
Differentially Private Release of Event Logs for Process
Mining

Gamal Elkoumya,∗, Alisa Pankovab, Marlon Dumasa

aUniversity of Tartu, Tartu, Estonia
bCybernetica, Tartu, Estonia

Abstract

The applicability of process mining techniques hinges on the availability of event
logs capturing the execution of a business process. In some use cases, particularly
those involving customer-facing processes, these event logs may contain private
information. Data protection regulations restrict the use of such event logs for
analysis purposes. One way of circumventing these restrictions is to anonymize the
event log to the extent that no individual can be singled out using the anonymized
log. This article addresses the problem of anonymizing an event log in order
to guarantee that, upon release of the anonymized log, the probability that an
attacker may single out any individual represented in the original log does not
increase by more than a threshold. The article proposes a differentially private
release mechanism, which samples the cases in the log and adds noise to the
timestamps to the extent required to achieve the above privacy guarantee. The
article reports on an empirical comparison of the proposed approach against the
state-of-the-art approaches using 14 real-life event logs in terms of data utility loss
and computational efficiency.

Keywords:
Privacy-Preserving Process Mining, Process Mining, Privacy-Enhancing
Technologies, Differential Privacy

∗Corresponding author.
Email addresses: gamal.elkoumy@ut.ee (Gamal Elkoumy), alisa.pankova@cyber.ee

(Alisa Pankova), marlon.dumas@ut.ee (Marlon Dumas)

Preprint submitted to Information Systems December 16, 2022

ar
X

iv
:2

20
1.

03
01

0v
2

 [
cs

.C
R

]
 1

5
D

ec
 2

02
2

1. Introduction

Process mining is a family of techniques that helps organizations enhance their
business processes’ performance, conformance, and quality. The input of process
mining techniques is an event log. An event log captures the execution of a set of
instances of a process (herein called cases). An event log consists of event records.
Each record contains a reference to a case identifier, a reference to an activity, and
at least one timestamp. Table 1 shows an example of a log. Each case ID refers
to a person (e.g., a patient in a hospital). Each event corresponds to an activity
performed for that person. For example, in a healthcare process, each activity may
correspond to a treatment that the patient in question underwent.

Table 1: Example of an event log

Case ID Activity Timestamp Other Attributes

1
A 8/8/2020 10:20
B 8/8/2020 10:50
C 8/8/2020 16:15

2

D 8/8/2020 12:37
A 8/8/2020 14:37
E 8/8/2020 15:07
C 8/8/2020 20:31

3
A 8/9/2020 13:30
B 8/9/2020 13:55
C 8/9/2020 20:55

4

D 8/9/2020 15:00
A 8/9/2020 17:00
B 8/9/2020 17:40
C 8/9/2020 23:05

5
A 8/9/2020 17:25
E 8/9/2020 17:55
C 8/10/2020 23:55

6
A 8/11/2020 17:00
B 8/11/2020 17:27
C 8/11/2020 23:45

Often, an event log contains private information about individuals. Data regu-
lations, e.g., the General Data Protection Regulation (GDPR)1, restrict the use of
such logs. One way to overcome these restrictions is to anonymize the event log
such that no individual can be singled out. Singling out an individual happens when
they can be distinguished by evaluating a predicate that discriminates them within
a group. The legal notion of singling out has been mathematically formalized
by Cohen & Nissim [1], who define a type of attack called Predicate Singling

1http://data.europa.eu/eli/reg/2016/679/oj

2

http://data.europa.eu/eli/reg/2016/679/oj

Out (PSO) attack. The release of the event log in Table 1 permits singling out
individuals. Specifically, the predicate “undergoing activity E after activity D and
A” and the time difference between these activities can lead to a linkage attack [2].
Given that prior knowledge, the adversary can single out the patient with case ID 2.

Privacy-Enhancing Technologies (PETs), such as k-anonymity and differential
privacy [3], protect the data release, including event logs. Among existing PETs,
differential privacy (DP) stands out because it mitigates PSO attacks [1] and due to
its composable privacy guarantees [3].

DP mechanisms inject noise into the data, quantified by a parameter called
ε . Lee et al. [4] show that “the proper value of ε varies depending on individual
values” and that the presence of “outliers also changes the appropriate value of
ε .” Dwork et al. [5] state that “we do not know what parameter ε is right for any
given differentially private analysis, and we do know that the answer can vary
tremendously based on attributes of the dataset.” Accordingly, this article proposes
a method to determine the ε value required to anonymize an event log based on
a business-level metric, namely guessing advantage. The guessing advantage is
the increase in the probability that an adversary may guess information about an
individual after the event log’s release.

Usually, an adversary (e.g., an analyst) has prior knowledge about individuals in
the log before its release. For example, the attacker may know that the person went
to the hospital at 10 am Sunday morning and they received a rare treatment. Using
this knowledge, the adversary has a certain probability of guessing information
about an individual. After the release, the adversary gains an additional advantage
(knowledge) to guess information. Anonymization limits this risk. This article
investigates limiting the additional risk by a maximum guessing advantage level δ .
Specifically, the following problem is addressed:

Given an event log L, and given a maximum level of acceptable guess-
ing advantage δ , generate an anonymized event log L′ such that the
success probability of singling out an individual after publishing L′

does not increase by more than δ .

Naturally, we should ensure that the anonymized log is useful for process
mining. In this respect, a desirable property, at least in some use cases, is that the
anonymized log should not introduce new case variants relative to the original
one. A case variant is a distinct sequence of activities. For example, the case
variants of the log in Table 1 are {〈A,B,C〉,〈D,A,E,C〉, 〈D,A,B,C〉,〈A,E,C〉}.
There are at least two reasons why this property may be desirable. First, this

3

property ensures that the anonymization does not introduce spurious directly-
follows relations between activities. The set of directly-follows relations between
activities, known as the Directly-Follows Graph (DFG), is a common artifact
produced by process mining tools to help their users to understand the structure
of a process [6, 7]. The DFG is also used as input by many automated process
discovery techniques [8]. Spurious directly-follows relations may lead users into
wrong conclusions, for example, a spurious relation in a DFG may lead the user to
conclude that activity “Pay invoice” is sometimes followed by “Receive invoice”,
even when this never happens in the original log. Second, this property ensures
that a conformance checking algorithm [9] applied to the anonymized log does not
return false positives, i.e., that it does not report deviations that do not exist in the
original log. Indeed, every case variant added to an event log during anonymization
is a potential false positive in the conformance checking output. Notwithstanding
the above, we acknowledge that there are use cases, e.g. in the field of process
performance mining [10], where this property might not be required.

A second desirable property is that the differences between the timestamps
of consecutive events in the anonymized log are as close as possible to those in
the original log, as these time differences are used by performance mining tech-
niques [11]. Accordingly, we tackle the above problem subject to the requirements:

R1 The anonymized event log must not introduce new case variants to the
original log.

R2 The difference between the real and the anonymized time values is minimal
given the risk metric δ .

The second requirement can be tackled w.r.t. different attack models. This article
considers an attack model wherein the attacker seeks to single out an individual,
represented by a trace in the log, based on a prefix, a suffix, or an event timestamp
of the individual’s trace in the released log.

We tackle the above problem by proposing a notion of differentially private
event log. Given a maximum allowed guessing advantage, δ , a differentially private
event log is obtained by sampling the traces in the log and injecting noise to the
event timestamps. After release of a differentially private event log, the probability
that an attacker may single out any individual, based on the prefixes, suffixes, or
event timestamps of the individual’s trace in the released log, is not more than δ .

This article is an extended version of a conference paper [12]. Relative to the
conference version, the main extension is a revised anonymization method, which

4

achieves lower utility loss for a given guessing advantage δ by: (i) applying both
over- and undersampling, as opposed to only oversampling; and (ii) filtering out
high-risk cases. The article also extends the evaluation to assess utility loss w.r.t.
the impact of anonymization on the process maps discovered from the log.

The article is structured as follows. Sect. 2 introduces background notions and
related work. Sect. 3 presents the proposed approach. Sect. Appendix B presents
an empirical evaluation. Finally, Sect. 5 concludes and discusses future work.

2. Background and Related Work

In this section, we introduce bounded and unbounded DP, and we formalize
their definitions. We then overview the recently developed privacy-preserving
process mining techniques.

2.1. Differential Privacy (DP)
We consider the problem of providing differential privacy guarantees on the

release of an event log. As illustrated in Table 1, an event log is a set of events
capturing the execution of activities of a process. Each event contains a unique
identifier of the process instance in which it occurs (the case ID), an activity label,
and a timestamp. An event may contain other attributes, e.g., resources. This article
focuses on anonymizing three attributes: case ID, activity label, and timestamp.
If we group the events in a log by case ID and sort the events chronologically,
every resulting group is called a trace. A trace captures the sequence of events that
occurred in a case that corresponds to an individual (e.g., a customer) who requires
their privacy to be maintained. If an attacker can single out a trace, they can single
out the corresponding individual.

Definition 2.1 (Event Log, Event, Trace). An event log L = {e1,e2, ...,en} of a
process is a set of events e = (i,a, ts), each capturing an execution of an activity a
(an activity instance), with a timestamp ts, as part of a case i of the process. The
trace t = 〈e1,e2, ...,em〉 of a case i is the sequence of events in L with identifier
i, ordered by timestamp. An event log L may be represented as a set of traces
{t1, t2, ..., tk}.

This paper proposes a differentially-private mechanism to anonymize the event
log. A privacy mechanism M : L→ Range(M) maps an event log L to a particular
distribution of values Range(M) (e.g., to a vector of real numbers). A mechanism
M can be either unbounded or bounded ε-differentially private (ε-DP). An un-
bounded ε-DP mechanism makes it hard to distinguish two event logs that differ

5

in the presence of one trace [13]. A bounded ε-DP mechanism makes it hard to
distinguish two event logs that differ in the attribute values of one trace.

Definition 2.2 (Unbounded ε-differentially private mechanism [13]). A mecha-
nism M is said to be ε-differentially private if, for all the event logs L1 and L2
differing at most on one trace, and all S ⊆ Range(M), we have Pr[M(L1) ∈ S] ≤
exp(ε)×Pr[M(L2) ∈ S].

Definition 2.3 (Bounded ε-differentially private mechanism [14]). A mecha-
nism M is ε-differentially private if, for all the event logs L1 and L2 differ-
ing at most on the attribute values of one trace, and all S ⊆ Range(M), we have
Pr[M(L1) ∈ S]≤ exp(ε)×Pr[M(L2) ∈ S].

In some cases, it is desired to apply DP to only values of a particular attribute
A, e.g., the attribute timestamp in Table 1. We apply DP to L1 and L2 w.r.t the
timestamp attribute T S, i.e., L1 and L2 differ only on T S’s value in a single trace.
Moreover, we want to take into account the particular amount of change in the
attribute T S.

Definition 2.4 (Bounded ε-differentially private mechanism w.r.t the timestamp
attribute). A mechanism M is ε-differentially private w.r.t the timestamp attribute
T S iff for every pair of event logs L1 and L2 differing along attribute T S in at most
one trace, and for all S⊆ Range(M), we have

Pr[M(L1) ∈ S]≤ exp(ε · |L1.T S−L2.T S|)×Pr[M(L2) ∈ S].

The ε-differential privacy restricts the ability to single out an individual
(Def. 2.2 and 2.3) or disclose an individual’s private attribute (Def. 2.4).In an
interactive mechanism [3], a user submits a query function f to an event log and
receives a noisified result. Formally, there is a mechanism M f that computes f and
injects noise into the result. The amount of noise depends on the sensitivity of f ,
which quantifies how much change in the input of f affects change in its output.

Definition 2.1 (Global Sensitivity). Let f : L→ Rd .

• Global sensitivity w.r.t. presence of a trace is ∆ f = max
L1,L2
| f (L1)− f (L2)|;

• Global sensitivity w.r.t. the timestamp attribute T S is ∆A f =max
L1,L2

| f (L1)− f (L2)|
|L1.T S−L2.T S| ;

where max is computed over all event logs L1,L2 differing in one trace at most.

6

Given the event log L and the query function f , a randomized mechanism M f
returns a noisified output f (L)+Y , where Y is a noise value drawn randomly from
a particular distribution. E.g., we can draw values from a Laplace distribution
Lap(λ ,µ), which has a probability density function 1

2λ
exp(− |x−µ|

λ
), where λ is a

scale factor, and µ is the mean. It is known [3] that, for real-valued f , if we set
µ = 0, for λ = ∆ f

ε
we obtain an ε-DP mechanism w.r.t. a trace presence (Def. 2.2),

and for λ = ∆A f
ε

, we obtain an ε-DP mechanism w.r.t. attribute A (Def. 2.4).
The privacy parameter ε ranges from 0 to ∞, and the desired level of privacy

depends on the data distribution. Lee et al. [4] demonstrate the challenges with
choosing ε to protect individual information with a fixed probability. Although ε

is used to quantify the risk of releasing a statistical analysis of sensitive data, it is
not an absolute privacy metric but rather a relative value. Hsu et al. [15] present an
economical method for choosing ε . They consider two conflicting goals: learning
the correct analysis from the data and keeping the data of individuals private. They
use a privacy budget for individuals to balance the conflicting objectives.

Laud et al. [16] propose a framework to quantify ε from a probability score
called the guessing advantage – the increase in the probability that an adversary
may guess information about an individual after data release. They state the
attacker’s goal as a Boolean expression of guessing attributes, and they studied
the change of prior and posterior probabilities of guessing. This article adopts
the work in [16] to provide an estimation of ε based on the guessing advantage
threshold, with the assumption of the worst case scenario in which an adversary
has background knowledge about all the other instances.

Li et al. [17] prove that adding random sampling to a differentially private
mechanism amplifies the level of privacy protection. They explain that adding
random sampling with a probability β reduces the eε by a factor of β . This privacy
amplification is valid with (ε , δ)-differential privacy under sampling in the setting
where one publishes an anonymized version of a dataset [17]. In this article, we
perform a sampling of cases based on prefixes/suffixes groups. We sample an
entire case in order to fulfill the requirement R1. Also, we prune cases that are
too sensitive and violate the guessing advantage threshold δ . This case pruning
reduces the amount of noise, as we will explain later.

2.2. Privacy-Preserving Process Mining (PPPM)
The use of PETs for PPPM has been considered in previous studies. Elkoumy

et al. [18] present three families of privacy models to achieve PPPM: group-based
models, DP models, and encryption-based models. They then analyze the privacy

7

requirements that GDPR brings to PPPM. This article addresses two of these
requirements: anonymity and unlinkability [18].

Group-based models have been addressed in several studies [19, 2]. TLKC [19]
proposes a k-anonymity mechanism to anonymize event logs. TLKC anonymizes
a log from the cases’ perspective. This work has been extended [2] to anonymize
the log from the resource perspective. These techniques adopt k-anonymity, which
results in suppressing cases or events within cases. In one example in [19], TLKC
suppressed 87% of the activities in the output. Besides, k-anonymity does not fully
mitigate PSO attacks [1].

Other studies adopt differential privacy. Mannhardt et al. [20] propose an event
log summarization approach that uses differential privacy to anonymize two types
of queries: the query “frequencies of directly-follows relations” and “frequencies
of trace variants.” This approach does not consider logs with timestamps. While
summarization approaches are beneficial for some process mining techniques, e.g.,
constructing the directly-follows graph and trace variant analysis, other process
mining techniques such as conformance checking, business process simulation,
and performance mining require the release of an anonymized event log where the
events annotated with their execution timestamps.

PRIPEL [21] uses timestamp shifts to anonymize the timestamp attribute of
the log. It ensures privacy guarantees based on individual cases. Also, PRIPEL
uses sequence enrichment to anonymize other attributes of the log. PRIPEL takes
three input parameters, namely ε , k, and N. ε is the DP parameter, k is the cut-out
frequency (i.e., PRIPEL cuts out all variants that appear less than k), and N is the
maximal prefix length. This study does not address the problem stated in Sect. 1
because they do not limit the guessing advantage to a certain threshold. Instead,
the user has to provide an ε value as an input. PRIPEL [21] uses the same ε

value to anonymize the trace variants and timestamps, although ε has a different
interpretation for different value ranges.

SaCoFa [22] uses semantic constraints to achieve high-utility anonymization
of event logs using DP. This approach anonymizes the log by replacing prefixes
shared by multiple case variants with perturbed versions thereof. The approach
replaces an original prefix with a perturbed one, provided that the perturbed prefix
fulfills certain semantic constraints and is within a certain distance of the original
one. SaCoFa focuses on anonymizing the control flow query and does not address
the problem stated in Sect. 1 insofar as it does not anonymize the timestamps.

Other studies anonymize the event log from the resource perspective. Batista
& Solanas [23] present an approach that groups individuals based on activity
distribution and transfers resource information within the group to uniform the

8

resource distribution. PRETSA [24] provides event log sanitization by adopting k-
anonymity and t-closeness to avoid disclosing employees’ identities. These studies
do not address the problem stated in Sect. 1 because they study log anonymization
to protect resource disclosure.

Other related work of PPPM is orthogonal to our research, which does not pro-
vide a concrete method to anonymize the event log. Kabierski et al. [25, 10] provide
a framework for anonymizing process performance indicators. Rafiei et al. [26]
present quantification metrics of both utility and disclosure risk. Furthermore, other
studies addressed the secure processing of distributed event logs [27, 28]. Other
studies addressed the privacy-preserving continuous event data publishing [29, 30].

3. Approach

We seek to anonymize an event log in such a way that an attacker cannot single
out an individual based on a prefix or suffix of the individual’s trace or based on the
event timestamps. Accordingly, the proposed approach relies on a data structure
that captures all prefixes and suffixes of a set of traces, namely a Deterministic
Acyclic Finite State Automata (DAFSA) [31]. By analyzing the frequency and time
differences of each DAFSA transition, we estimate the amount of noise required to
achieve the required guessing advantage.

Concretely, given a log and a guessing advantage threshold δ , our approach
produces a differentially private event log in 7 steps as outlined in Fig. 1. The

Event Log
Annotation

Event
Log

Prior
Knowledge
Estimation

Case
 Filtering

ε
Estimation

Case
Sampling

Timestamp
Anonymization

Time
Compression

Differentially
Private Event

Log

Figure 1: Approach

first step constructs a lossless intermediate representation of a log (DAFSA). The
DAFSA groups the traces that share the same prefixes or suffixes. An attacker
may have prior knowledge about the events recorded in the log before the log
publishing. Consequently, we estimate the prior knowledge of every event that
belongs to a prefix/suffix group. Some events may correlate with high prior-
knowledge values, leading to more noise injected in the log to achieve the given
δ threshold. Accordingly, we provide a case filtering mechanism that filters out
entire cases based on the estimated prior knowledge of their events. The fourth step
estimates an ε value for every prefix/suffix group for the input δ threshold. The
fifth step uses the estimated ε value to apply sampling to the cases based on their
prefixes/suffixes and case variants. The sixth step applies timestamp anonymization

9

based on the estimated ε values for every group of prefixes/suffixes. Lastly, we
post-process the differentially private log to compress the timestamp values so that
the overall timeframe of the resulting log matches closely with the original log.
We generate new case IDs, so an attacker cannot use the case ID (on its own) to
identify an individual. The rest of this section introduces the attack model and then
discusses each step of the proposed approach in turn.

3.1. Attack Model
We consider a scenario where a data owner shares an event log with an analyst.

We assume that the activity labels and the smallest and largest timestamp in the
event log are public information. We assume that each trace in the log pertains
to an individual whose privacy we wish to safeguard. We view the analyst as a
potential attacker who may seek to infer information about an individual based on
the released log. We seek to protect the release under a worst-case scenario where
the analyst has background knowledge about all individuals in the log except for
the individual of their interest. Specifically, we seek to protect the release of log L
to prevent the attacker from fulfilling one or both of the two attack goals:

• h1: Has the case of an individual gone through a given prefix or suffix? The
output is a bit with a value ∈ {0,1}.

• h2: What is the cycle time of a particular activity that has been executed
for the individual? The output is a real value that the attacker may wish to
estimate with a certain precision.

Note that we do not seek to prevent the attacker from guessing the activity
labels, i.e., we do not view the activity labels as private information. Also, we
assume that cases are independent, meaning that the sequence of activities that
a case follows does not depend on the activity sequences of other cases. This
assumption usually holds in a business process, e.g., the patient’s pathway in
a treatment process does not depend on that of other patients. If an individual
participates in more than one case (i.e., cases are not independent), the ε parameter
should be divided by the maximum number of cases related to an individual to
estimate the decreased privacy guarantees. Also, this paper proposes a one-shot
event log release mechanism where the log owner anonymizes the log once and
releases the anonymized log as the single access to their business process execution.
In case of repeating the anonymization more than once, the ε parameter shall be
divided by the number of repeated anonymizations.

To prevent an attacker from achieving goals h1 and h2, we introduce a notion
of a differentially private event log.

10

Definition 3.1 (Differentially-Private Event Log). Let L be an event log as defined
in Def. 2.1. We say that a log L′ = M(L) is ε-differentially private if: (1) it
ensures ε-differential privacy guarantee from the control-flow perspective; (2) it is
ε-differentially private w.r.t. timestamp.

3.2. Event Log State-Annotation
Our goal is to prevent an attacker from singling out individuals based on any

prefix or suffix of their trace (cf. attack goal h1). To this end, we group the prefixes
and suffixes in the log and inject independent differentially private noise to each
group. Consequently, we need a log representation that partitions the prefixes
and suffixes of the log traces into groups. In other words, this representation
should assign each prefix (suffix) in the log to one group such that the union of the
groups is equal to the entire set of prefixes (suffixes). Also, we require that this
representation preserves only the set of case variants of the log (cf. R1).

The DAFSA provides us with such a partitioning. Given a set of words, each
state in the DAFSA corresponds to a group of prefixes that share the same set of
possible suffixes and suffixes that share the same set of prefixes [32]. An advantage
of the DAFSA (specifically the minimal DAFSA) over similar representations, such
as prefix trees, is that a (minimal) DAFSA contains a minimal number of groups
(states) [32]. By minimizing the number of groups, we obtain larger groups. The
larger the group, the smaller the needed noise injection to achieve ε-DP.

Definition 3.2 (Minimal DAFSA of a set of words [32]). Let V be a finite set of
labels. A DAFSA is an acyclic directed graph D = (S,s0,A,S f), where S is a finite
set of states, s0 ∈ S is the initial state, A⊂ S×V ×S is a set of labeled transitions,
and S f is a set of final states. A DAFSA of a set of words W is a DAFSA such that
every word in W is a path from an initial to a final state, and, conversely, every
path from an initial state to a final state is a word in W . A minimal DAFSA of a set
of words W is a DAFSA of W with a minimal number of states.

Given a path from the initial state s0 to a state s ∈ S in a DAFSA, the sequence
of labels of the arcs in the path is the prefix of s. Similarly, given a path from s to a
final state s f ∈ S f , the sequence of labels in such path is the suffix of s.

Reissner et al. [31] reuse the algorithm in [32] to represent an event log as
a DAFSA. Every trace in the log is seen as a word over the alphabet of activity
labels. Each particular word extracted from an event log in this way is called a
case variant of the log.

11

Definition 3.3 (Case Variant). Given an event log L, a case variant of L is a
sequence of activity labels 〈a1,a2, ...,ak 〉 such that there is a trace 〈e1,e2, ...,ek 〉
of L such that ∀ j ∈ [1..k] id(e j) = a j, where id(e) is the case ID of the event e.

The set of case variants (each one represented as a word) is then compressed
into a DAFSA. For example, the DAFSA representation of the log in Table 1 is
shown in Fig. 2.

S0 S5 S2

S4

S3
A

D A

B

E

C

Figure 2: DAFSA of the event log in Table 1

Definition 3.4 (Common prefixes and suffixes [31]). Let D = (S,s0,A,S f) be a
DAFSA. The set of common prefixes of D is P= {pre f (s)|s∈ S∧|sI |> 1}. The
set of common suffixes of D is S= {su f f (s)|s ∈ S∧|I s|> 1}.

The common prefixes of the DAFSA in Fig. 2 are {〈A,B〉〈D,A〉〈A〉}, and
the common suffixes are {〈B,C〉〈E,C〉}. Cases corresponding to case variants
that traverse a given DAFSA state s share the same set of prefixes and suffixes.
This article employs DAFSA states and transitions to group common prefixes and
suffixes within cases of the log. We annotate the log in such a way that each event
(activity instance) is related to a DAFSA transition (i.e., each event is annotated
with a pair of states).

Definition 3.5 (DAFSA-Annotated Event Log). A DAFSA-annotated event log
Ls = {r1,r2, ...,rn} is a set of entries r = (i,a, ts,si,se), each links an event e =
(i,a, ts) ∈ L, where L is the event log, to the DAFSA transition t = (si,a,se) that
represents the occurrence of that event, where t starts from si, ends at se, and
labeled with the same activity a.

The DAFSA-annotated event log links every event in the log, based on its
prefix, suffix, and activity label, to a DAFSA transition. Every event is labeled by
the source state and target state of the DAFSA transition. Table 2 (columns “Src.
state” and “Tgt. state”) shows the DAFSA-annotated log.2

2Columns “Norm. Rel. Time”, “Prec.” and “PK” are explained later.

12

Table 2: DAFSA State-Annotated Event log

Case
ID

Act.
Label Timestamp

Src.
State

Tgt
State

Rel.
Time

Nrm.
Rel.
Time Prec. PK

1
A 8/8/2020 10:20 s0 s5 0 0 1 0.33
B 8/8/2020 10:50 s5 s2 30 0.33 0.67 0.75
C 8/8/2020 16:15 s2 s3 325 0.0 0.01 0.33

2

D 8/8/2020 12:37 s0 s4 0 0 1 0.33
A 8/8/2020 14:37 s4 s5 120 1 0 0.35
E 8/8/2020 15:07 s5 s2 30 1 0 0.35
C 8/8/2020 20:31 s2 s3 324 0 0.01 0.33

3
A 8/9/2020 13:30 s0 s5 0.99 0.33 1 0.5
B 8/9/2020 13:55 s5 s2 25 0 0.67 0.5
C 8/9/2020 20:55 s2 s3 420 0.07 0.01 0.167

4

D 8/9/2020 15:00 s0 s4 0.99 1 1 0.5
A 8/9/2020 17:00 s4 s5 120 1 0 0.35
B 8/9/2020 17:40 s5 s2 40 1 0.67 0.25
C 8/9/2020 23:05 s2 s3 325 0.0 0.01 0.33

5
A 8/9/2020 17:25 s0 s5 0.99 0.33 1 0.5
E 8/9/2020 17:55 s5 s2 30 1 0 0.35
C 8/10/2020 23:55 s2 s3 1800 1 0.01 0.17

6
A 8/11/2020 17:00 s0 s5 3 1 1 0.17
B 8/11/2020 17:27 s5 s2 27 0.13 0.67 0.5
C 8/11/2020 23:45 s2 s3 378 0.04 0.01 0.17

Timestamps represent the time at which every event happened. However, it is
more beneficial to compare the duration of activities in every group of suffixes and
prefixes to prevent singling out an individual based on the duration of their activity
and its timestamp. We calculate the relative time to compare the time within a
group of traces that share the same suffix/prefix and activity label. The relative
time of an event is the time difference between an event and its successor. Table 2
(column Rel. Time) shows the relative time estimated for the given events. For the
start event of every case, the relative time is the difference between the case start
event and the first event in the event log.

3.3. Prior Knowledge Estimation
Before the log release, attackers can use their knowledge to guess information

about a specific individual. We estimate the prior knowledge of an attacker using
the framework proposed in [16]. An attacker’s guess h(L) is considered successful
if it falls within a range of values Hp, which is the actual value ± precision.

Definition 3.6 (Prior Guessing Probability). An attacker’s prior guessing probabil-
ity is P := Pr[h(L) ∈ Hp]

A guessing precision p is a percentage value representing the range of a suc-
cessful guess Hp. For example, if the true value is 0.5 and p = 0.2, the guessed

13

value is considered successful if it falls in range Hp = [0.3,0.7]. To interpret the
precision in the range of values [0,1] (a percentage value), we pre-process the log
to normalize the range of values (relative timestamps) to be in the range [0,1]. We
assume that the precision for the start timestamp is one day and the precision for
the relative time is 10 seconds. Table 2 (columns Nrm. Rel. Time and Prec.) shows
the normalized relative time (the normalization is based on the event’s DAFSA
transition group) and the estimated precision.

The prior knowledge Pk can be estimated based on the data distribution as [16]:

Pk =CDF(tk + p · r)−CDF(tk− p · r) , (1)

where CDF is the cumulative distribution function, tk is the value of an instance k
that falls in a range of values, p is the precision, and r is the upper bound of the
range of values.

Suppose we cannot estimate the probability distribution of input values due to
the absence of data distribution (e.g., the likelihood of participating in a subtrace).
In that case, we can compute the worst-case scenario Pk as [16]:

Pk = (1−δ)/2 for all k . (2)

To apply the prior knowledge to the DAFSA-annotated log, we group the events
based on their DAFSA transition (source state, activity, and target state). For each
group of values, we estimate the prior knowledge using Eq. 1. Table 2 (column
PK) shows the estimated prior knowledge for every instance with δ = 0.3.

3.4. Case Filtering
In some cases, the prior knowledge Pk is very high such that more noise is

needed to keep the guessing advantage below the threshold δ after publishing the
event log. We filter out the instances that violate Pk +δ ≥ 1 to reduce the injected
noise in such a case. To fulfill R1, we filter out the entire case.

Definition 3.7 (Case Filtering). A case filter F is a function that filters out cases
with at least one DAFSA transition that violates the condition Pk +δ ≥ 1.

In Table 2, activity B of the first case has a prior knowledge value Pk = 0.75 and
δ = 0.3. Our approach filters out the entire first case because at least one DAFSA
transition violates the condition Pk + δ ≥ 1. Table 3 shows the filtered DAFSA-
annotated event log.3 After case filtering, we re-estimate the prior knowledge

3The column “εt” is explained later.

14

for each event. Table 3 (column New PK) presents the newly estimated prior
knowledge values. Case filtering does not have an impact on privacy because it
does not depend on private data.

Table 3: Filtered DAFSA State-Annotated Event log

Case
ID

Act.
Label Timestamp

Src
State

Tgt
State

Rel.
Time

New
PK εt

2

D 8/8/2020 12:37 s0 s4 0 0.2 1.39
A 8/8/2020 14:37 s4 s5 120 0.35 1.24
E 8/8/2020 15:07 s5 s2 30 0.35 1.24
C 8/8/2020 20:31 s2 s3 324 0.2 1.39

3
A 8/9/2020 13:30 s0 s5 0.99 0.6 1.8
B 8/9/2020 13:55 s5 s2 25 0.33 1.24
C 8/9/2020 20:55 s2 s3 420 0.2 1.39

4

D 8/9/2020 15:00 s0 s4 0.99 0.6 1.79
A 8/9/2020 17:00 s4 s5 120 0.35 1.24
B 8/9/2020 17:40 s5 s2 40 0.33 1.24
C 8/9/2020 23:05 s2 s3 325 0.2 1.39

5
A 8/9/2020 17:25 s0 s5 0.99 0.6 1.79
E 8/9/2020 17:55 s5 s2 30 0.35 1.24
C 8/10/2020 23:55 s2 s3 1800 0.2 1.39

6
A 8/11/2020 17:00 s0 s5 3 0.2 1.39
B 8/11/2020 17:27 s5 s2 27 0.33 1.24
C 8/11/2020 23:45 s2 s3 378 0.2 1.39

3.5. ε Estimation
Given the filtered DAFSA-annotated event log, we need to estimate the amount

of noise in order to anonymize the event log. We use DP, which quantifies the
noise using ε . One naive approach is using the same ε both for control-flow and
timestamp anonymization. The two types of queries are different, and the quantity
of noise has a different impact on each. Given the attack model in Sect. 3.1,
for attack h1, we use the lossless log representation (DAFSA) to apply an ε-DP
mechanism to the prefixes and suffixes of the traces in the log. For attack h2,
we apply a bounded ε-DP mechanism w.r.t. the timestamp attribute (Def. 2.4).
Consequently, we seek to quantify two ε values: the εd is required to anonymize
the DAFSA, and the εt is required to anonymize the timestamp attribute.

Both εd and εt should guarantee that the attacker cannot single out an individual
based on any prefix or suffix of their trace. Accordingly, we group the prefixes and
suffixes in the log and estimate εd and εt for each group.

3.5.1. Estimating εt

To protect against attack goal h2, we need to inject noise sufficient to achieve
a given εt , determined by the guessing advantage threshold. Two approaches are

15

possible. The first one is to calculate a single εt for all events in the log. The
second approach is to estimate an εt that minimizes the noise injected into each
event individually. We use the second one.

We estimate εt for an event based on the group of prefix that ends with the event
and the suffixes that starts with the event. Consequently, we adopt a personalized
differential privacy mechanism that uses a different εt value for every event. Per-
sonalized DP assumes that every individual has independent privacy specification
Φ [33]. In other words, Φt = {(u1,ε1),(u2,ε2),,(um,εm)}, where an individual
u ∈U , and the database has m users.

Definition 3.8 (Personalized Differential Privacy [33]). Given a universe of cases
U , a mechanism M is said to be Φ-personalized differentially private (Φ-PDP) if
all the event logs L1 and L2 differing at most on one value of a tuple t, and for all
S⊆ Range(M):

Pr[M(L1) ∈ S]≤ exp(Φu
t)×Pr[M(L2) ∈ S]

...where u ∈U is the case that corresponds to tuple t, and Φu
t denote u’s privacy

quantification.

Note that differential privacy (cf. Defs 2.2, 2.3, and 2.4) is a special case of
personalized differential privacy (Def 3.8), where all the ε values are the same [33].

In some settings, the PDP assumes that the ε values (Φu) are given by the users.
In this paper, we estimate the ε value for each event, i.e., we estimate Φu. We
assume that the log publisher provides the maximum acceptable increase in the
successful guessing probability after publishing the anonymized event log, called
Guessing Advantage δ . Laud et al. [16] provide a framework that quantifies the ε

value from a given guessing advantage δ . They define the guessing advantage as
the difference between the posterior probability (after publishing M(L)) and the
prior probability (before publishing M(L)) (prior knowledge) of an attacker making
a successful guess in Hp. Let δ be the maximum allowed guessing advantage,
stated by the event log publisher.

Definition 3.9 (Guessing Advantage). Attacker’s advantage in achieving the goal
h with precision p is at most δ if, for any published event log L′, treating L as a
random variable,

Pr[h(L) ∈ Hp |M(L) = L′]−Pr[h(L) ∈ Hp]≤ δ .

Laud et al. [16] quantify the maximum ε value that achieves the upper bound
δ for every data instance.

16

Proposition 3.1. The maximum possible ε (i.e., the minimum noise) that achieves
the upper bound δ , w.r.t the above attack model, and fulfills the requirement R2 is

εk =− ln
(

Pk

1−Pk
(

1
δ +Pk

−1)
)
· 1

r
, (3)

where r is the maximum value in the range of values , and Pk is the prior guessing
probability for an instance k.

Proof. The proof of Prop. 3.1 is available in Appendix. A.2 �

To quantify ε using Eq (3), we need to study the distribution of values among ev-
ery group of prefixes/suffixes. We quantify Φt values using the DAFSA-annotated
event log to mitigate singling out an individual by their prefixes (or suffixes). Given
Definitions 3.2, and 3.5, all cases that share a common prefix will traverse a given
state s in the DAFSA corresponding to this prefix. The same holds for cases that
share a common suffix.

To anonymize the timestamps, we anonymize two components: (1) the start
time of the case, which we define as the time difference between the start time of
the case and the first start time in the event log); and (2) the execution time of each
activity in the case, defined as the difference between its execution timestamp and
the timestamp of the successor activity in the same case.

To anonymize the start time of each case, we group all the start times of the
cases in the log to anonymize the fact that a given case happened on a specific
day. Accordingly, we group events that have source state s0 as a single group. To
anonymize the execution time of activities, we group the events that have the same
source state, activity label, and target state in the DAFSA. For each group of the
above, we use Eq (1) and (3) to estimate a different εt value for every event (Φt).
Eq (3) provides the maximum εt to fulfill R2. The εt estimated for each event are
shown in Table 3 (column εt).

3.5.2. Estimating εd
Parameter εd determines the noise to be applied to the occurrence count of each

case variant in the log to prevent attack h1. To estimate εd for a given group of
prefixes or suffixes, we consider each group’s size (count). This count is given by
the following SQL query:

CT = SELECT SourceState, ActivityLabel, TargetState, COUNT(*)

FROM StateAnnotatedEventLog

GROUP BY SourceState, ActivityLabel, TargetState

17

The output of the above query is the DAFSA transition contingency table
(CT). We use the CT to estimate εd by using Eq (2) and (3). The εd of all the
DAFSA transitions of the CT is the same, but the noise is drawn for every transition
independently. The privacy proofs of ε estimation are presented in Appendix A.1.

Definition 3.10 (DAFSA Transitions Contingency Table). A DAFSA transition
contingency table C is the histogram of counts for each transition t = (si,a,se) of
the DAFSA D, where si is the source state, a is the activity label, and se is the
target state of t.

Table 4 shows the DAFSA transitions CT. These counts are called marginals.
The marginals contain the correlations counts of the common sets of prefixes and
suffixes of the DAFSA. We anonymize the marginals to prevent singling out that
an individual has been through an activity, using the prefix and the suffix set of
activities. Barak et al. [34] use an unbounded ε-DP mechanism (cf. Definition 2.2)
for marginal anonymization. Likewise, we use unbounded ε-DP to anonymize the
DAFSA transitions CT.

Definition 3.11 (Differentially Private DAFSA Transitions Contingency Table).
Let f be a query function that computes a DAFSA transitions contingency table
with a set of transitions t = (si,a,se) and a count cell ci for each transition. Let M f
be an unbounded ε-differentially private mechanism (by Definition 2.2) that injects
noise into the result of f . A differentially private DAFSA transitions contingency
table is defined as M(C) := {(t1,M f (c1)),(t2,M f (c2))...,(tn,M f (cn))}, where n is
the number of transitions.

3.6. Case Sampling
Given the mechanism M f of Def. 3.11, we need to translate the noise estimated

by the CT to the log. Kifer et al. [35] study the anonymization of CTs. They
present the notion of a move to define the anonymization of the marginals of CTs.
A move is a process that adds or deletes a tuple from the CT. We calculate the
number of moves by drawing a random noise using εd . Then, we translate the
moves to a sampling of the cases that go through the same DAFSA transitions.
Sampling may require zero or more moves.

The conference version of this article [12] has a stricter version of R1. It fulfills
the requirement that “the anonymized log must have the same set of case variants
as the original log.” We defined oversampling as increasing a count (positive move)
in the CT by replicating a random tuple in the log to fulfill such a requirement.

18

Definition 3.12 (DAFSA Transition Oversample). Given a DAFSA transition con-
tingency table Ci, an oversample O is a transformation that adds a DAFSA transition
instance to Ci, producing a contingency table C j = O(Ci), with an increase of only
one count cell by 1.

This article considers a relaxation of the above requirement (cf. R1). We extend
our approach to use sampling instead of oversampling, i.e., our approach performs
both replication and deletion of cases from the log. We define sampling as an
increase or a decrease of a count in the CT.

Table 4: DAFSA Transitions Contingency Table, and the generated Random Noise every DAFSA
Transition for δ=0.3 and estimated εd=1.238

Source
State Activity

Target
State Count Noise

s0 A s5 3 0
s5 B s2 3 2
s2 C s3 5 1
s0 D s4 2 -3
s4 A s5 2 0
s5 E s2 2 0

The randomly generated sample size (based on εd) can have a positive or
a negative size. We draw a random noise value from the Laplace distribution
Lap(∆ f/εd), for each DAFSA transition. Table 4 shows the random noise for every
DAFSA transition with the estimated εd= 1.238. The positive size is translated to
replicating a random tuple in the log. The negative size is translated to deleting a
random tuple in the log. Adding or removing a prefix/suffix of a trace to the log
affects a single frequency count by 1, so ∆ f = 1.

Definition 3.13 (DAFSA Transition Sampling). Given a DAFSA transition contin-
gency table Ci, a sample Sample is a transformation that adds or deletes a DAFSA
transition instance from Ci, producing a contingency table C j = Sample(Ci), with
an increase or a decrease of only one count cell by 1.

To avoid inserting new trace variants in the event log (cf. R1), we sample the
prefix and the suffix of the sampled transition, i.e., we sample an entire case that
goes through the sampled transition.

Definition 3.14 (Case Sample). Given an event log L, a case sample Sampleci is a
transformation that either duplicates or deletes a case ci of log L, that goes through
a sampled DAFSA transition t, in such a way that it duplicates or deletes all the
activities of ci.

19

Timestamp Noise Injection At this step, we have the DAFSA annotated log, with
the sampled case instances and an εt value of each event. First, if some cases have
been replicated, we divide the εt value of the replicated cases by the number of
replications, as it is considered repeating the same query more than once [3]. Then,
we draw a random noise from the Laplace distribution Lap(∆ f/εt) to anonymize
the relative time for every activity instance and the start time of each case. Finally,
we transform the relative execution time of activities to timestamps.

Algorithm 1 presents the steps we perform in order to calculate the differentially
private event log. This algorithm does not introduce new case variants so as to
fulfill R1. Algorithm 1 starts by performing event log state-annotation as described
in Sect. 3.2. Then, we estimate the prior knowledge as described in Sect. 3.3.
Next, we perform case filtering as presented in Sect. 3.4. Then, we estimate Φt ,
and εd as described in Sect. 3.5. Then, we construct a correspondence (lookup)
table between the DAFSA annotated log and the case variants (line 7). This table
maps every DAFSA transition to the case variants that traverse it. Also, we use
this lookup table to track the updates over transitions. Second, we independently
draw a random noise from the Laplace distribution Lap(∆ f/εd) (line 8) for every
transition. We initialize added noise counter to be zero (line 9). Next, we count
the DAFSA transitions that need noise injection and their needed noise (lines
10). Next, we choose a random transition that needs noise (with their occurrence
frequency as sampling weights) (line 12). Then, we randomly choose a case variant
that goes through the chosen transition (with sampling weights of their number of
instances) (line 13). Next, based on the noise (line 15), we either replicate (lines
16-17) or delete (lines 20-21) the chosen case variant by a number of times equals
the noise. For every replication/deletion, we choose a random case variant instance
from the log to be replicated. We repeat this process until all the transitions have
the minimum required noise. Finally, we divide Φt of the replicated cases by
the number of replications (line 26). By the end, the event log is anonymized by
Φ = {εd,Φt} values calculated from the input maximum guessing advantage δ .

Given Φ = {εd,Φt}, estimated from the parameter δ , below we show that the
output of Algorithm 1 ensures the Φ-personalized differential privacy guarantees.

Lemma 3.2. Let L and δ be an event log and a maximum guessing advantage
threshold. Log L′ = Alg1(L,δ) fulfills the two properties in Def 3.1 (i.e., L′ is
Φ-personalized differentially private), and L′ fulfills requirements R1 and R2.

Proof. See Appendix A and Lemma A.8. �

Algorithm 1 anonymizes the control-flow and the timestamps using two separate

20

Algorithm 1: Event Log Anonymization Algorithm
1. Input: L: Event Log, δ : Guessing Advantage Threshold
2. Output: L′: Φ-Personalized Differentially Private Event Log
3. L= eventLogStateAnnotation(L);
4. pk=priorKnowledgeEstimation(L,δ);
5. L f = caseFiltering(L, pk);
6. εd , Φt = εEstimation(L f ,pk , δ);
7. DafsaLookup = Build DAFSA annotated event log to case variant lookup(L f) ;
8. DafsaLookup[i].neededNoise= zi, where zi is sampled from Lap(∆ f/εd) independently for every transition ti;
9. DafsaLookup .addedNoise=0;

10. cnt = count(|DafsaLookup .addedNoise| < |DafsaLookup.neededNoise|) ;
11. L′ = L f ;
12. while cnt > 0 do
13. selectedTransition = pick a random transition such that |DafsaLookup.addedNoise| <

|DafsaLookup.neededNoise|;
14. pickedTraces = pick x random traces that traverse selectedTransition, where x =

selectedTransition.neededNoise;
15. foreach t ∈ pickedTraces do
16. if DafsaLookup[t].neededNoise > 0 then
17. DafsaLookup[t].addedNoise ++ ;
18. add to L′ a replica of a random case with a case variant = t ;
19. else
20. DafsaLookup[t].addedNoise −− ;
21. delete from L′ a random case with a case variant = t ;
22. end
23. end
24. cnt = count(|DafsaLookup .addedNoise| < |DafsaLookup.neededNoise|) ;
25. end
26. DafsaLookup[i].Φti =DafsaLookup[i].Φti /DafsaLookup[i].NumOfReplicas, where i is the replicated cases;
27. L′.timestamp= L′.timestamp + zi, where zi is sampled from Lap(∆ f/DafsaLookup[i].εti)
28. return L′

21

mechanisms. The timestamp anonymization mechanism does not alter the order of
activity instances within a trace (i.e. it does not alter the control-flow). In contrast,
the control-flow anonymization mechanism sometimes affects the timestamps.
For example, when a trace is duplicated for over-sampling purposes, this affects
the ε guarantee, because we are effectively releasing twice the same anonymity
trace. Hence, if a trace is duplicated D times, the resulting release would be
(D · ε)-differentially private [3]. Therefore, to ensure that the release is in fact
ε-differentially private, we first divide the ε for timestamp anonymization by the
maximum number of duplications MaxD, and then we inject the noise required to
achieve (ε/MaxD) differential privacy (line 26). Given the above, the combination
of the control-flow anonymization mechanism and the timestamp anonymization
mechanism, as presented in Algorithm 1, does not invalidate either of the two
differential privacy guarantees.

3.7. Timestamp Compression
This article assumes that the start timestamps of the first and the last case in the

original log are public. However, the timestamp anonymization introduces time
shifts, making some cases happen before the original first timestamp or after the
last timestamp of the log. To reduce the impact of time shifts over the log, we
perform timestamp compression as post-processing of the anonymized log.

Proposition 3.3 (Differential Privacy under Post-processing [3]). A post-processing
algorithm P of an event log L gives Φ-personalized differential private event log,
if and only if it has been applied to the output of an algorithm A that gives an
Φ-personalized differential private event log.

Proof. The proof of Prop. 3.3 is in [3] (cf. Proposition 2.1) �

Given the Φ-PDP log, the post-processing of M(L) output is differentially
private. We use the public information, the start timestamp of the first and the last
cases in the event log, to post-process the anonymized log. We perform timestamp
compression to make the cases’ timestamp fall between the original start timestamp
of the first and the last cases in the log. We multiply the relative time values with a
compression factor. We define the compression factor as:

Compression Factor =
Original Range

Anonymized Range+Orignal Range
∗ 1

2
, (4)

where the original range is the difference in days between the start timestamp of
the first and the last cases in the original event log, and the anonymized range is

22

the difference in days between the start timestamp of the first and the last cases
in the anonymized event log. Table 5 shows the anonymized version of the input
event log in Table 1 with a guessing advantage threshold δ=0.3.

Lastly, we generate new Case IDs for the anonymized log cases that do not link
to the original log. Also, we reorder the events in the log by their new timestamps.

Table 5: Differentially Private Event Log with δ=0.3

Case ID Activity Timestamp
66d19fc868978d2fc1e D 2020-08-08 04:26:24
66d19fc868978d2fc1e A 2020-08-08 07:03:57
66d19fc868978d2fc1e E 2020-08-08 07:43:20
66c81c1d1a9773464aa D 2020-08-09 12:16:42
66d19fc868978d2fc1e C 2020-08-09 13:33:07
66c81c1d1a9773464aa A 2020-08-09 14:54:15
66c81c1d1a9773464aa B 2020-08-09 15:53:27
c4247e4c1e9292166cd A 2020-08-09 18:44:10
c4247e4c1e9292166cd E 2020-08-09 19:23:33
efd62407e7f2b016e33 A 2020-08-09 19:34:35
efd62407e7f2b016e33 B 2020-08-09 20:00:23
efd62407e7f2b016e33 C 2020-08-10 00:49:12
66c81c1d1a9773464aa C 2020-08-10 04:41:39
64b00e4dfc2b2145e17 D 2020-08-10 05:17:48
64b00e4dfc2b2145e17 A 2020-08-10 07:55:20
64b00e4dfc2b2145e17 B 2020-08-10 08:44:53
64b00e4dfc2b2145e17 C 2020-08-11 00:59:32
c4247e4c1e9292166cd C 2020-08-11 06:16:25
cde714d92c42217500a A 2020-08-11 07:02:37
cde714d92c42217500a B 2020-08-11 07:33:55
cde714d92c42217500a C 2020-08-11 15:26:28

4. Evaluation

To address the problem stated in Sect. 1 under requirements R1 and R2, the
proposed method injects differentially private noise in two ways: (i) by sampling
and filtering some of the traces in the log; and (ii) by altering the event timestamps.
The noise injection and case filtering affect the utility of the anonymized logs. We
measure the effect of anonymization on the utility by comparing the anonymized
logs against the original ones. We compare the performance of different design
choices. Also, we compare the proposed approach against the state-of-the-art.

Accordingly, we define the following evaluation questions:

EQ1. What is the effect of case filtering and sampling on the output utility?

EQ2. Does the proposed approach outperform the state-of-the-art baselines in
terms of the output utility?

23

EQ3. What is the difference between different design choices and the state-of-the-
art in terms of computational efficiency?

4.1. Evaluation Measures
Given a log, a typical output of process mining tools is the DFG. To measure the

utility loss of the anonymization on the DFG, we compare the DFG resulting from
the anonymized log against the original one. To measure the difference between
two DFGs, we use the Earth Movers’ Distance (EMD) [36]. The EMD has been
used as a log comparison metric metric in several process mining studies such as
in [2, 26, 37]. The EMD between two distributions u and v is the minimum cost of
transforming u into v. The cost is the distribution weight that needs to be moved,
multiplied by the distance it needs to move. Formally:

EMD(u,v) = inf
π∈Γ(u,v)

∫
R×R
|x− y|dπ(x,y), (5)

where Γ(u,v) is the set of distributions on R×R whose marginals are u and v.
Increasing the log size makes it unpractical to perform anonymization within

sufficient execution time [18]. Hence, the privacy computational models should
be scalable in order to preserve privacy practically. Consequently, we conduct
a wall-to-wall run time experiment to assess the efficiency of the method. We
measure the time between reading the input XES file and the generation of its
anonymized version.

4.2. Datasets
To answer our evaluation questions, we rely on the real-life event logs publicly

available at 4TU Centre for Research Data4 as of February 2021. We considered
the logs mentioned in Appendix B Table 1. The selected logs contain the process
execution of different domains, e.g., government and healthcare. From the set of
available logs, we excluded the event logs that are not business processes (e.g.,
“Apache Commons”, “BPIC 16” logs, “Junit 4.12”). Also, we exclude the set of
event logs “coSeLog” as they are a pre-processed version of BPI challenge 15.
Finally, we select a single log for each set of logs in BPIC 13, 14, 15, 17, 20.

4.3. Experiment Setup
We implement the proposed model as part of a prototype, namely Amun5.

We run the experiment on a single machine with AMD Opteron(TM) Processor

4https://data.4tu.nl/
5https://github.com/Elkoumy/amun

24

https://data.4tu.nl/
https://github.com/Elkoumy/amun

6276 and 32 GB memory. We time out any experiment at 24 hours. Also, in our
experiment, we consider only the end timestamp to calculate the relative time of an
event for simplicity, and the same approach is still valid to apply DP. Further, we
keep only the three attributes in every event log: case ID, Activity, and timestamp.

We evaluate and compare the different design choices of our approach. We
evaluate the oversampling presented in the conference version of this article [12],
the proposed approach using all the proposed steps in Sect. 3 (filtering risky
cases then sampling), and the proposed approach without the third step (sampling
without filtering). We use the EMD to compare the anonymized event log against
the original for all the design choices.

We compare the proposed approach against the state-of-the-art. The studies that
consider PPPM from the case perspective are [20, 21, 22, 19, 2]. In our comparison,
we do not include the work in [19, 2] because the parameters’ interpretation of the
k-anonymity privacy model is different from the DP model. The studies [20, 21,
22] adopt DP. Mannhardt et al. [20] anonymize two types of queries: the query
“frequencies of directly-follows relations” and “frequencies of trace variants”. The
output of the anonymization of [20] is not an event log. PRIPEL [21] anonymizes
the event log while adopting the trace variant queries anonymization that has been
proposed in [20]. We compare the proposed approach against [21]. SaCoFa [22]
anonymizes the case variant queries. The output is an event log without the time
attribute. We include SaCoFa [22] only in the EMD frequency experiments because
it does not consider timestamp anonymization. PRIPEL and SaCoFa take three
input parameters, namely ε , k, and N. To select the parameters’ values, we run
several experiments for different values of the pruning parameter k (0.5%, 1%, and
5% of the cases), and we select the best results. For each parameter value, we run
10 experiments, and we take the average value. For the maximum trace length,
we set N to the average trace length of the log. Other experiments with different
parameter values can be found in Appendix B.

PRIPEL accepts a single ε value for both the trace variant anonymization and
the timestamp attribute anonymization, and SaCoFa adapts a single ε value for
all the events. On the contrary, our proposed approach uses different ε values
(Φ). Consequently, we use the average, the minimum, and the maximum values of
the estimated Φ values in our approach as input to PRIPEL and SaCoFa and we
evaluate the output using the EMD. We use SaCoFa with only the frequency EMD
because it anonymizes the case variant query only. Below, Table 6 presents the
average estimated ε values. Tables B.2 and B.3 in Appendix B present the minimum
and maximum ε values. All the anonymized logs are available in Appendix B.

25

4.4. Results
Table 6 shows the results for both the frequency and time annotated DFG. A “-”

indicates that the approach runs out of memory (32 GB) or times out (24 hours).
avg(Φ) refers to the average ε value (in Φ) estimated by the proposed approach
for anonymization. We use the directly-follows frequency between activities to
annotate the frequency-annotated DFG. We use the total relative time between two
activities to annotate the time-annotated DFG. The time EMD distance is measured
in terms of months. The best result for every input δ is in bold. Amun f outperforms
other settings in both the frequency and time EMD in most of the logs because
case filtering decreases the needed noise to anonymize the timestamp, and hence
Amun f has a lower utility loss.

The utility loss differs across logs. We see a decrease in the utility loss for struc-
tured logs such as Credit Requirement, Unrineweginfectie (urinary tract infection),
and Traffic Fines. For example, the output of Amuns for Unrineweginfectie has a
maximum frequency EMD of 6.53, and for the same log, Amun f has a maximum
EMD of 5.53. This difference is because Amun f filters out cases to reduce the
timestamp noise injection. PRIPEL has a frequency EMD of 290, and SaCoFa has
a frequency EMD of 25.6. That happens due to infrequent case variants trimming.

With anonymizing unstructured event logs, which is more challenging due to
the uniqueness of cases, we see an increase in utility loss. For instance, the output
of Amuns for the Sepsis cases log has a maximum frequency EMD of 56.84, and
for the same log, Amun f has a maximum EMD of 101.04. The increase of the
utility loss is significant with Amun f because it filtered out 580 case variants, in
contrast to Amuns, which dropped out only 87 case variants. For the same log,
PRIPEL has a maximum EMD of 118.71. That happens because PRIPEL filtered
out 839 case variants. SaCoFa has a maximum EMD of 121.3 because it filtered
out 787 case variants and added new 19 case variants (false positives).

The oversampling setting (Amuno) has the largest frequency and time EMD
due to duplicating cases and dividing Φt by the number of duplications. PRIPEL
has a time EMD that is close to the filtering settings. However, the used ε with
PRIPEL is the average estimated Φ. Thus, the proposed approach can provide
similar or better time EMD with stronger privacy metrics. The effect of using the
same ε in PRIPEL for both the case variant and timestamp anonymization appears
in the frequency EMD. The proposed approach has a lower frequency EMD than
PRIPEL and SaCoFa in all the logs. The same conclusion could be driven from
Tables B.2 and B.3 in Appendix B which contain the EMD of the approaches for
the minimum and maximum ε values.

26

Table 6: Earth Movers’ Distance for the output of different anonymization approaches using the
average value of Φ. A “-” means that the approach ran out of memory or timed out.

Log δ avg(Φ) EMD Freq EMD Time

Amuns Amun f Amuno PRIPEL SaCoFa Amuns Amun f Amuno PRIPEL

BPIC12
0.2 1.48 331.02 653.36 2301.62 946.9 1006.60 40.30 8.08 192.13 25.75
0.3 2.00 212.64 742.39 1597.79 966.99 969.29 20.32 13.54 107.96 26.7
0.4 2.47 142.37 785.87 1275.43 966.88 876.56 12.68 16.74 72.56 26.7

BPIC13
0.2 1.49 1131.91 1053.45 7613.27 3771.09 2992.09 778.18 811.51 3343.92 197.41
0.3 1.99 840.55 258.45 5417.64 3792.55 2562.55 592.36 307.26 2055.23 197.38
0.4 2.44 558.45 2450.45 4296.73 3775.82 2623.18 486.86 75.13 1751.96 197.19

BPIC14
0.2 1.25 429.60 395.24 1905.69 531.42 494.34 132.53 130.00 577.32 10
0.3 1.74 298.86 281.43 1333.95 - 488.67 82.02 76.37 321.72 -
0.4 2.27 208.55 179.94 1012.62 - 385.8 47.12 50.61 178.08 -

BPIC15
0.2 0.42 20.71 18.74 80.61 - 20.84 5.68 4.18 22.47 -
0.3 0.69 14.82 7.93 52.42 10.71 10.84 3.15 2.28 11.17 0.8
0.4 0.99 12.60 2.79 39.09 - 10.30 2.46 1.05 8.87 -

BPIC17
0.2 1.81 141.37 1925.92 1159.08 2454.47 1601.54 117.56 75.98 268.08 109.10
0.3 2.21 78.60 2667.91 938.79 - 1271.89 95.07 131.76 206.76 -
0.4 2.66 49.93 2674.76 938.79 - 1215.84 79.33 133.77 206.76 -

BPIC18
0.2 0.91 3775.468 659.01 17668.46 - 3555.97 2176.17 179.39 3206.75 -
0.3 1.31 2922.80 1752.72 12063.81 - 3763.41 1319.69 325.14 2201.39 -
0.4 1.72 2372.08 2812.65 9055.04 - 3789.32 885.81 517.59 1647.15 -

BPIC19
0.2 2.96 946.99 811.80 4509.08 - 1037.15 524.18 608.02 1513.92 -
0.3 3.51 743.96 572.71 3094.05 - 936.21 491.84 498.59 1054.23 -
0.4 4.00 612.48 399.36 2376.21 - 872.76 500.57 360.54 751.67 -

BPIC20
0.2 2.73 18.97 18.69 138.05 98.10 142.92 65.23 69.04 180.50 23.94
0.3 3.27 14.88 10.42 99.76 - 126.27 44.46 40.01 109.90 -
0.4 3.75 10.55 2.24 76.61 - 88.85 41.70 35.78 82.67 -

CCC19
0.2 0.23 12.78 3.70 30.81 - - 0.00 0.00 0.00 -
0.3 0.54 4.55 2.23 25.77 - - 0.00 0.00 0.00 -
0.4 0.85 5.54 3.21 16.64 - - 0.00 0.00 0.00 -

CredReq
0.2 1.39 0.00 2.00 4.00 0.00 0 233.08 238.79 186.94 0.00
0.3 1.80 0.00 0.00 3.00 0.00 0 203.94 182.39 220.17 0.00
0.4 2.03 0.00 2.00 2.00 0.00 0 201.81 231.37 180.77 0.00

Hospital
0.2 0.21 81.40 75.74 406.45 - 85.24 10.30 11.33 55.44 -
0.3 0.41 57.91 61.96 264.09 - 84.86 7.86 7.42 31.71 -
0.4 0.60 58.68 63.93 210.40 - 84.24 6.07 6.01 20.70 -

Sepsis
0.2 1.31 56.84 32.20 427.64 118.02 121.3 8.97 4.37 61.50 8.68
0.3 1.83 28.46 67.97 286.23 118.63 114.23 6.35 3.60 32.93 8.64
0.4 2.37 43.38 101.64 232.50 118.71 96.84 4.26 6.48 26.61 8.64

Traffic
0.2 4.50 1.64 0.90 33.50 - 36.67 8250.42 7253.29 8627.86 -
0.3 5.26 0.61 8.01 25.51 - 32.90 7767.32 6720.80 7081.06 -
0.4 5.28 0.00 2951.50 21.00 - 22.50 7182.96 12788.57 7419.02 -

Unrine.
0.2 2.87 6.53 5.53 66.00 290 25.60 44.96 39.34 184.68 94.74
0.3 3.41 0.00 2.87 53.67 290.47 24.70 28.12 33.27 103.67 94.73
0.4 3.84 1.47 2.53 47.00 290.47 2.60 21.89 26.35 90.93 94.73

27

Timestamp

Ca
se

s

Active cases over time

Oversampling PRIPEL Filtering Sampling Original

Jan '18 Jan '19 Jan '20 Jan '21May '17 Sep '17 May '18 Sep '18 May '19 Sep '19 May '20 Sep '20 May '21
0

100

200

300

(a) Unrineweginfectie Active cases over time

Timestamp

Ca
se

s

Active cases over time

Original Filtering Sampling Oversampling PRIPEL

Jan '14 Jan '15 Jan '16Oct '13 Apr '14 Jul '14 Oct '14 Apr '15 Jul '15 Oct '15 Apr '16
0

250

500

750

1000

(b) Sepsis Active Cases over Time

Figure 3: Variant Analysis comparison between Unrine. and Sepsis event logs and their anonymized
versions, with δ = 0.2, average ε = 1.31 for Sepsis, and average ε = 2.87 for Unrine. The figures
are zoomed by 70%.

28

We compare the variant analysis of different design choices for structured and
unstructured logs. Fig. 3 shows a variant analysis between Unrineweginfectie and
Sepsis logs and their anonymized versions by different design choices and PRIPEL.
All the design choices have their best utility for the Unrineweginfectie log, which
has 1650 cases and only 50 case variants. Fig. 3(a) shows that Amuns, Amun f ,
and PRIPEL result in logs with close active cases over time to the original log.
The false negatives in the anonymized logs are 1, 2 and 34 for Amuns, Amun f and
PRIPEL, respectively. However, Amuno adds more noise than other approaches,
though it keeps the false negatives to zero due to oversampling.

Fig. 3(b) shows the active cases over time for the sepsis cases event log, with
1050 cases and 846 case variants. For both Amuns and Amun f the anonymized
Sepsis cases has a closer behavior to the original log. Amuno generates more noise
with unstructured event logs than structured logs. The anonymized log by PRIPEL
has fewer case variants than the original log. The false negatives in the anonymized
logs are 37, 317, and 839 for Amuns, Amun f , and PRIPEL, respectively.

Table 7: Execution time experiment. The time is measured in minutes for an input δ = 0.2. A “-”
means that the approach ran out of memory or timed out.

dataset Amun f Amuns Amuno PRIPEL
BPIC12 4.44 7.38 12.50 24.35
BPIC13 1.11 1.09 3.90 4.20
BPIC14 44.57 43.83 101.40 -
BPIC15 4.38 4.45 8.40 -
BPIC17 6.88 10.80 17.40 1.46
BPIC18 128.32 321.59 542.50 226
BPIC19 96.89 52.73 87.50 -
BPIC20 2.64 2.52 4.10 3.18
CCC19 0.04 0.09 0.10 -

CreditReq 1.21 1.35 1.20 14.50
Hospital 11.27 10.65 34.10 -
Sepsis 0.87 1.00 1.90 0.05
Traffic 9.71 11.35 8.20 -
Unrine. 0.14 0.16 0.20 0.02

We conduct a wall-to-wall run time experiment to assess the efficiency of
the method. We measure the time between reading the input XES file and the
generation of its anonymized version. The results are reported in Table 7, and the
values are in minutes. The run time increases with case variants (as it contains
more DAFSA transition groups). The execution times for logs with numerous
events and with low δ values are in the order of hours, e.g., 2.13 hours for BPIC18
(2.5 million events) with δ=0.2 because the noise injection algorithm iterates
multiple times over each transition (lines 15-23 in Algorithm 1), and the number of

29

DAFSA states for this log is high (638,242 states). This shortcoming can be tackled
via parallelization, as the privacy quantification over each DAFSA transition is
independent of others. PRIPEL does not scale and runs out of memory for event
logs that have numerous cases and events. The above experiments were all done
using one single thread to avoid bringing additional variables (number of computing
nodes and cores) into the experiments.

The results in Table 6 and Fig. 3 show that using different ε values for case
variant and timestamp anonymization leads to lower utility loss. Moreover, the
use of personalized DP to estimate different ε per event leads to a stronger privacy
guarantee with lower utility loss.

We acknowledge that the above observations are based on a limited population
of logs (14). However, these logs were selected from a broader population of close
to 50 real-life logs.

5. Conclusion and Future Work

This article proposed a concept of the differentially private event log and
a mechanism to compute such logs. A differentially private event log limits the
increase in the probability that an attacker may learn a suffix of an individual’s trace
given a prefix (or vice-versa) or the timestamp of activity in an individual’s trace.
To this end, we inject differentially private noise by sampling the traces in the log.
This approach does not add case variants (cf. Sect. 3.6) and hence fulfills R1. To
fulfill R2, we quantify ε based on a technique that finds the maximum ε (minimum
noise) that keeps the guessing advantage below δ (cf. Sect.3.1 and Prop. 3.1).

The evaluation show that the proposed approach is a step toward anonymizing
event logs while preserving the utility of the process mining analysis. The pro-
posed approach outperforms the baselines in terms of earth movers’ distance and
generalization to all fourteen real-life logs selected in the evaluation. Furthermore,
the approach can process large size logs in practical memory size (32 GB).

A limitation of the proposed method is that it anonymizes the timestamp without
performing calendar anonymization, violating organizational rules (e.g., single
activity at each timestamp). A possible avenue for future work is to model and
include organizational rules while anonymizing logs. A second limitation is that the
input log is assumed to have only three columns: case ID, activity, and timestamp.
Real-world event logs contain other columns, e.g., resources. To do so, we need
to extend the log representation, e.g., via multidimensional data structures instead
of DAFSAs. Furthermore, we consider adapting a utility-aware case filtering for
unstructured event logs as a future research direction.

30

Acknowledgment

Work funded by European Research Council (PIX project) and by EU H2020-
SU-ICT-03-2018 Project No.830929 CyberSec4Europe.

Appendix A. Proof of Privacy

In this section, we prove that the proposed privacy mechanism (Algorithm 1)
anonymizes an event log so that the guessing advantage that an attacker gains after
the disclosing of the event log would not exceed δ . Furthermore, we prove that the
proposed method fulfills the requirements R1 and R2. As presented in the paper,
the attacker has the following goals:

• h1: Has the case of an individual gone through a given prefix or suffix? The
output is a bit with a value ∈ {0,1}.

• h2: What is the cycle time of a particular activity that has been executed
for the individual? The output is a real value that the attacker may wish to
estimate with a certain precision.

Appendix A.1. Guessing Advantage
In this section, we prove that the adoption of the guessing advantage mechanism

fulfills the requirement R2.
In this article, we apply the mechanism proposed by Laud et al. [16, 38] to the

release of the timestamp attribute of the event log. In Def 3.6, we defined the guess-
ing advantage as the difference between the posterior probability (after publishing
M(L)) and the prior probability (before publishing M(L)) (prior knowledge) of an
attacker making a successful guess in Hp. Def 3.6 defines the prior knowledge.
Laud et al. [16, 38] proposed estimation of the posterior guessing probability.

Proposition Appendix A.1 (Posterior Guessing Probability [16, 38]). The pos-
terior guessing probability of an attribute ranging between 0 and r for a single
individual after the release of the timestamp attribute of an event log is bounded
by P′ ≤ 1

1+exp(−ε·r) 1−P
P

.

Proof. (Taken from [16, 38]) An attacker has a prior knowledge k(l) of part of the
event log l. Using the equality Pr[X = x] = ∑y∈Y Pr[X = x,Y = y] and Bayesian

31

formula Pr[A,B] = Pr[A|B] ·Pr[B], we can rewrite

P′ := Pr[h(L) ∈ Hp |M f (L) = M f (l),k(L) = k(l)]

=
Pr[h(L) ∈ Hp,M f (L) = M f (l),k(L) = k(l)]

Pr[M f (L) = M f (l),k(L) = k(l)]

=
∑l′:h(l′)∈Hp,k(l)=k(l′) Pr[M f (l′) = M f (l)] ·Pr[L = l′]

∑l′:k(l)=k(l′)Pr[M f (l′) = M f (l)] ·Pr[L = l′]

=
1

1+
∑l′: h(l′)/∈h(l),k(l′)=k(l) Pr[M f (l′)=M f (l)]·Pr[L=l′]

∑l′′: h(l′′)∈h(l),k(l′′)=k(l) Pr[M f (l′′)=M f (l)]·Pr[L=l′′]

,

For an ε-DP mechanism M f , since l′ and l′′ differ in one item due to the condition

k(l′) = k(l) = k(l′′), we have Pr[M f (l′)=M f (l)]
Pr[M f (l′′)=M f (g)]

≥ exp(−ε · r), where r is the largest
possible difference between two values of an attribute that the attacker is guessing.
This gives us

P′ ≤ 1

1+ exp(−ε · r) ∑l′: h(l′)/∈h(l),k(l′)=k(l) Pr[L=l′]
∑l′′: h(l′′)∈h(l),k(l′′)=k(l) Pr[L=l′]

=
1

1+ exp(−ε · r)Pr[h(L)/∈Hp,k(L)=k(l)]
Pr[h(L)∈Hp,k(L)=k(l)]

=
1

1+ exp(−ε · r)Pr[h(L)/∈Hp | k(L)=k(l)]
Pr[h(L)∈Hp | k(L)=k(l)]

Substituting P from Def 3.6, we get

P′ ≤ 1
1+ exp(−ε · r)1−P

P

. (A.1)

�

Proposition Appendix A.2. The maximum possible ε that achieves the upper
bound δ , w.r.t the particular attack model, and fulfills the requirement R2 is

ε =
− ln(P

1−P ·(
1

δ+P−1))
r

Proof. Given Def 3.9, δ is the maximum guessing advantage probability after
disclosing the attribute. Therefore,

P′−P≤ δ . (A.2)

32

Substituting Eq (A.1) into Eq (A.2), we can estimate the largest possible ε (the
minimum amount of noise) that achieves the upper bound δ as

ε =
− ln

(
P

1−P ·
(

1
δ+P −1

))
r

. (A.3)

From Eq (A.3), the ε represents the maximum possible value for ε achieving
the bound δ . Hence, we use Eq (A.3) to get the minimum possible noise to fulfill
the requirement R2. �

Appendix A.2. Contingency Table (CT)
In Def 3.10, we defined the DAFSA transition Contingency table as a histogram

of counts of DAFSA transitions. First, we estimate the privacy leakage through the
contingency table.

Proposition Appendix A.3. Let MCT be a mechanism that, for each count cell,
samples (independently) noise from the Laplace distribution Lap(1/ε) and adds it
to the count. Then, the level of DP w.r.t. change in a prefix/suffix of some trace of
the underlying event log is:

1. ε for a single count cell of the noisified CT;

2. k ·ε for the entire noisified CT, where k is the longest case length in the event
log.

Proof. Suppose that we update a prefix/suffix of a trace in the event log. Each
single count cell in the contingency table may change by at most ±1 for each
update step. Hence, the global sensitivity of a single count cell w.r.t. changing
some prefix/suffix is 1. We can sample additive noise from distribution Lap(1/ε)
and add it to a count cell to achieve ε-DP w.r.t. that count cell.

For the entire contingency table, a change in the frequency of a single case
variant can affect at most k count cells (i.e., the count over the DAFSA transitions
that represent that case variant), where k is the maximum case variant length in the
event log. Hence, the global sensitivity is k, and we need to sample noise from
Lap(k/ε) to achieve ε-DP. �

Given the desired guessing advantage threshold δ , we need to prevent an
attacker from achieving attack h1.

33

Proposition Appendix A.4. Let MCT be a mechanism that, for each count cell,
draws (independently) noise from the Laplace distribution Lap(1/ε), adds or
subtracts the noise from the count, and rounds negative results to 0. Let δ be
the desired upper bound probability that the attacker achieves attack h1. Then, it
suffices to take

ε =− ln
(

P
1−P

·
(

1
δ +P

−1
))

,

where P = 1−δ

2 .

Proof. Let P be the prior probability of guessing (i.e., without observing the
output). We adopt the mechanism proposed by Laud et al. [16, 38] to estimate
the guessing advantage, which is the upper bound of the difference between the
posterior and the prior probability of guessing an attribute ranging between 0 and 1
(r=1) by

δ =
1

1+ exp(−ε)1−P
P

−P ,

which can be reversed to

ε =− ln
(

P
1−P

·
(

1
δ +P

−1
))

.

Laud et al. [16, 38] estimate the prior knowledge P from the distribution of
input values. However, the contingency table contains counts, which means the lack
of distribution. Laud et al. [16, 38] elaborate that, in case of the lack of distribution,
we can estimate the value of P that minimizes the ε . We take the derivative of ε

w.r.t. P, which yields P = 1−δ

2 as the prior knowledge for the contingency table
counts.

We need to sample noise to achieve ε-DP. First of all, rounding negative
noisified counts up to 0 can be considered as post-processing that does not depend
on private data. Hence, we focus on adding the Laplace noise. While noise sampled
from Lap(1/ε) would be enough for a single count cell, for an entire table, we
would need Lap(k/ε) where k is the longest case length in the event log, as shown
in Prop Appendix A.3.

All correlated cells may provide additional information about the target cell.
For example, activity B may always follow activity A. This additional knowledge
may increase P. However, we have already chosen the worst-case P (in terms
of guessing advantage) for estimating the noise, which does not depend on any
background knowledge that the attacker may get, including the related outputs.

34

We note that if we used another prior knowledge estimation and/or estimated the
attacker’s success directly instead of estimating the advantage, then we would
indeed require sampling noise from Lap(k/ε). �

Appendix A.3. Correctness of Sampling
In this article, we adopt differential privacy, which injects noise into the data

before its publication. In order to translate the calculated noise for every DAFSA
transition group (in CT) into case variants anonymization, we perform case sam-
pling, as defined in Def 3.13 and Def 3.14. Following, we provide the correctness
of sampling. We assume that the event log contains the three columns: Case ID,
Activity label, and Timestamps, and the activity labels are public information. First,
we discuss privacy leakage of the case variants distribution (without taking into
account timestamps).

Proposition Appendix A.5. Let the event log L have a fixed constant timestamp
value for all the entries. Let CT be the contingency table that corresponds to the
event log L. Let MOV be a mechanism that, for each count cell of the CT , draws
(independently) noise z from Laplace distribution Lap(1/ε) and:

• Replicates the random cases that go through the DAFSA transition, which
corresponds to the count cell (prefix/suffix group), if z > 0. The number of
replications is z;

• Drops random cases from the event log that go through a DAFSA transition
which corresponds to the count cell, if z < 0. The number of deletions is z;

• Shuffles all cases and updates all case IDs before publishing the resulting
event log.

Let δ be the desired upper bound of the attacker succeeding in the goal h1. Then,
it suffices to take

ε =− ln
(

P
1−P

·
(

1
δ +P

−1
))

,

where P = 1−δ

2 .

Proof. We show that sampling the cases has the same privacy guarantees as adding
Laplace noise to the counts. Insertion and deletion of z cases work similarly to
adding Laplace noise with rounding negative results after noise injection up to 0.
However, L contains strictly more information than the information represented

35

by CT, e.g., the timestamp and the case IDs. An attacker can single out the
individual using their timestamps (attack h2). At this step, we assume having a
fixed timestamp while anonymizing the case variants distribution, and we discuss
the timestamp anonymization later in Appendix Appendix A.5. Also, the attacker
can guess the new injected cases through their case IDs. For example, if the actual
case IDs range from 0 to 10, and we start the injected new cases from case ID=
11, the attacker will clearly see which cases are duplicates. In this article, we
shuffle the cases and generate new case IDs for all the cases in the event log.
More formally, the final result is a multiset of cases, equivalent to the counts of a
corresponding CT. �

Appendix A.4. Correctness of Oversampling
In the conference version of this article, we fulfilled a stricter requirement. We

fulfill the requirement that “the anonymized log must have the same set of case
variants as the original log.” We adopted oversampling instead of sampling to
fulfill such a requirement. We use oversampling to keep all the initial entries in the
event log.

Proposition Appendix A.6. Let the event log L have a fixed timestamp value
for all the entries. Let CT be the contingency table that corresponds to the event
log L. Let MOV be a mechanism that, for each count cell of the CT , samples
(independently) noise z from Laplace distribution Lap(1/ε) and:

• Inserts into L |z| additional copies of any cases that have been included in
that count cell;

• Shuffles all resulting cases and updates all case IDs before publishing the
resulting event log.

Let δ be the desired upper bound of the attacker succeeding in the goal h1. Then,

• it suffices to take

ε =−2ln(b/c2− (δ −1)/(c ·b)) ,

where c = 3
√

6 and

b =
3
√√

3 ·
√

2 ·δ 3 +21 ·δ 2−48 ·δ +25−9 ·δ +9.

36

• a mechanism that adds noise |z|, where z← Lap(1/ε), fulfills the require-
ment that “the anonymized log must have the same set of case variants as
the original log.”

Proof. Oversampling the cases using Def 3.12 keeps the same case variants as the
input log L. Similar to the proof of Prop Appendix A.5, we show that a mechanism
M that adds noise |z| for z← Lap(1/ε) to the counts of CT constructed from L
ensures the differential privacy guarantees. Let L1 and L2 be two neighboring event
logs that differ in the presence of one trace. Without loss of generality, let L1 have
a smaller count than L2 for the observed count cell. Suppose that the added noise
instance is |z| ≥ 1. In that case, the noisified output y can be obtained from both L1
and L2. In particular, we have

Pr[M(L1) = y]
Pr[M(L2) = y]

=
exp(ε · (y−M(L1)))

exp(ε · (y−M(L2)))

= exp(ε · (y−M(L1)+ y−M(L2)))

≤ exp(ε) .

So the guessing advantage δ for |z| ≥ 1 can be computed as in Prop Appendix
A.4. However, for |z|< 1, the noisified value y produced by M(L1) will be between
the true counts of L1 and L2, and y could never be an output of M(L2), since we
only add positive noise. The probability of getting |z| ≥ 1 for Laplace noise is
CDFLAP(1)−CDFLAP(−1) = (1− 1

2exp(−ε))− 1
2exp(−ε) = 1− exp(−ε).

Let ε is computed to achieve guessing advantage δ ′ with standard Laplace
distribution as in Prop Appendix A.5. The actual guessing advantage with one-
sided Laplace distribution will be

δ = exp(−ε) ·δ ′+(1− exp(−ε)) . (A.4)

From Prop Appendix A.2, the maximum ε that achieves the upper bound δ is
ε =− ln

(
P

1−P ·
(

1
δ ′+P −1

))
for P = 1−δ ′

2 . Substituting from (A.3) into (A.4) and
using a numerical solver (e.g., Wolfram Alpha) to express ε through δ .

ε =−2ln(b/c2− (δ −1)/(c ·b)) ,

where c = 3
√

6 and

b =
3
√√

3 ·
√

2 ·δ 3 +21 ·δ 2−48 ·δ +25−9 ·δ +9.
�

37

Appendix A.5. Timestamp Anonymization
In this appendix, we consider timestamp anonymization. We need to add

enough noise to the timestamps to prevent attacker success in h2, and h1, since
timestamps may potentially leak which traces are real and which are not (new
injected cases by sampling). We note that correlations between timestamps are
difficult to handle in terms of guessing advantage. The main problem is that the
effect of correlated times would greatly depend on how they are correlated, and
in some cases, even a little leakage of ts2 may leak everything about ts1. For
example, let ts1 ∈ {0,1} and ts2 ∈ {0, ...,1023} be distributed uniformly. We have
the prior knowledge P1 = 1/2, and P2 = 1/1024. Suppose that, after seeing the
noisified output, the attacker constrained his view of ts2 to {0, ...,511}. There are
now 512 possible choices for ts2, so δ = 1/512−1/1024 = 1/1024, which is very
small. However, when ts1 is the highest bit of ts2, the value of ts1 would be leaked.
This particular correlation of times is unlikely in practice, but it demonstrates the
problem in general.

To this end, we convert a timestamp tsk to a time difference dtsk := tsk− tsk−1
of sequential events, which is the duration of time that an individual has spent in a
transition from one event to the next one. The timestamp at time ts0 is the starting
time st, which needs to be published as well to make it possible to reconstruct
the actual timestamps. st can be converted to the time difference between the
start time of a case and the start time of the log. We obtain the result for linearly
correlated time differences (e.g., increasing the duration of the first event by a
minute increases every other event at most by one minute). To this end, we scale
εk by the length of the trace. Prop Appendix A.7 proposes a mechanism that
anonymizes the time differences.

Proposition Appendix A.7. Let MT be a mechanism that, for each timestamp tsk,
samples (independently) noise from the Laplace distribution Lap(1/ε) and adds
the noise to tsk. Let rk the maximum possible value of tsk. Let δ be the desired
upper bound of the attacker succeeding in the attack h2 with precision p. Then, it
suffices to take

εk =−
ln
(

Pk
1−Pk
·
(

1
δ+Pk
−1
))

m · rk
,

where Pk =CDF(tsk + p · rk)−CDF(tsk− p · rk), CDF is the probability density
function of the distribution of times, and m is the length of the longest trace in L.

Proof. Similarly to Prop Appendix A.5, we can estimate an upper bound on the
difference between the posterior and the prior probability of guessing an attribute

38

ranging between 0 and 1 by

δ =
1

1+ exp(−εk · rk)
1−Pk

Pk

−Pk ,

which can be reversed to

εk =−
ln
(

Pk
1−Pk
·
(

1
δ+Pk
−1
))

rk
.

The quantity Pk is defined as the probability of a value being in the interval
[tsk− p · rk, tsk + p · rk]. From Prop Appendix A.2, the above value of ε is the
maximum within the upper bound δ . Similarly to Prop Appendix A.5, if CDF of
time distributions is unknown, it is safe to take Pk that minimizes the εk (and hence
maximizes the amount of noise), which is Pk =

1−δ

2 for all k.
That was about leakage for a single published timestamp. We could keep εk the

same for an entire L if different times are not correlated. If the times are linearly
correlated, then, by the sequential composition of DP, we need to divide εk by the
length of the longest trace m. �

Appendix A.6. Event Log Anonymization
We now provide a proof of correctness of Alg. 1.

Lemma Appendix A.8. Let L and δ be an event log and a maximum guessing
advantage threshold. Log L′ = Alg1(L,δ) fulfills the two properties in Def 3.1 (i.e.,
L′ is Φ-personalized differentially private), and L′ fulfills requirements R1 and R2.

Proof. We first show that L′ fulfills the two properties in Def 3.1.

(1) In Prop. Appendix A.5, we proved that it suffices to take

εd =− ln
(

P
1−P

·
(

1
δ +P

−1
))

to anonymize the case variants of an event log in order to provide differen-
tial privacy guarantees for the desired guessing advantage upper bound δ .
Algorithm 1 annotates the event log using DAFSA transitions (line 3), and
computes the contingency table CT of the log. After that, the algorithm uses
the above εd to sample cases (replication and deletion of cases) (lines 18
and 21). Given that Prop. Appendix A.4 and Prop. Appendix A.5 prove
that replicating and deleting cases with a random sample size z from Laplace
distribution Lap(1/ε) provides differential privacy guarantees. Algorithm 1
provides differential privacy guarantees for the case variants anonymization;

39

(2) In Prop. Appendix A.7, we proved that it suffices to take

εk =−
ln
(

Pk
1−Pk
·
(

1
δ+Pk
−1
))

rk

to provide differential privacy guarantees w.r.t timestamp for the desired
guessing advantage upper bound δ . Given that Algorithm 1 adopts the above
ε to anonymize timestamp each event (Φt)(line 27). Hence, Algorithm 1
provides differential privacy guarantees for the event log anonymization w.r.t.
timestamp.

We now show that L′ fulfills the two requirements R1 and R2.

1. Algorithm 1 does not create new case variants. It only replicates or deletes
existing variants (cf. lines 18 and 21). Hence, it fulfills requirement R1;

2. In Prop. Appendix A.2, we proved that the εk as defined in Eq (A.3) is
the maximum within the upper bound δ , so Algorithm 1 fulfills the require-
ment R2.

�

Appendix B. Evaluation Supplementary Material

Appendix B.1. Dataset Selection
Table B.8 shows the selected event logs and their descriptive statistics. The

set of selected logs (cf. Table B.8) can be divided into two categories: structured
and unstructured logs. Structured logs have a defined process, and most of the
cases follow similar case variants, e.g., Unrineweginfectie, Credit Requirement,
and Road Traffic Fines. On the other hand, unstructured logs have a high degree
of uniqueness, which appears in more case variants of the log, e.g., Sepsis cases,
CCC19, Hospital, BPI challenge 12, 13, 14, 15, 18, and 19.

Appendix B.2. Folder Organization
All the anonymized logs from the experiments are available in [?]. The main

folder is “anonymized logs”. There are 3 subdirectories: Amun which contains the
anonymized logs by the proposed approach with different settings, PRIPEL which
contains the anonymized logs by PRIPEL framework, and SaCoFa which contains
the anonymized logs by the SaCoFa framework. For the event logs anonymized by
Amun, the event attribute “epsilon per event” represents the ε used to anonymize
the time component of this event. The case attribute “epsilon per trace” represents
the ε value used to anonymize the frequency of all the instances of this case variant.

40

Table B.8: Descriptive Statistics of Event Logs

event log #
Traces

#
Tasks

#
Events

#
Edges

Case
Variant

Trace Length Case Duration
Min Max Min Max Avg

BPI12 [39] 13087 23 262200 116 4366 3 175 1.85 s 4.51 m 1.23 w
BPI13i [40] 7554 4 65533 16 1511 1 123 inst. 2.11 y 1.73 w
BPI14i [41] 46616 39 466737 497 22632 1 178 14 s 1.07 y 5.07 d
BPI151 [42] 1199 398 52217 495 1170 2 101 8.56 h 4.07 y 3.15 m
BPI17 [43] 31509 24 1202267 181 3942 10 180 3.35 m 9.4 m 3.13 w
BPI18 [44] 43809 14 2514266 499 28457 24 2973 3.74 m 2.77 y 11.03 m

BPIC19 [45] 251734 42 1595923 498 11973 1 990 2 ms 70.33 y 2.35 m
BPI20r [46] 7065 51 86581 500 1478 3 90 12.61 h 3.26 y 2.87 m
CCC19 [47] 20 29 1394 149 20 52 118 11 m 1.01 d 1.73 h

CredReq [48] 10035 8 150525 9 1 15 15 3.5 h 5 d 22 h
Hospital [49] 1143 624 150291 903 981 1 1814 inst. 3.17 y 1.06 y

Sepsis [50] 1050 16 15214 115 846 3 185 2.03 m 1 y 4 w
Tra f f ic [51] 150370 11 561470 77 231 2 20 3 d 12 y 11 m
Unrine. [52] 1650 10 6973 25 50 2 35 10.1 m 2.32 y 3.7 w

Appendix B.3. EMD for the minimum and the maximum Φ value
Tables B.9 and B.10 present the empirical evaluation with the min(Φ) and the

max(Φ)as the input ε to the state-of-the-art, respectively.

References

[1] A. Cohen, K. Nissim, Towards formalizing the gdpr’s notion of singling out,
PNAS 117 (15) (2020) 8344–8352.

[2] M. Rafiei, W. M. van der Aalst, Group-based privacy preservation techniques
for process mining, Data Knowl. Eng. (2021) 101908.

[3] C. Dwork, A. Roth, et al., The algorithmic foundations of differential privacy.,
Found. Trends Theor. Comput. Sci. 9 (2014) 211–407.

[4] J. Lee, C. Clifton, How much is enough? choosing ε for differential privacy,
in: Proc. ISC., Springer, 2011, pp. 325–340.

[5] C. Dwork, N. Kohli, D. Mulligan, Differential privacy in practice: Expose
your epsilons!, J. Priv. Confidentiality 9 (2) (2019).

[6] S. J. J. Leemans, E. Poppe, M. T. Wynn, Directly follows-based process
mining: Exploration & a case study, in: ICPM, IEEE, 2019, pp. 25–32.

41

Table B.9: Earth Movers’ Distance for the output of different anonymization approaches using the
minimum value of Φ. A “-” means that the approach ran out of memory or timed out.

Log δ min(Φ) EMD Freq EMD Time

Amuns Amun f Amuno PRIPEL SaCoFa Amuns Amun f Amuno PRIPEL

BPIC12
0.2 0.058 331.02 653.36 2301.62 - 936.55 40.30 8.08 192.13 -
0.3 0.088 212.64 742.39 1597.79 - 898.55 20.32 13.54 107.96 -
0.4 0.088 142.37 785.87 1275.43 - 909.64 12.68 16.74 72.56 -

BPIC13
0.2 0.07 1131.91 1053.45 7613.27 - 3589.36 778.18 811.51 3343.92 -
0.3 0.1 840.55 258.45 5417.64 - 3777.81 592.36 307.26 2055.23 -
0.4 0.1 558.45 2450.45 4296.73 - 3795.81 486.86 75.13 1751.96 -

BPIC14
0.2 0.034 429.60 395.24 1905.69 - 473.48 132.53 130.00 577.32 -
0.3 0.07 298.86 281.43 1333.95 - 456.5 82.02 76.37 321.72 -
0.4 0.1 208.55 179.94 1012.62 - 489.47 47.12 50.61 178.08 -

BPIC15
0.2 0.043 20.71 18.74 80.61 - 20.765 5.68 4.18 22.47 -
0.3 0.07 14.82 7.93 52.42 - 10.8 3.15 2.28 11.17 -
0.4 0.88 12.60 2.79 39.09 10.84 10.832 2.46 1.05 8.87 585.20

BPIC17
0.2 0.058 141.37 1925.92 1159.08 - 1488 117.56 75.98 268.08 -
0.3 0.07 78.60 2667.91 938.79 - 1515.90 95.07 131.76 206.76 -
0.4 0.1 49.93 2674.76 938.79 - 1321.6 79.33 133.77 206.76 -

BPIC18
0.2 0.039 3775.468 659.01 17668.46 - 3931.28 2176.17 179.39 3206.75 -
0.3 0.058 2922.80 1752.72 12063.81 - 3600.65 1319.69 325.14 2201.39 -
0.4 0.054 2887.08 2812.65 9055.04 - 3028.82 885.81 517.59 1647.15 -

BPIC19
0.2 0.045 946.99 811.80 4509.08 - 1163.68 524.18 608.02 1513.92 -
0.3 0.078 743.96 572.71 3094.05 - 1141.659 491.84 498.59 1054.23 -
0.4 0.078 612.48 399.36 2376.21 - 1024.63 500.57 360.54 751.67 -

BPIC20
0.2 0.07 18.97 18.69 138.05 - 84.58 65.23 69.04 180.50 -
0.3 0.14 14.88 10.42 99.76 - 84.004 44.46 40.01 109.90 -
0.4 0.233 10.55 2.24 76.61 - 86.27 41.70 35.78 82.67 -

CCC19
0.2 0.07 12.78 3.70 30.81 - - 0.00 0.00 0.00 -
0.3 0.14 4.55 2.23 25.77 - - 0.00 0.00 0.00 -
0.4 0.233 5.54 3.21 16.64 - - 0.00 0.00 0.00 -

CredReq
0.2 0.7 0.00 2.00 4.00 0.00 0.00 233.08 238.79 186.94 0.00
0.3 0.7 0.00 0.00 3.00 0.00 0.00 203.94 182.39 220.17 0.00
0.4 0.7 0.00 2.00 2.00 0.00 0.00 201.81 231.37 180.77 0.00

Hospital
0.2 0.048 81.40 75.74 406.45 - 85.19 10.30 11.33 55.44 -
0.3 0.088 57.91 61.96 264.09 - 85.25 7.86 7.42 31.71 -
0.4 0.14 58.68 63.93 210.40 - 85.23 6.07 6.01 20.70 -

Sepsis
0.2 0.07 56.84 32.20 427.64 - 118.91 8.97 4.37 61.50 -
0.3 0.088 28.46 67.97 286.23 - 121.42 6.35 3.60 32.93 -
0.4 0.14 43.38 101.64 232.50 - 120.91 4.26 6.48 26.61 -

Traffic
0.2 0.203 1.64 0.90 33.50 - 132.13 8250.42 7253.29 8627.86 -
0.3 0.619 0.61 8.01 25.51 - 77.33 7767.32 6720.80 7081.06 -
0.4 0.7 0.00 2951.50 21.00 - 21.34 7182.96 12788.57 7419.02 -

Unrine.
0.2 0.203 6.53 5.53 66.00 289.4 111.80 44.96 39.34 184.68 68087
0.3 1.238 0.00 2.87 53.67 287 113.20 28.12 33.27 103.67 67949.3
0.4 1.417 1.47 2.53 47.00 291.60 113.80 21.89 26.35 90.93 68233.90

42

Table B.10: Earth Movers’ Distance for the output of different anonymization approaches using the
maximum value of Φ. A “-” means that the approach ran out of memory or timed out.

Log δ max(Φ) EMD Freq EMD Time

Amuns Amun f Amuno PRIPEL SaCoFa Amuns Amun f Amuno PRIPEL

BPIC12
0.2 3.09 331.02 653.36 2301.62 1006.80 1006.62 40.30 8.08 192.13 19317
0.3 3.33 212.64 742.39 1597.79 977.42 855.57 20.32 13.54 107.96 19264.25
0.4 9.97 142.37 785.87 1275.43 905.11 555.66 12.68 16.74 72.56 18101.72

BPIC13
0.2 3.13 1131.91 1053.45 7613.27 3713.82 3874.63 778.18 811.51 3343.92 140484
0.3 3.24 840.55 258.45 5417.64 3056.55 2650.64 592.36 307.26 2055.23 112652.4
0.4 10 558.45 2450.45 4296.73 2225.18 3024.18 486.86 75.13 1751.96 73357.09

BPIC14
0.2 2.92 429.60 395.24 1905.69 535.4 526.49 132.53 130.00 577.32 7217.31
0.3 3.21 298.86 281.43 1333.95 531.18 535.05 82.02 76.37 321.72 7199.76
0.4 3.6 208.55 179.94 1012.62 508.15 507.28 47.12 50.61 178.08 7143.46

BPIC15
0.2 2.65 20.71 18.74 80.61 20.77 20.85 5.68 4.18 22.47 579.44
0.3 2.79 14.82 7.93 52.42 10.77 10.85 3.15 2.28 11.17 583.81
0.4 2.9 12.60 2.79 39.09 10.84 10.42 2.46 1.05 8.87 583.8

BPIC17
0.2 2.17 141.37 1925.92 1159.08 2776.74 2385.81 117.56 75.98 268.08 78550.82
0.3 3.38 78.60 2667.91 938.79 2776.7 2471.76 95.07 131.76 206.76 102194
0.4 3.61 49.93 2674.76 938.79 1946.15 1280.19 79.33 133.77 206.76 61156.46

BPIC18
0.2 2.82 3775.468 659.01 17668.46 - 2587.28 2176.17 179.39 3206.75 -
0.3 2.99 2922.80 1752.72 12063.81 - 2494.17 1319.69 325.14 2201.39 -
0.4 3.28 2372.08 2812.65 9055.04 3537.58 2372.69 885.81 517.59 1647.15 504500.1

BPIC19
0.2 4.30 946.99 811.80 4509.08 - 872.75 524.18 608.02 1513.92 -
0.3 4.77 743.96 572.71 3094.05 - 871.43 491.84 498.59 1054.23 -
0.4 5.17 612.48 399.36 2376.21 - 813.17 500.57 360.54 751.67 -

BPIC20
0.2 3.79 18.97 18.69 138.05 98.61 142.92 65.23 69.04 180.50 17499.66
0.3 4.11 14.88 10.42 99.76 73.03 128.32 44.46 40.01 109.90 11002.3
0.4 4.37 10.55 2.24 76.61 52.15 126.68 41.70 35.78 82.67 8141.17

CCC19
0.2 1.85 12.78 3.70 30.81 - 7.17 0.00 0.00 0.00 -
0.3 2.67 4.55 2.23 25.77 - 4.94 0.00 0.00 0.00 -
0.4 2.99 5.54 3.21 16.64 - 3.88 0.00 0.00 0.00 -

CredReq
0.2 7.8 0.00 2.00 4.00 0.00 0 233.08 238.79 186.94 0.00
0.3 8.36 0.00 0.00 3.00 0.00 0 203.94 182.39 220.17 0.00
0.4 8.8 0.00 2.00 2.00 0.00 0 201.81 231.37 180.77 0.00

Hospital
0.2 2.60 81.40 75.74 406.45 85.22 85.24 10.30 11.33 55.44 2469.24
0.3 3.29 57.91 61.96 264.09 85.22 83.87 7.86 7.42 31.71 2469.24
0.4 3.55 58.68 63.93 210.40 85.19 82.71 6.07 6.01 20.70 2381.80

Sepsis
0.2 3.02 56.84 32.20 427.64 119.68 121.22 8.97 4.37 61.50 6218.25
0.3 3.29 28.46 67.97 286.23 118.71 102.39 6.35 3.60 32.93 6217.93
0.4 3.55 43.38 101.64 232.50 118.71 97.80 4.26 6.48 26.61 6217.93

Traffic
0.2 4.93 1.64 0.90 33.50 - 135.26 8250.42 7253.29 8627.86 -
0.3 5.49 0.61 8.01 25.51 - 121.62 7767.32 6720.80 7081.06 -
0.4 5.74 0.00 2951.50 21.00 - 75.87 7182.96 12788.57 7419.02 -

Unrine.
0.2 3.77 6.53 5.53 66.00 113.87 113.53 44.96 39.34 184.68 58296
0.3 4.31 0.00 2.87 53.67 49.46 94.4 28.12 33.27 103.67 30038.10
0.4 4.42 1.47 2.53 47.00 44.33 42.8 21.89 26.35 90.93 27204.87

43

[7] D. Chapela-Campa, M. Dumas, M. Mucientes, M. Lama, Efficient edge
filtering of directly-follows graphs for process mining, Inf. Sci. 610 (2022)
830–846.

[8] A. Augusto, R. Conforti, M. Dumas, M. L. Rosa, F. M. Maggi, A. Marrella,
M. Mecella, A. Soo, Automated discovery of process models from event
logs: Review and benchmark, IEEE Trans. Knowl. Data Eng. 31 (4) (2019)
686–705.

[9] J. Carmona, B. F. van Dongen, M. Weidlich, Conformance checking: Foun-
dations, milestones and challenges, in: Process Mining Handbook, Vol. 448
of Lecture Notes in Business Information Processing, Springer, 2022, pp.
155–190.

[10] M. Kabierski, S. A. Fahrenkrog-Petersen, M. Weidlich, Hiding in the forest:
Privacy-preserving process performance indicators, Inf. Syst. 112 (2023)
102127.

[11] M. Dumas, M. L. Rosa, J. Mendling, H. A. Reijers, Fundamentals of Business
Process Management, Second Edition, Springer, 2018.

[12] G. Elkoumy, A. Pankova, M. Dumas, Mine me but don’t single me out:
Differentially private event logs for process mining, in: ICPM, IEEE, 2021,
pp. 80–87.

[13] C. Dwork, Differential privacy: A survey of results, in: Proc. TAMC, Springer,
2008, pp. 1–19.

[14] C. Dwork, F. McSherry, K. Nissim, A. Smith, Calibrating noise to sensitivity
in private data analysis, in: TCC, 2006, pp. 265–284.

[15] J. Hsu, M. Gaboardi, A. Haeberlen, S. Khanna, A. Narayan, B. C. Pierce,
A. Roth, Differential privacy: An economic method for choosing epsilon, in:
CSF, IEEE, 2014, pp. 398–410.

[16] P. Laud, A. Pankova, M. Pettai, A framework of metrics for differential
privacy from local sensitivity, PoPETs (2) (2020) 175–208.

[17] N. Li, W. Qardaji, D. Su, On sampling, anonymization, and differential
privacy or, k-anonymization meets differential privacy, in: AsiaCCS, ACM,
2012, pp. 32–33.

44

[18] G. Elkoumy, S. A. Fahrenkrog-Petersen, M. F. Sani, A. Koschmider,
F. Mannhardt, S. N. von Voigt, M. Rafiei, L. von Waldthausen, Privacy
and confidentiality in process mining–threats and research challenges, ACM
Trans. Manage. Inf. Syst. 13 (1) (Oct. 2021).

[19] M. Rafiei, M. Wagner, W. M. van der Aalst, TLKC-Privacy model for process
mining, in: RCIS, Springer, 2020, pp. 398–416.

[20] F. Mannhardt, A. Koschmider, N. Baracaldo, M. Weidlich, J. Michael,
Privacy-preserving process mining, BISE 61 (2019) 595–614.

[21] S. A. Fahrenkrog-Petersen, H. van der Aa, M. Weidlich, PRIPEL: privacy-
preserving event log publishing including contextual information, in: BPM,
Springer, 2020, pp. 111–128.

[22] S. A. Fahrenkrog-Petersen, M. Kabierski, F. Rösel, H. van der Aa, M. Wei-
dlich, SaCoFa: semantics-aware control-flow anonymization for process
mining, in: ICPM, 2021, pp. 72–79.

[23] E. Batista, A. Solanas, A uniformization-based approach to preserve individ-
uals’ privacy during process mining analyses, Peer Peer Netw. Appl. 14 (3)
(2021) 1500–1519.

[24] S. A. Fahrenkrog-Petersen, H. van der Aa, M. Weidlich, PRETSA: event log
sanitization for privacy-aware process discovery, in: ICPM, IEEE, 2019, pp.
1–8.

[25] M. Kabierski, S. A. Fahrenkrog-Petersen, M. Weidlich, Privacy-aware process
performance indicators: Framework and release mechanisms, in: CAiSE,
Springer, 2021, pp. 19–36.

[26] M. Rafiei, W. M. van der Aalst, Towards quantifying privacy in process
mining, in: ICPM Workshops, Vol. 406, 2020, pp. 385–397.

[27] G. Elkoumy, S. A. Fahrenkrog-Petersen, M. Dumas, P. Laud, A. Pankova,
M. Weidlich, Secure multi-party computation for inter-organizational process
mining, in: BPMDS, 2020, pp. 166–181.

[28] G. Elkoumy, S. A. Fahrenkrog-Petersen, M. Dumas, P. Laud, A. Pankova,
M. Weidlich, Shareprom: A tool for privacy-preserving inter-organizational
process mining, in: BPM Demos, 2020, pp. 72–76.

45

[29] M. Rafiei, W. M. van der Aalst, Privacy-preserving continuous event data
publishing 427 (2021) 178–194.

[30] M. Rafiei, G. Elkoumy, W. M. P. van der Aalst, Quantifying temporal privacy
leakage in continuous event data publishing, in: CoopIS, Vol. 13591 of
Lecture Notes in Computer Science, Springer, 2022, pp. 75–94.

[31] D. Reißner, R. Conforti, M. Dumas, M. La Rosa, A. Armas-Cervantes, Scal-
able conformance checking of business processes, in: OTM to Meaningful
Int. Syst., Springer, 2017, pp. 607–627.

[32] J. Daciuk, S. Mihov, B. W. Watson, R. E. Watson, Incremental construction
of minimal acyclic finite-state automata, Comput. Linguistics 26 (1) (2000)
3–16.

[33] Z. Jorgensen, T. Yu, G. Cormode, Conservative or liberal? personalized
differential privacy, in: ICDE, 2015, pp. 1023–1034.

[34] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, K. Talwar, Privacy,
accuracy, and consistency too: a holistic solution to contingency table release,
in: PODS, 2007, pp. 273–282.

[35] D. Kifer, A. Machanavajjhala, No free lunch in data privacy, in: Proc. of
ACM SIGMOD, 2011, pp. 193–204.

[36] A. Ramdas, N. G. Trillos, M. Cuturi, On wasserstein two-sample testing and
related families of nonparametric tests, Entropy 19 (2) (2017) 47.

[37] S. J. J. Leemans, W. M. P. van der Aalst, T. Brockhoff, A. Polyvyanyy,
Stochastic process mining: Earth movers’ stochastic conformance, Inf. Syst.
102 (2021) 101724.

[38] A. Pankova, P. Laud, Interpreting epsilon of differential privacy in terms of
advantage in guessing or approximating sensitive attributes, in: 2022 IEEE
35th Computer Security Foundations Symposium (CSF), IEEE Computer
Society, 2022, pp. 96–111.

[39] B. van Dongen, BPI Challenge 2012 (2012).
URL https://doi.org/10.4121/uuid:

3926db30-f712-4394-aebc-75976070e91f

46

https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

[40] W. Steemanvan, BPI challenge 2013 (2014).
URL https://doi.org/10.4121/uuid:

a7ce5c55-03a7-4583-b855-98b86e1a2b07

[41] B. B. van Dongen, BPI challenge 2014 (2014).
URL https://doi.org/10.4121/uuid:

c3e5d162-0cfd-4bb0-bd82-af5268819c35

[42] B. B. van Dongen, BPI challenge 2015 (2015).
URL https://doi.org/10.4121/uuid:

31a308ef-c844-48da-948c-305d167a0ec1

[43] B. van Dongen, BPI Challenge 2017 (2017).
URL https://doi.org/10.4121/uuid:

5f3067df-f10b-45da-b98b-86ae4c7a310b

[44] B. van Dongen, F. F. Borchert, BPI Challenge 2018 (2018).
URL https://doi.org/10.4121/uuid:

3301445f-95e8-4ff0-98a4-901f1f204972

[45] B. van Dongen, BPI Challenge 2019 (2019).
URL https://doi.org/10.4121/uuid:

d06aff4b-79f0-45e6-8ec8-e19730c248f1

[46] B. B. van Dongen, BPI challenge 2020 (2020).
URL https://doi.org/10.4121/uuid:

52fb97d4-4588-43c9-9d04-3604d4613b51

[47] J. Munoz-Gama, R. R. de la Fuente, M. M. Sepúlveda, R. R. Fuentes,
Conformance Checking Challenge 2019 (CCC19) (2019).
URL https://doi.org/10.4121/uuid:

c923af09-ce93-44c3-ace0-c5508cf103ad

[48] A. Djedović, Credit Requirement Event Logs (2017).
URL https://doi.org/10.4121/uuid:

453e8ad1-4df0-4511-a916-93f46a37a1b5

[49] F. Mannhardt, Hospital Billing - Event Log (2017).
URL https://doi.org/10.4121/uuid:

76c46b83-c930-4798-a1c9-4be94dfeb741

47

https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
https://doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35
https://doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35
https://doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35
https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972
https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972
https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972
https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1
https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1
https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.4121/uuid:c923af09-ce93-44c3-ace0-c5508cf103ad
https://doi.org/10.4121/uuid:c923af09-ce93-44c3-ace0-c5508cf103ad
https://doi.org/10.4121/uuid:c923af09-ce93-44c3-ace0-c5508cf103ad
https://doi.org/10.4121/uuid:453e8ad1-4df0-4511-a916-93f46a37a1b5
https://doi.org/10.4121/uuid:453e8ad1-4df0-4511-a916-93f46a37a1b5
https://doi.org/10.4121/uuid:453e8ad1-4df0-4511-a916-93f46a37a1b5
https://doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
https://doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
https://doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741

[50] F. Mannhardt, Sepsis cases-event log, Eindhoven University of Technology.
Dataset (2016) 227–228.

[51] M. M. de Leoni, F. Mannhardt, Road Traffic Fine Management Process
(2015).
URL https://doi.org/10.4121/uuid:

270fd440-1057-4fb9-89a9-b699b47990f5

[52] P. Gunst, Urineweginfectie (UWI-casus) logboek (2020).
URL https://doi.org/10.4121/12826727.v1

48

https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/12826727.v1
https://doi.org/10.4121/12826727.v1

	1 Introduction
	2 Background and Related Work
	2.1 Differential Privacy (DP)
	2.2 Privacy-Preserving Process Mining (PPPM)

	3 Approach
	3.1 Attack Model
	3.2 Event Log State-Annotation
	3.3 Prior Knowledge Estimation
	3.4 Case Filtering
	3.5 Lg Estimation
	3.5.1 Estimating t
	3.5.2 Estimating d

	3.6 Case Sampling
	3.7 Timestamp Compression

	4 Evaluation
	4.1 Evaluation Measures
	4.2 Datasets
	4.3 Experiment Setup
	4.4 Results

	5 Conclusion and Future Work
	Appendix A Proof of Privacy
	Appendix A.1 Guessing Advantage
	Appendix A.2 Contingency Table (CT)
	Appendix A.3 Correctness of Sampling
	Appendix A.4 Correctness of Oversampling
	Appendix A.5 Timestamp Anonymization
	Appendix A.6 Event Log Anonymization

	Appendix B Evaluation Supplementary Material
	Appendix B.1 Dataset Selection
	Appendix B.2 Folder Organization
	Appendix B.3 EMD for the minimum and the maximum value

