
Data pre-processing pipeline generation for AutoETL

Joseph Giovanelli1,∗, Besim Bilallib, Alberto Abellób

aUniversity of Bologna, Bologna, Italy
bUniversitat Politècnica de Catalunya, BarcelonaTech, Barcelona, Spain

Abstract

Data pre-processing plays a key role in a data analytics process (e.g., applying a classification algorithm
on a predictive task). It encompasses a broad range of activities that span from correcting errors to se-
lecting the most relevant features for the analysis phase. There is no clear evidence, or rules defined, on
how pre-processing transformations impact the final results of the analysis. The problem is exacerbated
when transformations are combined into pre-processing pipeline prototypes. Data scientists cannot eas-
ily foresee the impact of pipeline prototypes and hence require a method to discriminate between them
and find the most relevant ones (e.g., with highest positive impact) for their study at hand. Once found,
these prototypes can be instantiated and optimized e.g., using Bayesian Optimization. In this work, we
study the impact of transformations when chained together into prototypes, and the impact of transfor-
mations when instantiated via various operators. We develop and scrutinize a generic method that allows
to generate pre-processing pipelines, as a step towards AutoETL. We make use of rules that enable the
construction of prototypes (i.e., define the order of transformations), and rules that guide the instantia-
tion of the transformations inside the prototypes (i.e., define the operator for each transformation). The
optimization of our effective pipeline prototypes provide results that compared to an exhaustive search,
get 90% of the predictive accuracy in the median, but with a time cost that is 24 times smaller.

Keywords: data pre-processing pipelines, data analytics

1. Introduction1

The decision making process has historically been key for the success of any organization or business2

activity. Lately, with the abundant presence of data, this process has become data-driven, where data3

are continuously analyzed to be transformed into knowledge. Along the way however, data undergo4

several (sometimes necessary) processing steps, shown in Figure 1. Firstly, data are extracted in a raw5

format from different sources and then are sifted out such that only a relevant subset is selected. Next,6

this subset is pre-processed and is fed to a machine learning (ML) algorithm for it to be analyzed. The7

output of the analysis is then interpreted and the whole process iterates until the results obtained are8

satisfactory and significant for the decisions to be made.9

Unfortunately, this well known process does not have universal well-defined practices for the differ-10

ent steps, which translates to the data scientist manually configuring and parameterising the operators11

for each step until an optimal solution is found — an optimal data analytics pipeline. To this end, most12

of the time is spent on the heavily laborious work of pre-processing (i.e., 50-80% of the time [1]), where13

the generated output is a pre-processing pipeline. Next, once the data is transformed into the proper14

form, different ML algorithms with different hyperparameters are evaluated over the dataset until an15

∗Corresponding author
Email addresses: j.giovanelli@unibo.it (Joseph Giovanelli), bbilalli@essi.upc.edu (Besim Bilalli),

aabello@essi.upc.edu (Alberto Abelló)

Preprint submitted to Elsevier February 14, 2022

© 2021 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
 http://creativecommons.org/licenses/by-nc-nd/4.0/

Modeling

Data pipeline
prototype
selection

Data pipeline
prototype

optimization

DPSO

Algorithm
selection

Hyper-
parameter

optimization

CASH

Interpretation/
Evaluation

Data pre-processing
Data source

Data
selection

Knowledge

AutoETL AutoML

Figure 1: Data analytics pipeline generation in a knowledge discovery process.

acceptable result is obtained — ML model. This whole process requires expertise and is particularly16

challenging for novice, inexperienced data scientists for whom hand-tuning is no longer an option.17

Recent developments in algorithm configuration have raised the efficiency and effectiveness of auto-18

matic search, and therefore, for instance, AutoML is now considered a prominent technique for finding19

optimal models. Some AutoML frameworks [2, 3], mix-in the pre-processing during the optimization,20

but they are typically limited to very few transformations or do not consider all the data processing21

phases (e.g., extraction, selection, loading), thus in a way overlooking it. Inspired from [4], we con-22

tend that there is need for more generic AutoETL techniques, encompassing all the phases of the ETL23

process [5]; from its inception via data extraction, to the intermediate phase of data transformation, up24

to the final phase, when data reaches its destination, via data loading. Assistance is required in every25

phase [6]. Yet, in a data analytics context, as in the case of this work, the critical automation challenge26

lies more on the data transformation phase (see AutoETL and AutoML in Figure 1), which is related to27

the pre-processing of the data. In the literature, this particular problem has been often referred to as the28

Data Pipeline Selection and Optimization problem (DPSO) [7], where a pipeline prototype (sequence29

of transformations, e.g., missing value imputation followed by normalization) is fed to an optimizer and30

an optimal instance of the prototype, in the form of a pipeline (sequence of operators, e.g., imputation31

by mean followed by min-max normalization) is found. By considering pre-processing as an integral32

component of data analytics, and carefully configuring the pre-processing pipelines, it is easy to obtain33

results that go beyond the ones obtained by only optimizing the learning algorithm.34

To briefly illustrate this, we perform an experiment on the well known bank-marketing1 dataset,35

using HyperOpt [8] as an AutoML approach to optimize the parameters of three different ML algorithms,36

namely Naive Bayes (NB), K-Nearest Neighbor (KNN), and Random Forest (RF). We provide an ini-37

tial budget of 50 iterations for optimizing the hyper-parameters of the algorithms, and after the 50th38

iteration, we fix the algorithm configuration to the best one achieved so far and start optimizing the pre-39

processing pipeline2. In Figure 2, the ratio of the change in terms of predictive accuracy (i.e., ratio of the40

accuracy obtained after the i-th iteration to the baseline/default accuracy) is plotted against the number41

of different configurations visited by HyperOpt (i.e., iterations). Observe that after the 11th iteration42

for NB and KNN, and after the 26th iteration for RF, the lines remain flat. That is, from there on, no43

improvement is achieved by optimizing the hyper-parameters of the algorithms until the 50th iteration44

is reached. At this point, a sudden jump is observed and the results start to improve again, going clearly45

beyond the ones obtained before, thanks to the optimizations performed now over the pre-processing46

pipeline. Yet, including the pre-processing in a free form in the optimization, heavily increases the47

search space, making the problem much harder. This is mitigated by creating a pre-processing pipeline48

prototype that fixes the order of transformations, leaving the freedom to only instantiate and parametrise49

them. Therefore, the challenge for data scientists is to find the right pre-processing pipelines, that is, (i)50

how to order the transformations (i.e., prototype construction), and (ii) which pre-processing operators51

to consider in the prototype (i.e., prototype instantiation) such that when optimizing the parameters,52

better results are obtained. The aim of this work is to study these two questions in order to propose a53

1https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
2This order is used only for the sake of illustration.

2

https://archive.ics.uci.edu/ml/datasets/Bank+Marketing

0 10 20 30 40 50 60 70 80 90 100
Configurations visited

0.8

0.9

1.0

1.1

1.2

1.3

1.4

R
at

io
 o

f p
re

di
ct

iv
e

ac
cu

ra
cy

 c
ha

ng
e NB

KNN
RF

Figure 2: Evolution of predictive accuracy during the optimization process. The first 50 configurations optimize only the
hyper-parameters and after the 50th configuration, the pre-processing pipeline is optimized instead.

method for generating effective pre-processing pipeline prototypes that, once instantiated through some54

optimization technique (e.g., Bayesian optimization), improve the final result of the analysis. To keep55

discussions and experiments simpler, we stick to supervised learning tasks, which encompass algorithms56

generating a map function based on pairs of input-output exemplars. In particular, this work focuses on57

classification problems (i.e., binary and multiclass), where the output to be predicted is of Categorical58

type. Furthermore, this work extends [9], among others with, (i) a new meta-learning step to guide the59

instantiation of transformations where a model is learned to predict the operators for a given transforma-60

tion (see Section 3.6), (ii) a set of rules extracted through the meta learning process that mitigate the cold61

start problem (see Example 8), (iii) a new cross validation to confirm the initial results (see Section 3.4),62

(iv) a new background section for AutoML and AutoETL (see Section 2), and (v) experiments over new63

datasets (see Section 4).64

Contributions. The main contributions of this paper can be summarized as follows:65

• We empirically evaluate the impact of optimizing the exhaustive set of potential pipeline proto-66

types and find out that at least one different pipeline works best for each dataset and algorithm67

considered, hence showing that there is no universal pipeline that works best for all of them.68

• We define a method that given a classification algorithm and a set of pre-processing transforma-69

tions, is capable of generating the right order between transformations, obtaining effective pre-70

processing pipeline prototypes, which are then instantiated and further optimized via Bayesian71

optimization.72

• We suggest a meta-learning step, where the relationship between pre-processing operators and73

dataset characteristics is learned in order to create rules that help with the initial instantiation of74

the pipeline prototypes.75

– We exemplify our meta-learning study generating simple but not obvious and effective rules76

for two kinds of transformations, namely, Feature Engineering and Rebalancing.77

• We perform a comprehensive evaluation by comparing the performance of optimizing the pipelines78

generated following our method, and find out that:79

1. with 24 times less time budget, our proposed pipelines obtain results whose median is above80

90% of the ones generated via exhaustive search.81

2. on average, in 73% of the cases, splitting evenly the time budget between pre-processing82

and hyper-parametrisation outperforms the results of only optimizing the hyper-parameters83

of the ML algorithm.84

3

The remaining of this paper is organized as follows. Section 2 provides a brief background on85

AutoETL and AutoML. Section 3 presents our method of generating effective pipelines. Section 486

provides an extensive evaluation of the pipelines created using our proposed method. Section 5 discusses87

the related work. Finally, Section 6 provides the conclusions and future work.88

2. Background: AutoETL and AutoML89

The abundance of data has led to data analytics being prevalent in many disciplines and domains, but90

since the number of its applications exceeds the number of qualified experts, more and more non-experts91

approach the task of data analytics. This has consequently led to the rise of off-the-shelf automated92

techniques that facilitate its application. AutoML is an umbrella term for automations mainly related93

to the ML algorithm, and it typically aims to tackle the challenge of Combined Algorithm Selection94

and Hyperparameter Optimization (CASH). Yet, there is also need for automation in the more generic95

aspects of ETL [4], which we coin as AutoETL. AutoETL encompasses various steps, however, in this96

work we focus on the phase that is related to the transformation (pre-processing) of the data, typically97

formalized as DPSO.98

CASH and DPSO can be treated as a single optimization problem [10, 2]. However, we consider99

them separately because this allows to, (i) reduce the search space and, (ii) to explicitly assign different100

optimization budgets and/or optimization techniques, depending on their respective impact to the final101

result of the analysis. Since these problems are similar, the methods initially employed in CASH have102

been recently considered to solve the DPSO problem too. Therefore, in the following we first delve into103

more details about CASH and then DPSO. In particular, we formalize them and discuss the methods104

they employ.105

2.1. Combined Algorithm Selection and Hyper-parameter optimization (CASH)106

The algorithm selection problem is known to exist for a long time and many approaches have been107

proposed to solve it [11]. Recently, in the context of ML algorithms, the problem has been extended to108

include the optimization of the hyperparameters too, and thus has been formalized as follows [10].109

Given:110

• A data-set D divided into Dtrain, Dtest;111

• A set of algorithms A = {A1, . . . , Ak} with associated hyperparameter spaces Λ1, . . . ,Λk;112

• And a loss function L(Aiλ, Dtrain, Dtest);113

we are searching for:114

A∗λ∗ ∈ argminAi∈A,λ∈Λi L(Aiλ, Dtrain, Dtest) (CASH)

The dataset D is divided into Dtrain and Dtest, to build and to evaluate the overall performance,115

calculated through the loss function L. The problem is set up as an optimization problem and, as such,116

the configuration space is assumed to be known in advance (the set of algorithms {A1, . . . , Ak} and the117

related hyper-parameter spaces {Λ1, . . . ,Λk}). The goal is then to find the best algorithm A∗ in the set118

of algorithms and its best hyperparameters λ∗ in the related hyperparameter space.119

Many optimization techniques have been employed to solve the CASH problem and some of them120

are: Grid search [12], Random search [13], Simulating annealing [14], Genetic algorithms [15], Bayesian121

techniques [16], Bandit-based algorithms [17]. However, due to their promising results, Bayesian tech-122

niques are perhaps the most popular ones [18, 19]. We explore their details and specifically focus on one123

of their incarnation, the Sequential Model-Based Optimization (SMBO) algorithm [20].124

4

2.1.1. Sequential Model-Based Optimization (SMBO)125

In an optimization problem, we are searching for the best solution among a set of feasible solutions.
The latter can be formalized as follows:

max
x∈B

f(x)

, where B contains all the feasible solutions, or candidates, and it is typically d-dimensional (B ⊆ Rd),126

where d ∈ Z and d > 1. A specific solution x ∈ B is evaluated through the function f : Rd −→ R,127

also called the objective function. In general, in these kinds of problems, f has no special structure like128

concavity or linearity that would make the optimization easier. In fact, it is considered as a “black-box”129

function, without any knowledge about its behaviour; being that it maps certain inputs, x ∈ B, to certain130

outputs, f(x) ∈ R. The goal is then finding an x that maximizes f(x). The naive solution to the problem131

would be to systematically evaluate all possible candidates x and choosing the one leading to the highest132

value of f(x), aka exhaustive search. Since this evaluates all the potential solutions, it guarantees that133

it always finds the best one. Nevertheless, generally, it cannot be applied to real problems due to the134

large number of candidate solutions to be explored, which dwell in a high-dimensional space, and too135

expensive objective functions. The result is that not all candidates can be evaluated and we have to find a136

way to wisely choose the most promising ones. Bayesian techniques are part of the family of “surrogate137

methods”, which create a surrogate model to approximate the objective function and thus, choose a point138

in the search space where to evaluate the objective function [21]. In contrast to the other methods, they139

build such surrogate models through Bayesian statistics.140

In short, Bayesian techniques start by evaluating the objective function on an initial observation point141

of the search space, then the process becomes iterative: the surrogate model is constructed on the basis of142

the visited points and through an acquisition function — the Bayesian interpretation of the surrogate, the143

candidate for the next observation is decided. The process ends when a termination condition is reached,144

generally expressed through a budget represented in terms of the number of iterations or execution time.145

Given its iterative nature and the fundamental role of the model, this algorithm is called Sequential146

Model-Based Optimization [20, 22]. Variations of SMBO exist, depending on the method used to build147

the surrogate model (e.g., Gaussian Processes, Random Forest Regressions) [23, 24].148

2.2. Data Pipeline Selection and Optimization (DPSO)149

DPSO was formalized for the first time in [25], where some new concepts were introduced. For150

instance, a pre-processing pipeline prototype or logical pipeline is defined as a sequence of kinds of151

transformations, where each represents a logical concept that can be implemented/instantiated by one or152

more operators. The prototype thus, defines only the order between kinds of transformations, without153

specifying the concrete operators nor their parameters. Yet, the potential operators of each kind and their154

corresponding parameter search spaces need to be known in advance. Solving the DPSO problem trans-155

lates to finding the right instantiation and configuration for each kind of transformation in the pipeline156

prototype (i.e., optimal operator and optimal parameter values), which is called pre-processing pipeline157

or physical pipeline.158

Formally, given:159

• A data-set D divided into Dtrain, Dtest;160

• A data pipeline prototype P with a configuration space P;161

• The algorithm A, for which the given pipeline P transforms the data;162

• And a loss function L(P,A,Dtrain, Dtest);163

we are searching for:164

P ∗ ∈ argminP∈P L(P,A,Dtrain, Dtest) (DPSO)

5

Joseph-preprocessing-pipeline (Copy)

Select the list of
pre-processing

transformations
of

interest

Framework -
related rules Heuristic rules

Discover
framework

imposed order
Discover

meaningful order

Learnt rules
List of effective

pipeline
prototypes

Assess
empirically the
order for the

remaining pairs

Combine
ordered pairs of
transformations

Machine
learning

framework

Heuristic
rules

Empirical
rules

Effective
pipeline

prototypes

3.4.Assess
empiric. the

order of
remain. pairs

3.5.Combine
ordered pairs

of
transformati

ons

3.6.Discover
rules via

meta-learning

Meta-learning
rules

Machine
learning

experiments

Framework -
related rules

3.3.Discover
meaningful

order

3.1.Select the
transformati

ons and
operators

3.2.Discover
framework

imposed order

Machine
learning

framework

Prototype construction

3.7.Prototype
instantiation

Pre-
processing

pipeline

Figure 3: A method for generating pre-processing pipelines.

Notice that a prototype imposes an order between the kinds of transformations, but this is an addi-165

tional problem that is not dealt within DPSO, since it is assumed to be given as part of the input. This is166

in fact a limitation of the current approaches in DPSO, in that the order of kinds of transformations are167

fixed a priori without sufficiently studying the potential effectiveness of different alternatives.168

2.2.1. SMBO as solver for DPSO169

Since DPSO is formalized as an optimization problem, SMBO has been proposed as a valid solver [20].170

In the previous section, we saw the application of SMBO to CASH, but in fact the process of selecting171

the best algorithm, and its hyperparameters configuration, is identical to selecting the best operator for a172

transformation, and its parameter configuration. Yet, DPSO requires one more layer, in that transforma-173

tions need to be chained together into a pipeline. To this end, given a pipeline prototype as input and a174

budget either in terms of time or number of iterations, SMBO can be configured to iterate over different175

configurations until a near to optimal physical pipeline is found. The objective function of the pipeline176

is however measured in the context of a given parametrised ML algorithm by applying the pipeline on177

a dataset, and measuring the performance of the ML algorithm (e.g., predictive accuracy) on the trans-178

formed output. In this context, by fixing the hyper-parameters of the ML algorithm to the default ones,179

the performance of the learner is set to measure the effectiveness of the considered data pipeline.180

3. Data pre-processing pipeline generation181

Following the notation from [25], we also distinguish between a fixed, ordered sequence of kinds of182

pre-processing transformations, known as pipeline prototypes, and a fixed, ordered sequence of operators183

(i.e., instantiations of transformations) known as (executable) pipelines. Typically, pipeline prototype184

construction is a manual and tedious task, where a data scientist exhaustively iterates over a staggeringly185

large number of possible pipeline orderings, until he/she finds one that works best for the problem at186

hand. This is a challenging task due to the fact that there are no clear rules and guidelines in terms of187

which permutation of kinds of transformations would work best (i.e., the final impact of a pipeline is188

difficult to foresee). To facilitate it, we propose a method, sketched in Figure 3, that in short breaks189

6

the combinatorial problem of finding the best pipeline into studying kinds of transformations in pairs,190

ultimately, generating effective pipeline prototypes, which are then fed to an optimizer (e.g., we use the191

SMBO [8] variant), to be instantiated and further optimized. Some of the steps of the method are generic192

and thus can be applied regardless of the context, and yet others are specific, and depend on the context193

(i.e., ML framework used or dataset characteristics).194

The method consists of two flows running in parallel. The first flow is responsible for the pipeline195

prototype construction and the second flow allows to generate rules that guide the instantiation of the196

transformations inside the pipeline prototype. The output from the two flows is fed to the final step where197

the instantiation and optimization happens. The result is an executable pipeline. Notice that what we198

propose is a generic method, however for the sake of an example, we use the OpenML repository [26],199

the Scikit-learn library, and the HyperOpt tool, that internally uses SMBO, to provide a use case.200

The proposed method starts with the selection of the ML library and optimization framework to be201

used. On the one hand, this allows to choose the potential kinds of transformations and their available202

instantiations, and on the other it allows to generate framework-related rules, reflecting the limitations203

in the concrete implementation of operators. These rules enable the generation of precedence relation-204

ships between the kinds of transformations for which they apply. Next, the flow on top continues with a205

study over all the possible pairs of kinds of transformations, aiming to find the correct/meaningful order206

between them using generic knowledge about their behaviour. As a result, a set of heuristic rules that de-207

termines precedences between transformations is generated. Afterwards, for the pairs for which an order208

cannot be clearly devised, an additional empirical study is proposed. This study may rely on a testbed209

of dataset representatives, and thus it may implicitly correspond to domain knowledge. The output of210

this step is a set of empirically learned rules that determines promising precedences of transformations211

(i.e. an order that would potentially positively impact the final result of the analysis). However, even212

after this phase, for some pairs of transformations a precedence order may not be found. These are213

pairs for whom the order is relevant but cannot be decided in advance, thus all their permutations need214

to be present. Finally, a step of composition follows, where given the overall set of devised rules (i.e.,215

framework-related, heuristic and empirically learned), transformations are composed into a set of valid216

and potentially effective pipeline prototypes.217

Once the prototype is constructed, the flow running in parallel is proposed to help with its instan-218

tiation. It consists of a meta-learning step, where a set of ML experiments (e.g., pre-processing and219

classification algorithm runs) are used as training data, to predict the initial operator for the transfor-220

mations inside the pipeline prototype. These rules extract knowledge from past experiments and are221

complementary to the rules obtained in the first flow. They would be used, for example, to ease the cold222

start problem in the prototype instantiation phase.223

3.1. Transformations and Operators224

The first task in the process consists of selecting the kinds of transformations and their available225

operators.226

When combining two different kinds of transformations, it is important to check if, (i) the input227

and output types of transformations are compatible, (ii) the combination makes sense, and (iii) the228

combination provides good results for the analysis. As a result, when chaining a pair of transformations,229

the following precedence relationships arise:230

1. Compatible/Incompatible pairs. Depending on whether the representation output of the first trans-231

formation is accepted as the representation input of the second one (compatible), or not (incom-232

patible) (see Section 3.2).233

2. Meaningful/Meaningless pairs. Depending on whether the precedence between them makes sense234

based on generic knowledge (i.e., based on the literature) over the behaviour of transformations235

(meaningful), or not (meaningless) (see Section 3.3).236

7

Transf. Kind Input Output Operator Parameters

Encoding (E) CA CO Ordinal -

One Hot -

Normalization (N) CO CO Standard Scaler with mean:[True,False]

with std:[True,False]

Power Transform -

MinMax Scaler -

Robust Scaler quantile range:[(25,75),(10,90),(5,95)]

with centering:[True,False]

with scaling:[True,False]

Discretization (D) CO CA KBins n bins:[3,5,7]

encode:[‘onehot’,‘onehot-dense’,‘ord.’]

strategy:[‘uniform’,‘quant.’,‘kmeans’]

Binarization threshold: [0, 0.5, 2, 5]

Imputation (I) CA/CO CA/CO Univariate strategy:[‘most freq.’,’constant’]

Multivariate initial strategy:[‘most freq’,‘const.’]

order:[‘asc’,‘dsc’,‘rom’,‘arab’,‘rand’]

Rebalancing (R)* CA/CO CA/CO Near Miss n neighbors:[1,2,3]

SMOTE k neighbors:[5,6,7]

Feat. Eng. (F) CA/CO CA/CO PCA n components:[1,2,3,4]

Select K Best k:[1,2,3,4]

PCA + Select K Best n components:[1,2,3,4]

k:[1,2,3,4]

CA - Categorical, CO - Continuous.
*All transformations except Rebalancing are taken from scikit-learn.

Table 1: List of transformations applicable to Categorical or Continuous data types.

3. Promising/Unpromising pairs. Depending on whether the precedence between them is expected237

to provide positive impact on the final result of the analysis (promising), or not (unpromising) (see238

Section 3.4).239

Attending to the relationships between its transformations, a prototype can be described as either240

compatible, well-formed, or effective. A prototype is defined to be compatible, if all its precedence241

relationships are compatible. It is defined as well-formed, if all its precedence relationships are both242

compatible and meaningful. Finally, it is defined as effective, if all its precedence relationships are243

compatible, meaningful, and promising at the same time. In fact, the ultimate goal of our method is to244

find effective pipelines.245

EXAMPLE 1. The kinds of transformations selected for the sake of our use case are the following:246

• Encoding (E). The process of transforming Categorical attributes into Continuous ones.247

• Normalization (N). The process of normalizing Continuous attributes such that their values248

fall in the same range.249

• Discretization (D). The process of transforming Continuous attributes into Categorical ones.250

• Imputation (I). The process of imputing missing values.251

• Rebalancing (R). The process of adjusting the class distribution of a dataset (i.e. the ratio252

between the different classes/categories represented).253

• Feature Engineering (F). The process of defining the set of relevant attributes (variables,254

predictors) to be used in model construction.255

An operator is an actual instantiation/implementation of a kind of transformation. Thus, several256

operators may implement the same kind of transformation, each having its own set of parameters. For257

8

E N D I R F

E 1 1 0 1 1

N 0 0 0 0 0

D 0 0 0 0 0

I 1 0 1 1 1

R 0 0 0 0 0

F 0 0 0 0 0

(a) Compatible precedence.

E N D I R F

E 0 0 0 0 0

N 0 X 0 1 0

D 0 X 0 0 0

I 1 1 1 1 1

R 0 0 0 0 0

F 0 0 0 0 0

(b) Meaningful precedence.

E N D I R F

E 0 0 0 0 0

N 0 0 0 0 1

D 0 0 0 0 1

I 0 0 0 0 0

R 0 0 0 0 0

F 0 0 0 0 0

(c) Promising precedence.

E - Encoding; N - Normalization; D - Discretization; I - Imputation; R - Rebalancing; F - Feature Engineering.
1 - a precedence edge exists between the row and the column, 0 - a precedence edge does not exist between the row

and the column, X - the combination is meaningless.

Table 2: Precedence order between pairs of transformations, represented independently for each phase.

our experiments, we selected the operators and parameters from those available in the Scikit-learn3
258

library, and they are listed in Table 1. Input denotes the compatible feature type for a given kind of259

transformation and can be Continuous (CO) — when it represents measurements on some continuous260

scale, or Categorical (CA) — when it represents information about some categorical or discrete261

characteristics. Similarly, Output denotes the type of the features after a kind of transformation is262

applied. Finally, Operator denotes the physical instantiation for the kind of transformation, and it263

can be parametrised using its Parameters.264

3.2. Framework-related rules265

Once the implementation framework is selected, one needs to study it and see if there exist con-266

straints that limit the interaction between transformations. For instance, applying a transformation may267

actually invalidate the application of another transformation, because the compatibility of transforma-268

tions is dependent on the selected ML framework.269

EXAMPLE 2. We studied the transformations implemented in Scikit-learn and detected a set of270

implicit rules that are shown through an adjacency matrix, corresponding to a precedence graph,271

in Table 2a. Each cell aij denotes a precedence relationship between the row i and column j.272

Hence, 1 means that an edge exists between the transformation in the row and the transformation273

in the column, whereas 0 means that such an edge does not exist, hence a precedence order is not274

established for that pair. For example, most Scikit-learn transformations cannot be applied in the275

presence of missing values. This is why in every pair of transformations where Imputation is involved,276

except the one with Normalization4, Imputation goes first. Furthermore, Scikit-learn transformations277

are applied only to all compatible attributes of a given dataset. Generally, Categorical attributes are278

physically represented as strings and Continuous attributes as numbers. However, a transformation279

that is meant to be applied, say to Continuous attributes, cannot be applied over a dataset that280

contains both Continuous and Categorical attributes (i.e., a dataset containing both numbers and281

strings); Scikit-learn cannot deal with arrays of mixed types. In that case, all the Categorical282

attributes need to be encoded into numeric representations, even if they represent a categorical283

value. That is, a value can be a number but represent a category. This is what happens when284

Normalization and Discretization are meant to be applied to a dataset containing mixed types of285

attributes. In order for them to be applied to datasets of mixed types, an Encoding transformation286

needs to be applied first. A similar constraint is imposed when considering Rebalancing and Feature287

Engineering, since these transformations do not accept inputs containing strings (i.e., representing288

3https://scikit-learn.org
4Normalization transformations are the only ones that Scikit-learn can apply on datasets with missing values.

9

https://scikit-learn.org

a Categorical type). For the rest of the pairs of transformations there are no constraints imposed289

by the framework, thus any order of such transformations is permitted, reflected by a 0 in Table 2a.290

The graph obtained in this case exclusively corresponds to the limitations of Scikit-learn (as a matter291

of fact, if another framework were to be chosen, it may have looked differently).292

3.3. Heuristic rules293

In the previous section, we proposed to derive a precedence based on the constraints of the frame-294

work. Now, we want to study the precedence independently of the framework, and find meaningful pairs.295

That is, for every given pair, we want to find the relative order, based on generic, domain-independent296

knowledge (i.e., literature) about transformations and their applicability. To this end, some of the con-297

straints imposed by the framework may be contradicted here, but this is resolved in the last step of the298

proposed method, when we take the union of the rules and hence construct the final pipeline prototypes299

(see Section 3.5). Briefly, in a combination where Imputation is involved, it is advised to apply Impu-300

tation first. Next, an Encoding transformation makes sense to be combined in any order with the rest of301

transformations, except Imputation. Combining Discretization with Normalization does not make sense,302

due to the fact that after the Discretization step, Continuous attributes are transformed into Categorical303

ones, and hence Normalization cannot be applied. Similarly, applying Normalization first, changes the304

scale of the values and hence impacts the Discretization step. Finally, a meaningful precedence can be305

derived when combining Normalization with Rebalancing. In this case, Normalization should be applied306

first, since otherwise Rebalancing would impact the scale of the values to be normalized.307

EXAMPLE 3. For our use case, Table 2b shows the heuristic rules obtained considering domain-308

independent knowledge about transformations [27]. In comparison with the results from Table 2a,309

observe that the constraints on the Imputation transformation still hold, that is, it is correct to apply310

Imputation first when combining it with another transformation. This time even when combining it311

with Normalization — note the difference with Table 2a. The constraints of Encoding are however312

not present in Table 2a, hence not considering the framework, Discretization combined with Encoding313

is a meaningful combination — when a mixed type dataset is considered, but incompatible from the314

point of view of Scikit-learn.315

3.4. Empirically learned rules316

The two previously proposed steps (i.e., framework-related and heuristic rules), do not guarantee317

that for each pair of transformations we will obtain a precedence order. Therefore, for the cases where318

they are not sufficient to determine the precedence, a third viewpoint can be considered. That of learn-319

ing a promising order by empirically studying the impact of the combinations on the final result of the320

Algorithm 1 Find a promising pipeline prototype for transformations T1 and T2

Require: d, a # dataset, classification algorithm
Require: T1 → T2, T2 → T1 # precedence orders of a pair of transformations

1: accbaseline = Acc(d, a); # get baseline performance of algorithm on d
2: [pipelineT1→T2 , accT1→T2] = SMBO(T1 → T2, d, a)

get pipeline and accuracy for T1 → T2

3: [pipelineT2→T1 , accT2→T1] = SMBO(T2 → T1, d, a)
get pipeline and accuracy for T2 → T1

4: if IsValid(accT1→T2 , accT2→T1 , accbaseline) then # see Table 3 for the rules applied
5: return Winner([pipelineT1→T2 , accT1→T2], [pipelineT2→T1 , accT2→T1])

see column Winner prototype in Table 3
6: else
7: return ∅
8: end if

10

Nr. Pipeline 1 Pipeline 2 Valid result Valid score Winner prototype

1. ∅ → ∅ ∅ → ∅ Draw accbaseline Baseline
2. ∅ → ∅ confT2 → ∅ Draw accbaseline Baseline
3. ∅ → ∅ ∅ → confT1 Draw accbaseline Baseline

4. ∅ → ∅ confT2 → confT1

Draw accbaseline Baseline
confT2 → confT1 accT2→T1 T2 → T1

5. ∅ → confT2 ∅ → ∅ Draw accbaseline Baseline

6. ∅ → confT2 confT2 → ∅
Draw

accT2

T2

∅ → confT2 T2

confT2 → ∅ T2

7. ∅ → confT2 ∅ → confT1 Draw accT2 or accT1 T1 or T2

8. ∅ → confT2 confT2 → confT1

Draw accT2 T2

confT2 → confT1 accT2→T1 T2 → T1

9. confT1 → ∅ ∅ → ∅ Draw accbaseline Baseline
10. confT1 → ∅ confT2 → ∅ Draw accT1 or accT2 T1 or T2

11. confT1 → ∅ ∅ → confT1

Draw
accT1

T1

confT1 → ∅ T1

∅ → confT1 T1

12. confT1 → ∅ confT2 → confT1

Draw accT1 T1

confT2 → confT1 accT2→T1 T2 → T1

13. confT1 → confT2 ∅ → ∅ Draw accbaseline Baseline
confT1 → confT2 accT1→T2 T1 → T2

14. confT1 → confT2 confT2 → ∅ Draw accT2 T2

confT1 → confT2 accT1→T2 T1 → T2

15. confT1 → confT2 ∅ → confT1

Draw accT1 T1

confT1 → confT1 accT1→T2 T1 → T2

16. confT1 → confT2 confT2 → confT1

Draw accT1 or accT2 T1 or T2

confT1 → confT2 accT1→T2 T1 → T2

confT2 → confT1 accT2→T1 T2 → T1

∅ - SMBO finds a better result without instantiating a transformation (or both) in the pair.
confT - The configuration (i.e., operator and its parameters) found for T by SMBO.
accT - The accuracy of the ML algorithm over the data transformed with a pipeline T .

Table 3: Validation rules.

analysis, using different classification problems in the training. For every selected pair of transforma-321

tions, for a given classification algorithm, we propose to check which order of the pair improves most322

the performance (e.g., predictive accuracy) of the algorithm over a set of datasets (preferably from dif-323

ferent domains). Like this, for each dataset we can get a precedence order that gives better results (i.e.,324

promising precedence) in terms of predictive accuracy (other metrics can be used as well).325

3.4.1. Algorithm326

To find a promising precedence order between a given pair of transformations, we propose Algo-327

rithm 1. To compute the impact of transformations, we first get the accuracy of the ML algorithm over328

the original non-transformed dataset (see line 1). Afterwards, for each precedence order between the329

pairs of transformations, we find both their optimized executable pipelines (i.e., using SMBO), and the330

accuracies of the ML algorithm (with default parametrisation) over the datasets transformed using the re-331

spective pipelines (see lines 2-3). Based on the comparison between the respective optimized pipelines,332

we get the winner in line 5. However, beforehand, in line 4, we perform a validity check. This is because333

when optimizing a pre-processing pipeline, SMBO may not instantiate a transformation with an operator334

at all (i.e., represented with a ∅ symbol). Hence, given a pair of transformations, where one or both of335

them may not be instantiated, SMBO may generate 16 possible scenarios. They are listed in Table 3,336

and make up the validation rules for Algorithm 1 (see line 4).337

Briefly, if among the optimized pairs of transformations (same transformations but in reverse order)338

obtained from SMBO, one or both of them contain a ∅ operator, their results are considered valid, only339

11

if they have equal scores (i.e., a draw). This is because, if one has a higher score, it means that during340

the optimization phase it was more advantageous than the other, since it could find a configuration that341

should have been found by both of the pairs, given enough budget. In our SMBO runs, such invalid342

results account for less than 10% and in those cases datasets are discarded from the study (see line 7).343

In particular, in Table 3, the first two columns denote the pipeline instantiations for the respective344

pairs of transformations (i.e., T1 → T2 and T2 → T1). Next, Valid result denotes the expected result345

when comparing the results of the pipelines in the same row. For instance, in the first row, if both346

transformations in the pipelines are not instantiated during the optimization, a valid result is a draw, and347

a Valid score for the respective result is the baseline accuracy, and the Winner prototype is the prototype348

that is in accordance with the expected result, which in this case is the Baseline (i.e., prototype consisting349

of only the ML algorithm, where no transformations are applied).350

For the sake of another example, let us check row 2 in Table 3. Running SMBO, the best result for351

the first pair is the pipeline ∅ → ∅, and for the second pair, the pipeline T2 → ∅. In this case, the352

comparison between the results of these pipelines should be equal (i.e., draw), and the score should be353

that of the baseline. Otherwise, if say, the score of the second pipeline was higher, it would mean that354

for the first pair, SMBO was not given enough time to find the pipeline with higher score (i.e., T2 → ∅).355

The same logic applies also for the other rows where a ∅ operator is involved.356

EXAMPLE 4. For the sake of this work, we considered three classification algorithms (i.e., NB,357

RF, KNN) and 80 datasets from the OpenML repository. The datasets, were compiled from three358

OpenML benchmarks, namely, the OpenMLCC18 benchmark5, the AutoML benchmark6, and the359

Classification algorithms benchmark7. For the final set, we filtered out datasets with more than360

10% of missing values — not to include bias due to the heavy pre-processing we need to perform361

on top of them, and we filtered out the datasets with more than 5 million instances — because of362

the computation time required to process them. As a result we obtained 60 datasets from the first363

benchmark, 17 from the second, and 3 more from the third to reach a total of 80 datasets.364

5https://www.openml.org/s/99/data
6https://www.openml.org/s/271/data
7https://www.openml.org/s/1/data

NB KNN RF
Algorithms

0

10

20

30

40

Nu
m

be
r o

f w
in

s

T1 = Feat. Eng., T2 = Normalize

NB KNN RF
Algorithms

0

10

20

30

40

Nu
m

be
r o

f w
in

s

T1 = Discretize, T2 = Feat. Eng.

NB KNN RF
Algorithms

0

10

20

30

40

Nu
m

be
r o

f w
in

s

T1 = Feat. Eng., T2 = Rebalance

NB KNN RF
Algorithms

0

10

20

30

40

Nu
m

be
r o

f w
in

s

T1 = Discretize, T2 = Rebalance

T1 T2 T1 T2 T2 T1 Baseline

Figure 4: Number of datasets for which a given pipeline prototype is declared the winner.

12

https://www.openml.org/s/99/data
https://www.openml.org/s/271/data
https://www.openml.org/s/1/data

T1 T2 T1 → T2 T2 → T1 alpha p-value

F N 3 88 0.05 0
D F 70 7 0.05 0
F R 49 61 0.05 8.53e-01
D R 66 86 0.05 9.38e-01

N - Normalization; D - Discretization; R - Rebalancing; F
- Feature Engineering.

Table 4: Binomial test for determining the order between pairs of transformations.

Given the proposed algorithm (i.e. Algorithm 1), we could try to learn the precedence of every365

pair of transformations, but would just be a waste of resources, because we can see in Table 2a366

and 2b, that some precedences are already decided for one reason or another. Hence, only pairs of367

transformations with a 0 for both directions (in both Table 2a and 2b) need to be studied further.368

That is, they make sense to be combined together, but a precedence order could not be determined369

through framework-related or heuristic rules. Thus, for instance, pairs involving Encoding are not370

considered in this phase, since for them an order is already imposed by the framework (see Table 2a).371

To this end, the pairs of transformations we consider for the third precedence graph include only372

{F,N}, {F,D}, {F,R}, and {R,D}.373

Applying Algorithm 1, we obtain a promising order for each pair of transformations considered.374

Since SMBO is a randomized algorithm we experimented with (i) running it several times splitting375

the budget, and (ii) running it only once with the entire budget. For the experiments considered,376

no significant differences where observed, therefore we opted for running it once with the entire377

budget (i.e., 200 seconds per run), which allows for more configurations to be visited in a single run.378

Aggregating all the results, Figure 4 shows the number of datasets, for which a given prototype (see379

Table 3, column Winner prototype for the list of labels) is selected as the winner. For instance, for380

the pair {F,N} (i.e., Feature Engineering, Normalization), the prototype winning in more datasets381

for KNN and NB is N → F . This means that in general, better results are obtained if Normalization382

is applied before Feature Engineering.383

Next, only N appears as first for RF and second best for KNN and NB, which means that384

for many datasets, considering different algorithms, it results better to apply only Normalization385

without combining it with Feature Engineering. The third position is for ∅ → ∅, which means386

that for some datasets it is better not to apply any of the transformations (in any combination).387

The remaining prototypes winning in some datasets are F (only Feature Engineering), and F → N388

(Feature Engineering preceding Normalization). Finally, for three datasets, that are omitted from389

the figure, there were no winning pipelines (i.e., pipelines resulted in a draw).390

Since our goal is to find the best order for a pair of transformations, we focus on the performances391

of the pipelines where both of the transformations are instantiated (i.e., T1 → T2 versus T2 → T1).392

To do this, we check whether the difference between the number of datasets where they each appear393

to win are statistically significant by running a binomial test assuming a theoretical probability of394

0.5. The results are shown in Table 4. In summary, the results from Table 4 indicate that, with395

95% confidence we can assume that for the pair {F,N}, N → F performs better than F → N ,396

hence Normalization should precede Feature Engineering. On the other hand, for {D,F}, D → F397

performs better than F → D, hence Discretization should precede Feature Engineering. Finally, for398

the remaining transformations, {F,R} and {R,D}, a precedence order can not be pre-assumed since399

the results obtained are not significant. Using these results, we create the Promising precedence400

adjacency matrix shown in Table 2c, where as one can observe, precedence edges are introduced for401

{N,F} and {D,F}, but no edges exist neither for {F,R}, nor for {R,D}.402

13

Figure 5: The distribution of the p-values obtained after repeating the chi-square test for 10 times, for the 10 times 4-fold
cross-validation.

3.4.2. Cross-validation403

After running Algorithm 1 to empirically find a winner between two pairs of transformations, we404

may obtain a different distribution of the number of wins for the pairs, depending on the datasets con-405

sidered. To show that the results obtained with the initial set of datasets are generalizable, we propose406

to perform an additional cross-validated experiment, where the set of datasets considered can be ran-407

domly split into many folds. Then, for each fold, the results can be compared to the rest, with the aim408

of checking whether the distributions are similar. This check can be done via a significance test (e.g.,409

chi-square). To this end, if the distributions between the folds are similar, it means that the obtained410

results are independent of the datasets considered, since no matter the combination of the datasets, the411

results are the same and thus generalizable.412

EXAMPLE 5. In our use case, to show that the results do not depend on the datasests selected,413

we re-run the experiments (i.e., 10-times each), but this time splitting the datasets into 4-folds.414

The goal was to check if the results of the precedence orders from the different folds (i.e., for415

each experiment considering a randomly different set of datasets) are similar between them (i.e.,416

follow the same distributions). To confirm this hypothesis, we perform a chi-square test between417

the results (precedence orders) obtained in a single fold in comparison to the three remaining folds,418

hence comparing 25% of the datasets to the rest. In particular, to confirm the hypothesis, we need419

to find results that accept the null hypothesis of the chi-square test which states that ”there is no420

significant difference between the distributions”. To do that, sticking to the 95% confidence interval,421

we need to look for p-values greater than 0.05. That is, the higher the p-values, the more we accept422

the null hypothesis, the more similar the distributions. Looking at the p-values we found out that423

they were all much higher than 0.05. Specifically, the scores of the chi-square tests of the folds (one424

fold compared to the rest) are averaged and, after having repeated this procedure 10 times, instead425

of using a table we depict the 10 averaged p-values using box-plots in Figure 5. We conclude that,426

for both of the rules (i.e., F → N and F → D), the significance test indicates a compliance between427

the new results (Figure 5) and those illustrated above (Table 4).428

3.5. Effective pipeline prototypes429

In this task we foresee the composition of the previously defined rules (i.e., for the pairs of transfor-430

mations), to generate the final set of rules that would allow to compose longer chains — consisting of431

14

𝐼

𝐸

𝑁

𝐷

𝑅

𝐹

Figure 5: Precedence graph generated from the adja-
cency matrix in Table 4.

Table 5: Effective pipeline prototypes.

ID Pipeline prototype

1 𝐼 → 𝐸 → 𝑁 → 𝑅 → 𝐹
2 𝐼 → 𝐸 → 𝑁 → 𝐹 → 𝑅
3 𝐼 → 𝐸 → 𝑅 → 𝐷 → 𝐹
4 𝐼 → 𝐸 → 𝐷 → 𝑅 → 𝐹
5 𝐼 → 𝐸 → 𝐷 → 𝐹 → 𝑅

For a better reading, in Figure 5, we visualize Table 4 in
form of a graph, where nodes represent the kinds of trans-
formations and the directed edges represent a precedence
order between them. Out of the graph, we generate the fi-
nal pipeline prototypes by taking all the maximum length
variations (ordered arrangements without repetition) of the
nodes, respecting the precedence rules (i.e., not contradicting
the direction of existing edges). The result is the set of five
pipeline prototypes shown in Table 5. This set consisting of
compatible, meaningful and promising pairs of transforma-
tions is in fact the final recommendation of our method. To
demonstrate the effectiveness of our pipelines, in the next
section, we evaluate their impact on the overall results of
machine learning tasks.

4 EVALUATION
The aim of our experimental study is three-fold:

(1) Check whether there exists a universal pipeline pro-
totype that works best for every classification prob-
lem considered (i.e., dataset and ML algorithm) (Sec-
tion 4.1).

(2) Assess and compare the performance of the effective
pipelines constructed using our method against the set
of exhaustively generated pipeline prototypes (Sec-
tion 4.2).

(3) Assess and compare the impact of dedicating a portion
of the optimization time to the effective pipelines con-
structed using our method, with the impact of using
the whole optimization time for the hyper-parameters
of the ML algorithm (Section 4.3).

The experiments were performed on an Intel Core i7 ma-
chine with 12 cores, running at 3.20 GHz with 64 GB of main
memory. As a platform for running the SMBO optimization
algorithm we use HyperOpt. Furthermore, the datasets used
in the experiments are the ones from the OpenML-CC18
suite. Finally, the classification algorithms considered are

Table 6: Exhaustive set of pipeline prototypes generated
using the compatible precedence graph of Table 1a.

ID Pipeline prototype ID Pipeline prototype

1 𝐼) 𝐸) 𝑁) 𝐷) 𝐹) 𝑅 13 𝐼) 𝐸) 𝐹) 𝑁) 𝐷) 𝑅
2 𝐼) 𝐸) 𝑁) 𝐷) 𝑅) 𝐹 14 𝐼) 𝐸) 𝐹) 𝑁) 𝑅) 𝐷
3 𝐼) 𝐸) 𝑁) 𝐹) 𝐷) 𝑅 15 𝐼) 𝐸) 𝐹) 𝐷) 𝑁) 𝑅
4 𝐼) 𝐸) 𝑁) 𝐹) 𝑅) 𝐷 16 𝐼) 𝐸) 𝐹) 𝐷) 𝑅) 𝑁
5 𝐼) 𝐸) 𝑁) 𝑅) 𝐷) 𝐹 17 𝐼) 𝐸) 𝐹) 𝑅) 𝑁) 𝐷
6 𝐼) 𝐸) 𝑁) 𝑅) 𝐹) 𝐷 18 𝐼) 𝐸) 𝐹) 𝑅) 𝐷) 𝑁
7 𝐼) 𝐸) 𝐷) 𝑁) 𝐹) 𝑅 19 𝐼) 𝐸) 𝑅) 𝑁) 𝐷) 𝐹
8 𝐼) 𝐸) 𝐷) 𝑁) 𝑅) 𝐹 20 𝐼) 𝐸) 𝑅) 𝑁) 𝐹) 𝐷
9 𝐼) 𝐸) 𝐷) 𝐹) 𝑁) 𝑅 21 𝐼) 𝐸) 𝑅) 𝐷) 𝑁) 𝐹
10 𝐼) 𝐸) 𝐷) 𝐹) 𝑅) 𝑁 23 𝐼) 𝐸) 𝑅) 𝐷) 𝐹) 𝑁
11 𝐼) 𝐸) 𝐷) 𝑅) 𝑁) 𝐹 23 𝐼) 𝐸) 𝑅) 𝐹) 𝑁) 𝐷
12 𝐼) 𝐸) 𝐷) 𝑅) 𝐹) 𝑁 24 𝐼) 𝐸) 𝑅) 𝐹) 𝐷) 𝑁

NB, KNN, and RF. All the experiments for a single algorithm,
on average took approximately two weeks6.

4.1 Universal pipeline prototype
The goal of this experiment is to demonstrate the difficulty
of blindly finding the right pipeline prototype (i.e., without
considering any meaningful or promising precedence). In
Table 6, we list the exhaustive set of pipeline prototypes
generated considering the compatible precedence graph in
Table 1a (i.e., 24 compatible permutations). In a real scenario,
this number is too high for splitting the time budget in order
to optimize them. Yet, for the sake of this experiment, we ex-
haustively optimize all the prototypes, for each dataset. Thus,
for each pipeline prototype and for each dataset, the SMBO
algorithm is configured to assign a 200 seconds time budget
to the phase of instantiating and optimizing the pipeline pro-
totype, and another 200 seconds to the phase of optimizing
the hyper-parameters of the ML algorithm.

The results obtained are shown in Figure 6. The enu-
merated prototypes are listed in the ordinate axis and each
stacked bar represents the percentage of cases for which that
prototype achieved the best performance across different ML
algorithms (the contribution of each algorithm is represented
with a different color). In an ideal scenario, for a pipeline
to be considered universal, it should perform best in all or
at least most of the cases, which is clearly not happening.
Observe that, even the best performing pipeline is only the
best in 11% of the cases, which is obviously far from being
universal. Hence all (or at least several) pipelines need to be
evaluated together, in order to obtain optimal results.

4.2 Exhaustive versus effective prototypes
Given that there is no single universal pipeline, one can opt
for feeding all the possible prototypes (see Table 6) to the
optimization algorithm and get the optimal results. As before,
we assign a budget of 200 seconds for the optimization of
each prototype, hence 80 minutes in total for all the set of 24
exhaustive prototypes in order to find the optimal pipeline for
every dataset. On the other hand, we take only the five effec-
tive prototypes resulting from the application of our method
and assign just 40 seconds time budget for the optimization
of each one of them, hence 200 seconds in total. With the
aim of comparing the two, and thus roughly understanding
how close we are to the optimal case, we dedicated the same

6The source code and the datasets for re-
producing the experiments can be found in
https://github.com/josephgiovanelli/effective preprocessing pipeline evaluation

8

Figure 6: Precedence graph generated from Table 5. E -
Encoding; N - Normalization; D - Discretization; I - Im-
putation; R - Rebalancing; F - Feature Engineering.

ID Pipeline prototype

1 I → E → N → R→ F
2 I → E → N → F → R
3 I → E → R→ D → F
4 I → E → D → R→ F
5 I → E → D → F → R

Table 6: Effective pipeline prototypes
generated from Figure 6. E - Encod-
ing; N - Normalization; D - Discretiza-
tion; I - Imputation; R - Rebalancing; F
- Feature Engineering.

more than two transformations. This is when we resolve the inconsistencies and also define precedences432

for the pairs of transformations that may not have any precedence defined already — in that case, we ba-433

sically take into account all the permutations. This step allows to finally generate the possible effective434

pipeline prototypes.435

EXAMPLE 6. To generate the final pipeline prototypes, in this step we combine all the matrices436

generated by the previous steps. That is, we take the union of the edges (represented by 1’s) from437

the matrices in Table 2 (a,b,c), and create a new final adjacency matrix, shown in Table 5. This is438

the matrix that will allow us to generate the final effective pipeline prototypes.439

Observing the table, one can realize that for pairs {F,R} and {R,D}, no precedence edges440

exist. This means that these pairs are somewhat equally relevant from either direction (any order),441

and thus when generating the final prototypes, both options should appear.442

For a better reading, in Figure 6, we visualize Table 5 in form of a graph, where nodes represent443

the kinds of transformations and the directed edges represent a precedence order between them. Out444

of the graph, we generate the final pipeline prototypes by taking all the maximum length variations445

(ordered arrangements without repetition) of the nodes, respecting the precedence rules (i.e., not446

contradicting the direction of existing edges). The result is the set of five pipeline prototypes shown447

in Table 6. This set consisting of compatible, meaningful and promising pairs of transformations is448

the set of recommended effective pipeline prototypes.449

3.6. Meta-learning rules450

Once the pipeline prototype is constructed, that is, the order between the kinds of transformations451

is defined, what follows is the instantiation of transformations with the physical operators. For that,452

one can rely completely on the optimization algorithm, and let the algorithm choose the right operators.453

E N D I R F

E 1 1 0 1 1

N 0 X 0 1 1

D 0 X 0 0 1

I 1 1 1 1 1

R 0 0 0 0 0

F 0 0 0 0 0

Table 5: Union of rules from Table 2. E - Encoding; N - Normalization; D - Discretization; I - Imputation; R - Rebalancing;
F - Feature Engineering 1 - an edge exists, 0 - edge does not exist, X - the combination is meaningless.

15

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Prototypes ID

10

0

10

20

30

NB

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Prototypes ID

KNN

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Prototypes ID

RF
Im

pa
ct

 o
ve

r t
he

 b
as

el
in

e

Figure 7: The impact of the different pipeline prototypes over the baseline (i.e., when no transformation is applied).

However, given the way optimization algorithms work (e.g., SMBO) — successively finding better and454

better instantiations, there is a cold-start problem, where in the beginning, the algorithm does not have455

enough information in order to come up with the most promising initial instantiations, and a wrong456

choice may affect the optimization process.457

3.6.1. Exploratory analysis458

Given the availability of the experimental SMBO executions (executed in an exhaustive manner,459

considering all the pipeline prototypes), one can perform an exploratory analysis with the aim of remov-460

ing useless prototypes, pipelines or operators. Hence, further tweaking the search space. In particular,461

starting from the highest level, that of prototypes, then going to the physical pipelines, and finally to the462

actual operators inside the pipeline, one can analyze if:463

• there exist some combination of transformations in the form of prototypes (see Table 7 for the464

exhaustive list of prototypes), that are generally useless (i.e., in terms of their impact to the final465

accuracy), and thus can be discarded a priori in order to reduce the search space,466

• there are some physical pipelines that are consistently chosen more often than others by the opti-467

mization algorithm, meaning that they are more useful than others,468

• within the physical pipelines, some transformations are chosen more often than others, meaning469

that they provide more positive impact.470

EXAMPLE 7. We performed the above-mentioned analysis to our use case, but it did not lead471

to any conclusive or significant results. In particular, as shown in Figure 7, we could not find any472

useless prototypes — not positively impacting the final accuracy, that could be discarded a priori473

from the potential list of prototypes. Actually, as we will show in Section 4.1, all of them lead to474

the best in one case or another, which does not mean the epsilon improvement some provide is475

worth the search cost you incur in considering them (but this more in-depth analysis is done later).476

Next, as shown in Figure 8, there were no physical pipelines shown to be more useful — hence477

more often selected, than others. Even if N → R is clearly above, it barely reaches 30% in KNN.478

Finally, observing Figure 9, it is clear that some kinds of transformations are chosen more often,479

but looking closely (i.e., the shaded bars), it is not clear which operator brings more benefit. For480

instance, Normalization is present in 90% of the pipelines, but it is not easy to distinguish which481

kind of Normalization (i.e., actual operator) is more beneficial. For this, we need more complex rules482

or guidelines that may help in finding the right operator to use.483

3.6.2. Meta-learning484

To mitigate the red cold-start problem, we propose to perform meta-learning (shown in Figure 3),485

where we intend to use the knowledge extracted from historical data in order to devise rules that may486

help the optimization algorithm in its initial phase. Meta-learning is the process of ‘learning on top of487

16

NB KNN RF
Algorithms

0%

5%

10%

15%

20%

25%

30%

Us
ag

e
D
D F
D F R

D R
D R F
F R

N
N F
N F R

N R
N R F
R

R D
R D F
R F

Figure 8: Percentage of use of the different physical pipelines.

Figure 9: Percentage of use of a transformation in a physical pipeline.

learning’, or learning a model using historical data from ML experiments. Traditionally, it has been488

used for predicting the performance (e.g., predictive accuracy) of an algorithm on a given dataset. That489

is, given some historical runs of the performance of classification algorithms over various datasets (i.e.,490

meta-database: consisting of datasets characteristics as predictive variables and the performance of the491

classification algorithm as the response variable), one can learn a model (i.e., meta-model), that is able to492

predict the performance of a given classification algorithm on a new dataset [28]. Lately, this technique493

17

has been extended in order to predict the impact of transformations over the performance of classification494

algorithms and thus rank transformations based on their impact [29, 30, 31]. The same idea can be495

applied for learning the best operator for a given transformation. That is, through meta-learning one can496

learn the intrinsic relationship between dataset characteristics and the operator performance, and thus497

come up with rules that are not obvious and are effective at the time of instantiating a transformation.498

The main idea is to build a model, that is able to predict the operator for a certain kind of transformation,499

given the meta-features extracted from the dataset considered for the optimization. This translates to500

answering the following question: “given that we know the dataset characteristics and having selected a501

certain kind of transformation (e.g., missing value imputation), what is the optimal physical algorithm502

(see Table 1) we need to select, to obtain the highest improvement possible in terms of classification503

accuracy (i.e., when the classification algorithm is applied over the transformed dataset)?”. In particular,504

the model can generate a set of complementary rules that help in the optimization, providing a good505

starting instantiation for some of the transformations in the prototype.506

To train the model we need a meta-dataset that can be (i) generated through optimization algorithms507

(e.g., SMBO executions), (ii) generated manually through simple evaluations of classification algorithms508

over transformed datasets, or (iii) assumed already given (e.g., OpenML).509

Given a meta-dataset, we propose to learn to predict the best instantiation (operator) for a given510

transformation, where among the classes we can include the class None too. This means that one of the511

possible predictions is to not instantiate a transformation at all, hence remove it from the pipeline.512

EXAMPLE 8. Our training dataset (sometimes referred to as ‘meta-database’ or ‘meta-dataset’)513

for the meta-learning is compiled through SMBO runs on the OpenML datasets (see Section 3.4.1).514

That is, we first extract the dataset characteristics/profiles (i.e., number of features, number of515

instances, number of missing values, etc), and then by applying SMBO optimization, on classification516

algorithms and pre-processing pipelines (as explained in Section 3.5), for each dataset, we retrieve the517

evaluations (i.e., predictive accuracy) of the algorithms over the optimized pipelines. This gives us518

the presumably optimal physical pipelines and their impact on the accuracy of the learning algorithms519

for each dataset at hand. Given such information, our aim is to now save time and improve the520

instantiation of the operators for each transformation considered in the prototype.521

We trained several different Conditional Inference Trees [32] because they produce models that522

can be easily read and interpreted. Specifically, the independence of each variable (meta-features in523

our case) with the class (operator of a specific transformation) is tested through a statistical test.524

The split is made on the variable with the lowest p-value. We report the p-value too, so that it can525

be seen how strong the association is (i.e., why that variable was chosen). We stick with the p-value526

threshold of 0.05, and devise a rule from any branch of the tree that is within the threshold. In the527

following, we describe the rules obtained within the selected significance threshold.528

Rules for Feature Engineering. The available operators in Scikit-learn for Feature Engineering529

(see Table 1) are: PCA (Principal Component Analysis), Feature Selection (Select K Best),530

Both (PCA + Select K Best), and None. The tree generated for the Feature Engineering trans-531

formation is shown in Figure 10. The leaves show the selected operator frequency. For the sake of532

simplicity, we do not consider the union of PCA and Select K Best as an operator per se, instead533

we distribute that contribution to the two operators that compose it. Observe that there is a strong534

correlation between the Feature Engineering operator and the entropy of the class attribute. Indeed,535

such a meta-feature achieved a p-value smaller than 0.001. We can clearly read that if the Class536

Entropy is low, then Feature Selection is way more chosen than the other options (see Node537

2). Recall that the entropy of an attribute is a measure of how much disorder there is among its538

instances. The less is that value, the easier is the classification problem. As a consequence, it is rea-539

sonable to think that the easier the classification problem is, the more likely is the fact that the class540

can be described by a low number of features. Hence, the Feature Selection technique can541

be successfully applied. Conversely, Node 5 shows that, when the Class Entropy is high, it is better542

to not apply any Feature Engineering operator. As a matter of fact, a high value of Class Entropy543

18

involves a high number of classes and/or few instances per class, hence a really difficult problem. In544

such cases, reducing the dimensionality of the dataset does not lead to any improvement. Finally,545

when the Class Entropy is in between, there is no clear winner, and thus other non-obvious factors546

may affect the choice of the operator.547

Rules for Rebalancing. As for Rebalancing, the operators considered from the imblearn8 library548

are: Near Miss, SMOTE, and None. The first is an undersampling algorithm which randomly549

eliminates the samples from the larger class. Instead, the second is an oversampling technique that550

creates samples of the minority class, as a linear combination of them. As shown in Figure 11, the551

meta-feature Majority Class Percentage has a p-value of 0.014. This can be read as, in case of an552

unbalanced class problem (i.e., Node 3: Majority Class Percentage greater than 56), an oversampling553

of the minority class(es) is preferred to a downsampling of the majority one(s). However, when554

the Majority Class Percentage is smaller than 56%, the situation is not that clear, and there is555

no technique that is applied significantly more often than the rest; they are close to each other.556

Therefore, it is difficult to understand which problems (which dataset characteristics do they have)557

belong to Node 2. In summary, when the majority class has no more than 56% , it implies that it is558

an unbalanced class, and as mentioned above, SMBO tends to choose the same operator. However,559

when the majority class has less than 56%, it may imply that: (i) there are just two classes and the560

problem counts as a balanced problem, so no operator needs to be applied, or (ii) it is a multi-class561

problem, and thus there is no clear winner in terms of operators.562

3.7. Prototype instantiation563

The prototypes from the top flow and the meta-lerning rules from the bottom flow (if the optimization564

framework permits), are finally fed to the final step which deals with the instantiation and optimization565

of the prototypes. In this task we run an optimization algorithm that is executed until an optimal pipeline566

is found.567

EXAMPLE 9. In our final execution, we run SMBO to find a suitable instantiation for the suggested568

prototypes. The simple but not obvious meta-learning rules, even though not included in our final569

execution, because of the implementation considered (i.e., HyperOpt), can potentially be used to570

ease the cold-start problem.571

4. Evaluation572

The aim of our experimental study is three-fold:573

1. Check whether there exists a universal pipeline prototype that works best for any classification574

problem considered (i.e., dataset and ML algorithm) (Section 4.1).575

2. Assess and compare the performance of the effective pipelines constructed using our method576

against the set of exhaustively generated pipeline prototypes (Section 4.2).577

3. Assess and compare the impact of dedicating a portion of the optimization time to the effective578

pipelines constructed using our method, with the impact of using the whole optimization time for579

the hyper-parameters of the ML algorithm (Section 4.3).580

The experiments were performed on an Intel Core i7 machine with 12 cores, running at 3.20 GHz581

with 64 GB of main memory. As a platform for running the SMBO optimization algorithm we use582

HyperOpt. Furthermore, the datasets used in the experiments are the ones from the OpenML repository583

(see Section 3.4.1). Finally, the classification algorithms considered are NB, KNN, and RF. All the584

experiments for a single algorithm, on average took approximately two weeks9.585

8https://pypi.org/project/imbalanced-learn
9The source code and the datasets for reproducing the experiments can be found in

https://github.com/josephgiovanelli/effective preprocessing pipeline evaluation

19

https://pypi.org/project/imbalanced-learn
https://github.com/josephgiovanelli/effective_preprocessing_pipeline_evaluation

Class Entropy

p<0.001

Class Entropy

p<0.001

Node 2 (n=51)

100%

20%

40%

60%

80%

0%

None
 PCA
 SelectKBest

 0.863
 > 0.863

Node 4 (n=111)

None
 PCA
 SelectKBest

Node 5 (n=78)

F
re

qu
en

cy

100%

20%

40%

60%

80%

0%

F
re

qu
en

cy

100%

20%

40%

60%

80%

0%

F
re

qu
en

cy

None
 PCA
 SelectKBest

> 1.787
 1.787

Figure 10: Conditional Inference Tree built for the Features Engineering transformation.

MajorityClassPercentage

p=0.014

Node 2 (n=150)

None
 NearMiss
 SMOTE

Node 3 (n=90)

None
 NearMiss
 SMOTE

> 0.56
 0.56

100%

20%

40%

60%

80%

0%

F
re

qu
en

cy

100%

20%

40%

60%

80%

0%

F
re

qu
en

cy

Figure 11: Conditional Inference Tree built for the Rebalancing transformation.

4.1. Universal pipeline prototype586

The goal of this experiment is to demonstrate the difficulty of blindly finding the right pipeline587

prototype (i.e., without considering any meaningful or promising precedence). In Table 7, we list the588

exhaustive set of pipeline prototypes generated considering the compatible precedence graph in Table 2a589

(i.e., 24 compatible permutations). In a real scenario, this number would be too high for splitting the590

time budget in order to optimize them. Yet, for the sake of this experiment, we exhaustively optimize591

all the prototypes, for each dataset. Thus, for each pipeline prototype and for each dataset, the SMBO592

algorithm is configured to assign a 200 seconds time budget to the phase of instantiating and optimizing593

the pipeline prototype, and another 200 seconds to the phase of optimizing the hyper-parameters of the594

ML algorithm.595

The results obtained are shown in Figure 12. The enumerated prototypes are listed in the ordinate596

20

ID Pipeline prototype ID Pipeline prototype

1 I) E) N) D) F) R 13 I) E) F) N) D) R
2 I) E) N) D) R) F 14 I) E) F) N) R) D
3 I) E) N) F) D) R 15 I) E) F) D) N) R
4 I) E) N) F) R) D 16 I) E) F) D) R) N
5 I) E) N) R) D) F 17 I) E) F) R) N) D
6 I) E) N) R) F) D 18 I) E) F) R) D) N
7 I) E) D) N) F) R 19 I) E) R) N) D) F
8 I) E) D) N) R) F 20 I) E) R) N) F) D
9 I) E) D) F) N) R 21 I) E) R) D) N) F
10 I) E) D) F) R) N 23 I) E) R) D) F) N
11 I) E) D) R) N) F 23 I) E) R) F) N) D
12 I) E) D) R) F) N 24 I) E) R) F) D) N

Table 7: Exhaustive set of pipeline prototypes generated using the compatible precedence graph of Table 2a. E - Encoding; N
- Normalization; D - Discretization; I - Imputation; R - Rebalancing; F - Feature Engineering.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Prototype ID

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

Pe
rc

en
ta

ge
 o

f c
as

es
 fo

r w
hi

ch
 a

 p
ro

to
ty

pe
ac

hi
ev

ed
 th

e
be

st
 p

er
fo

rm
an

ce

NB
KNN
RF

Figure 12: Comparison of the goodness of the exhaustive set of prototypes.

axis and each stacked bar represents the percentage of cases for which that prototype achieved the best597

performance across different ML algorithms (the contribution of each algorithm is represented with a598

different color). In an ideal scenario, for a pipeline to be considered universal, it should perform best in599

all or at least most of the cases, which is clearly not happening. Observe that, even the best performing600

pipeline is only the best in 19% of the cases, which is obviously far from being universal. Hence all (or601

at least several) pipelines need to be evaluated together, in order to obtain better solutions.602

4.2. Exhaustive versus effective prototypes603

Given that there is no single universal pipeline, one can opt for feeding all the possible prototypes604

(see Table 7) to the optimization algorithm in order to get the best solutions out of them. As before, we605

assign a budget of 200 seconds for the optimization of each prototype, hence 80 minutes in total for all606

the set of 24 exhaustive prototypes in order to find the optimal pipeline for every dataset. On the other607

hand, we take only the five effective prototypes resulting from the application of our method and assign608

just 40 seconds time budget for the optimization of each one of them, hence 200 seconds in total. With609

the aim of comparing the two, and thus roughly understanding how close we are to the optimal case,610

in both cases, we dedicated the same time budget (i.e., 200 seconds) for the phase of optimizing the611

hyper-parameters of the ML algorithm. In order to evaluate how close the effective prototypes are to the612

exhaustive ones, we calculate the normalized distance from the result to the optimum:613

21

NB KNN RF
Algorithms

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
di

st
an

ce

Figure 13: Normalized distances between the scores obtained by optimizing our effective prototypes and the ones obtained
optimizing the exhaustive set.

normalized distance =
Acc(deffective, a

∗)−Acc(d, a)

Acc(dexhaustive, a∗)−Acc(d, a)

where, Acc(d, a) is the baseline performance (i.e., predictive accuracy of the algorithm a with de-614

fault hyper-parameters over the original dataset d). Acc(deffective, a∗) is the accuracy of the optimized615

algorithm a∗ over the dataset deffective transformed using the optimized instantiation of the effective616

set of prototypes (i.e., our approach). Finally, Acc(dexhaustive, a
∗) is the accuracy of the optimized617

algorithm a∗ over the dataset dexhaustive transformed using the optimized pipeline instantiation of the618

exhaustive set of prototypes. The subtraction by Acc(d, a) is done with the aim of weighting the dif-619

ficulty of a dataset, hence allowing for comparisons in terms of the gain in accuracy. To this end, the620

bigger the potential gain (denominator) is, the bigger the obtained gain (numerator) must be, for the621

latter to be relevant.622

The results obtained for every dataset and algorithm are shown as boxplots in Figure 13. Observe623

that, most of the cases are very close to the results obtained using the exhaustive set, the median distances624

being 91.51%, 93.13%, 88.97%, for NB, KNN, and RF, respectively. In general, in 75% of the cases625

the chosen pipelines are above 80%, and only few outliers are below 60%. Curiously, in some cases,626

we outperform the results over the exhaustive set of pipelines, but this is due to the randomness of the627

optimization algorithm, which unless it is given an unrealistically high budget of time, is not capable of628

finding the true optimal solution. We discarded the option of assigning a larger budget since this was not629

practical considering the huge search space and the lack of any guarantee of improvement.630

To summarize, the experiment shows that with roughly 24 times less time budget, we can obtain631

results that are as good as 90% in the median compared to the exhaustive ones. The raw results (i.e.,632

without the normalized distances) can be found on the aforementioned github page.633

4.3. Complementing hyper-parameter optimization with pre-processing634

We have just shown that our effective pipeline prototypes have similar impact as the exhaustive635

prototypes. Now we want to compare the impact of effective prototypes against optimizing only the636

hyper-parameters of the ML algorithm. That is, we want to examine whether dedicating a part of the637

optimization budget to the pre-processing pipeline impacts more (positively) the results of the analysis,638

than using the whole budget for the hyper-parameter optimization10.639

To this end, for the latter we now dedicate the total optimization budget (i.e., 400 seconds), and for640

the former, inspired by [25], we split the budget 50-50 between the pre-processing pipeline optimization641

10To enable the application of the ML algorithms on all the datasets, whenever required, we apply the necessary transforma-
tion (e.g, imputation or encoding).

22

N
o
rm

a
liz

e
d
 i
m

p
a
c
t

Datasets

KNN

Datasets

NB

Datasets

RF

0

1

0.5

0

1

0.5

Hyper-parameter optimizationPre-processing + Hyper-parameter optimization

Figure 14: The impact of dedicating a portion of the optimization budget to pre-processing compared to using the whole
optimization budget for the hyper-parameter optimization.

and the hyper-parameter optimization (i.e., 200 seconds for the pre-processing, and 200 seconds for the642

hyper-parameter optimization). The time for the pre-processing is further split among the five different643

pipeline prototypes (i.e., 40 seconds each).644

To compare the results, we calculate the impact using the formulas below, that correspond to the645

normalized distance from either pre-processing or hyper-parameter optimization to the maximum im-646

provement that can be achieved, regardless of whether pre-processing is applied or not.647

pp impact =
Acc(deffective, a

∗)−Acc(d, a)

max(Acc(deffective, a∗), Acc(d, a∗))−Acc(d, a)

hp impact =
Acc(d, a∗)−Acc(d, a)

max(Acc(deffective, a∗), Acc(d, a∗))−Acc(d, a)

where, Acc(d, a) is the baseline accuracy (i.e., predictive accuracy of the algorithm a with default648

hyper-parameters over the original dataset d). Acc(deffective, a∗) is the accuracy of the optimized algo-649

rithm a∗ over the dataset deffective transformed using the optimized instantiation of the effective set of650

prototypes obtained using our method. Finally, Acc(d, a∗) is the accuracy of the optimized algorithm a∗651

(i.e, using the entire budget) over the original dataset d.652

To obtain relative values that sum to 1, we normalize the impacts dividing them by their sum. For
instance, for the pre-processing score we calculate the following:

normalized pp impact =
pp impact

pp impact + hp impact

We perform the same for the hyper-parameter impact and plot the results obtained for all the algo-653

rithms and datasets in Figure 14, where each bar represents the results obtained for a single dataset. The654

different colors represent the impact values of pre-processing and hyper-parameter optimization.655

Observing the bar-charts one can see that (i) dedicating a portion of the budget to pre-processing,656

brings benefit to the analysis in most of the cases (i.e., 73% of the cases), and (ii) the impact of hyper-657

parameter optimization, increases with the increase of the number of hyper-parameters of the ML al-658

gorithm (e.g., hyper-parameter optimization impacts more RF than NB). Overall, we can conclude that659

pre-processing is a critical step that once effectively applied may have a high positive impact on the final660

result of the analysis.661

5. Related work662

A lot of ongoing research aims at addressing the problem of providing user assistance for the data663

analytics process. Specifically, they can be classified into three main categories [33]: distributed, cloud-664

based, and centralized. The first two try to address the problem of Big Data. Thus, clusters of several665

23

machines are employed to distribute the workload. On the contrary, this is not a fundamental requirement666

for centralized solutions. Indeed, the overhead of using a cluster is not worth for relatively small datasets.667

Since our work belongs to the category of centralized solutions, in the following, we provide examples668

of them.669

As already mentioned before, the data analytics process consists of different steps. In general, there670

is a trend to develop (semi) automatic systems that assist the user in one or many steps altogether. At the671

beginning, the focus was to provide support exclusively for the learning step (i.e., the CASH problem).672

Recently however, the direction has shifted towards designing systems that additionally or specifically673

provide user assistance in the data pre-processing step (i.e., the DPSO problem).674

When it comes to data pre-processing, different works have tackled this problem from different per-675

spectives. For instance, there are works that aim to apply pre-processing for the sake of guaranteeing data676

quality, or enabling data exchange, or even data integration. That is, they consider data pre-processing in677

isolation or apart from data analysis [34, 35, 36, 37]. In this, and our related work however, we consider678

only the works that see pre-processing as an integral part of data analytics and hence apply it for the679

sake of improving the final result of the analysis.680

Finally, there are works that aim at fully automating the data analytics process (i.e., automatically681

generate data analytics flows), which roughly translates to combining DPSO with CASH, where the682

border line between the latter two becomes blurry. Nevertheless, we tentatively group the works based683

on the type of the problem they aim to solve.684

5.1. DPSO685

In DPD [25], the DPSO problem, as we use it in this work, is formally defined. Authors demonstrate686

the impact of optimizing the pre-processing pipeline, but considering only a single fixed pipeline proto-687

type. However, as we have already seen (Section 4.1), a single fixed prototype cannot perform best for688

every dataset. Therefore, we build on top of [25], and instead of relying on a fixed prototype, we define689

a method to generate the right pipeline prototypes to be optimized.690

In PRESISTANT [30, 38, 31], we tackled the problem of recommending pre-processing operators691

to the non-expert data analyst. The goal, and at the same time the challenge was to identify the pre-692

processing operators, and rank them in advance, based on their potential impact to the final analysis.693

However, we did not consider pre-processing pipelines, but only single transformations, expecting that694

the analyst applies the process iteratively. In this work, we consider sets of transformations and thus695

study the impact of combining transformations into a pipeline.696

In ActiveClean [39], authors define an algorithm that aims at prioritizing the cleaning of records that697

are more likely to affect the results of the statistical modeling problems, assuming that the latter belong698

to the class of convex loss models (i.e., linear regression and SVMs). Hence, instead of recommending699

the transformations to be applied, the system recommends the subset of data which needs to be cleaned700

at a given point. The type of pre-processing to be applied is left to the user, assuming that the user is an701

expert.702

In Learn2Clean [40], based on a reinforcement learning technique, for a given dataset, and an ML703

model, an optimal sequence of operators for pre-processing the data is generated, such that the quality704

of the ML model is maximized. Here, similarly to [25], the pipeline prototype is fixed in advance.705

Our work is a step further in that we help to choose the right pipeline prototype, instead of fixing it in706

advance.707

In Alpine Meadow [41], authors follow a similar approach to ours in that they define two steps for708

the pre-processing phase. One, the so called logical pipeline plan, which is roughly equivalent to the709

pipeline prototypes defined in this work, and the second the physical pipeline plan which translates to710

pipelines used in this work. The physical plan is generated through a combination of Bayesian optimiza-711

tion, meta-learning, and multi-armed bandits. For the logical plans, they rely on rules but without clear712

evidence on how they are generated. Moreover, it is not clear whether the logical plan is fixed as in [25]713

and if some further adjustment from the user is required.714

24

5.2. CASH715

The task in solving the CASH problem is to automatically find an optimized instantiation for the716

hyper-parameters of the ML algorithm. Most of the works use Bayesian optimization methods to tune717

and optimize them [42, 43, 44]. Since Bayesian optimization is randomized, meta-learning has been used718

to find a good seed for the search [45]. Most of these works however, only minimally consider the data719

pre-processing step. Auto-WEKA [43], based on the Java machine learning library Weka, is the pioneer720

of the field. The authors formalized the problem of algorithm selection and their associated hyper-721

parameter optimization, and solved it in a combined search space. Sequential Model-based Algorithm722

Configuration (SMAC) is used to explore the large search space.723

Autostacker [46] combines a hierarchical stacking architecture and an evolutionary algorithm (EA).724

Stacking is an ensemble method that involves the concatenation of several classifiers, so that the later725

layers can learn the mistakes that classifiers in the previous layers make. Even if it brings some benefits,726

this approach affects the search space: way larger than that of a single classifier. In a nutshell, such727

concatenations are randomly generated and then optimized. The one that achieves the higher predictive728

accuracy is chosen. Rather than Bayesian Optimization, to find suitable hyper-parameters, the authors729

utilize a basic Evolutionary Algorithm.730

OBoe [47] exploits collaborative filtering for AutoML, choosing models that have performed well on731

similar datasets. It collects a large number of datasets and applies different ML algorithms (with different732

hyper-parameters configurations). In this way, a matrix of cross-validated errors is built. Common733

approaches typically compute dataset meta-features and use them to predict the error of a particular734

machine learning model, but OBoe works exactly the other way around. PCA is applied on such a735

matrix in order to find latent meta-features. Given a new dataset, some basic algorithms are applied to736

infer a feature vector (i.e., the value of the latent meta-features). Finally, the feature vector is leveraged737

to estimate the cross-validated error of more complex algorithms.738

5.3. DPSO + CASH739

Auto-sklearn [42] is based on the popular Python library scikit-learn. The authors, inspired by740

Auto-Weka, address the problem with the Sequential Model-based Algorithm Configuration (SMAC).741

Furthermore, they improve the approach by adding a meta-learning phase at the beginning (to warm-start742

the Bayesian Optimization) and an ensemble technique at the end (to suggests multi-classifiers). Such743

a system considers pre-processing transformations to generate end-to-end analytic pipelines. Yet, they744

consider a small set of transformations and also consider a single fixed pipeline prototype. Our work in a745

way is complementary to this, since instead of a priori fixing the prototype, we can construct a potentially746

optimal one (or a set), and then provide it to the tool for it to be instantiated and further optimized.747

TPOT [44] is a tree-based pipeline optimization tool using genetic programming while requiring little748

to no expertise from the user. In TPOT however, they only consider one transformation inside the749

optimization process (i.e., Feature Engineering).750

ML-Plan [3] uses hierarchical planning, a particular form of AI planning, to propose a solution to751

both the pre-processing and the modeling phases. As in context-free grammars, there are complex tasks752

(non-terminal symbols) that are derived as long as primitive tasks (terminal symbols) are not obtained.753

Typically, standard graph search algorithms (e.g., depth-first search, best-first search, etc.) are employed754

to solve such problems. ML-Plan successively creates solutions in a global search instead of changing755

given solutions in a local search. However, due to the problem constraints, they adopt a randomized756

best-first search, randomly choosing the solution path.757

AutoBazaar [48] is a Python open-source tool. Like in ML-Plan [3], both pre-processing and mod-758

eling phases are covered. Here the last step of a prototype is the machine learning algorithm. The759

approach involves two different steps. Firstly, a catalog proposes a collection of prototypes (with an760

ML algorithm as last step) based on the task and the dataset itself. Secondly, the optimization process761

starts tuning the prototypes until either the time budget is expired or the prototypes are all optimized.762

In particular, a selector and a tuner work in synergy. The former decides which prototype should be763

25

optimized next. Such a task is treated as a multi-armed bandit problem. As to the tuner, Bayesian Op-764

timization is chosen. At the end, the prototype that achieved the higher predictive accuracy is elected.765

However, AutoBazaar strictly depends on the catalog. Such a component memorizes all the possible766

primitives and supported tasks. The prototypes are hard-coded for each task. Thus, it is neither flexible767

nor maintainable. If a task is not implemented, the approach cannot suggest a solution.768

To summarize, full automation of data analytics has been the ultimate goal of many research works.769

Yet, such an automation has shown to be computationally expensive, mainly due to the search space770

involved (i.e., pre-processing and mining operators). Therefore, the usability of these approaches in771

realistic scenarios is sometimes limited. Our approach of finding a set of effective pipeline prototypes772

can be seen as complementary to these solutions, since it helps in pruning the large space and guiding773

the search, hence reducing their cost.774

6. Conclusions and future work775

In this work, we first studied the overall impact of transformations when chained together inside776

pre-processing prototypes and then delved into examining the impact of instantiating transformations777

via various operators. As a result, we defined a method that allows to generate effective pre-processing778

pipelines. That is, pipelines that consist of, (i) compatible pairs of transformations with respect to the779

framework used, (ii) meaningful pairs of transformations in terms of general knowledge (best practices),780

and (iii) promising pairs of transformations that once applied are expected to provide higher overall781

impact (domain knowledge). In addition, via the meta-learning step proposed, we aim to guide the782

instantiation of transformations in order to facilitate finding better instantiations.783

An extensive evaluation on 80 datasets with heterogeneous characteristics, from sample size to fea-784

ture types, and a set of classification algorithms (i.e., Naive Bayes, Random Forest, K-Nearest Neigh-785

bours), showed that our devised pipeline prototypes give promising results. More specifically, we were786

able to observe that:787

– The overall impact of optimizing pre-processing is not negligible and it may boost the performance788

of the overall analytics (e.g., predictive accuracy).789

– There is no universal pre-processing pipeline prototype that works best for every dataset and790

algorithm.791

– With 24 times less time budget, our proposed pipeline prototypes were able to obtain results that792

were as good as 90% in the median of the optimal ones found through an exhaustive search.793

– Dedicating a portion of the time to the pre-processing optimization, instead of dedicating it entirely794

to hyper-parameter optimization may boost the final result of the analysis. On average, in 73% of795

the cases including pre-processing in the optimization, outperformed the results of only optimizing796

hyper-parameters.797

The results indicate that pre-processing can boost the performance of the ML algorithm. Hence, it798

must be considered as an integral part of the data analytics optimization process.799

Finally, previous works have shown the effectiveness of meta-learning for solving the cold start800

problem [45], hence as immediate future work, we intend to extend an optimization framework (i.e.,801

HyperOpt) with a complementary meta-learning module that can ease the cold-start problem, facilitating802

the search for optimal instantiations.803

Acknowledgments. This work was supported by the DOGO4ML project, funded by the Spanish804

Ministerio de Ciencia e Innovación under project/funding scheme PID2020-117191RB-I00 / AEI /805

10.13039/501100011033. We thank University of Bologna for issuing a grant for author’s research806

stay at Universitat Politècnica de Catalunya. Finally, we thank Matteo Golfarelli for his comments and807

feedback on this work.808

26

References809

[1] M. A. Munson, A study on the importance of and time spent on different modeling steps, SIGKDD Explor. Newsl. 13 (2)810

(2012) 65–71.811

[2] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, F. Hutter, Efficient and robust automated machine812

learning (2015) 2962–2970.813

[3] F. Mohr, M. Wever, E. Hüllermeier, Ml-plan: Automated machine learning via hierarchical planning, Machine Learning814

107 (8) (2018) 1495–1515.815

[4] L. Muñoz, J.-N. Mazón, J. Trujillo, Automatic generation of etl processes from conceptual models, in: Proceedings of816

the ACM Twelfth International Workshop on Data Warehousing and OLAP, DOLAP ’09, 2009, p. 33–40.817

[5] A. A. Vaisman, E. Zimányi, Data Warehouse Systems - Design and Implementation, Data-Centric Systems and Applica-818

tions, Springer, 2014.819

[6] B. Bilalli, A. Abelló, T. Aluja-Banet, R. Wrembel, Towards intelligent data analysis: The metadata challenge, in: M. Ra-820

machandran, G. B. Wills, R. J. Walters, V. M. Muñoz, V. Chang (Eds.), Proceedings of the International Conference on821

Internet of Things and Big Data, IoTBD 2016, Rome, Italy, April 23-25, 2016, pp. 331–338.822

[7] A. Quemy, Data pipeline selection and optimization, in: Proceedings of the 21st International Workshop on De-823

sign, Optimization, Languages and Analytical Processing of Big Data, co-located with EDBT/ICDT Joint Conference,824

DOLAP@EDBT/ICDT 2019, Lisbon, Portugal, March 26, 2019, 2019.825

[8] J. Bergstra, D. Yamins, D. D. Cox, Making a science of model search: Hyperparameter optimization in hundreds of826

dimensions for vision architectures, ICML’13, 2013, pp. 115–23.827

[9] J. Giovanelli, B. Bilalli, A. Abelló, Effective data pre-processing for automl, in: K. Stefanidis, P. Marcel (Eds.), Pro-828

ceedings of the 23rd International Workshop on Design, Optimization, Languages and Analytical Processing of Big Data829

(DOLAP), Vol. 2840 of CEUR Workshop Proceedings, CEUR-WS.org, 2021, pp. 1–10.830

[10] L. Kotthoff, C. Thornton, H. Hoos, F. Hutter, K. Leyton-Brown, Auto-weka 2.0: Automatic model selection and hyper-831

parameter optimization in weka, Journal of Machine Learning Research 18 (2017) 1–5.832

[11] F. Serban, J. Vanschoren, J. Kietz, A. Bernstein, A survey of intelligent assistants for data analysis, ACM Computing833

Surveys 45 (3) (2013) 1–35.834

[12] D. C. Montgomery, Design and analysis of experiments, John wiley & sons, 2017.835

[13] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization., Journal of machine learning research 13 (2)836

(2012).837

[14] P. J. Van Laarhoven, E. H. Aarts, Simulated annealing, in: Simulated annealing: Theory and applications, Springer, 1987,838

pp. 7–15.839

[15] O. Kramer, Genetic algorithms, in: Genetic algorithm essentials, Springer, 2017, pp. 11–19.840

[16] P. I. Frazier, A tutorial on bayesian optimization (2018). arXiv:1807.02811.841

[17] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar, Hyperband: A novel bandit-based approach to hyper-842

parameter optimization, The Journal of Machine Learning Research 18 (1) (2017) 6765–6816.843

[18] M.-A. Zöller, M. F. Huber, Survey on automated machine learning, arXiv preprint arXiv:1904.12054 9 (2019).844

[19] Q. Yao, M. Wang, Y. Chen, W. Dai, Y.-F. Li, W.-W. Tu, Q. Yang, Y. Yu, Taking human out of learning applications: A845

survey on automated machine learning (2018). arXiv:1810.13306.846

[20] F. Hutter, H. H. Hoos, K. Leyton-Brown, Sequential model-based optimization for general algorithm configuration, in:847

International conference on learning and intelligent optimization, Springer, 2011, pp. 507–523.848

[21] F. Archetti, A. Candelieri, Bayesian Optimization and Data Science, 1st Edition, Springer International Publishing, 2019.849

[22] F. Hutter, H. H. Hoos, K. Leyton-Brown, K. P. Murphy, An experimental investigation of model-based parameter optimi-850

sation: Spo and beyond, in: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, 2009,851

pp. 271–278.852

[23] J. Snoek, H. Larochelle, R. P. Adams, Practical bayesian optimization of machine learning algorithms, NeurIPS ’12,853

2012, pp. 2960–2968.854

[24] M. Wistuba, N. Schilling, L. Schmidt-Thieme, Scalable gaussian process-based transfer surrogates for hyperparameter855

optimization, Mach. Learn. 107 (1) (2018) 43–78.856

[25] A. Quemy, Two-stage optimization for machine learning workflow, Information Systems 92 (2020) 101483.857

[26] J. Vanschoren, J. N. van Rijn, B. Bischl, L. Torgo, Openml: Networked science in machine learning, SIGKDD Explo-858

rations 15 (2) (2013) 49–60.859

[27] T. Dasu, T. Johnson, Exploratory Data Mining and Data Cleaning, 1st Edition, John Wiley & Sons, Inc., New York, NY,860

USA, 2003.861

[28] P. Brazdil, C. G. Giraud-Carrier, C. Soares, R. Vilalta, Metalearning - Applications to Data Mining, Cognitive Technolo-862

gies, Springer, 2009.863

[29] B. Bilalli, A. Abelló, T. Aluja-Banet, On the predictive power of meta-features in openml, Int. J. Appl. Math. Comput.864

Sci. 27 (4) (2017) 697–712.865

[30] B. Bilalli, A. Abelló, T. Aluja-Banet, R. Wrembel, Intelligent assistance for data pre-processing, Comput. Stand. Inter-866

faces 57 (2018) 101–109.867

[31] B. Bilalli, A. Abelló, T. Aluja-Banet, R. Wrembel, PRESISTANT: learning based assistant for data pre-processing, Data868

Knowl. Eng. 123 (2019).869

27

http://arxiv.org/abs/1807.02811
http://arxiv.org/abs/1810.13306

[32] T. Hothorn, K. Hornik, A. Zeileis, Unbiased recursive partitioning: A conditional inference framework, Journal of Com-870

putational and Graphical Statistics 15 (3) (2006) 651–674.871

[33] R. Elshawi, M. Maher, S. Sakr, Automated machine learning: State-of-the-art and open challenges, arXiv preprint872

arXiv:1906.02287 (2019).873

[34] F. Geerts, G. Mecca, P. Papotti, D. Santoro, The llunatic data-cleaning framework, PVLDB End. 6 (9) (2013) 625–636.874

[35] Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden, M. Ouzzani, P. Papotti, J.-A. Quiané-Ruiz, N. Tang, S. Yin, Bigdansing: A875

system for big data cleansing, SIGMOD ’15, 2015, pp. 1215–1230.876

[36] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, Y. Ye, Katara: A data cleaning system powered by877

knowledge bases and crowdsourcing, SIGMOD ’15, 2015, pp. 1247–1261.878

[37] Z. Jin, M. R. Anderson, M. Cafarella, H. V. Jagadish, Foofah: A programming-by-example system for synthesizing data879

transformation programs, SIGMOD ’17, 2017, pp. 1607–1610.880

[38] B. Bilalli, A. Abelló, T. Aluja-Banet, R. F. Munir, R. Wrembel, PRESISTANT: data pre-processing assistant, CAiSE881

Forum ’18, 2018, pp. 57–65.882

[39] S. Krishnan, J. Wang, E. Wu, M. J. Franklin, K. Goldberg, Activeclean: Interactive data cleaning for statistical modeling,883

PVLDB 9 (12) (2016) 948–959.884

[40] L. Berti-Équille, Learn2clean: Optimizing the sequence of tasks for web data preparation, WWW ’19, 2019, pp. 2580–885

2586.886

[41] Z. Shang, E. Zgraggen, B. Buratti, F. Kossmann, P. Eichmann, Y. Chung, C. Binnig, E. Upfal, T. Kraska, Democratizing887

data science through interactive curation of ML pipelines, SIGMOD ’19, 2019, pp. 1171–1188.888

[42] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, F. Hutter, Efficient and robust automated machine889

learning, NeurIPS ’15, 2015, pp. 2962–2970.890

[43] C. Thornton, F. Hutter, H. H. Hoos, et al., Auto-weka: Combined selection and hyperparameter optimization of classifi-891

cation algorithms, in: KDD, 2013, pp. 847–855.892

[44] R. S. Olson, N. Bartley, R. J. Urbanowicz, J. H. Moore, Evaluation of a tree-based pipeline optimization tool for automat-893

ing data science, GECCO ’16, 2016, pp. 485–492.894

[45] M. Feurer, J. T. Springenberg, F. Hutter, Initializing bayesian hyperparameter optimization via meta-learning, AAAI ’15,895

2015, pp. 1128–1135.896

[46] B. Chen, H. Wu, W. Mo, I. Chattopadhyay, H. Lipson, Autostacker: A compositional evolutionary learning system, in:897

Proceedings of the Genetic and Evolutionary Computation Conference, 2018, pp. 402–409.898

[47] C. Yang, Y. Akimoto, D. W. Kim, M. Udell, Oboe: Collaborative filtering for automl model selection, in: Proceedings of899

the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 1173–1183.900

[48] M. J. Smith, C. Sala, J. M. Kanter, K. Veeramachaneni, The machine learning bazaar: Harnessing the ML ecosystem for901

effective system development, CoRR abs/1905.08942 (2019).902

28

	Introduction
	Background: AutoETL and AutoML
	Combined Algorithm Selection and Hyper-parameter optimization (CASH)
	Sequential Model-Based Optimization (SMBO)

	Data Pipeline Selection and Optimization (DPSO)
	SMBO as solver for DPSO

	Data pre-processing pipeline generation
	Transformations and Operators
	Framework-related rules
	Heuristic rules
	Empirically learned rules
	Algorithm
	Cross-validation

	Effective pipeline prototypes
	Meta-learning rules
	Exploratory analysis
	Meta-learning

	Prototype instantiation

	Evaluation
	Universal pipeline prototype
	Exhaustive versus effective prototypes
	Complementing hyper-parameter optimization with pre-processing

	Related work
	DPSO
	CASH
	DPSO + CASH

	Conclusions and future work

