1000 1000

β any real value within
[0.0, 1.0]

0.60

r any integer within [1, 5] 3
kmin any integer within [2, 50] 10

Table 2: Parameters for experimental analysis

Computing Classification System6 that contains 2,113 topics
and organizes them hierarchically based on relevance (e.g.,
“clustering” is a sub-topic of “data mining”). In our context,
each topic in the taxonomy can be seen as a keyword or a
term, and each of our proposed similarity measures can be
considered as a ranker that finds the most similar topics to
any topic in the taxonomy. So, we adopt Normalized Dis-
counted Cumulative Gain (NDCG) [42], which is a widely
accepted performance measure of ranking systems.
First, given the taxonomy τ , we give the ground truth for-

mula of the similarity between two topics t1 and t2 proposed
in [37]: simjcn(t1, t2) = 1−[dτjcn(t1, t2)/2], where dτjcn(t1, t2)
denotes a distance metric between t1 and t2 as dτjcn(t1, t2) =
ICτ (t1)+ICτ (t2)−2×ICτ (lcs(t1, t2)) [19]. Here, lcs(t1, t2)
is the “least common subsumer” in τ that subsumes t1 and
t2. Finally, ICτ (t) indicates the information content of topic
t in τ , calculated by log (|sc

τ (t)|+1
|τ |)/ log (1

|τ |) as in [37]. Here,
scτ (t) is the set of subsumed topics of t and |τ | is the total
number of topics in τ .
Second, given a topic t in τ , our task is to rank theM -top

similar topics {w1, w2, · · · , wM} in τ . The ranking goodness
is evaluated by NDCG@M that gives more importance on
the ranking of a more relevant entity than the ranking of
entities with lower relevance.
To obtain a vector representation of each topic in τ , we

use Google’s pre-trained word2vec model7 that includes em-
bedding vectors for a vocabulary of 3 million words and is
trained on Google News dataset covering academic research.
The length of the embedding vector is 300.
Table 3 shows the comparison among the two similarity

metrics in terms ofNDCG@50, NDCG@20, NDCG@10. We
choose indirect cosine that outperforms cosine metric.

Metric cosine indirect cosine
NDCG@50 0.528 0.542
NDCG@20 0.537 0.607
NDCG@10 0.573 0.633

Table 3: Performance results of similarity metrics
In the indirect cosine similarity measure (see Section 4.1)

there is a challenge in determining a good value for L. To
examine this, we use two measures. The first is word co-
herence, WCL(V t), that indicates how coherent the L-top
words in vector V t are. The more coherent it is, the bet-
ter we can represent the set of keywords. We define the
word coherence as the average pairwise cosine similarity of
the L-top words. Also, in a sense, each term is a cluster
containing its relevant words. So we use Davies-Bouldin In-
dex [11] as the second measure that optimizes two criteria:
(1) minimizing intra-distance between words and the cen-
troid, and (2) maximizing inter-distance between keywords.
6https://dl.acm.org/ccs/ccs_flat.cfm
7https://code.google.com/archive/p/word2vec/

9

https://dl.acm.org/ccs/ccs_flat.cfm

Values closer to zero indicate a better clustering. A small
value of L usually contains words with high coherence and
better clustering, but it is tough to find similar keywords.
A large value contains words with low coherence and worse
clustering, but it is easier to find similar keywords. The de-
sired value of L should be able to find a sufficient number
of similar keywords, and provide high word coherence and
low Davies-Bouldin index. By experimental evaluation8, we
found that L = 15 provides a nice trade-off being able to
retrieve at least 10 similar keywords given a term in 98%
cases.

7.3 Evaluation of KICQ
The OAG dataset is enriched with metadata from millions

of articles, and better fits the application scenarios of our
study, and thus we use it as the default dataset, unless oth-
erwise stated, to demonstrate the performance of our pro-
posed algorithms. First, we evaluate how different param-
eters (Table 2) affect the efficiency and effectiveness of the
competitive algorithms. Then we compare the performance
of our algorithm with the state-of-the-art influential com-
munity search algorithm [27].

7.3.1 Performance evaluation
In this section, we show the scalability, sensitivity of dif-

ferent parameters, memory requirement, and the cohesive-
ness of the retrieved communities by running a wide range
of experiments.
KICQ processing time: In this set of experiments,

we evaluate and compare the runtime of our proposed algo-
rithms.
Varying the dataset size. To show the scalability, we con-

sider different size of OAG dataset by varying the number of
vertices and thereby edges. Figure 4 shows that with the
increase in the number of vertices, runtime also increases.
For AND predicate, the efficiency is nearly the same for
all techniques because the query essential graph (in both
BASIC-EXPLORE and TREE-EXPLORE) is small since most of
the vertices are filtered out. The advantage of pruning
few vertices is ruled out by the overhead of exploring the
large tree in TREE-EXPLORE. However, for more time con-
suming OR predicate, TREE-EXPLORE is the most efficient
approach, almost 1-5 times faster than the BASIC-EXPLORE.
Also, PRUNED-EXPLORE and TREE-EXPLORE scales much better
than BASIC-EXPLORE.

(a) OR predicate (b) AND predicate

Figure 4: Query processing time for varying dataset size

Varying kmin. Figure 5 shows how the query processing
time is affected by parameter kmin. None of the BASIC-EXPLORE
and PRUNED-EXPLORE algorithms are significantly affected by
the value of kmin. However, if kmin is set to a high value,
8https://github.com/saiful1105020/Shared/blob/master/sem_eval.pdf

TREE-EXPLORE does not need to explore the tree nodes repre-
senting k-cores with lower k values. This enables TREE-EXPLORE
to skip a larger part of the tree since most of the ver-
tices in the OAG dataset has degree less than 10 making
TREE-EXPLORE significantly faster for higher kmin values.

(a) OR predicate (b) AND predicate

Figure 5: Query processing time for varying kmin

Varying r. Figure 6 demonstrates how the query pro-
cessing time is affected by the number of communities to
be retrieved (query parameter r). Both BASIC-EXPLORE and
PRUNED-EXPLORE compute core decomposition once on the
entire query essential graph. However, TREE-EXPLORE per-
forms the core decomposition on-demand basis. BASIC-EXPLORE
is not affected by the value of r since it does not use any
pruning based on the retrieved communities. PRUNED-EXPLORE
prunes some expansion based on top-r score, but the query
processing time is not noticeably affected. The effect is more
substantial in TREE-EXPLORE. A significant part of the graph
does not require core decomposition if r is small. If r is high,
the algorithm can only prune a few tree nodes, but the ad-
vantage is ruled out by the overhead of decompressing the
graph vertices inside a tree node. However, for small values
of r, TREE-EXPLORE significantly outperforms the other algo-
rithms, especially for OR predicate where query processing
time is markedly higher than the AND predicate.

(a) OR predicate (b) AND predicate

Figure 6: Query processing time for varying r

Index size: Figure 7 shows how the size of the graph and
corresponding KIC-tree index increase with the increasing
number of vertices and keywords. The result conforms to the
complexity analysis demonstrated in Section 6.3.2. Index
size is linear to both the number of vertices and number of
keywords if one of these remains unchanged. Also, index
size is bounded by the graph size.
Structural cohesiveness: We use popular structural co-

hesiveness metrics diameter, density, average degree, and
clustering coefficient [15] to measure the quality of the com-
munities retrieved by our approach. These measures mostly
depend on the community models (e.g., k-core, k-truss) as
discussed in a survey of community search [15]. They prefer
the k-core model because of its high efficiency with minimal

10

Figure 7: Index size for varying vertices and keywords

sacrifice in structural cohesiveness. By analyzing the cohe-
siveness measures in Table 4, we claim that our algorithms
can retrieve cohesive communities with a small diameter.

Dataset Density Average
Degree

Clustering
Coefficient

Diameter

OAG 0.621 177.897 0.708 2.12
Gowalla 0.579 7.484 0.881 2.70

Table 4: Structural cohesiveness measures

Setting the value of β: We first run experiments to
find an appropriate β, which balances the weight of connec-
tivity and individual influence (query relevance score). For
larger β, top communities are likely to show more cohesive-
ness and discard communities with influential individuals
but less connectivity. When β is smaller, the top communi-
ties might incline to individual influence than cohesiveness.
To find a good choice of β, we consider the network struc-
ture, that is: (1) we plot structural cohesiveness measures
(i.e., density and average degree [14]), and (2) use the aver-
age influence score of the members for different β values as
shown in Figure 8.

(a) OR predicate (b) AND predicate

Figure 8: Performance measures for varying β values
For OAG, communities with higher cohesiveness seem to

contain influential individuals. This can be easily explained
by the fact that an author who has co-authorship with a
large number of authors is likely to have a strong influence
in her field of studies. So, for OAG, we choose a high value
of β (i.e., 0.6). Note that, considering the influence of com-
munities is still essential since it is the tie-breaker between
two communities with the same cohesiveness.

7.3.2 Comparison with state-of-the-art
We choose Online-All [27] as the state-of-the-art approach

as they find influential community in non-attributed graphs.
Efficiency: To compare our algorithms with Online-All,

we construct queries with a single keyword (as it does not
support keywords) and compute the query essential graph,
which is the input graph to Online-All. We also need to
input the cohesiveness parameter k in Online-All. For this,
we only consider the top community (r = 1), and the value
of k in the top community returned by our approach is fed to
Online-All. We do not consider the other algorithms in [27]
since they use pre-computation which cannot be adopted

for our problem. For fair comparison, we do not consider
TREE-EXPLORE algorithm since it uses pre-computed index.
We show the query processing times of these algorithms in
Figure 9a. Our approaches are four times faster compared
to the Online-All algorithm.

(a) Query processing time (b) Keyword cohesiveness

Figure 9: Effectiveness and efficiency comparison

Cohesiveness: To compare the keyword cohesiveness, we
use community pair-wise Jaccard (CPJ) metric proposed in
[13]. CPJ measures the similarity of the members of top
communities in terms of keywords. We form the queries as
described in Section 7.1 to evaluate our approach. OnlineAll
cannot process queries with keywords; rather, it requires a
cohesiveness parameter k as input. For the simplicity of pre-
sentation, we denote our approach as KICQ-AND, KICQ-
OR for AND, OR predicates, respectively. Online-x denotes
OnlineAll with parameter k = x. The comparison is pre-
sented in Figure 9b. For the communities returned by our
approach with AND predicate, keyword cohesiveness is 1.5
times higher than OnlineAll, while for OR predicate CPJ
is similar. This is expected as for OAG, two vertices are only
connected when corresponding authors publish a paper to-
gether, and they also share common keywords. For this
reason, OnlineAll finds communities with good CPJ value.
However, this might not the case to other social networks
(e.g., Gowalla, Twitter). Note that our approach and [27]
use the same community model (i.e., k-core), and the struc-
tural cohesiveness is similar.

7.4 Experiments with Gowalla dataset
We conduct experiments on Gowalla dataset to show that

our algorithms can handle large number (millions) of key-
words. For these experiments, we carefully craft the queries
as described in Section 7.1, and use β = 0.5, r = 3, kmin = 5
as default values. First, we report the cohesiveness measures
in Table 4 and observe that our approach can retrieve cohe-
sive communities with a small diameter for Gowalla dataset
as well. We also compare the effectiveness and efficiency of
the communities retrieved by our approach, and Li et al. [27].
The query setup and parameter settings are done in the same
way as in the OAG dataset. The query processing time and
keyword cohesiveness of these two approaches are presented
in Figure 10. The number of relevant vertices is very small
for queries in this dataset. The average query processing
time is around 2 ms for all the algorithms. However, our
key observation is that unlike OAG, in a dataset where con-
nectivity is not related to keywords, the Online-All fails to
address the keyword cohesiveness of the communities, while
our approach returns communities considering both struc-
tural and keyword cohesiveness. The results show that our

11

approach returns communities with significantly higher (ap-
prox. 15 and 5 times for AND and OR predicate respec-
tively) keyword cohesiveness than the Online-All.

(a) Query processing time (b) Keyword cohesiveness

Figure 10: Effectiveness and efficiency comparison

7.5 A case study
We use a small dataset of co-author network from Arnet-

Miner9 [39] to study the quality of retrieved communities.
The dataset contains 5,411 vertices and 17,477 edges. Each
vertex represents an author annotated with fields from eight
different research areas: Data Mining (DM), Web Services
(WS), Bayesian Networks (BN), Web Mining (WM), Seman-
tic Web (SW), Machine Learning (ML), Database Systems
(DS), and Information Retrieval (IR), where the influence
score in each field depends on the number of publications
in that field. There is an edge between two authors if they
publish at least two papers together.

(a) Retrieved by our approach (b) Retrieved by [27].

Figure 11: Retrieved top communities for DS.
Note that [27] also conducted a case study on this dataset.

Figure 11 shows the top community in DS retrieved by our
approach (Figure 11a) and by [27] (Figure 11b). The top
community returned by our approach is 8-core and thus we
compare the result of [27] for k = 8. The details, i.e., h-index
and number of citations of each author in our community
are shown in Table 5. Among them, the authors who are not
included in [27]’s community are shown in bold text. Due to
the minimum score modelling, they missed out some of the
top authors in this area including Rakesh Agrawal who was
awarded the most influential scholar in the research area of
Database Systems (DS) in Aminer 10. Our approach keeps
him in the community as we did not exclude a relatively less
influential (with good connectivity) author Laura M. Haas.
When Laura is not included in the community, Rakesh Agar-
wal is connected to less than 8 authors in the community,
which turns out to be a non 8-core community. Since in the
minimum weight modelling of [27], inclusion of a low influ-
ential member like Laura M. Haas significantly reduces the
9https://aminer.org/lab-datasets/soinf/

10https://aminer.org/mostinfluentialscholar

score of the entire community, the resultant community no
longer remains the top community for k = 8. These findings
show the effectiveness of our problem formulation and score
function modelling.

(a) Top most (k = 6) (b) Second top most (k = 5)

Figure 12: Top communities for BN OR DM.

Figure 12 presents two top communities for “BN OR DM”
returned by our algorithms. The top most community is
fully connected and contains highly influential authors like
Didier Dubois (h-index: 125, citations: 82,295), Henri Prade
(h-index: 119, citations: 78,700). The second top most com-
munity also contains all the authors from top-1 community,
but the inclusion of another author Rudolf Kruse (h-index:
54, citations: 16,829) increases the contribution of individ-
ual scores, but decreases the cohesiveness of the community
resulting in a lower total score than the first one. This shows
the flexibility and the trade-off capability among parameters
while searching for the communities.

Vertex Id Author Name h-index Citations
0 Hector Garcia-Molina 138 90,220
1 David Maier 65 36,687
2 David J. DeWitt 89 38,770
3 Philip A. Bernstein 80 37,823
4 Michael Stonebraker 72 26,153
5 Michael J. Franklin 34 7,746
6 Serge Abiteboul 80 35,950
7 Jennifer Widom 101 63, 641
8 Joseph M. Hellerstein 90 43,207
9 Alon Y. Halevy 103 47,228
10 Jim Gray 81 46,884
11 Gerhard Weikum 88 34,028
12 Jeffrey F. Naughton 76 22,963
13 Yannis E. Ioannidis 59 15,017
14 Laura M. Haas 49 12,834
15 Stefano Ceri 77 29,506
16 Michael J. Carey 59 16,451
17 Rakesh Agrawal 108 124,595
18 Umeshwar Dayal 62 26,527

Table 5: Top communities by our approach in DS.

8. CONCLUSION
In this paper, we have introduced the keyword-aware in-

fluential community query (KICQ) that finds top-r most in-
fluential communities from an attributed graph, which has
many practical applications. First, we have designed the
KICQ as a set of query terms conjoining with predicates
(AND or OR) that enables a user to search for influential
communities from an attributed graph enriched by our pro-
posed word-embedding based keyword similarity model. We
have also proposed an influence measure for a community
that considers both the cohesiveness and influence of indi-
viduals in the community. To answer the KICQ efficiently,
we have developed two algorithms based on the derived up-
per bounds and results from already explored subgraphs.
Our experimental results and case study show that our ap-
proach outperforms the state-of-the-art approach in both
efficiency (up to 4 times faster) and effectiveness (up to 15
times higher keyword cohesiveness).

12

References
N. Barbieri, F. Bonchi, E. Galimberti, and F. Gullo. Ef-
ficient and effective community search. Data mining and
knowledge discovery, 29(5):1406–1433, 2015.

V. Batagelj and M. Zaversnik. An o (m) algorithm for cores
decomposition of networks. arXiv preprint cs/0310049,
2003.

F. Bi, L. Chang, X. Lin, and W. Zhang. An optimal and
progressive approach to online search of top-k influential
communities. PVLDB, 11(9):1056–1068, 2018.

L. Chen, C. Liu, K. Liao, J. Li, and R. Zhou. Contextual
community search over large social networks. In ICDE,
pages 88–99. IEEE, 2019.

S. Chen, R. Wei, D. Popova, and A. Thomo. Efficient
computation of importance based communities in web-scale
networks using a single machine. In CIKM, pages 1553–
1562. ACM, 2016.

Y. Chen, Y. Fang, R. Cheng, Y. Li, X. Chen, and J. Zhang.
Exploring communities in large profiled graphs. IEEE
TKDE, 2018.

J. Cheng, Y. Ke, S. Chu, and M. T. Özsu. Efficient core
decomposition in massive networks. In ICDE, pages 51–62,
2011.

J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu. Find-
ing maximal cliques in massive networks. TODS, 36(4):21,
2011.

S. Chobe and J. Zhan. Advancing community detection us-
ing keyword attribute search. Journal of Big Data, 6(1):83,
2019.

W. Cui, Y. Xiao, H. Wang, and W. Wang. Local search of
communities in large graphs. In SIGMOD, pages 991–1002,
2014.

D. L. Davies and D. W. Bouldin. A cluster separation mea-
sure. IEEE transactions on pattern analysis and machine
intelligence, (2):224–227, 1979.

Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu. Effec-
tive community search over large spatial graphs. PVLDB,
10(6):709–720, 2017.

Y. Fang, R. Cheng, S. Luo, and J. Hu. Effective community
search for large attributed graphs. PVLDB, 9(12):1233–
1244, 2016.

Y. Fang, R. Cheng, S. Luo, and J. Hu. Effective community
search for large attributed graphs. PVLDB, 9(12):1233–
1244, 2016.

Y. Fang, X. Huang, L. Qin, Y. Zhang, W. Zhang, R. Cheng,
and X. Lin. A survey of community search over big graphs.
The VLDB Journal, Jul 2019.

S. Fortunato. Community detection in graphs. Physics
reports, 486(3):75–174, 2010.

X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. Query-
ing k-truss community in large and dynamic graphs. In
SIGMOD, pages 1311–1322, 2014.

X. Huang and L. V. Lakshmanan. Attribute-driven com-
munity search. PVLDB, 10(9):949–960, 2017.

J. J. Jiang and D. W. Conrath. Semantic similarity based
on corpus statistics and lexical taxonomy. arXiv preprint
cmp-lg/9709008, 1997.

Y. Jiang, C. Jia, and J. Yu. An efficient community detec-
tion method based on rank centrality. Physica A: statistical
mechanics and its applications, 392(9):2182–2194, 2013.

A. Khan, L. Golab, M. Kargar, J. Szlichta, and M. Zihayat.
Compact group discovery in attributed graphs and social
networks. Information Processing & Management, page
102054, 2019.

L. Kretz. Virtual online community with geographically
targeted advertising, Apr. 17 2008. US Patent App.
11/580,725.

T. Lappas, K. Liu, and E. Terzi. Finding a team of experts
in social networks. In SIGKDD, 2009.

C.-T. Li and M.-K. Shan. Team formation for generalized
tasks in expertise social networks. In SocialCom, pages
9–16, 2010.

J. Li, X. Wang, K. Deng, X. Yang, T. Sellis, and J. X.
Yu. Most influential community search over large social
networks. In ICDE, pages 871–882, 2017.

R.-H. Li, L. Qin, F. Ye, J. X. Yu, X. Xiao, N. Xiao, and
Z. Zheng. Skyline community search in multi-valued net-
works. In SIGMOD, pages 457–472. ACM, 2018.

R.-H. Li, L. Qin, J. X. Yu, and R. Mao. Influential com-
munity search in large networks. PVLDB, 8(5):509–520,
2015.

R.-H. Li, J. Su, L. Qin, J. X. Yu, and Q. Dai. Persistent
community search in temporal networks. In ICDE, pages
797–808. IEEE, 2018.

Y. Liu, A. Niculescu-Mizil, and W. Gryc. Topic-link lda:
joint models of topic and author community. In ICML,
pages 665–672, 2009.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient
estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781, 2013.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and
J. Dean. Distributed representations of words and phrases
and their compositionality. In Proceedings of the 26th Inter-
national Conference on Neural Information Processing Sys-
tems - Volume 2, NIPS’13, pages 3111–3119, USA, 2013.
Curran Associates Inc.

L. Muflikhah and B. Baharudin. Document clustering using
concept space and cosine similarity measurement. In 2009
International Conference on Computer Technology and De-
velopment, volume 1, pages 58–62. IEEE, 2009.

J. Naruchitparames, M. H. Güneş, and S. J. Louis. Friend
recommendations in social networks using genetic algo-
rithms and network topology. In 2011 IEEE Congress of
Evolutionary Computation (CEC), pages 2207–2214. IEEE,
2011.

13

J. Perkins. Python 3 text processing with NLTK 3 cookbook.
Packt Publishing Ltd, 2014.

Y. Ruan, D. Fuhry, and S. Parthasarathy. Efficient com-
munity detection in large networks using content and links.
In WWW, pages 1089–1098, 2013.

M. Sachan, D. Contractor, T. A. Faruquie, and L. V. Sub-
ramaniam. Using content and interactions for discovering
communities in social networks. In WWW, pages 331–340.
ACM, 2012.

N. Seco, T. Veale, and J. Hayes. An intrinsic information
content metric for semantic similarity in wordnet. In Ecai,
volume 16, page 1089, 2004.

M. Sozio and A. Gionis. The community-search problem
and how to plan a successful cocktail party. In SIGKDD,
pages 939–948, 2010.

J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su.
Arnetminer: extraction and mining of academic social net-
works. In SIGKDD, pages 990–998, 2008.

J. Wang and J. Cheng. Truss decomposition in massive
networks. PVLDB, 5(9):812–823, 2012.

K. Wang, X. Cao, X. Lin, W. Zhang, and L. Qin. Efficient
computing of radius-bounded k-cores. In ICDE, pages 233–
244. IEEE, 2018.

Y. Wang, L. Wang, Y. Li, D. He, and T.-Y. Liu. A theoret-
ical analysis of ndcg type ranking measures. In Conference
on Learning Theory, pages 25–54, 2013.

Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. A
model-based approach to attributed graph clustering. In
SIGMOD, pages 505–516. ACM, 2012.

D.-N. Yang, Y.-L. Chen, W.-C. Lee, and M.-S. Chen. On
social-temporal group query with acquaintance constraint.
PVLDB, 4(6):397–408, 2011.

L. Yuan, L. Qin, W. Zhang, L. Chang, and J. Yang. Index-
based densest clique percolation community search in net-
works. IEEE TKDE, 30(5):922–935, 2017.

Z. Zhang, X. Huang, J. Xu, B. Choi, and Z. Shang.
Keyword-centric community search. In ICDE, pages 422–
433. IEEE, 2019.

D. Zheng, J. Liu, R.-H. Li, C. Aslay, Y.-C. Chen, and
X. Huang. Querying intimate-core groups in weighted
graphs. In 2017 IEEE 11th International Conference on
Semantic Computing (ICSC), pages 156–163. IEEE, 2017.

Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based
on structural/attribute similarities. PVLDB, 2(1):718–729,
2009.

Q. Zhu, H. Hu, C. Xu, J. Xu, and W.-C. Lee. Geo-social
group queries with minimum acquaintance constraints. The
VLDB Journal, 26(5):709–727, 2017.

14

	1 Introduction
	2 Related Works
	2.1 Community detection
	2.2 Community search

	3 Problem Definition and System Overview
	4 Keyword augmentation
	4.1 Semantic keyword similarity model
	4.2 Constructing attributed graph
	4.3 Augmenting keywords for KICQ

	5 Influential Community Measures
	6 Algorithms for Influential Community Search
	6.1 A straightforward approach, BASIC-EXPLORE
	6.2 Pruned exploration approach, PRUNED-EXPLORE
	6.3 Keyword indexed tree exploration, TREE-EXPLORE
	6.3.1 KIC-tree index
	6.3.2 Complexity analysis for index construction:
	6.3.3 Computing upper bound scores for a query
	6.3.4 TREE-EXPLORE algorithm

	7 Experimental Study
	7.1 Experimental setup
	7.2 Evaluation of semantic similarity model
	7.3 Evaluation of KICQ
	7.3.1 Performance evaluation
	7.3.2 Comparison with state-of-the-art

	7.4 Experiments with Gowalla dataset
	7.5 A case study

	8 Conclusion

