
Postprint, November 2021

Entropic Relevance: A Mechanism for

Measuring Stochastic Process Models

Discovered From Event Data

Hanan Alkhammash
The University of Melbourne

halkhammash@student.unimelb.edu.au

Artem Polyvyanyy
The University of Melbourne

artem.polyvyanyy@unimelb.edu.au

Alistair Moffat
The University of Melbourne

ammoffat@unimelb.edu.au

Luciano Garćıa-Bañuelos
Tecnológico de Monterrey

luciano.garcia@tec.mx

Friday 19th November, 2021

Abstract

There are many fields of computing in which having access to large volumes of
data allows very precise models to be developed. For example, machine learning
employs a range of algorithms that deliver important insights based on analysis
of data resources. Similarly, process mining develops algorithms that use event
data induced by real-world processes to support the modeling of – and hence
understanding and long-term improvement of – those processes.

In process mining, the quality of the learned process models is assessed using
conformance checking techniques, which measure how well the models represent
and generalize the data. This article presents the entropic relevance measure
for conformance checking of stochastic process models, which are models that
also provide information in regard to the likelihood of observing each sequence of
observed events. Accurate stochastic conformance measurement allows identifi-
cation of models that describe the data better, including the captured sequences
of process events and their frequencies, with information about the likelihood of
the described processes being an essential step toward simulating and forecasting
future processes.

Entropic relevance represents a blend between the traditional precision and
recall quality criteria in conformance checking, in that it both penalizes observed
processes that the model does not describe, and also penalizes processes that
are permitted by the model yet were not observed. Entropic relevance can be
computed in time linear in the size of the input data; and measures a fundamen-
tally different phenomenon than other existing measures. Our evaluation over
industrial datasets confirms the feasibility of using the measure in practice.

Keywords: Process mining, conformance checking, stochastic conformance check-
ing, model inference, model quality, process learning, explainable AI

1

https://orcid.org/0000-0001-5761-1345
https://orcid.org/0000-0002-7672-1643
https://orcid.org/0000-0002-6638-0232
https://orcid.org/0000-0001-9076-903X

1 Introduction

The research discipline of process mining studies methods, techniques, and tools
of inference from data to tackle problems associated with the discovery, under-
standing, improvement, and automation of real-world processes [35]. To achieve
that goal, process mining makes use of techniques from data mining and machine
learning, and combines them with process modeling and analytical expertise
from business process management. One of the main problems investigated in
process mining is process discovery , which studies algorithms for automatically
constructing process models from event data generated by IT-systems. Such
event data is often recorded in an event log – a collection of traces, each captur-
ing a sequence of observed process events. Each single event in a trace usually
incorporates information about a case identifier that allows amalgamation of
the events that relate to the same process instance to form that trace; the time
of the event’s occurrence (the timestamp) so that event order can be known both
within and between traces; and a description or label of the process action that
induced the event occurrence. There might also be additional payload fields
that further characterize the event.

A process model automatically discovered from an event log should faithfully
encode the traces contained in the log. Four fundamental quality criteria have
been proposed as ways of assessing this requirement.

(1) A discovered model should describe as many as possible of the log’s traces
(that is, have good recall); this criterion is also known as fitness in process
mining.

(2) A discovered model should allow as few traces as possible that are not
present in the log (that is, have good precision).

(3) A discovered model should possess “simplicity” in some quantifiable sense.

(4) Finally, a discovered model should also permit traces that may stem from
the same process but are not present in the particular log used to construct
the model (that is, have good generalization).

That is, a learned model of processes in process mining aims to explain the
actions and decision points in the process. The subarea of conformance checking
in process mining studies the problem of measuring and characterizing various
quality criteria when using an automatically discovered or manually created
process model to explain the corresponding event log [7, 35].

Inferring a model that describes and predicts a set of traces is, in essence, the
task of understanding and extracting the log’s frequent patterns. As frequent
patterns can be used to compress data, a model that can be used to compress the
data into a shorter lossless representation captures more of its frequent patterns
and, thus, has learned the data better, and can make more accurate predictions.
In particular, the minimum description length (MDL) model selection principle
states that the model that produces the shortest representation of some data is

2

the model that provides the best description of the data. Note, however, that
the Kolmogorov complexity of a data (i.e., its theoretic minimum description
length) cannot, in general, be computed [9].

At a certain abstraction level, events can be identified based on the actions
they were induced by and the ordering of those actions, while ignoring their
exact timestamps, case identifiers, and payload. This allows an event log to
be interpreted as a multiset of traces. Two occurrences of the same trace in
such a multiset denote two process instances induced by the same sequence of
action occurrences. A multiset of traces, in turn, can be characterized by a
random variable (a function that maps traces to the real numbers between zero
and one), each estimating the likelihood of observing the corresponding trace in
the log. Such a random variable is often referred to as a stochastic language in
linguistics, mathematics, and computer science [13].

This article presents a relevance measure that employs the MDL principle to
assign a numeric quantity to each possible stochastic process model that might
be used to describe a given event log. Those numeric values can then be used
as the basis for choosing between alternative stochastic process models that are
regarded as being competitors for describing the log.

Several approaches for estimating the stochastic perspective of automatically
discovered process models have been proposed [29, 5]. In addition, stochastic
process models are designed manually by organizations, for instance, to estimate
the future workforce or to enable mechanisms to manage the complexity of
designed models [27, 26]. Finally, process models discovered using commercial
tools convey information about frequencies of action occurrences and, thus, can
be interpreted as stochastic process models [35]. It is important to measure not
only how well a model represents the various traces from the event log, but also
the frequencies of their occurrences. This ability is essential, for instance, for
simulating and predicting future processes [33, 23, 16].

The MDL of a random variable is equal to its entropy [9], and a stochastic
process model that both assigns to each described trace the probability with
which it appears in the log and also assigns a zero probability to every trace
not recorded in the log, is the best-fitting model for that log. But, in this case,
the model might be complex and over-fitted relative to the data. It is thus of
practical interest to be able to develop compromise models that are simpler, yet
provide behavior that is nearly as good. In such models, the valid traces and the
probabilities of the traces deviate from those captured in the log. In addition,
some traces from the log might not be able to be “replayed” by the model (i.e.,
their likelihood according to the model is zero). To address that difficulty, our
approach also includes a background coding model that allows representing log
traces impossible according to the model. The relevance of a stochastic process
model (with respect) to an event log is then the average length of a lossless
description of the log’s traces, either by using the process model (if that trace is
described by the model), or by using the background coding model (if it is not),
plus an allowance for an indicator for each trace specifying which of the two
alternatives is being used. Relevance is measured in bits per trace; and since it
is grounded in the entropy of a stochastic language, we refer to it as entropic

3

relevance.
This article is an extended version of our conference paper [25]. The confer-

ence paper made these contributions:

� It applied the MDL model selection principle to solve the problem of stochastic
conformance checking (checking how well a stochastic process model explains
an event log);

� It introduced the notion of entropic relevance for stochastic conformance
checking that implements the MDL model selection principle; and

� It demonstrated the feasibility of measuring entropic relevance of models dis-
covered from industrial logs.

This article makes these extensions to the original conference paper:

� It uses empirical evidence across a broad range of available datasets to demon-
strate that entropic relevance is fundamentally different from other current
measures for stochastic conformance checking (i.e., entropic relevance mea-
sures a fundamentally different phenomenon than the existing measures);

� It argues that entropic relevance implements a compromise between the pre-
cision and recall quality criteria; and

� It explores alternative background coding models for representing event logs
and introduces two such models that may result in more compact entropic rel-
evance representations of event logs while aiming to approach their theoretic
minimum description length.

Therefore, this article strengthens the theoretical foundations of the entropic
relevance measure for stochastic conformance checking.

The remainder of the article proceeds as follows. The next section presents
an overview of the approach for measuring the entropic relevance of a stochastic
process model to an event log. Section 3 discusses formal models of stochastic
languages used in process mining. Based on these models, Section 4 presents
the notion of entropic relevance and three alternative background coding models
for log traces. Section 5 presents our evaluation results, which include evidence
that entropic relevance is different from all current measures for stochastic con-
formance checking. Section 6 discusses the broader context of our contributions,
including the argument that entropic relevance incorporates elements of both
the precision and the recall quality criteria, while Section 7 summarizes related
work and describes the overall framework to which our mechanism contributes.
Finally, Section 8 presents conclusions and lists areas for future work.

2 Motivation and Overview

As anticipated in the Introduction, we employ a minimum description length
(MDL) compression-based framework to measure the quality of process models.
The two key observations that make this possible are that a good process model
is one which accurately describes an observed set of traces, taken as a sample
from an underlying universe of traces; and that the “describes” operation can be
precisely quantified by assessing the cost of compressing the set of traces relative

4

to the stochastic language expressed by the model. A singular benefit of this
entropic relevance approach is that not only is the model structure an influence
on its measured usefulness, but so too is the probability of each individual trace
having emerged from the model.

2.1 Measuring Information Content

A relationship fundamental to information theory is critical to understanding
the new approach. Suppose, in some context, that a universe of symbols is known
to be possible, and that associated with each is a probability of occurrence,
denoted by p(·), with the probabilities over the set of possible symbols summing
to one (that is, we are certain that something will occur next, but not what).
Suppose further that it turns out that the particular symbol that does occur is
e, one member of the universe of possibilities, and that its probability is thus
p(e). Then information theory tells us that the information conveyed by that
occurrence of e in that context is − log2 p(e) bits, and, hence, that is also the
number of bits that should, in an ideal code, be used to describe this instance
of e, and any recurrence of e that might also arise – prior to or subsequent to
this one – in that same underlying context.

For example, if e has probability p(e) = 0.8 within a stream of symbols and
all symbols occur independently of each other (that is, all of the symbols in the
stream are regarded as having the same context), then each e that occurs has
a cost of 0.3219 bits attributable to it. Conversely, the collective set of “not e”
symbols, which have a combined probability of 0.2, one quarter as large, should
be indicated by a distinguishing code of − log2 0.2 = 2.3219 bits, plus whatever
the cost is of isolating one of those symbols in the reduced context, employing a
set of scaled conditional probabilities in which it is known that the next symbol
is definitely not an e. Practical compression systems operate very close to these
ideal entropy-based limits, see, for example, Moffat and Turpin [22, Chapter
5]; and within small additive constants, the information-theoretic relationship
between probabilities and bits is an achievable one.

2.2 Models for Compression

Fig. 1 further motivates the proposed system of measurement. In the figure
it is supposed that an event log has been provided, sampled from an underly-
ing “true” (but unknown) process, and that two stochastic process models A
and B are being considered as alternative explanations for that set of observa-
tions. Further, suppose that stochastic process model M assigns a probability
of p(t |M) to each trace t that appears in the log, where p(t |M) is the overall
probability estimate that emerges from M when the sequence t is traced, and is
typically computed as a product of the probabilities of the steps and transitions
through the model M that resulted in t being matched.

To compare stochastic process models A and B, we first take M to be A, and
(in the left side of Fig. 1), compute the summation

∑
t− log2 p(t | A), with the

summation being over all traces t in the log. That summation yields the net

5

01101100

11011011

11010001

00010010

11101111

11100101

10011011

00011110

11101111

11011101

10010010

10001101

Representation

Compressor Compressor

of Event Log

True Process

Event Log Process Model BProcess Model A

relative to

indicates better model

Smaller representation

Process Model B

Representation

of Event Log

relative to

Process Model A

Figure 1: To measure the entropic relevance of a process model to a collection of
traces, the model’s structure and probabilities are used to compute the cost in bits of
losslessly representing the traces relative to the model. Better models lead to shorter
compressed forms.

compression cost of representing the complete set of traces in the log using the
trace probabilities embedded in stochastic model A. Repeating the calculation,
but now using trace probabilities that are derived from stochastic model B (the
right path in Fig. 1) and computing

∑
t− log2 p(t | B) will similarly result in a

compression cost being assigned to the log, derived from the trace probabilities
expressed by stochastic model B.

The smaller the compression cost, the shorter the compressed output would
be were it to be generated, and the better the corresponding model matches the
log. For example, in Fig. 1, it is intimated that stochastic model A gives rise to
a smaller information-theoretic cost of a compressed representation of the log,
suggesting that model A better describes the process underlying that particular
log than does model B. Note that while Fig. 1 draws output bits and suggests
that actual compression occurs, it is the size of the output that is of interest
and not the precise bits that arise. That size can be computed by summing
logarithms of model-conditioned trace probabilities, that is, by assuming that
an ideal entropy coder is available without generating – and then measuring the
length of, and then discarding – an actual bitstream.

2.3 Background Model

Fig. 2 provides more details of the simulated compression process, considering
the traces in the log one by one. The stochastic process model (defined in detail
in Section 3) assigns calculable non-zero probabilities to a finite or infinite subset

6

...,11011100111,... ...,110,111,100,001,110,....

1 0

in Model?

Is Trace

Process Model

Encode using

single modeled

probability

Universal Model

Encode using

sequence of symbol

probabilities

Each Trace

Event Log

Yes No

Figure 2: The two possible options when encoding a set of traces with respect to
a probabilistic model: a trace either has a non-zero probability in the model, which
can be used by an ideal entropy coder to derive a bitstring, or it is spelled-out as
symbol-by-symbol codes via a universal background model. The choice between those
two alternatives must also be accounted for as part of the compression cost, as a single
(but possibly biased) additional bit.

of the universe of possible traces. That is, the stochastic model M assigns a
probability p(t | M) > 0 to some subset of the log’s traces, but might not be
able to describe all of the log’s traces – indeed, in an extreme case, it might
not represent any of the log’s traces. Should such cases arise, we will have
p(t | M) = 0 for at least one trace in the log, and the information-theoretic
relationship between probabilities and compression costs breaks down. The
branching point in Fig. 2 shows the two distinct pathways that we provide to
handle this dilemma.

If some particular trace in the log fits the model, it can be represented as
single entity, using its corresponding end-to-end probability in the model. That
option is shown by the left-hand path in Fig. 2. The cost incurred includes a
preliminary selector to convey, in essence, that “what is coming next represents
a code for a trace that has a non-zero probability in the model”; that selector
bit is shown in the figure as a “1” (see next to the branching diamond), and its
cost is in addition to the information-theoretic cost of coding the whole trace
derived from the model’s assessment of that trace’s probability. Note that the
selector might be coded as a whole bit, as is illustrated in the figure. But if
the selector probability is imbalanced – if, say, the great majority of traces in
the log, in fact, are matched to non-zero probabilities by the model – then the
selector might take only a fraction of a bit, because its corresponding probability
might be close to one.

The right-hand path in Fig. 2 shows what happens if a trace is given a zero
probability by the stochastic model M . In this case, the selector bit is shown
as a “0”, but again might be less than or more than one bit, depending on the
probability of that branch being followed when measured across all of the traces
in the log. Traces that have p(t |M) = 0 are then represented as a sequence of

7

elemental symbols using a universal background model in which every possible
symbol in the alphabet from which traces are composed always has a non-zero
probability. That is, the background model provides a “fallback” facility in
which every possible sequence of states can always be coded.

As already noted, to choose between these two cases, the output associated
with every trace is prefixed by a code – for instance, a biased “0” or “1” bit –
that indicates which option applies. In the corresponding decoder, the selector is
decoded first and used to determine which path must be followed next: whether
to decode a single code relative to the set of trace probabilities relative to the
model M or whether to decode a trace from the bitstream relative to the rules
of the background model. Either way, an ideal entropy decoder, if it were to
be provided with the same stochastic and background models as were used
by the hypothesized encoder, charged with decoding the bitstream emitted by
the encoder, would be able to exactly (losslessly) reconstruct the original log by
applying the reverse procedure. We reiterate that no bits are actually generated
in the measurement of entropic relevance. The important point is that the
“compression” process, while hypothetical, could nevertheless be realized into a
decodeable bitstream only slightly longer than the indicated length if, for some
reason, it were to become desirable to do so. In particular, entropic relevance is
computed from the length of that compressed representation of the log, and is
not dependent on the exact bitstream that might be generated by a particular
coding process.

Finally, note that it is not the case that p(t |M) > 0 means that − log2 p(t |
M) must be less than the cost of using the background model. For example,
some trace t might have been assigned a probability of 10−100 by the model
and, hence, correspond to a coded length (the left path in Fig. 2) of 332 bits.
But when coded using the background model (the right path), that same trace
might (say) only require 54 bits, perhaps a selector needing four bits, followed
by ten symbols each of five bits. Note, however, that should such a mismatch
arise, it reflects poorly on the quality of the model and its aptness in terms
of representing the traces contained in the log. Hence, it may be appropriate
for the computed entropic relevance score to be high. That is, a background
model is required to exist, but it is not required to be the most expensive way of
representing any particular trace; it is simply an alternative way that bypasses
the structure defined by the stochastic model, and handles cases for which the
model’s structure indicates that some trace is impossible.

2.4 The Sum of the Parts

Fig. 3 steps back from the detail and provides a high-level view of the proposed
mechanism, the exact details of which will be presented in Section 4. There are
four components that collectively sum to the compressed size, and that vary in
different ways as the process model changes. At the left end of Fig. 3, if the
stochastic process model M is small and easily described, it likely fits only a
small fraction of the log’s traces. If that is indeed what happens, the majority
of traces do not fit the model, and hence are represented using the (probably,

8

Total compressed size

Background coding cost

Selector coding cost

Stochastic Process Model size

B
it
s
 p

e
r

tr
a

c
e

Model coding cost

Model description cost

Figure 3: A schematic plot showing the total compressed size of a collection of traces
relative to a model as the sum of four components: the cost of describing the model
and its parameters (model description cost); the cost of entropy coding the traces that
fit the model (model coding cost); the cost of entropy coding the traces that do not
fit the model, using a catch-all background technique (background coding cost); and
the cost of selecting, for each trace, which approach is used to code it (selector coding
cost).

but not certainly) more expensive background model, and may dominate the
total output size (that is, cost). Moving across the horizontal axis, as the
process model becomes larger and presumably more sophisticated, it is likely to
fit a greater fraction of the traces, and the balance shifts from the background
model to (what it is hoped is) the more economical stochastic process model.
The total compressed size can be expected to decrease as this transition takes
place. Throughout this normal operating range, the contributions of the other
two factors – the binary per-trace selector flag, and the description of the process
model – are typically very small overheads.

In the limit, at the right of Fig. 3, the process model becomes large and is
likely to be over-fitted to the traces in the particular log, with a unique pathway
specified for every distinct trace. The cost of using an over-fitted model is low,
since each pathway through it is unique; the cost of the background model is
also low, since no sequences need to be processed via it; and there is no cost
involved in selecting between the stochastic model and the background model.
However, the total compressed size may be increased because of the complexity
and detail required in the description of the process model itself.

In terms of Fig. 3, entropic relevance is calculated as the sum of the selector
coding cost, the background coding cost, and the model coding cost. It is useful
to retain the model size (measured in some conventional manner, rather than as
the length of a compressed representation) as a second dimension, as is shown by
the horizontal axis in the plot. Furthermore, since process models are discrete
objects (rather than a continuous phenomena), the separation between entropic
relevance and model size allows definition of a Pareto frontier, i.e., the set of
models that are either smaller in size or superior in terms of entropic relevance
to other possible models. Section 4 provides precise definitions of all of these
ideas. Our purpose in this section is primarily to give an overall motivation for
and perspective across the new approach, rather than immediately presenting
the full details.

9

2.5 Process Mining Goals

The majority of process model discovery algorithms attempt to minimize some
subset of a defined range of quality criteria, often either or both of precision
and recall. That is, they construct their models relative to, and targeting, the
problem they were designed to address, perhaps via some algorithmic parameter
that determines a balance between model size and trace coverage in the log.
The mechanism used to discover a process model similarly exerts influence on
the compressed size in the way we are computing it here. For example, an
algorithm could construct a process model of a large size, high generalization,
but low precision, leading to an increased compressed size for the log. Similarly,
a small-sized model might have low generalization and high precision. The
stylized trajectories presented in Fig. 3 show that such a model might also have
high entropic relevance, and that there might be a strategic balance-point to be
identified across the range of algorithmic parameters that minimizes entropic
relevance. Also to be noted in connection with Fig. 3 is that throughout our
discussion we assume that a “reasonable” (rather than pathological in some
way) process discovery algorithm is being used to construct the models.

Entropic relevance (again, in anticipation of Section 4) is measured in “bits
per trace”, with small values being preferable to large ones. The numeric range
is open-ended, and it is neither desirable nor possible to normalize the mea-
surement in any way to obtain a “0 to 1” range. Instead, entropic relevance
has meaningful units that clearly indicate the complexity of the process that is
being represented by the model. With that understanding established, the pro-
cess mining desiderata listed in the Introduction can be considered: (1) traces
not covered by the model must be coded using the background predictions, in-
creasing the net bit cost; (2) processes permitted by the process model but not
present in the log cause the imputed probabilities of traces that do occur to
decrease, again increasing the net bit cost; and (3) simple models have smaller
model description costs, decreasing the net bit cost. Finally, objective (4) can
also be accounted for by noting that the background model is always available,
so hitherto unseen traces can be accommodated, albeit with likely increased net
bit costs.

Section 4 also provides details of how the background models might be con-
structed so that every possible trace can be accommodated. The simplest back-
ground model assigns every possible symbol a uniform probability that is the
reciprocal of the number of distinct symbols (a “flower” model); that is suffi-
cient to allow every possible sequence. More sophisticated background models
might also take into account symbol probabilities, albeit with the added burden
of needing to describe (and hence “pay for”) those probabilities. However, in
the limit, if the background model is made too sophisticated, there is a risk
of it no longer being genuinely universal, and there is a sense of “decreasing
returns” that must also be allowed for. Section 4 describes three approaches to
constructing useful background models.

10

3 Models of Stochastic Languages

This section introduces the ideas and notation that we employ to describe mod-
els of stochastic languages.

3.1 Sequences and Multisets

A sequence is an ordered list of elements in which repetitions of elements are
allowed. Let Λ be a finite non-empty set of elements. Then, σ ∈ Λ∗ is a finite
sequence over Λ, where Λ∗ is the set of all finite sequences over Λ including the
empty sequence. For example, σ1 = 〈a,d,d〉, σ2 = 〈e,d〉, and σ3 = 〈b,b,e,d,a〉
are sequences over set Λ = {a, d, b, f, e}. When the context is clear, we write
sequences as strings, i.e., angle brackets and commas are omitted. For instance,
σ1 is written as add. We write ε ∈ Λ∗, to denote the empty sequence.

The length of sequence σ is denoted by |σ|. Sequence σ3 contains five ele-
ments, i.e., |σ3 | = 5, whereas the length of the empty sequence is equal to zero,
i.e., |ε| = 0. By σ(i), i ∈ [1 .. |σ|], we denote the element at position i in sequence
σ. For instance, σ1(3) = d, σ2(1) = e, and σ3(5) = a. By u(σ), we denote the
set of all the elements that occur in σ, i.e., u(σ) = {λ ∈ Λ | ∃ i ∈ [1 .. |σ|] :
σ(i) = λ}. For example, it holds that u(σ1) = {a, d}. Given two sequences
σi, σj ∈ Λ∗, the concatenation of σi and σj , denoted by σi ◦ σj , is obtained by
appending σj to the end of σi. For example, it holds that σ1 ◦ σ2 = added.

A multiset is a collection of elements in which an element can appear multiple
times. Let B be a multiset of finite sequences over set Λ. We write |B| to denote
the cardinality of multiset B. By n(σ,B), σ ∈ Λ∗, we denote the multiplicity
of σ in B. Consider multiset B1 = [bbeda3, aaa4, deae2, add, be4, ed,
ddeaae6]. Sequence ddeaae occurs in B1 six times, i.e., n(ddeaae,B1) = 6,
while add occurs once, i.e., n(add,B1) = 1. Multiset B1 contains 21 sequences,
i.e., |B1 | = 21. We use u(B) to denote the set of unique elements in sequences
contained in B, that is u(B) =

⋃
σ∈Bu(σ), u(B) ⊆ Λ. For example, u(B1) =

{a,b,d,e}.
We denote the number of occurrences of element λ ∈ Λ in sequence σ ∈ Λ∗

by n(λ, σ). For instance, n(d, σ1) = 2 and n(d, σ2) = 1. We write n(λ,B) to
refer to the number of occurrences of element λ in multiset of sequences B, that
is, n(λ,B) =

∑
σ∈B (n(λ, σ) n(σ,B)). Similarly, n(B) denotes the number of

elements in sequences contained in B, such that n(B) =
∑
λ∈u(B) n(λ,B). For

example, element a occurs 30 times in B1, that is, n(a,B1) = 30; element b
appears 10 times in B1, it holds that n(b,B1) = 10, while n(B1) = 84.

Consider a random variable X whose values are the outcomes of randomly
selecting a sequence from multiset B, such that each occurrence of a sequence
in the multiset has the same chance of being selected. Then, the probability of
observingX taking on the value equal to sequence σ is denoted by P (X = σ | B),
or P (σ | B) for short. Let B be non-empty, we use the maximum likelihood
algorithm [21] for estimating P (σ | B), such that:

P (σ | B) =
n(σ,B)

|B|
.

11

Similarly, the probability P (λ | B) of observing element λ ∈ Λ in B is estimated
to be (assuming B contains at least one non-empty sequence):

P (λ | B) =
n(λ,B)

n(B)
.

For example, probability P (be | B1) is estimated to be 4/21, and the probability
of observing element b ∈ Λ in B1, that is, P (b | B1), is estimated to be 5/42.

3.2 Stochastic Languages

A language is a (possibly infinite) set of words. A word is usually formalized
as a finite sequence of symbols. We use words to encode observed processes.
Therefore, we refer to words as (process) traces composed of actions rather
than as words of symbols. Let V be a universe of actions. A language W over
V is a subset of V ∗, i.e., W ⊆ V ∗. For example, set W = {ab,ae,abcd,abc,
aee,abcde} defines a language of six traces.

Definition 3.1 (Stochastic language)
A stochastic language is a probability density function over traces in V ∗, spec-
ified as a function L : V ∗ → [0, 1], for which it holds that:∑

t∈V ∗

L(t) = 1.

y

That is, a stochastic language is an assignment of probabilities to traces so that
the assigned probabilities sum up to one. A stochastic language might be used
to encode the relative likelihoods of observing words in a book, or encountering
traces in an event log of a software system. For example, L1 = {(ab,0.6), (ae,
0.15), (abcd, 0.11), (abc, 0.05), (aee, 0.05), (abcde, 0.04)} ∪

⋃
t∈V ∗\W {(t,0)},

where set W is specified above, is a stochastic language.
Given a trace t ∈ V ∗ and a stochastic language L, L(t) specifies the relative

likelihood of a randomly drawn trace to be equal to t. The support of L, written
L̄, is the set of all possible traces according to L, i.e., L̄ := {t ∈ V ∗ | L(t) > 0};
V ∗ \ L̄ are the impossible traces according to L. We say that L is finite if and
only if L̄ is finite; otherwise L is infinite. It holds that L̄1 = W , i.e., the traces
in W are all the possible traces according to L1 and, thus, L1 is finite.

3.3 Stochastic Deterministic Finite Automata

A stochastic deterministic finite automaton (SDFA) can be used to encode a
stochastic language; here we adopt the definition given by Carrasco [8].

12

0

s0

0

s1

1/2

s2

1/4

s3

3/4

s4

1

s5

a(1) b(4/5)

e(1/5)

c(1/4)

f(1/4)

d(3/4) e(1/4)

Figure 4: SDFA A1.

Definition 3.2 (Stochastic deterministic finite automaton)
A stochastic deterministic finite automaton (SDFA) A = (S,Q, δ, p, s0) consists
of a finite set of states S, with s0 ∈ S the initial state, a set of actions Q ⊆
V , a transition function δ : S ×Q→ S, and a transition probability function
p : S ×Q→ [0, 1] such that for each state s ∈ S holds that

∑
q∈Q p(s, q) ≤ 1. y

We use A to denote the universe of SDFAs.
Fig. 4 shows an SDFA using graphical notation. In this representation, the

states and transition function are visualized as circles and arcs, respectively.
The SDFA in the figure has six states s0 through s5, and its transition function
is defined by {(s0,a,s1) , (s1,b,s2) , (s1,e,s4) , (s2,c,s3) , (s2,f,s5) , (s3,d,s4) ,
(s4,e,s5)}. Arcs are labeled by actions and transition probabilities. For exam-
ple, the arc from state s0 to state s1 with label “a(1)” specifies that (s0,a,s1) ∈ δ
and (s0,a,1) ∈ p. The transition probability function is defined by {(s0,a,1) ,
(s1,b,4/5) , (s1,e,1/5) , (s2,c,1/4) , (s2,f,1/4) , (s3,d,3/4) , (s4,e,1/4)}. State s0 is
the initial state and is denoted by an arrow leading to it.

An SDFA A = (S,Q, δ, p, s0) encodes stochastic language LA defined using
recursive function πA : S ×V ∗ → [0, 1], i.e., LA (t) = πA (s0, t), t ∈ V ∗, where:

πA (s, ε) = 1−
∑
q∈Q

p(s, q), and

πA (s, q ◦ t′) = p(s, q)× πA (δ(s, q), t′), for q ∈ V and t = q ◦ t′.

Note that πA (s, ε) denotes the probability of terminating a trace in state s of
A. Such probabilities are shown diagrammatically as labels inside of the corre-
sponding states. For example, for SDFA A from Fig. 4, the set of terminating
states is {s2, s3, s4, s5}, where πA (s2, ε) = 1/2, πA (s3, ε) = 1/4, πA (s4, ε) = 3/4,
and πA (s5, ε) = 1. If L is a stochastic language encoded by some SDFA, we say
that L is regular. The SDFA in Fig. 4 encodes stochastic language that assigns
non-zero probabilities to seven traces: {(ab, 2/5), (abc, 1/20), (abcd, 9/80),
(abcde,3/80),(abf,1/5),(ae,3/20),(aee,1/20)}.

3.4 Event Logs

An event log is a finite collection of traces. A trace represents a finite sequence
of events, each describing execution of an action from a particular process.
Events are distinguished by their attributes and attribute values. In this work,

13

we are neither interested in the exact times of event occurrences (but only in
their orderings), nor in the distinctions between events and actions. Thus, we
encode all the events that refer to the same case identifier as a trace of actions
(obtained via the action identifier attribute), where the actions are arranged in
the ascending order of timestamps of the corresponding events. As there can be
several case identifiers that induce the same trace (indeed, several processes can
induce the same sequence of actions with different timestamps), for our needs,
it is convenient to represent an event log as a multiset of traces.

Definition 3.3 (Event log)
An event log, or log, is a finite multiset of traces. y

By E , we denote the universe of logs. For example, E1 = [ab1200,ae300,abcd220,
abc100,aee100,abcde80] and E2 = [ε50,ab50,abc50,aeaae40,aee20,abcd10,
abcde10, abee10, abcff10] are two logs defined over V = {a,b,c,d,e,f};
E1,E2 ∈ E . Trace abcd occurs 220 times in E1, while it is recorded ten times in
E2. Let # be the end-of-trace symbol. Given trace t, by t̂ ∈ V̂ ∗, V̂ = V ∪ {#},
6∈ V , we refer to the #-terminated version of trace t, i.e., t̂ = t ◦ 〈#〉. We write
Ê to denote the multiset of #-terminated traces obtained from event log E. For
example, Ê1 = [ab#1200,ae#300,abcd#220,abc#100,aee#100,abcde#80].

If a trace appears multiple times in a log, it was observed multiple times
in the real-world. Hence, the log captures information about the relative fre-
quencies with which the traces were observed. Given an event log E ∈ E , we
define the stochastic language L of E by assigning probability L(t) = P (t | E)
to each trace t ∈ V ∗. Therefore, L1 from Section 3.2 is the stochastic language
of event log E1. In turn, stochastic language L2 of event log E2 defines non-zero
probabilities to traces that are specified in the set {(ε, 1/5), (ab, 1/5), (abc, 1/5),
(aeaae,4/25),(aee,2/25),(abcd,1/25),(abcde,1/25),(abee,1/25),(abcff,1/25)}.

3.5 Frequency Directed Action Graphs

A common representation of event logs for consumption and decision making
by practitioners is to encode them as Directly-Follows Graphs (DFGs) [35]. A
DFG of an event log E is a digraph in which vertices are actions encountered in
the traces of E and edges encode the directly-follows relation over the actions,
i.e., the DFG contains an edge directed from action a to action b if and only if
E contains a trace t1 ◦ ab ◦ t2, where t1, t2 ∈ V ∗ [32].

As DFGs of industrial event logs are immense, they are often post-processed
by filtering out vertices and edges that correspond, respectively, to infrequent
actions and pairs of subsequent actions in the log. The vertices and edges of
the filtered graphs are then annotated with numbers that reflect the frequencies
of observing the corresponding concepts in the log. The frequencies aim to
reflect the stochastic nature of the processes encoded in the corresponding log.
To describe such filtered graphs mathematically, we introduce the notion of a
frequency directed action graph.

14

Definition 3.4 (Frequency directed action graph)
A frequency directed action graph (FDAG) is a tuple (Φ,Ψ, φ, ψ, i, o), where
Φ ⊆ V is a set of actions, Ψ ⊆ ((Φ × Φ) ∪ ({i} × Φ) ∪ (Φ × {o})) is a directly-
follows relation, φ : Φ ∪ {i,o} → N0 is an action frequency function, ψ : Ψ→ N0

is an arc frequency function, and i 6∈ V and o 6∈ V are the input and the output
of the graph, respectively. y

We use G to denote the universe of FDAGs.
Fig. 5 shows an example FDAG. In the figure, boxes with rounded corners

represent actions, and arcs encode the directly-follows relation. The input node
and the output node are denoted by i and o, respectively. The input node has
no incoming arcs, while the output node has no outgoing arcs. Finally, the
action and arc frequencies assigned by the corresponding frequency functions
are associated adjacent to the corresponding objects.

i256 a

192

b

96

c

24

d

8

e 28

f6

o

256

192

64

96

96

24

24

48

6

6

12

4

4
28

2

2

4

Figure 5: An FDAG.

Van der Aalst [35] observes that practitioners can interpret FDAGs in differ-
ent ways. Because of the filtering step, it is possible to associate a given FDAG
with different collections of traces. Van der Aalst then discusses several pitfalls
that can happen in practice due to this pluralism of possible interpretations.
For our purpose, we fix one such possible interpretation. To avoid ambiguity,
we define this interpretation as a mapping from an FDAG to the corresponding
SDFA.

Definition 3.5 (SDFA of FDAG)
Let G := (Φ,Ψ, φ, ψ, i, o) be an FDAG. Then, (S,Q, δ, p, s0), where S = Φ∪{i},
Q = Φ, δ = {(s, t, t) ∈ ({i} ∪ Φ) × Φ × Φ | (s, t) ∈ Ψ}, p = {(s, t, x) ∈
({i} ∪ Φ) × Φ × [0, 1] | (s, t) ∈ Ψ ∧ x = ψ(s, t)/

∑
{(s,u)∈Ψ |u∈Φ} ψ(s, u)}, and

so = i, is the SDFA of G, denoted by SDFA(G). y

According to this interpretation, if A = SDFA(G), then G encodes the possible
traces of LA, i.e., traces L̄A , and the relative probability of a trace t ∈ L̄A is

15

given by LA (t). For example, Fig. 6 shows the SDFA of the FDAG from Fig. 5
that encodes infinite stochastic language which, among others, assigns these
non-zero values to traces {(ε, 1/4), (a, 3/8), (ab, 3/16), (abc, 3/64), (abcf, 3/256),
(abcff, 3/1024), (abe, 3/32), (abcfd, 3/1024), (abcd, 3/256), (abcde, 3/256),
(abcfde,3/1024)}; all the other possible traces of this SDFA have, in aggregate,
a combined probability of 3/1024.

1/4

q0

1/2

q1

1/2

q2

1/2

q3

1/2

q4

1/2

q5

1

q6

a(3/4) b(1/2) c(1/4)

e(1/4)

d(1/4)

f(1/4)

e(1/2)

d(1/4)

f(1/4)

Figure 6: SDFA A2.

4 Entropic Relevance

This section presents the notion of entropic relevance for stochastic conformance
checking. As anticipated in the Introduction, entropic relevance specifies the
average number of bits per trace required to losslessly represent the log relative
to some candidate stochastic process model. A model that leads to a more
compact encoding and a lower entropic relevance is regarded as being a better
description of the log, see Fig. 1. To provide the necessary details, Section 4.1
gives a definition of entropic relevance, parameterized by a background coding
model for assigning costs to traces not possible according to the model. Then,
Sections 4.2 to 4.4 present three instantiations of entropic relevance, differing
only in their choice of background coding model, and hence their use of differing
levels of knowledge about the compared log and model. Finally, Section 4.5
provides examples, and discusses the implications of the different background
coding models.

4.1 Definition

An entropic relevance measurement consists of three components. The first
component is the trace compression cost , namely, the cost of describing a com-
pressed trace. The second component is the prelude cost , accounting for the cost
of a compressed representation of the additional knowledge essential to encod-
ing impossible traces. The selector cost , the third component, is the cost of an
economically encoded binary flag that determines whether or not the stochastic
model is utilized to encode each trace. Taken together, these three components

16

quantify the amount of information required to describe a losslessly encoded
trace.

The trace compression cost is the number of bits required to encode a trace,
using either a stochastic or background coding model. Given an event log E ∈ E
and an SDFA A of FDAG G ∈ G, trace t ∈ E is either a possible trace according
to the stochastic language of A, or it is not. If t is a possible trace, it is encoded
using the probability of t according to A, given by LA (t). Otherwise, trace t
is encoded using a universal background coding scheme. These two modes are
captured in this next definition.

Definition 4.1 (Trace compression cost)
Let t ∈ E be a trace in an event log E ∈ E , let A ∈ A be an SDFA A of FDAG
G ∈ G, and let bits

X
: V ∗×E×A → R+ be a function that maps any and every

trace t ∈ V ∗ to the number of bits required to uniquely encode t, given a viable
encoding that assumes knowledge of E and A. Then costX (t,E,A) is the trace
compression cost of t in the presence of E and A and is defined by:

cost
X

(t,E,A) =

{
−log2 (LA(t)) t ∈ L̄A

bits
x

(t,E,A) otherwise.

y

The role of bitsX(·, ·, ·) is to implement the background coding scheme that
assigns a coding cost to any and every trace that is not permitted by the au-
tomaton. The subscript X in bits

X
, and similarly in cost

X
, refers to the concrete

background coding model used to compute the cost of trace compression, with
the coding cost of impossible traces computed using probability estimates associ-
ated with their constituent actions. In Sections 4.2 to 4.4, we define the uniform
background model , zero-order background model , and the restricted zero-order
background model as three options that vary only in terms of the probability
estimates that they apply. Since relevance is grounded in the MDL principle,
models that provide more accurate probabilistic estimations of actions, and re-
sult in overall shorter bitstreams, are to be preferred. The accuracy of such
probability estimates relies heavily on the available detailed knowledge about
the log and model.

The uniform background model assigns equal probabilities to all actions that
might appear in the log. In contrast, the zero-order background model reduces –
except for pathological cases – the trace compression cost by counting the occur-
rence frequency of actions in the event log, and using those counts as the basis
for probability estimates. Any encountered non-uniformities in the symbol fre-
quencies allow more accurately targeted probabilities to be employed, reducing
the size of the compressed trace representations. Finally, to even more precisely
estimate probabilities, the restricted zero-order background model counts only
the frequencies of actions across the impossible traces rather than across all
traces. As the background model encodes impossible, as per the model, traces,
the restricted zero-order model allows – again except for pathological situations

17

– for even more targeted probability estimates and, consequently, more compact
trace encodings.

One advantage of using the uniform background model is that it does not rely
on additional information about the model or log. The other two models require
that symbol probabilities are known so that suitable entropy codes can be – or
at least, could be if required – deployed, an overhead that might, conceivably,
make them more costly than the uniform approach. Nevertheless, if the observed
symbol probabilities are non-uniform, and there is some moderate (of the order
of hundreds, for example) of symbols to be coded, then it is likely that the two
zero-order approaches will usually result in smaller bit lengths than the uniform
one, and can never be much worse.

Let A1 and A2 be SDFAs shown in Fig. 4 and Fig. 6, respectively. Then,
the compression costs (in bits) of traces abcd and aee from logs E1 and E2 in
Section 3.4 are as follows:

� costX (abcd,E1,A1) = costX (abcd,E2,A1) = −log2

(
LA1 (abcd)

)
= −log2 (9/80) = 3.15;

� costX (abcd,E1,A2) = costX (abcd,E2,A2) = −log2

(
LA2 (abcd)

)
= −log2 (3/256)=6.42;

� costX (aee,E1,A1) = costX (aee,E2,A1) = −log2

(
LA1 (aee)

)
= −log2 (1/20) = 4.32.

The example traces are encoded using their probabilities in the two stochastic
process models. Frequent traces, like trace abcd in A1, are encoded using fewer
bits than infrequent traces, like trace abcd in A2. Whenever a trace is possible
according to the process model, its cost is independent of the concrete back-
ground model X. However, trace aee is impossible according to the stochastic
language of A2, and cannot be handled the same way as it is in A1. Its encoding
cost is considered after the various background coding models have been defined
(Sections 4.2 to 4.4).

When a background coding model relies on additional knowledge, such as the
probability distribution of elements in the log or parts of the log induced by the
stochastic process model, it must be described in a prelude to the trace encod-
ings. Since entropic relevance is grounded on the lossless encoding of traces, the
prelude should be “transmitted” (by having its bits counted) prior to the other
code elements. For example, this can be an encoding of the list of elements’
occurrence frequencies from which symbol probabilities can be estimated. Con-
sequently, the prelude should be declared as part of the nominal “compressed”
package that is being measured. The prelude cost, denoted by prelude

x
(E,A),

is the number of bits required to encode the prelude. Sections 4.2 to 4.4 define
the prelude costs for the three background coding models. To reflect that the
prelude cost is associated with each particular background coding model, it is
parameterized by it and, hence, the subscript X.

The role of the selector code – the third component – is to indicate whether
a trace is encoded using the stochastic process model or the background model
(the left and right branches out of the decision diamond in Fig. 2). That is,
each trace in the compressed event log is preceded by a binary flag that indicates
whether or not the trace is possible in the stochastic model. If the probability as-
sociated with one branch is q, the expected average cost of describing one code in
a stream of selector codes is given by H0 (q) = −q log2 (q)− (1− q) log2 (1− q),

18

taking H0 (0) = H0 (1) = 0 by definition. This probability q can be the overall
probability that a trace in the event log E is possible in the stochastic language
of model A, given as ρ(E,A) =

∑
t∈L̄A

P(t | E).
The cost associated with the selectors is thus the information content of

the probability q derived from the likelihood of the trace fitting the process
model, that is, H0 (ρ(E,A)). The largest value of H0 (ρ(E,A)) is 1 bit per
selector when ρ(E,A) = 0.5 and only half the traces can be derived from the
stochastic process model. For example, consider the two SDFAs A1, A2, and
event log E1 discussed above. Model A1 can replay every trace in log E1, that
is, ρ(E1,A1) = 1. The cost of selector H0 (ρ(E1,A1)) is thus 0, indicating the
certainty of choosing A1 as the coding scheme. That certainty is not possible
for E1 and A2, as the overall probability of possible trace is ρ(E1,A2) = 0.80.
Now the selector cost is, on average, 0.722 bits per trace.

When summed, the trace compression cost, prelude cost, and selector cost
lead directly to the definition of entropic relevance.

Definition 4.2 (Parameterized entropic relevance from [25])
Let E ∈ E be an event log and let A ∈ A be an SDFA. Let X ∈ {U, Z, R} be
a parameter that defines a background coding model. Then, the entropic rele-
vance, or relevance, of A to E (parameterized with X) is denoted by rel

X
(E,A)

and is defined by:

relX (E,A) = H0(ρ(E,A))+
1

|E|
∑
t∈E

(
n(t, E) · cost

X
(t,E,A)

)
+

prelude
x

(E,A)

|E|
.

y

As the definition of relevance relies on the concrete chosen trace compression
costing scheme and the corresponding prelude costing approach, it is also pa-
rameterized by the background coding model X. Note that while relX (E,A)
derives its value via the measurement of a whole log E relative to the given
automaton A, Definition 4.2 expresses entropic relevance in terms of “bits per
trace”; that is, as being averaged over the whole of E. Note also that we re-
gard the structure and probabilities associated with A to be “given”, and not
part of what is charged back to the relevance score; but that the cost of the
background model is charged. This subtle distinction is in accordance with our
desire to measure the complexity of A via human-centered approaches, refer to
Section 2.

Fig. 2 helps explain Definition 4.1 and Definition 4.2. During the nominal
encoding process, each trace t in the log is considered in turn. If trace t is
possible in the stochastic process model, it is assigned a non-zero probability
according to the stochastic language of the model, and the corresponding selec-
tor code is generated (the left branch out of the decision diamond in Fig. 2),
and then that probability is used to encode t relative to the model (the first
option in Definition 4.1). If the probability of t is zero according to the model
(the right branch in Fig. 2), the opposite selector code is generated, and the

19

background model uses bits
x

(t,E,A) bits to represent t (the second option in
Definition 4.1). That is, the selector codes associated with the diamond decision
box in Fig. 2, and illustrated by the yellow line in Fig. 3, are needed to differ-
entiate between the two alternatives on a per-trace basis, and add an average
of H0(ρ(E,A)) bits per trace. Finally, prior to the encoding of any traces via
the background model, prelude

x
(E,A) bits must be spent to ensure the ability

to losslessly decode those impossible traces.
Note also the comment that was made in Section 2.3 in regard to the relative

costs associated with the background model and the process model for fitting
traces. It is entirely possible for the background model to encode some fitting
trace t more economically than the stochastic process model A, suggesting that
perhaps a “best choice available” mechanism should be employed in our nominal
compression codec, to allow a more nuanced selection of technique. In fact, we
stay strictly with the p(t | A) > 0 criteria for fitting traces, and count even
low-probability traces as being “handled” by A. The rationale for this decision
is that the high bit cost that is then associated with t is actually a direct
consequence of the stochastic model A having mis-estimated t′s probability,
and should be counted against A as we seek to measure A’s relative goodness-
of-fit to the log as a whole.

We use SDFA A1 and event log E1 to exemplify the computation of entropic
relevance. All traces in E1 have non-zero probabilities in A1, such that:

{(ab,2/5),(ae,3/20),(abcd,9/80),(abc,1/20),(aee,1/20),(abcde,3/80)}.

Then, each log trace is encoded using its probability in the model. Hence, the
total encoding cost of all the traces in the log is equal to:

(1.32×1200)+(2.74×300)+(3.15×220)+(4.32×100)+(4.32×100)+(4.74×80) =

= 4342.20 bits.

Consequently, the average encoding cost of a trace, and thus the entropic rel-
evance of A1 with respect to log E1, is 4342.20/2000, or approximately 2.17 bits.
Note that the cost of the selector is H0 (ρ(E1,A1)) = H0 (1) = 0 bits per trace.
Here we assume that the prelude cost is also 0 bits per trace, which is the
case when the uniform background model is used. Below, we proceed with the
discussion of this background model.

4.2 Uniform Background Model

Ignoring both the event log and the process model, the uniform background
coding model proposed in our preliminary description [25], denoted here as
bitsU(·, ·, ·), trivially encodes a trace t by taking each individual element in t̂ ,
the #-terminated version of t, as an equi-probable symbol over the underlying
alphabet, i.e., the probabilities of observing actions from u(Ê) in the log are
considered to be uniformly distributed.

20

Definition 4.3 (Uniform background coding model [25])
Let t ∈ E be a trace in an event log E ∈ E and let A ∈ A be an SDFA. Then,
the uniform background encoding cost of t in the presence of E and A, denoted
by bits

U
(t,E,A), is defined by:

bitsU (t,E,A) = |̂t | log2

(
|u(Ê)|

)
.

y

Since trace aee is impossible according to the stochastic language of A2, it is en-
coded using the background model and it thus holds that cost

U
(aee,E2,A2) =

bits
U

(aee,E2,A2) = 11.23 bits, where E2 is from Section 3.4 and A2 is shown
in Fig. 6. The encoding is based on four symbols, three actions from the trace
plus the end-of-trace symbol #, each taking log2 (7) bits because u(Ê2) = {a,b,
c,d,e,f,#}, yielding 4 log2 (7) = 11.23 bits.

The uniform background model makes no assumptions about the distribu-
tion of actions in the log, meaning that the corresponding prelude cost is zero,
prelude

U
(E,A) = 0 for any event log E and automaton A.

4.3 Zero-Order Background Model

The actions in an event log may not be uniformly distributed. If they are not,
the encoding cost of a trace t computed using background model bits

U
might

be larger than necessary, and hence more pessimistic than is warranted. A
second option for the background model is thus to have it reflect the probability
distribution of the actions in the event log, by accumulating action probabilities
as occurrence frequency counts. Frequent actions can then be coded using fewer
bits than infrequent actions. Since such occurrence frequency counts of actions
are determined without considering the action ordering with traces, we refer to
this type of model as being a zero-order background coding model, bits

Z
, and

define it as follows.

Definition 4.4 (Zero-order background coding model)
Let t ∈ E be a trace in an event log E ∈ E and let A ∈ A be an SDFA. Then, the
zero-order background encoding cost of t in the presence of E and A, denoted
by bitsZ (t,E,A), is defined by:

bits
Z

(t,E,A) = −
|̂t |∑
i=1

log2

(
P (̂ti | Ê)

)
.

y

It holds that cost
Z

(aee,E2,A2)= bits
Z

(aee,E2,A2)=8.95 bits, where, again,
E2 is from Section 3.4 and A2 is shown in Fig. 6. The encoding is based on the
estimates of the probabilities of a, e, and # occurring in Ê2 . These probabilities

21

are 0.298, 0.160, and 0.266, respectively. Therefore, actions a and e, and the
end-of-trace # symbol get coded using 1.75, 2.65 and 1.91 bits, respectively; and
then (presenting all values rounded to two decimals) 1.75 + 2.65 + 2.65 + 1.91 =
8.95 bits.

In this arrangement the coding cost of the trace can only be achieved given
knowledge of the frequency distribution of actions occurring in the log, infor-
mation that must be accounted for. One possible way of computing a prelude
cost is to assume the use of Elias codes [12]. Let x > 0 be an integer num-
ber. We write Cγ (x) to refer to the encoding cost of integer number x using
Elias’ gamma code, and note that the gamma code represents arbitrary posi-
tive integers x is Cγ (x) = 2 blog2(x)c + 1 bits. We favor the use of the Elias
gamma code here, as it is at most a constant factor worse than optimal for
non-increasing distributions over the positive integers, consuming O(log x) bits,
and does not require that an upper bound be placed on x to achieve that coding
rate. Note, however, that other infinite codes with different cost profiles could
also be employed, including the Elias δ code, or a Golomb code [22, Chapter 3].
Thus, the prelude cost in case of the zero-order background model is given by
prelude

Z
(E,A) =

∑
λ∈V

(
Cγ (n(λ,E) + 1)

)
+ Cγ (|E|+ 1).

As an example, consider the previous example of E2 (see Section 3.4). In
that event log we have n(a,E2) = 280, and so action a contributes 17 bits to
prelude

Z
(E2,A). Each of the other symbols also has a cost associated with its

frequency. In total the prelude costs 17+15+13+9+15+9+15 = 93 bits across
actions a, b, c, d, e, f, and #, respectively. That total represents a relatively
small overhead in comparison to the 250 traces in E2, but, nevertheless, is a
cost that should be accounted for.

4.4 Restricted Zero-Order Background Model

To further refine the probability estimates, the zero-order background cost
model can be restricted to consider the occurrence frequency of actions in only
the impossible traces. This refinement in probability estimates of actions aims to
obtain compact codes for traces impossible according to the stochastic language
of the process model. Following is the definition of the restricted zero-order
background coding model.

Definition 4.5 (Restricted zero-order background coding model)
Let t ∈ E be a trace in an event log E ∈ E and let A ∈ A be an SDFA. Then,
the restricted zero-order background encoding cost of t in the presence of E and
A, denoted by bits

R
(t,E,A), is defined by:

bitsR (t,E,A) =

{
bits

Z
(t,E¬A ,A) if t ∈ E¬A ,

+∞ otherwise

where by E¬A we denote the multiset of all the traces from E that are not
possible according to the stochastic language of A. y

22

For event log E2 from Section 3.4 and automaton A2 from Fig. 6 it holds that
cost

R
(aee,E2,A2) = bits

R
(aee,E2,A2) = 6.51 bits. This is correct because

E2¬A2
= [aeaae40, aee20, abee10] and, the coding is thus performed using

the estimates of probabilities of observing actions a and e, and the end-of-trace
symbol # of 0.405, 0.378, and 0.189, respectively. Consequently, actions a and
e, and the end-of-trace # symbol get coded using 1.30, 1.40 and 2.40 bits, and
making the total background cost of trace aee 1.30 + 1.40 + 1.40 + 2.40 =
6.51 (again, rounding values to two decimal places). Note that the restricted
zero-order background coding model now uses detailed information about the
stochastic process model to compute the background coding cost – it needs to
be informed which traces are and which traces are not possible according to the
model, and the prelude cost is affected by both log and model.

We obtain the prelude cost for the restricted zero-order background model
as the prelude cost for the zero-order background model computed over the
impossible traces of the process model, i.e., prelude

R
(E,A) = prelude

Z
(E¬A ,A),

again making use of the Elias gamma code. Note that n(a,E¬A) ≤ n(a,E), for
all symbols a, and hence that prelude

Z
(E¬A ,A) ≤ prelude

Z
(E,A).

4.5 Examples

With the required definitions in place, we now calculate the entropic relevance
for automata A1 and A2 from Fig. 4 and Fig. 6, respectively, with respect to
the event logs E1 and E2 from Section 3.4. Table 1 summarizes the constituent
costs and the entropic relevance values for the four combinations of log and
automata.

Table 1: Entropic relevance (in bits) and its constituents for two example automata A1

and A2 from Fig. 4 and Fig. 6, respectively, and event logs E1 and E2 from Section 3.4.
The columns list the probability of traces from the log being possible according to the
automata (ρ); the average (over all that log’s traces) selector coding cost (Select.); the
model coding cost (MdlCst.); the average per-trace coding cost (Bkgnd.) of the Uni-
form, Zero-order, and Restricted zero-order background coding models; the associated
average prelude coding cost (prelude); and the entropic relevance value (rel).

Autom. Log ρ Select. MdlCst. BkgndCstMdl. Bkgnd. prelude rel

A1 E1 1.00 0.00 2.17
Uniform 0.0 0.0 2.17

Zero-order 0.0 0.06 2.23
Restricted zero-order 0.0 0.003 2.18

A2 E1 0.80 0.72 2.63
Uniform 1.68 0.00 5.03

Zero-order 1.61 0.06 5.02
Restricted zero-order 1.02 0.03 4.41

A1 E2 0.56 0.99 1.79
Uniform 4.49 0.00 7.27

Zero-order 3.68 0.37 6.84
Restricted zero-order 3.37 0.27 6.42

A2 E2 0.72 0.86 2.62
Uniform 4.15 0.00 7.63

Zero-order 3.18 0.37 7.02
Restricted zero-order 2.45 0.21 6.13

In the first row of the table, SDFA A1 explains event log E1 well, as the
traces in the log all fit the automaton. The relative likelihoods of observing the

23

traces in the log and in the automaton differ for trace ab, abcd, abcde, and
abf, which suggests the possibility that other automata can achieve even lower
relevance for E1. The values of relevance when using bits

Z
and bits

R
are greater

than the relevance value for bits
U

because of the modest, but non-zero, prelude
coding cost associated with the latter two approaches.

In the second row, automaton A2 provides a less effective description of E1,
primarily because one fifth of the traces cannot be represented in the primary
model, and must be handled by the background model. As a result, all three
cost components are higher, and a clear difference emerges between A1 and A2,
with A1 preferred. In A2, the restricted frequency counts associated with bitsR
give that method an advantage over bitsU and bitsZ , but that gain is not enough
to overcome the innate superiority of A1.

Automaton A1 compresses E2 (row three) better than automaton A2 (row
four) when background costing models bits

U
and bits

Z
are used; but the re-

stricted background model bits
R

reverses that relationship, and model A2 with
bitsR is (by a narrow margin) the best explanation of E2 when all cost compo-
nents are summed, even though A1 (column “MdlCst.”) provides more accurate
encodings of the (albeit smaller) subset of traces that can be accommodated by
the model. The restricted background model bits

R
comes into its own in this

example, adjusting its probabilities to the particular nature of the non-fitting
traces. This second example highlights the importance of including all of the
three cost components, and illustrates the balances that can affect the overall
entropic relevance scores.

The restricted zero-order background model bits
R

is superior to the other
two background models, the expected relationship when at least a moderate
number (dozens or hundreds) of symbols are encoded as part of the non-fitting
traces, and where the observed frequency distribution across the symbols is non-
uniform. When the number of non-fitting traces is very small, or the frequency
distribution is very close to uniform, the cost of the prelude required may make
bits

Z
and bits

R
more costly than bits

U
, but the difference is likely to be small.

Because the frequencies of symbols associated with bits
R

can never exceed those
that pertain to bits

U
, and since bits

R
is the correct probability distribution for

the symbols in the non-fitting traces and they are the (only) ones coded using
the background model, bitsR can never be larger than bitsZ .

5 Evaluation

The entropic relevance measure described in Section 4, including the range of
background coding models, has been implemented and integrated into the En-
tropia tool [24], and experimentally assessed using a range of synthetic and
real-world datasets, all of which are publicly available [2]. The experiments
address two main research questions:

RQ1: Is measuring of entropic relevance feasible for industrial datasets?
RQ2: Is entropic relevance fundamentally different from other measures for

(stochastic) conformance checking?

24

To answer RQ1, we computed entropic relevance for thirty real-world event logs
and corresponding process models discovered from these logs. The results and
execution times are reported in Section 5.1.

To answer RQ2, we compare entropic relevance with other conformance
checking measures in current use. Section 5.2 begins by describing the method-
ology used to perform the comparison. For each comparator measure, we then
present evidence that it quantifies a different phenomenon than does entropic
relevance. Section 5.3 then considers the stability of the measurements that are
reported.

Table 2: Conformance checking measures.

Short label Full name and reference

Precision Exact-matching entropy-based precision [28]
Recall Exact-matching entropy-based recall [28]
Stoc.Precision Stochastic entropy-based precision [16]
Stoc.Recall Stochastic entropy-based recall [16]
EMSC Earth movers’ stochastic conformance [18]

Table 3: Process discovery techniques.

Short label Full name and reference

Apromore Apromore (Academic Edition) 1

Celonis PE Celonis SE (Process Explorer) 2

Celonis VE Celonis SE (Variant Explorer) 2

DFvM Directly Follows visual Miner [17]
Disco Fluxicon Disco (Academic Edition) 3

Minit Minit (Academic Edition) 4

Split Miner Split Miner [3]

Table 2 and Table 3 list, respectively, the conformance checking measures
and process discovery techniques used in our experiments. The conformance
checking measures from Table 2 are discussed in more details in Section 7.

5.1 Feasibility

To study the feasibility of using entropic relevance in industrial settings, we
experimented with thirty real-world event logs recording transactions of IT-
systems executing business processes, as made publicly available by the IEEE
Task Force on Process Mining.5 Using the discovery techniques listed in Table 3,
FDAGs (also known as DFGs) were constructed, with each pair of log and

1https://apromore.org
2https://www.celonis.com
3https://fluxicon.com/disco/
4https://www.minit.io
5https://data.4tu.nl/repository/collection:event logs real.

25

https://apromore.org
https://www.celonis.com
https://fluxicon.com/disco/
https://www.minit.io
https://data.4tu.nl/repository/collection:event_logs_real

0 50 100 150
0

20

40

60

80

100

Size

B
it

s

(a) Relevance relU

0 50 100 150
0

20

40

60

80

100

Size

B
it

s
(b) Relevance relZ

0 50 100 150
0

20

40

60

80

100

Size

B
it

s

(c) Relevance relR

Entropic relevance Background coding cost Model coding cost

Selector coding cost Prelude coding cost

Figure 7: Three entropic relevance measurements (relU , relZ , and relR) and their
constituents, plotted as a function of model size measured as the sum of the numbers
of actions (vertices) and directly-follows arcs in the model; models discovered using
DFvM from BPIC 2012 event log. These three graphs are concrete realizations of the
arrangement sketched in Fig. 3.

discovery technique leading to 100 FDAGs for various parameterizations of the
technique, chosen so as to create models of different sizes. For example, for the
DFvM technique, trace removal thresholds were set at 1/100, 2/100, . . . , 100/100

to discover the 100 models.
Fig. 7 plots the values of the three versions of relevance (rel

U
, rel

Z
, and rel

R
,

that is, based on three different background models), and their constituents for
FDAGs generated by DFvM from BPI Challenge (BPIC) 2012 event log [37].6

The size of each model (the horizontal axis) is taken to be the number of action
nodes plus the number of edges. In the three plots, the curves correspond to
the anticipation provided by Fig. 3. As the models become more complex, an
increasing fraction of traces fit the model (green line); a decreasing fraction
are coded using the background model (blue line); and the selector coding cost
(yellow line) and the prelude coding cost (purple line) are small over most of
the range. All three versions of entropic relevance settle at around 20 bits per
trace, by which point the background model is not being used. That is, while
a background model must always be specified, and must always be available, if
all of the traces in the log fit the main process model, then all of rel

U
, rel

Z
, and

rel
R

will give behavior very close to each other.
Note that in our initial conference presentation, and also when discussing

Fig. 3, we presumed bitsU as a background model and hence did not need to
account for a background model prelude. But we have included it as a visible
component in Fig. 7 (albeit, a very minor one) so that bits

Z
and bits

R
are

properly accounted for. Compared to the size of the event log, the alphabet
and the frequency of its actions are small sets, making the prelude cost a minor

6An error in the corresponding plot for Fig. 7(a) in the original conference paper [25,
Figure 7(c)] has been found and corrected in this article.

26

0 50 100

5

10

Size

B
it

s

(a) Road Traffic Fine

0 50 100 150

30

40

50

Size

B
it

s

(b) Sepsis Cases

0 100 200

20

30

40

50

Size

B
it

s

(c) BPIC 2012

Disco Split Miner Apromore Minit

Celonis VE Celonis PE DFvM

Figure 8: Entropic relevance (relR) of FDAGs discovered from three real-world logs
using the process discovery techniques listed in Table 3, plotted as a function of model
size.

component. For bits
R

, the prelude cost gradually decreases, with the non-fitting
symbol frequencies becoming smaller as the process model grows in size and
accommodates more traces.

Fig. 8 plots relevance values in bits for the sets of FDAGs constructed using
the seven discovery techniques listed in Table 3 from three logs: Road Traffic
Fine Management [10], Sepsis Cases [20], and BPIC 2012 [37], again as a function
of model size. Now models, and hence discovery techniques, can be compared by
considering the Pareto frontier of the points plotted in each graph. For all logs,
in general, as the models become more complex, the fraction of traces that fit the
FDAGs increases and relevance values decrease. Fig. 9 shows enlarged regions
from the corresponding plots in Fig. 8, spanning the discovered FDAGs of size
less than approximately 50, the range of small- to medium-sized models which
can be appreciated visually and are of interest to business analysts. Note that
the numeric relevance values are subject to the approach used to map FDAGs
to SDFAs, and to the choice of background coding model. Detailed analysis of
these interactions, and of FDAGs discovered using other techniques, is future
work.

The computation of entropic relevance requires straightforward data struc-
tures and execution loops. With a hash-map used to implement the set of edges
at each state in the model, computation time is linear in the total volume of log
data processed (number of traces times average length). The average CPU time
to compute entropic relevance using our implementation and a commodity lap-
top computer for the largest log analyzed (BPIC 2018 – Payment application;
43,809 traces and 984,613 events) over the 100 DFMs that were constructed
(with sizes ranging from 25 to 238) was 0.47 sec.

Note also that none of the models plotted in Figs. 7 and 8 were over-fitted to
the data, and that the model description costs (see Fig. 3), which are excluded
from our definition of entropic relevance, were small compared to the entropic
relevance scores.

27

5.2 Comparison With Other Measures

Section 4 introduced entropic relevance as a stochastic conformance checking
measure that assesses how accurately a stochastic process model describes an
event log. This section discusses and compares entropic relevance with a range
of previous conformance checking techniques (see Table 2) using a range of
real-world and synthetic datasets. In addition to the five techniques listed in
Table 2, we compare entropic relevance against coverage, defined as the number
of traces from the log that are described by the model (including counting
duplicate traces) divided by the total number of traces in the log. That is,
a total of six measures are used as reference points and compared to entropic
relevance.

To carry out each of those comparisons, we demonstrate that we can find
two sets of models, with scores within one set positively correlated between the
measure and entropic relevance, and scores in the other set negatively corre-
lated. Whenever both of those sets exist they jointly provide clear evidence
that relevance is not blindly mirroring that other measure.

For simplicity, we fix on one relevance, rel
U

, to decrease the number of
pairs of measures, noting that all of rel

U
, rel

Z
, and rel

R
have relative ordering

in terms of their behavior. A similar process of generating models to that
described in Section 5.1 was followed to construct the models. For each log and
corresponding models, we computed scores for all seven measures. The strength
and the direction of the association between the values of entropic relevance and
each of the other six measures was then calculated using Spearman’s correlation
test with 95% confidence intervals, with Spearman’s coefficient preferred to
Pearson’s correlation coefficient to avoid any requirement that the measurements
follow a linear relationship or comply with a normal distribution.

To obtain some of the required correlations, we constructed a synthetic log
E over the alphabet V = {a, b, c, d, e, f, g, h}, containing 20,000 instances
of t = abcdefgh, plus one instance of each other permutation of the alphabet
(another 8!−1 = 40,319 traces), plus another 20,320 traces generated randomly
with replacement from the same set of 40,319 permutations (that is, with an

10 30 50

3

4

5

Size

B
it

s

(a) Road Traffic Fine

10 30 50
50

51

52

Size

B
it

s

(b) Sepsis Cases

10 30 50
45

50

55

Size

B
it

s

(c) BPIC 2012

Disco Split Miner Apromore Minit

Celonis VE Celonis PE DFvM

Figure 9: Enlarged regions of interest from the plots in Fig. 8.

28

average additional frequency per permutation of approximately 0.5, making an
average of 1.5 occurrences in total). In total, E thus contained 80,639 traces.

Fig. 10 shows how entropic relevance calculated using rel
U

relates to the
other conformance checking measures, for each measure picking out instances of
logs for which positive (top half) and negative (bottom half) correlations were
observed. That is, the first two rows show six positive correlations between the
entropic relevance measurements; then the lower two rows show exactly the same
set of six measures, but now with negative observed correlations, illustrated
via a different set of logs. The models used to obtain the measurements were
discovered using DFvM, except plot Fig. 10(i), where Split Miner was used.
Three real-world event logs were used (Sepsis, BPIC 2012, and BPIC 2018
Entitlement Application [38]), plus the synthetic log E described above.

Fig. 10 presents an unambiguous picture: for each of the other six measures
it is possible to identify a situation (involving a log and a discovery mecha-
nism) in which entropic relevance is positively correlated with that measure,
and also another situation in which it is negatively correlated. That is, Fig. 10
provides compelling evidence that entropic relevance is demonstrably indepen-
dent of previous conformance measures, and while unnecessary proliferation of
entities is to be eschewed (the Occam’s razor principle), in this case, the new
approach clearly introduces a perspective that adds to our ability to measure
process models, rather than merely replicates a previous technique.

5.3 Stability

The models constructed by a process discovery algorithm from statistically sim-
ilar logs may differ considerably, i.e., discovery algorithms may be unstable [36].
To quantify the potential risk of this phenomenon on our conclusions about
entropic relevance, we tested the stability of the discovery algorithms when
constructing the models used in the correlation analysis, adopting a standard
bootstrapping approach. A total of 100 bootstrap replicates were generated
from each log, using sampling with replacement to create logs of the same size
as the original. For each replicate, the same procedure of generating models as
used in the correlation analysis was followed, except that only ten instead of
100 different models were constructed from each sample log, using ten differ-
ent parameterizations of the model construction process. The 1000 data points
were then scatter-plotted with transparency, and Spearman’s correlations were
computed between relevance and the other measures. A sample of the results
obtained is shown in Fig. 11.

Fig. 11 shows several effects. The most noticeable of these is that the over-
all shapes of the three regression curves closely match the corresponding lines
for the original logs, shown in Fig. 10(c), Fig. 10(f), and Fig. 10(h). This is
as expected, since each bootstrap replicate should possess the same statistical
properties as the corresponding original log from which it was generated. The
computed R values are also in agreement. But within that overall agreement,
there are also interesting differences. In particular, the “point clouds” that
are visible in Fig. 11 are a result of the randomness inherent in the bootstrap

29

R = 1
p < 2.2e-16

0.2

0.4

0.6

0.8

1.0

22.5 23.0 23.5 24.0 24.5
Relevance (relU)

C
ov

er
ag

e

(a) Synthetic log E

R = 0.96
p < 2.2e-16

0.4

0.6

0.8

1.0

22.5 23.0 23.5 24.0 24.5
Relevance (relU)

R
ec

al
l

(b) Synthetic log E

R = 0.99
p < 2.2e-16

0.25

0.50

0.75

1.00

25 50 75
Relevance (relU)

P
re

ci
si

on

(c) BPIC 2012

R = 0.79
p < 2.2e-16

0.2

0.3

0.4

0.5

0.6

0.7

20 30 40 50
Relevance (relU)

E
M

S
C

(d) BPIC 2018 (enti. app.)

R = 0.32
p = 0.0012

0.2

0.4

0.6

30 40 50 60
Relevance (relU)

S
to

c.
 R

ec
al

l

(e) Sepsis

R = 0.98
p < 2.2e-16

0.7

0.8

0.9

1.0

25 50 75
Relevance (relU)

S
to

c.
 P

re
ci

si
on

(f) BPIC 2012

R = - 1
p < 2.2e-16

0.4

0.6

0.8

1.0

25 50 75
Relevance (relU)

C
ov

er
ag

e

(g) BPIC 2012

R = - 1
p < 2.2e-16

0.8

0.9

1.0

20 30 40 50
Relevance (relU)

R
ec

al
l

(h) BPIC 2018 (enti. app.)

R = - 0.92
p < 2.2e-16

0.0

0.1

0.2

0.3

40 50 60
Relevance (relU)

P
re

ci
si

on

(i) Sepsis

R = - 0.98
p < 2.2e-16

0.40

0.42

0.44

0.46

20 40 60 80
Relevance (relU)

E
M

S
C

(j) BPIC 2012

R = - 0.91
p < 2.2e-16

0.10

0.15

0.20

25 50 75
Relevance (relU)

S
to

c.
 R

ec
al

l

(k) BPIC 2012

R = - 0.42
p = 1.4e-05

0.3

0.6

0.9

30 40 50 60
Relevance (relU)

S
to

c.
 P

re
ci

si
on

(l) Sepsis

Figure 10: Entropic relevance (relU) plotted against coverage, exact-matching
entropy-based recall and precision, earth movers’ stochastic conformance, and stochas-
tic entropy-based recall and precision, using a variety of process logs. Each point
represents a process model; smooth black lines represent the LOESS regression func-
tions for the points with bandwidth equal to 75% of the data; shaded regions depict
95% confidence intervals; R values represent Spearman’s correlation coefficients; and
p values refer to the sign of the correlation coefficients.

30

R = 0.98
p < 2.2e-16

0.3

0.6

0.9

25 50 75
Relevance (relU)

P
re

ci
si

on

(a) BPIC 2012

R = 0.96
p < 2.2e-16

0.7

0.8

0.9

1.0

25 50 75
Relevance (relU)

S
to

c.
 P

re
ci

si
on

(b) BPIC 2012

R = - 0.93
p < 2.2e-16

0.8

0.9

1.0

20 30 40 50
Relevance (relU)

R
ec

al
l

(c) BPIC 2018 (enti. app.)

Figure 11: Entropic relevance (relU) plotted against exact-matching entropy-based
precision and recall, and stochastic entropy-based precision. Each individual point
represents the process model derived from one of 100 bootstrapped replicates of the
corresponding original log, for each of 10 different parameter settings. Smooth black
lines represent the LOESS regression functions for the 1000 points with bandwidth
equal to 75% of the data; the shaded regions (almost identical with those lines) depict
95% confidence intervals; R values represent Spearman’s correlation coefficients; and
p values refer to the sign of the correlation coefficients. The three plots here can be
compared with Fig. 10(c), Fig. 10(f), and Fig. 10(h), respectively.

process; and the fact that some parameter settings led to multiple clouds is an il-
lustration of the discrete nature of process inference. Small (essentially random)
changes in the log can lead to different models being generated, with notably
different quality scores then emerging as a consequence of the non-continuous
nature of the “model” space.

Similar testing was performed for each correlation plot in Fig. 10, with the
same range of outcomes observed.

6 Discussion

Relevance, the way it is defined in Section 4, provides a compromise between
the precision and recall quality criteria of models automatically discovered from
event logs. This claim is justified by the case-analysis provided in Table 4.

Entropic relevance is the average cost of encoding a trace from the log using
a model discovered from this log (or indeed, discovered from any other log
over the same set of elements Λ, or via any other mechanism including human
analysis). Table 4 shows how different traces contribute to this average cost.
A trace is either in or not in the log, and is either described or not described
by the model. These possible options are captured in the first two columns of
the table. In addition, a trace can be frequent or infrequent in the log, and/or
frequent or infrequent in the model. These options are listed in columns three
and four of the table, with “n/a” entries denoting combinations that are not
plausible. For example, traces that are absent from the log or not described by
the model are neither frequent nor infrequent. Columns five and six classify the
model and background coding costs induced by the trace characterized in the
first four columns. Five cost classes are introduced. A trace that incurs no cost

31

Table 4: The classification of the magnitudes of coding costs of various traces when
measuring entropic relevance. The first four columns characterize a trace as Present
in the Log/Model and Frequent in the Log/Model (yes: present/frequent; no: ab-
sent/infrequent; n/a: not applicable). The last two columns specify if the correspond-
ing trace characterized in the first four columns of the table should (yes) or should not
(no) be penalized by Precision and Recall quality criteria. The Model and Background
coding cost columns specify the magnitude of the corresponding coding costs of the
trace (zero: zero cost; entropy : cost of the contribution of the trace to the entropy of
the stochastic language; low : low cost; medium: medium cost; high: high cost); the
costs shown in parenthesis are induced indirect costs of other traces.

Trace
Present Frequent

Log Model Log Model

Model
coding
cost

Background
coding
cost

Precision Recall

yes yes yes yes entropy zero no no
yes yes yes no high zero no yes
yes yes no yes low (high) zero yes no
yes yes no no entropy zero no no
yes no yes n/a zero high no yes
yes no no n/a zero medium no yes
no yes n/a yes zero (high) zero yes no
no yes n/a no zero (medium) zero yes no
no no n/a n/a zero zero no no

is denoted by “zero” in the table. Suppose a trace makes the same (or a very
similar cost) contribution to relevance as to the entropy of the corresponding
stochastic language (i.e., −p log2 (p), where p is the probability of observing the
trace). In that case, it is denoted by “entropy” in the table. Finally, “low”,
“medium”, and “high” entries suggest, respectively, the low, medium, and high
coding cost of the corresponding trace. In parentheses, we give the indirect cost
of the trace stemming from the impact on the costs of the other traces.

For example, a trace that is frequent in both log and model induces no back-
ground coding cost, as it is coded using the probability of that trace in the
model. As this probability is the same as or very similar to the probability
of observing the trace in the log, the model coding cost of this trace is (if not
precisely) very similar to −p log2 (p), where p is the probability of observing the
trace either in the log or model. This cost roughly corresponds to the contri-
bution of the trace to the entropy of the stochastic language – a theoretically
minimum contribution to the description of the stochastic language. As an-
other example, if a trace appears frequently in the log with probability q, but
the model specifies that this trace is infrequent and assigns probability p � q,
then the contribution to relevance is −q log2 (p), and is larger than would be
ideal. In contrast, a trace that is infrequent in the log but frequent in the model
will incur a low cost. However, if such traces exist, they inevitably lead to the
existence of frequent log traces that are infrequent according to the model. As
already noted, such traces incur high model coding costs; hence the “low (high)”
entry in the table suggesting low direct costs but high indirect costs for such
traces.

32

The precision and recall quality criteria of discovered models penalize traces
denoted by “yes” in columns seven and eight in Table 4. Interestingly, all
the corresponding traces are also penalized, to various degrees, by the entropic
relevance measure. Note that the entropy coding cost is the minimum required
cost to encode the trace losslessly. Hence, it is not considered a penalty. All
three cases of the recall penalties correspond to direct trace costs, while the
cases of precision penalties stem predominantly from the indirect trace costs.

The coverage measure used in our evaluations penalizes traces that do not
fit the model. Unfitting traces are also penalized by the entropic relevance
measure; refer to the rows in Table 4 marked with “yes” in the first column and
“no” in the second column. However, there are several fundamental differences
between the coverage measure and the relevance measure.

First, if a model cannot replay any of the traces in the log, the corresponding
relevance value (via the background model) still reflects the complexity of the
log. Note that the corresponding coverage value of zero does not provide such
information, which makes the situations with fully unfitting logs indistinguish-
able. For example, the entropic relevance measurements of the small models in
Fig. 9(a) are smaller than 15 bits, while the entropic relevance measurements
of the small models in Fig. 9(b) are larger than 50 bits. These small models
hardly fit any traces from the corresponding logs and have coverage of (close
to) zero. Consequently, we can conclude that the traces from the Sepsis Cases
log are more complex than traces from the Road Traffic Fine Management log;
that is, they are less compressible relative to the background model.

Second, similar to the coverage value of zero, the coverage value of one, which
denotes a situation when the stochastic languages induced by the model and log
are the same, does not provide any additional information. The corresponding
relevance value, however, conveys information about the underlying distribution
of traces. For example, the relevance score for a situation in which a small set
of traces are frequent in the log and model will be smaller than when all the
traces are equi-probable. For instance, the entropic relevance of large models
constructed from the Road Traffic Fine Management log is small, approximately
two bits; refer to Fig. 9(a). At the same time, large models constructed from
the Sepsis Cases log have an entropic relevance of approximately 30 bits; see
Fig. 9(b). Note that these large models fit most of the log traces and, hence,
have coverage of (close to) one. Consequently, we can conclude that the Road
Traffic Fine Management log has a small number of relatively frequent traces
and a long tail of rare traces. In contrast, the distribution of traces in the Sepsis
Cases log is more even.

Finally, while a log trace has the same effect on coverage irrespective of
its likelihood according to the model, relevance takes both probabilities into ac-
count. Entropic relevance allows for a nuanced analysis of discrepancies between
the trace likelihoods in logs and models.

33

7 Related Work

A wide range of non-stochastic process discovery techniques have been pro-
posed over the last two decades, including the Genetic Mining [11], Heuristic
Mining [39], Inductive Mining [15], and Split Mining [3] algorithms, all of which
have been well-received by the process mining community. Non-stochastic con-
formance checking techniques can be broadly classified into quantification tech-
niques, those that summarize conformance diagnostics into a single number,
and characterization techniques, those that construct detailed analytics of com-
monalities and discrepancies between model and log traces; Carmona et al. [7]
provide a useful overview.

Recently, Van der Aalst et al. [34, 30] initiated discussion of desired prop-
erties for non-stochastic conformance checking techniques. Entropy-based mea-
sures are the only quantitative conformance checking techniques that are known
to satisfy all the properties for precision and recall that have been proposed to
date, including the strict monotonicity properties [28].

Our proposal here is an application of the MDL principle [4, 14]; which,
in turn, is related to the 1965 definition by Kolmogorov that the intrinsic de-
scriptive complexity of an object is the length of the shortest binary computer
program that describes it [9]. Kolmogorov complexity formalizes the notion
widely known as “Occam’s Razor” [31], a problem-solving principle attributed
to William of Ockham which suggests that the simplest (that is, shortest) suf-
ficient explanation of a phenomenon is the best.

We are not the first to consider using MDL principles to measure the relative
fit of a log and a process model. Notably, Calders et al. [6] have also investigated
the possibility of coding traces against a model. In their proposal the “coding”
is provided on a per-trace basis as a sequence of integer values that indicate
which – of a set of possibilities that evolves as each symbol in the trace is
accounted for – transition in a Petri net must fire next in order to generate the
trace. For example, if the configuration of the Petri net at some point in time
is such that there are three possible “next” moves, then an integer between 1
and 3 will be associated with each of those moves, and the bit-cost of coding
that integer is associated with the corresponding symbol in the trace. Like our
background model, Calders et al. also provide an “escape” mechanism to handle
traces that for some reason are not permitted outputs from the Petri net. In
their case the integer 0 is permanently associated with a “state jump” in the
Petri net, to shift it to another more amenable configuration in which the next
symbol is a legal one. In the same example, if there were three legal transitions
available, there would thus be four integers in the “possible” set, and hence a
two-bit integer generated (followed by further bits in the case of that integer
being 0, to specify the transition assumed to have fired even when not enabled
from amongst the complete set of all possible transitions). Since the state jump
is retained as an option at every transition, the minimum cost associated with
each transition in the Petri net is one bit. That is, a described trace that is
completely deterministic and unambiguously generated by the Petri net will
nevertheless be costed as requiring one bit per transition. In our proposed

34

approach here, the escape to the background model is on a whole-of-trace basis,
and never adds more than one bit to the measured cost of the whole trace.

As well as their use of binary codes and interleaved escape signals, the pro-
posal of Calders et al. [6] differs from our work here in a number of other key
ways. In our description and experiments we choose to retain the model cost
as a separate value, and express it in terms of conventional dimensions such as
nodes and edges. This allows entropic relevance to be viewed as a function of
model complexity, the latter being an important human criteria. In contrast,
Calders et al. include the cost of representing the model, using static integer
codes such as the Elias Cγ code. This difference means that entropic relevance
is not, strictly speaking, a “pure” MDL mechanism, but does bring the benefit
of what might be termed “scale constancy”. By that we mean that if a log of
traces is “multiplied by k”, so that each trace appears k times rather than once,
the entropic relevance with respect to any given model remains constant. In
contrast, the Calders et al. MDL cost (when converted from the total value that
is computed by their formulation into a per trace value) will decrease towards
an asymptotic value as the log is multiplied.

As a further distinction, there are no entropy codes employed by Calders et
al. [6] – their proposal uses only binary and static integer codes, and there is no
use of symbol or trace probabilities to compute its conformance values. Hence,
while the cost assigned to each trace is a direct consequence of the elements in
the trace, and of their sequencing, there is no sense in which common traces
become advantaged relative to rare traces, and every repetition of any given
trace incurs the same computed cost as the first instance of that trace.

At a broader level, and following on from that last observation, note that
the selection of currently available stochastic process mining techniques – the
output of which is assumed as the required input for our work here – is rather
limited. To the best of our knowledge, there are two stochastic discovery tech-
niques proposed by academia. The technique presented by Rogge-Solti et al. [29]
discovers stochastic Petri nets, while that of Leemans et al. [17] can be used to
discover DFGs, and was employed in Section 5. There are many commercial
tools for discovering DFGs, or FDAGs, from event logs, but these are all closed
source.

Two further quantification techniques for stochastic conformance checking
have been proposed. Leemans et al. [18] base their approach on the “earth
movers’ distance”, and measure the effort to transform the distribution of log
traces into the distribution of model traces, seen as two piles of dirt that need
to be aligned with minimal effort. The technique is computationally demanding
and suggests practical trade-offs between accuracy, run time, and memory us-
age. The approach of Leemans and Polyvyanyy [16] is inspired by entropy-based
conformance checking [28]. Leemans and Polyvyanyy [16] also suggest a range
of desired properties for stochastic precision and recall and show that their mea-
sures indeed possess these properties. The calculation of the measures requires
(in the worst case) a quadratic number of steps in the size of the corresponding
SDFAs, while entropic relevance runs in linear time in the size of the log. In
addition, relevance, as discussed in Section 6, reflects the compromise between

35

precision and recall in a single value with meaningful units.
The basic characterization approach for capturing non-stochastic confor-

mance diagnostic between a trace and a process model is to construct an optimal
alignment between the two [1]. An alignment is a sequence of moves. A syn-
chronous move is a pair in which one element refers to an event in the trace,
and the other element refers to an action in the model that triggered the event.
If one element in a move is a special skip symbol, the move is said to be asyn-
chronous. When one traverses moves in the order they appear in the alignment
and mentions all the non-skip symbols that are log events, one identifies the
trace used to construct the alignment. In turn, when non-skip symbols that are
model actions are mentioned, a valid execution of the model is identified. Asyn-
chronous moves describe discrepancies between the log trace and the model and,
thus, if possible, must be avoided in alignments. Hence, an optimal alignment
between the trace and the model is an alignment with the lowest cost, assuming
some non-negative costs of asynchronous moves are used.

Non-stochastic alignments have been recently extended to stochastic align-
ments that account for the frequencies of traces in logs and stochastic languages
induced by stochastic process models [19]. Instead of identifying moves as syn-
chronous and asynchronous, stochastic alignments compute the likelihood for
moves to be synchronous or asynchronous.

Alignments can be used to define techniques that quantify conformance be-
tween logs and models. For example, the coverage measure we used in the eval-
uations can be implemented by computing optimal alignments between the log
traces and the model to identify log traces described by the model as those that
induce optimal alignments of zero cost. Otherwise, alignments are not directly
comparable to entropic relevance and serve a different purpose: to diagnose,
rather than measure, conformance.

8 Conclusion

This article refines and provides a more detailed justification for the recently
introduced notion of entropic relevance for stochastic conformance checking.
In particular, we have demonstrated both via argument and via experimental
results that entropic relevance can be used to assess how closely a process model
learned from event data predicts the data that it is intended to represent.

The entropic relevance measure is motivated by and approximates (but only
approximates, because we do not include the description cost of the primary
model in our accounting) the MDL principle, which in essence asserts that the
most compact description of some set of data is the best explanation of it.
The entropic relevance measure adheres to this principle, and allows principled
numeric comparison between alternative stochastic models of process action,
and hence accurate comparison. In addition, the experimental results we have
presented provide strong justification that entropic relevance is fundamentally
different to other conformance checking techniques, in that it measures phe-
nomena that are demonstrably neither directly dependent on nor predictably

36

correlated with those other measures.
We have also provided evidence that the entropic relevance of a log with

respect to a given model reflects a compromise between the classical precision
and recall quality criteria for assessing discovered models. Entropic relevance is
measured in bits, with values being directly interpretable, and with small scores
being preferable. Moreover, it is computable in time linear in the size of the
log. As the next step in our research, we plan to explore new techniques for
discovering stochastic process models from event data that are guided by – and
perhaps even able to optimize for – the notion of entropic relevance.

Acknowledgment. Artem Polyvyanyy was in part supported by the Aus-
tralian Research Council project DP180102839.

References

[1] Arya Adriansyah, Boudewijn F. van Dongen, and Wil M. P. van der Aalst.
Conformance checking using cost-based fitness analysis. In Proceedings of
the 15th IEEE International Enterprise Distributed Object Computing Con-
ference, EDOC 2011, Helsinki, Finland, August 29 – September 2, 2011,
pages 55–64. IEEE Computer Society, 2011.

[2] Hanan Alkhammash, Artem Polyvyanyy, Alistair Moffat, and Luciano
Garćıa-Bañuelos. Discovered process models 2020-08, 2020. Available at
https://doi.org/10.26188/12814535.

[3] Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa,
and Artem Polyvyanyy. Split miner: Automated discovery of accurate and
simple business process models from event logs. Knowledge and Information
Systems, 59(2):251–284, 2019.

[4] Andrew R. Barron, Jorma Rissanen, and Bin Yu. The minimum description
length principle in coding and modeling. IEEE Transactions on Informa-
tion Theory, 44(6):2743–2760, 1998.

[5] Adam Burke, Sander Leemans, and Moe Thandar Wynn. Stochastic pro-
cess discovery by weight estimation. In International Workshop on Process
Querying, Manipulation, and Intelligence, PQMI 2020, Padua, Italy, Oc-
tober 5, 2020, 2020.

[6] Toon Calders, Christian W. Günther, Mykola Pechenizkiy, and Anne Roz-
inat. Using minimum description length for process mining. In Proceedings
of ACM Symposium on Applied Computing, ACM/SAC 2009, Honolulu,
Hawaii, USA, March 9–12, 2009, pages 1451–1455. ACM, 2009.

[7] Josep Carmona, Boudewijn F. van Dongen, Andreas Solti, and Matthias
Weidlich. Conformance Checking – Relating Processes and Models.
Springer, 2018.

37

https://doi.org/10.26188/12814535

[8] Rafael C. Carrasco. Accurate computation of the relative entropy between
stochastic regular grammars. RAIRO Theoretical Informatics and Appli-
cations, 31(5):437–444, 1997.

[9] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
Wiley, 2006.

[10] Massimiliano De Leoni and Felix Mannhardt. Road traffic fine management
process – event log, 2015. Available at https://doi.org/10.4121/UUID:
270FD440-1057-4FB9-89A9-B699B47990F5.

[11] Ana Karla A. de Medeiros, A. J. M. M. Weijters, and Wil M. P. van der
Aalst. Genetic process mining: An experimental evaluation. Data Mining
and Knowledge Discovery, 14(2):245–304, 2007.

[12] Peter Elias. Universal codeword sets and representations of the integers.
IEEE Transactions on Information Theory, 21(2):194–203, 1975.

[13] King-Sun Fu and T. Huang. Stochastic grammars and languages. Interna-
tional Journal of Parallel Programming, 1(2):135–170, 1972.

[14] Mark H. Hansen and Bin Yu. Model selection and the principle of min-
imum description length. American Statistical Association, 96(454):746–
774, 2001.

[15] Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. Dis-
covering block-structured process models from event logs – A constructive
approach. In Proceedings of Application and Theory of Petri Nets and
Concurrency, PETRI NETS 2013, Milan, Italy, June 24–28, 2013, volume
7927 of Lecture Notes in Computer Science, pages 311–329. Springer, 2013.

[16] Sander J. J. Leemans and Artem Polyvyanyy. Stochastic-aware confor-
mance checking: An entropy-based approach. In Proceedings of Advanced
Information Systems Engineering, CAiSE 2020, Grenoble, France, June
8–12, 2020, volume 12127 of Lecture Notes in Computer Science, pages
217–233. Springer, 2020.

[17] Sander J. J. Leemans, Erik Poppe, and Moe Thandar Wynn. Directly
follows-based process mining: Exploration & A case study. In International
Conference on Process Mining, ICPM 2019, Aachen, Germany, June 24–
26, 2019, pages 25–32. IEEE, 2019.

[18] Sander J. J. Leemans, Anja F. Syring, and Wil M. P. van der Aalst. Earth
movers’ stochastic conformance checking. In Proceedings of Business Pro-
cess Management Forum, BPM 2019, Vienna, Austria, September 1–6,
2019, volume 360 of Lecture Notes in Business Information Processing,
pages 127–143. Springer, 2019.

38

https://doi.org/10.4121/UUID:270FD440-1057-4FB9-89A9-B699B47990F5
https://doi.org/10.4121/UUID:270FD440-1057-4FB9-89A9-B699B47990F5

[19] Sander J. J. Leemans, Wil M. P. van der Aalst, Tobias Brockhoff, and
Artem Polyvyanyy. Stochastic process mining: Earth movers’ stochastic
conformance. Information Systems, 102, 2021.

[20] Felix Mannhardt. Sepsis cases – event log, 2016. Available at https://doi.
org/10.4121/UUID:915D2BFB-7E84-49AD-A286-DC35F063A460.

[21] Tom M. Mitchell. Machine Learning. McGraw-Hill International Editions.
McGraw-Hill, 1997.

[22] Alistair Moffat and Andrew Turpin. Compression and Coding Algorithms.
Kluwer Academic Publishers, 2002.

[23] Rouven Poll, Artem Polyvyanyy, Michael Rosemann, Maximilian
Röglinger, and Lea Rupprecht. Process forecasting: Towards proactive
business process management. In Proceedings of Business Process Manage-
ment, BPM 2018, Sydney, NSW, Australia, September 9–14, 2018, volume
11080 of Lecture Notes in Computer Science, pages 496–512. Springer, 2018.

[24] Artem Polyvyanyy, Hanan Alkhammash, Claudio Di Ciccio, Luciano
Garćıa-Bañuelos, Anna A. Kalenkova, Sander J. J. Leemans, Jan Mendling,
Alistair Moffat, and Matthias Weidlich. Entropia: A family of entropy-
based conformance checking measures for process mining. In Proceedings
of International Conference on Process Mining, ICPM 2020, Padua, Italy,
October 4–9, 2020, volume 2703 of CEUR Workshop Proceedings, pages
39–42. CEUR-WS.org, 2020.

[25] Artem Polyvyanyy, Alistair Moffat, and Luciano Garćıa-Bañuelos. An en-
tropic relevance measure for stochastic conformance checking in process
mining. In 2nd International Conference on Process Mining, ICPM 2020,
Padua, Italy, October 4–9, 2020, pages 97–104. IEEE, 2020.

[26] Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske. Process model
abstraction: A slider approach. In International IEEE Enterprise Dis-
tributed Object Computing Conference, EDOC 2008, Munich, Germany,
September 15–19, 2008, pages 325–331. IEEE Computer Society, 2008.

[27] Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske. Reducing com-
plexity of large EPCs. In Modellierung betrieblicher Informationssysteme -
Modellierung zwischen SOA und Compliance Management, MobIS 2008,
Saarbrücken, Germany, November 27–28, 2008, volume P-141 of LNI,
pages 195–207. GI, 2008.

[28] Artem Polyvyanyy, Andreas Solti, Matthias Weidlich, Claudio Di Ciccio,
and Jan Mendling. Monotone precision and recall measures for comparing
executions and specifications of dynamic systems. ACM Transactions on
Software Engineering and Methodology, 29(3):1–41, 2020.

39

https://doi.org/10.4121/UUID:915D2BFB-7E84-49AD-A286-DC35F063A460
https://doi.org/10.4121/UUID:915D2BFB-7E84-49AD-A286-DC35F063A460

[29] Andreas Rogge-Solti, Wil M. P. van der Aalst, and Mathias Weske. Dis-
covering stochastic Petri nets with arbitrary delay distributions from event
logs. In Business Process Management Workshops, BPM 2013, Beijing,
China, August 26, 2013, Revised Papers, volume 171 of Lecture Notes in
Business Information Processing, pages 15–27. Springer, 2013.

[30] Anja F. Syring, Niek Tax, and Wil M. P. van der Aalst. Evaluating confor-
mance measures in process mining using conformance propositions. Trans-
actions on Petri Nets and Other Models of Concurrency, 14:192–221, 2019.

[31] Stephen Chak Tornay. Ockham: Studies and Selections. La Salle, Ill., The
Open Court Publishing Company, 1938.

[32] Wil M. P. van der Aalst. Process Mining – Data Science in Action. Springer,
2016.

[33] Wil M. P. van der Aalst. Process mining and simulation: A match made in
heaven! In Proceedings of Computer Simulation Conference, SummerSim
2018, Bordeaux, France, July 09–12, 2018, pages 1–12. ACM, 2018.

[34] Wil M. P. van der Aalst. Relating process models and event logs – 21
conformance propositions. In Proceedings of International Workshop on
Algorithms & Theories for the Analysis of Event Data, ATAED 2018,
Bratislava, Slovakia, June 25, 2018, volume 2115 of CEUR Workshop Pro-
ceedings, pages 56–74. CEUR-WS.org, 2018.

[35] Wil M. P. van der Aalst. A practitioner’s guide to process mining: Limi-
tations of the directly-follows graph. Procedia Computer Science, 164:321–
328, 2019.

[36] Jan Martijn E. M. van der Werf, Artem Polyvyanyy, Bart R. van Wensveen,
Matthieu Brinkhuis, and Hajo A. Reijers. All that glitters is not gold
– towards process discovery techniques with guarantees. In Proceedings
of Advanced Information Systems Engineering, CAiSE 2021, Melbourne,
VIC, Australia, June 28–July 2, 2021, volume 12751 of Lecture Notes in
Computer Science, pages 141–157. Springer, 2021.

[37] Boudewijn B. F. Van Dongen. BPI challenge 2012 –
event log, 2012. Available at https://doi.org/10.4121/UUID:
3926DB30-F712-4394-AEBC-75976070E91F.

[38] Boudewijn B. F. Van Dongen and Florian Borchert. BPI challenge
2018 – event log, 2018. Available at https://doi.org/10.4121/uuid:
3301445f-95e8-4ff0-98a4-901f1f204972.

[39] A. J. M. M. Weijters and Wil M. P. van der Aalst. Rediscovering workflow
models from event-based data using little thumb. Integrated Computer-
Aided Engineering, 10(2):151–162, 2003.

40

https://doi.org/10.4121/UUID:3926DB30-F712-4394-AEBC-75976070E91F
https://doi.org/10.4121/UUID:3926DB30-F712-4394-AEBC-75976070E91F
https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972
https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Alkhammash, H;Polyvyanyy, A;Moffat, A;García-Bañuelos, L

Title:
Entropic relevance: A mechanism for measuring stochastic process models discovered from
event data

Date:
2022

Citation:
Alkhammash, H., Polyvyanyy, A., Moffat, A. & García-Bañuelos, L. (2022). Entropic
relevance: A mechanism for measuring stochastic process models discovered from event
data. Information Systems, 107, https://doi.org/10.1016/j.is.2021.101922.

Persistent Link:
http://hdl.handle.net/11343/292014

http://hdl.handle.net/11343/292014

	Introduction
	Motivation and Overview
	Measuring Information Content
	Models for Compression
	Background Model
	The Sum of the Parts
	Process Mining Goals

	Models of Stochastic Languages
	Sequences and Multisets
	Stochastic Languages
	Stochastic Deterministic Finite Automata
	Event Logs
	Frequency Directed Action Graphs

	Entropic Relevance
	Definition
	Uniform Background Model
	Zero-Order Background Model
	Restricted Zero-Order Background Model
	Examples

	Evaluation
	Feasibility
	Comparison With Other Measures
	Stability

	Discussion
	Related Work
	Conclusion

