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Measuring Rule-based LTLf Process Specifications:
A Probabilistic Data-driven Approach
Alessio Cecconi,Luca Barbaro,Claudio Di Ciccio,Arik Senderovich

• Interestingness measures for rule-based process specifications are introduced.
• A probabilistic estimation framework of single rules and entire specifications is proposed.
• Measures of specifications differ from the aggregation of the measures for their individual rules.
• Measures exhibit different sensitivity to process behavior changes over time.
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Abstract
Declarative process specifications define the behavior of processes by means of rules based on Linear
Temporal Logic on Finite Traces (LTL𝑓 ). In a mining context, these specifications are inferred from,
and checked on, multi-sets of runs recorded by information systems (namely, event logs). To this end,
being able to gauge the degree to which process data comply with a specification is key. However,
existing mining and verification techniques analyze the rules in isolation, thereby disregarding their
interplay. In this paper, we introduce a framework to devise probabilistic measures for declarative
process specifications. Thereupon, we propose a technique that measures the degree of satisfaction of
specifications over event logs. To assess our approach, we conduct an evaluation with real-world data,
evidencing its applicability for diverse process mining tasks, including discovery, checking, and drift
detection.

1. Introduction
The declarative specification of a process allows users

and designers to norm and control its behavior through rules.
These rules consist of temporal logic formulae (such as
LTL𝑓 ) that are verified against recorded runs of the process-
aware systems in an event log, to check their compliance
with the behavioral properties it must guarantee. This au-
tomated checking task shows wide adoption in multiple
areas of computer science, including process mining [1, 2],
planning [3, 4], and software engineering [5, 6]. Rule-based
specifications allow for the definition of system and process
behavior focusing on core constraints that must be satisfied,
leaving other execution details to knowledge- and context-
based decisions of the actors [7] with a so-called “open-ended”
paradigm [8]. This aspect makes them particularly suitable
to scenarios in which workflow flexibility is key [9, 10], as
in the healthcare domain [11, 12] with the specification of
clinical practice guidelines [13, 14].

Despite the increasing interest in this challenge, we
observe that a fundamental problem remains unaddressed.
Measuring the extent to which traces adhere to the admissible
behavior in terms of specifications, or sets of rules, is still a
problem that leaves ample margins for investigation.

Let us consider an example inspired by [15] on the clinical
pathway for the treatment of unstable angina. A declarative
process specification  , e.g., consists of two rules, Ψ1 and
Ψ2. Rule Ψ1 states that “Whenever a specific combination
of medications is prescribed, it should be preceded by an
electrocardiogram (ECG) and a cardiac enzyme test.” Rule
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Ψ2 indicates that “If a patient experiences severe chest pain,
an immediate administration of sublingual nitroglycerin will
follow.” Confidence is the ratio of events in a log that satisfy
the consequent (i.e., the target, like the ECG and cardiac
enzyme test in Ψ1), given the satisfaction of the antecedent
(i.e., the activator, like the occurrence of severe chest pain in
Ψ2).

Suppose the confidence of Ψ1 and Ψ2 are 100% and
50%, respectively. What is the confidence of  = {Ψ1,Ψ2}?
Considering the confidence of a single formula consisting
of the conjunction of all rules (e.g., Ψ1 ∧ Ψ2) may be too
coarse grained, since violating a single rule in one event or
in multiple ones would lead to the same result of violating
the whole specification for that trace. Similarly, aggregating
measures over multiple rules (as in [16]) may be misleading.
Let the activator ofΨ1, e.g., occur 100 times in the log, always
leading to the satisfaction of the rule (Confidence 100%), and
the activator of Ψ2 occur twice, leading to the violation of the
rule once (Confidence 50%). Consequently, there will be one
violation out of 102 occurrences of the activators. Yet, the
average confidence of the two rules will be 75%. A lack of a
proper framework to gauge the degree to which specifications
are satisfied by, or emerging from, recorded data, hinders their
adoption for the discovery, checking and drift-detection of
system and process behavior in rule-based settings. In turn,
this issue slows down the evolution of dedicated techniques
even where those tasks may turn out to be pivotal, like in the
highly dynamic and flexible context of clinical pathways.

To overcome this issue, we propose a new approach adapt-
ing and extending the concept of Reactive Constraint (RCon),
originally proposed in [17], and the measurement framework
for single declarative rules expressed as RCons [16]. RCons
are rules expressed in an if–then fashion (like Ψ1 and
Ψ2), namely a pair of LTL𝑓 formulae one of which is
the activator (if) and the other is the target (then). RCons
cover the full spectrum of declarative process specification
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languages such as DECLARE [1] as any LTL𝑓 formula can
be translated into an RCon [17]. Equipped with this notion,
we propose a measurement framework that takes inspiration
from classical association rule mining [18] to assess whether,
and in how far, process specifications consisting of LTL𝑓 -
based rules expressed in an “if–then” fashion are satisfied
by a trace. Our approach is rooted in probability theory
and statistical inference. Specifically, in order to provide
a non-binary interpretation for specification measurements,
we model events of satisfaction and violation of formulae
by traces (and logs of traces) using probability theory, and
derive corresponding maximum-likelihood estimators for
these probabilistic models. Moreover, we show that these
estimators can be computed in polynomial time.

To the best of our knowledge, this work is the first
to tackle and solve the problem of devising well-defined
measures for entire declarative specifications consisting of
multiple rules. To tackle this problem, we move from an
ad-hoc counting approach to a sound probabilistic theory
based on maximum likelihood estimation. Finally, we conduct
an evaluation of our approach on real-world data with
its software prototype implementation. This article is an
extended and revised version of our previous paper [19]. The
advancements particularly the following aspects in particular:

• We enhanced the theoretical part of our contribution
providing a more comprehensive analysis of the prob-
abilistic approach along with detailed proofs for each
proposition and theorem (Sections 5 and 6); in addition,
we added an appendix for the basic concepts from
probability theory used in the paper (Appendix A);

• We introduced a discussion in which we state the
general properties and behaviors of the probability
estimators (Section 6.4);

• We added a preliminary section about interestingness
measures. It introduces these measures prior to their
use thus clarifying the goals of the probabilistic ap-
proach and the value of the final outcome (Section 4);

• We extend the quantitative evaluation by using a larger
collection of datasets (Section 7.1);

• We present a new and extensive use case where we
measure the impact of drifts on declarative specifica-
tions. This part demonstrates how measured changes in
the entire specification can signal shifts and anomalies
in an ongoing process. (Section 7.3).

In the remainder of this paper, Sections 2 to 4 formalize
the background notions our work is based upon: LTL𝑓 and its
interpretation on event logs, RCons, rule-based declarative
process specifications, and interestingness measures. Sec-
tion 5 lays the foundations of our probabilistic theory, upon
which the evaluation and measurement of declarative process
specifications are based upon as described in Section 6. We
report on the evaluation of our implemented prototype on real-
world data in Section 7. Section 8 analyzes the research in the

literature that relates to our investigation. Finally, Section 9
concludes the paper with remarks on future work.

2. Event logs and Linear Temporal Logic on
Finite Traces (LTL𝑓 )
In this paper, we are interested in the checking of speci-

fications against collections of traces reporting on multiple
executions of the process. As runs can recur, we formalize
such structure as a multi-set of traces, namely an event log.
Definition 2.1 (Log). Given a finite alphabet of propositional
symbols Σ, we name as event an assignment for the symbols
in Σ and as trace a finite sequence of events. An event log (or
log for short) is a finite multi-set of traces 𝐿 = {𝑡𝑗11 ,… , 𝑡𝑗𝑚𝑚 }
of cardinality |𝐿| =

∑𝑚
𝑖=1 𝑗𝑖.

For example, Table 1 presents a log 𝐿 = {𝑡171 , 𝑡
6
2, 𝑡

5
3, 𝑡

12
4 , 𝑡

5
5}defined over alphabet Σ = {a, b, c, d, e}. Its cardinality is 45.

Linear Temporal Logic on Finite Traces (LTL𝑓 ) [20]
expresses propositions over linear discrete-time structures
of finite length – namely, traces as per Def. 2.1. It shares
its syntax with Linear Temporal Logic (LTL) [21] and is
at the basis of declarative process specification languages
such as DECLARE [7]. Here, we endow LTL𝑓 with past
modalities as in [22]. In the remainder of this section (and, as
a compendium, in Appendix C), we outline the core concepts
of LTL𝑓 to which our approach resorts.
Definition 2.2 (Syntax of LTL𝑓 ). Well-formed Linear Tem-
poral Logic on Finite Traces (LTL𝑓 ) formulae are built from
an alphabet Σ ⊇ {𝑎} of propositional symbols, auxiliary sym-
bols ‘(’ and ‘)’, propositional constants True and False, the
logical connectives ¬ and ∧, the unary temporal operators ○
(next) and ⊖ (yesterday), and the binary temporal operators
𝐔 (until) and 𝐒 (since) as follows:

𝜑 ∶∶=True|False|𝑎|(¬𝜑)|(𝜑1 ∧ 𝜑2)|
(○𝜑)|(𝜑1 𝐔 𝜑2)|(⊖𝜑)|(𝜑1 𝐒 𝜑2).

We may omit parentheses when the operator precedence
intuitively follows from the expression. Given {e, d} ⊆ Σ,
e.g., the following is an LTL𝑓 formula: (○¬e) 𝐔 d.

Semantics of LTL𝑓 is given in terms of finite traces, i.e.,
finite words over the alphabet 2Σ. We name the index of
the element in the trace as instant. Intuitively, ○𝜑 and ⊖𝜑
indicate that 𝜑 holds true at the next and previous instant,
respectively; 𝜑1 𝐔 𝜑2 states that 𝜑2 will eventually hold
and, until then, 𝜑1 holds too; dually, 𝜑1 𝐒 𝜑2 signifies that
𝜑2 holds at some point and, from that instant on, 𝜑1 holds
too. We formalize the above as follows.
Definition 2.3 (Semantics of LTL𝑓 ). Given a finite trace 𝑡
of length 𝑛 ∈ ℕ, an LTL𝑓 formula 𝜑 is satisfied at a given
instant 𝑖 (1 ≤ 𝑖 ≤ 𝑛) by induction of the following:
(𝑡, 𝑖) ⊧ True; (𝑡, 𝑖) ⊭ False;
(𝑡, 𝑖) ⊧ 𝑎 iff 𝑎 is True in 𝑡(𝑖);
(𝑡, 𝑖) ⊧ ¬𝜑 iff (𝑡, 𝑖) ⊭ 𝜑;
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Table 1: Measurements of RCons Ψ1 = c ◊a, and Ψ2 = d ◊e, and of specification  = {Ψ1,Ψ2} on a log
Log Evaluation RCon

/ Specification
𝑃 of RCon

/ 𝑃 of  𝑃 of act. 𝑃 of target Support Confidence Recall Specificity Lift

𝑡1 = ⟨a, b, c, d, b, c, e, c, b⟩
⟨x, x, 1, x, x, 1, x, 1, x⟩
⟨x, x, x, 1, x, x, x, x, x⟩
⟨x, x, 1, 1, x, 1, x, 1, x⟩

Ψ1 = c ◊a
Ψ2 = d ◊e
 = {Ψ1,Ψ2}

1.00
1.00
1.00

0.33
0.11
0.44

1.00
0.78
0.89

0.33
0.11
0.44

1.00
1.00
1.00

0.33
0.14
0.50

0.00
0.25
0.20

1.00
1.29
1.13

𝑡2 = ⟨b, d, a, b, b, d, e, d, c⟩
⟨x, x, x, x, x, x, x, x, 1⟩
⟨x, 1, x, x, x, 1, x, 0, x⟩
⟨x, 1, x, x, x, 1, x, 0, 1⟩

Ψ1 = c ◊a
Ψ2 = d ◊e
 = {Ψ1,Ψ2}

1.00
0.67
0.75

0.11
0.33
0.44

0.78
0.78
0.78

0.11
0.22
0.33

1.00
0.67
0.75

0.14
0.29
0.43

0.25
0.17
0.20

1.29
0.86
0.96

𝑡3 = ⟨c, d, a, b, c, e, b, c, b, c⟩
⟨0, x, x, x, 1, x, x, 1, x, 1⟩
⟨x, 1, x, x, x, x, x, x, x, x⟩
⟨0, 1, x, x, 1, x, x, 1, x, 1⟩

Ψ1 = c ◊a
Ψ2 = d ◊e
 = {Ψ1,Ψ2}

0.75
1.00
0.80

0.40
0.10
0.50

0.80
0.60
0.70

0.30
0.10
0.40

0.75
1.00
0.80

0.38
0.17
0.57

0.17
0.44
0.40

0.94
1.67
1.14

𝑡4 = ⟨b, c, a, c, e, a⟩
⟨x, 0, x, 1, x, x⟩
⟨x, x, x, x, x, x⟩
⟨x, 0, x, 1, x, x⟩

Ψ1 = c ◊a
Ψ2 = d ◊e
 = {Ψ1,Ψ2}

0.50
NaN
0.50

0.33
0.00
0.33

0.67
0.83
0.50

0.17
0.00
0.17

0.50
NaN
0.50

0.25
0.00
0.33

0.25
0.17
0.50

0.75
NaN
1.00

𝑡5 = ⟨b, b, b⟩
⟨x, x, x⟩
⟨x, x, x⟩
⟨x, x, x⟩

Ψ1 = c ◊a
Ψ2 = d ◊e
 = {Ψ1,Ψ2}

NaN
NaN
NaN

0.00
0.00
0.00

0.00
0.00
0.00

0.00
0.00
0.00

NaN
NaN
NaN

NaN
NaN
NaN

1.00
1.00
1.00

NaN
NaN
NaN

𝐿 = {𝑡171 , 𝑡
6
2, 𝑡

5
3, 𝑡

12
4 , 𝑡

5
5}

|𝐿| = 45

Ψ1 = c ◊a
Ψ2 = d ◊e
 = {Ψ1,Ψ2}

0.80
0.85
0.81

0.27
0.10
0.37

0.75
0.69
0.65

0.22
0.08
0.30

0.80
0.85
0.81

0.29
0.12
0.46

0.27
0.33
0.44

1.07
1.24
1.25

NaN values denote a division by 0.

(𝑡, 𝑖) ⊧ 𝜑1 ∧ 𝜑2 iff (𝑡, 𝑖) ⊧ 𝜑1 and (𝑡, 𝑖) ⊧ 𝜑2;
(𝑡, 𝑖) ⊧ ○𝜑 iff 𝑖 < 𝑛 and (𝑡, 𝑖 + 1) ⊧ 𝜑;
(𝑡, 𝑖) ⊧ ⊖𝜑 iff 𝑖 > 1 and (𝑡, 𝑖 − 1) ⊧ 𝜑;
(𝑡, 𝑖) ⊧ 𝜑1 𝐔 𝜑2 iff (𝑡, 𝑗) ⊧ 𝜑2 with 𝑖 ≤ 𝑗 ≤ 𝑛, and

(𝑡, 𝑘) ⊧ 𝜑1 for all 𝑘 s.t. 𝑖 ≤ 𝑘 < 𝑗;
(𝑡, 𝑖) ⊧ 𝜑1 𝐒 𝜑2 iff (𝑡, 𝑗) ⊧ 𝜑2 with 1 ≤ 𝑗 ≤ 𝑖, and

(𝑡, 𝑘) ⊧ 𝜑1 for all 𝑘 s.t. 𝑗 < 𝑘 ≤ 𝑖.

Without loss of generality, we consider here the non-strict
semantics of 𝐔 and 𝐒 [23]. Also, notice that each event
in Table 1 satisfies only one proposition (thus applying the
“Declare assumption” [24]) for the sake of simplicity. In
the following, we might directly refer to the sequence of
events ⟨𝑒1,… , 𝑒𝑛⟩ of a trace 𝑡 of length 𝑛 to indicate the
sequence of assignments at instants 1,… , 𝑛. For example,
𝑡1, 𝑡2, and 𝑡4 in Table 1 are written as ⟨a, b, c, d, b, c, e, c, b⟩,
⟨b, d, a, b, b, d, e, d, c⟩, and ⟨b, c, a, c, e, a⟩, respectively. We thus
indicate, e.g., that (𝑡1, 1) ⊧ a, (𝑡2, 4) ⊧ b, and (𝑡4, 2) ⊧ c.
Considering again the formula (○¬e) 𝐔 d, we have that
(𝑡1, 1) satisfies it (i.e., the formula is satisfied at the first instant
of 𝑡1), whereas (𝑡2, 6) does not.

From the above operators, the following can be derived:
• Classical boolean abbreviations ∨,→;
• Constant 𝑡End ≡ ¬○ True, the last instant of a trace;
• Constant 𝑡Start ≡ ¬⊖ True, the first instant of a trace;
• ◊𝜑 ≡ True 𝐔 𝜑, indicating that 𝜑 holds true at an

instant between the current one (included) and 𝑡End (we
name this operator eventually);

• ◊𝜑 ≡ True 𝐒 𝜑, indicating that 𝜑 holds true at an
instant in the closed interval from 𝑡Start to the current
one (once);

• □𝜑 ≡ ¬◊¬𝜑, indicating that 𝜑 holds true at every
instant from the current one till 𝑡End (always);

• ⊟𝜑 ≡ ¬◊¬𝜑, indicating that 𝜑 holds true at every
instant from 𝑡Start to the current one (historically).

For example, d ∧◊e is satisfied in a trace when the proposi-
tional atom d holds true and e holds true at a later instant in
the same trace. Considering the log in Table 1, we have that
(𝑡2, 6) ⊧ d ∧◊e whereas (𝑡1, 1) ⊭ d ∧◊e.

Notice that the semantics of the past operators ⊖, 𝐒 , ◊,
and ⊟ correspond to the semantics of the future operators
○, 𝐔 , ◊, and □, respectively, if we evaluate them on finite

traces read in reverse [17]. For example, the evaluation of
(⊖¬e) 𝐒 d on ⟨a, e, c, a, c, b⟩ is equivalent to the evaluation
of (○¬e) 𝐔 d on ⟨b, c, a, c, e, a⟩.

Let ‖𝜑‖ denote the size of theLTL𝑓 formula𝜑 in terms of
propositional symbols and connectives excluding parentheses.
For example, ‖(○¬e) 𝐔 d‖ is 5 and ‖d ∧◊e‖ is 4.
Theorem 2.1 ([25]). Let 𝑡 be a finite trace of length 𝑛 ∈ ℕ.
Checking whether (𝑡, 𝑖) (with 1 ≤ 𝑖 ≤ 𝑛) satisfies an LTL𝑓
formula 𝜑, (𝑡, 𝑖) ⊧ 𝜑, is feasible in 𝑂(𝑛2 × ‖𝜑‖).

Proof. It follows from the proof in [25] elaborated for future
operators (○, ◊, □, and 𝐔 ). Notice that the use of past
modalities⊖,⊟, ◊ and𝐒 do not alter the complexity. Indeed,
they can be included in the parse tree of the constructive
proof in [25] as the respective future counterparts and
checked against the trace read in reverse (i.e., from end to
start [17]).

Corollary 2.1. Let 𝐿 be an event log as per Def. 2.1
consisting of 𝑚 ∈ ℕ distinct traces of length up to 𝑛 ∈ ℕ and
cardinality |𝐿| ≥ 𝑚. Labeling the events in 𝐿 that satisfy an
LTL𝑓 formula 𝜑 is feasible in 𝑂(𝑛3 × ‖𝜑‖ × 𝑚).

Proof. The proof follows from Theorem 2.1: the checking is
done for the 𝑂(𝑛) events of all 𝑚 distinct traces in 𝐿.

3. Reactive Constraints (RCons) and process
specifications
In this section, we illustrate how we adopt LTL𝑓 to

express rules specifying the behavior of a process in the
form of Reactive Constraints (RCons).
3.1. Reactive Constraints (RCons)

RCons expressLTL𝑓 -based rules as antecedent-consequent
pairs in an “if-then” fashion. Next, we formalize their
definition.
Definition 3.1 (Reactive Constraint (RCon)). Given an
alphabet of propositional symbols Σ, let 𝜑𝛼 and 𝜑𝜏 be LTL𝑓
formulae over Σ. A Reactive Constraint (RCon) Ψ is a pair
(𝜑𝛼 , 𝜑𝜏 ) hereafter denoted as Ψ ≜ 𝜑𝛼 𝜑𝜏 . We name 𝜑𝛼
as activator and 𝜑𝜏 as target.
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We define the semantics of an RCon Ψ = 𝜑𝛼 𝜑𝜏as follows: given a trace 𝑡 of length 𝑛 and an instant 𝑖 with
1 ≤ 𝑖 ≤ 𝑛, we say that
Ψ is satisfied by 𝑡 in 𝑖, i.e., 𝑡, 𝑖 ⊧ Ψ, iff 𝑡, 𝑖 ⊧ 𝜑𝛼 and 𝑡, 𝑖 ⊧ 𝜑𝜏
Ψ is violated by 𝑡 in 𝑖, 𝑡, 𝑖 ⊭ Ψ, iff 𝑡, 𝑖 ⊧ 𝜑𝛼 and 𝑡, 𝑖 ⊭ 𝜑𝜏
Ψ is unaffected by 𝑡 in 𝑖, iff 𝑡, 𝑖 ⊭ 𝜑𝛼 .
We also say that Ψ is activated by 𝑡 if there exists an instant 𝑖
s.t. 1 ≤ 𝑖 ≤ 𝑛 and 𝑡, 𝑖 ⊧ 𝜑𝛼 . For example, take Ψ1 = c ◊a
in Table 1. At every occurrence of c (the activator), Ψ1 is
either satisfied (if c is eventually preceded by a as ◊a is the
target), or violated. Ψ1 is instead unaffected by those events
in which c does not occur. The activator of Ψ2 = d ◊e
in Table 1 is d and the target is ◊e. Whenever d occurs, it
is either satisfied (if eventually followed by e) or violated
(otherwise). It is unaffected by events wherein d does not
hold. Notice that by declaring that the activator of Ψ1 is c, the
user makes the “trigger” of the rule explicit.Ψ1 andΨ2 are the
RCon representation of what are known as PRECEDENCE(c, a)
and RESPONSE(d, e) in the declarative process specification
language DECLARE [1], respectively.
A Note on the Role of the Activators in RCons. We
remark that any LTL𝑓 formula 𝜙 can be expressed by means
of an RCon. The expressiveness of RCons fully covers that of
LTL𝑓 and, a fortiori, of DECLARE. The examination of the
expressiveness of RCons is discussed in detail in [17, 16]. On
the other hand, the temporal conditions that an LTL𝑓 formula
such as □(𝜙1 → 𝜙2) exerts do not substantially differ from
those of 𝜙1 𝜙2. However, we adopt RCons to express
rules in a mining context because the explicit definition of
the activator makes it possible to distinguish an interesting
satisfaction from a vacuous one [26]. The LTL𝑓 formulae
𝜓1 = □(c → ◊a) and 𝜓2 = □ ((¬c 𝐔 a) ∨ ¬c) both express
the PRECEDENCE(c, a) constraint. The rule dictates that, for
every event, if c occurs, then it must be preceded by a. This
explanation closely resembles 𝜓1. Therefore, if c does not
occur, the constraint is also satisfied (regardless of whether a
occurs or not: ex falso sequitur quodlibet), though vacuously.
Notice that the latter condition is explicit in the second
conjunct under □ in 𝜓2: “… ∨ ¬c”. Indicating that a rule
is satisfied though being unable to distinguish whether it is
actually triggered or not adds limited information [27]. The
adoption of RCons, though not solving the vacuity problem
(activator and target could still be vacuously satisfiable
formulae per se), lets the user explicitly define the conditions
that make a satisfaction interesting. With c ◊a, e.g.,
we state that the rule is unaffected (neither violated nor
satisfied) by events in which c does not occur. Notice, however,
that alternative expressions can be used to customize the
interpretation of the rules. To adopt the classical binary
interpretation of LTL𝑓 formulae, PRECEDENCE(c, a) can
be expressed, e.g., as Ψ3 = True ((¬c 𝐔 a) ∨ ¬c), or
Ψ4 = 𝑡Start □(c → ◊a). In the first case, Ψ3 indicates that
every event activates the RCon (because True holds in every
event). Therefore, the satisfaction of the target determines the
satisfaction of the constraint. In the second case, the activator
of Ψ4 is 𝑡Start. Thus, the first event acts as a representative for

the whole trace as either satisfying (if no events in it violates
the constraint) or violating (if at least one event violates it).
The constraint is unaffected by the trace in every other event.
The definition of well-formed RCons and guidelines for their
formulation in a mining context go beyond the scope of this
paper, and suggests interesting theoretical investigation for
future work.
3.2. Process specifications

Equipped with the above notion of RCons and the
rationale behind their use in this context, we can define a
process specification as follows.
Definition 3.2 (Rule-based LTL𝑓 process specification). A
rule-based LTL𝑓 process specification (henceforth, speci-
fication for short) is a finite non-empty set of RCons  ≜
{Ψ1,… ,Ψ𝑠}, with 𝑠 ∈ ℕ.

For example, Table 1 presents a specification  =
{Ψ1,Ψ2} composed by the Ψ1 RCon above and Ψ2 =
d ◊e.
Corollary 3.1. Let  = {Ψ1,… ,Ψ𝑠} be a specification
consisting of 𝑠 RCons, the activator and target of which are of
size up to ‖𝜑‖. Labeling the events in 𝐿 with the satisfaction
of activator and target of every RCon in  is feasible in
𝑂(𝑛3 × ‖𝜑‖ × |𝐿| × 𝑠).

Proof. The proof follows from Corollary 2.1, as a pair of
labels is sufficient for all RCons in the specification.

Take, e.g., trace 𝑡4 = ⟨b, c, a, c, e, a⟩ from Table 1 and the
aforementioned RCon Ψ1 = c ◊a. The activator (c) is
satisfied in (𝑡4, 2) and (𝑡4, 4). We can thus label every event in
𝑡4 thereby creating a new sequence as follows: ⟨0, 1, 0, 1, 0, 0⟩
where 1 and 0 indicate a satisfaction and a violation of the
formula in the corresponding event, respectively. Similarly,
we can create a sequence of labels denoting whether the target
(◊a) is satisfied: ⟨0, 0, 1, 1, 1, 1⟩.

A trivial approach to classify traces as compliant with
an RCons or not is to check whether no event violates it.
Nevertheless, especially in checking contexts, understanding
the extent to which a trace and a log satisfy a specification
is key [28]. Next, we introduce the interestingness measures,
i.e., the quantitative device we employ to quantify the
extent of specification satisfaction. Subsequently, we lay the
foundations rooted in probabilistic theory to reach this goal.

4. Interestingness Measures for RCons
The association rule mining field has a long history

of measures development for association rules, also called
interestingness measures [29, 18]. These rules have a standard
“if-𝐴-then-𝐵” form, where 𝐴 and 𝐵 are elements that may
occur in a phenomenon, e.g., instructions in a set of database
transactions, or events in a set of process traces. These mea-
sures are based on the (joint) probabilities of the occurrences
(and co-occurrences) of 𝐴 and 𝐵 with the general goal of
understanding whether there is a significant (directional) rela-
tion between the two elements or, alternatively, whether their
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Table 2: A selection of interestingness measures
Measure Definition

Support 𝑃 (𝐴 ∩ 𝐵)

Confidence 𝑃 (𝐵|𝐴)

Recall 𝑃 (𝐴|𝐵)

Specificity 𝑃 (¬𝐵|¬𝐴)

Lift 𝑃 (𝐴 ∩ 𝐵)
𝑃 (𝐴)𝑃 (𝐵)

co-occurrence is uncorrelated. Historically, the development
of these measures began in market basket analysis with the
introduction of the A-Priori algorithm [30]. The problem
that the algorithm addressed was to discover, given a set
of transactions, association rules between sets of frequently
co-occurring elements. Yet, the simple co-occurrence does
not necessarily imply a correlation between the elements.
Therefore, more refined measures that distinguish authentic
associations from spurious ones were developed [18].

Let us consider a few examples of such measures, pre-
sented in Table 2: Given an “if-𝐴-then-𝐵” rule, the Support
measure, 𝑃 (𝐴 ∩ 𝐵), quantifies the joint occurrences of the
two elements; Confidence, 𝑃 (𝐵|𝐴), considers the occurrence
of 𝐵 only when we know that 𝐴 occurred; Specificity,
𝑃 (¬𝐵|¬𝐴), measures the non-occurrence of 𝐵 given the non-
occurrence of 𝐴; Recall, 𝑃 (𝐴|𝐵), measures the conditional
occurrence of𝐴 given𝐵; finally, Lift, 𝑃 (𝐴∩𝐵)

𝑃 (𝐴)𝑃 (𝐵) , is the ratio of
the probability of co-occurrence of 𝐴 and 𝐵 over the product
of the individual probabilities of𝐴 and𝐵 to occur. Intuitively,
Support is high when 𝐴 and 𝐵 occur frequently together;
Confidence is high when𝐵 occurs every time𝐴 occurs, while
Recall is high in the opposite situation, i.e., if 𝐴 occurs every
time 𝐵 occurs; Specificity is high when 𝐵 does not occur if
𝐴 does not occur; Lift is high when the separate probability
of 𝐴 and 𝐵 occurring is lower than the probability of their
joint occurrence.

Clearly, these measures quantify different aspects of the
rule and, depending on the needs of the user, one measure
may turn out to be more useful than another. A plethora
of other interestingness measures have been defined in the
literature. We refer the reader to existing surveys for an
extensive overview [18, 31, 32].

In the context of process mining, it has been already
shown how to apply these interestingness measures to single
RCon rules [16]. By definition, RCons are “if-then” rules
too, which makes these measures suitable for interestingness
measurement based on the probabilities of the satisfaction of
the activator and target conditions in a trace or a log.

The main goal of this paper is to extend these results
to specifications of RCons. To this end, we must assume a
probabilistic model and derive sound statistical estimators
for specifications satisfied by traces and, subsequently, logs.

5. Estimators for LTL𝑓 formulae
The interestingness measures for RCons are based on the

probabilities of their activator (𝜑𝛼) and target (𝜑𝜏 ) LTL𝑓

formulae. In this section, we propose estimators for the
probabilities of traces and logs satisfying LTL𝑓 formulae
and show that these estimators are computable in polynomial
time.
5.1. Trace estimators

We start by defining probabilistic models for the evalua-
tion of formulae over traces. One can consider the probability
of an event in a given trace 𝑡 = ⟨𝑒1,… , 𝑒𝑛⟩ to satisfy an LTL𝑓formula 𝜑 as the degree to which 𝜑 is satisfied in that trace,
which we denote as 𝑃 (𝜑(𝑡)).

Throughout this work, we assume the existence of a
labeling mechanism Λ that, when given an event 𝑒 in a
trace 𝑡 and a formula 𝜑, marks the event with 1 if the event
satisfies 𝜑 or with 0 otherwise, i.e., Λ(𝑒, 𝜑) ∈ {0, 1}. This
procedure can be achieved in polynomial time as shown in
Corollary 2.1 through automata-based techniques for LTL𝑓formulae verification [16].

Therefore, every trace 𝑡 can be associated with a binary
sequence 𝑥𝜑,𝑡 as follows:

𝑥𝜑,𝑡 =
⟨

Λ
(

𝑒1, 𝜑
)

,… ,Λ
(

𝑒𝑛, 𝜑
)⟩

.

Take again, e.g., 𝑡2 = ⟨𝑒2,1,… , 𝑒2,9⟩ = ⟨b, d, a, b, b, d, e, d, c⟩
from Table 1, and formula 𝜑 = d ∧ ◊e. As only (𝑡2, 2) and
(𝑡2, 6) satisfy 𝜑, Λ(𝑒2,1, 𝜑

) and Λ
(

𝑒2,6, 𝜑
) return 1 while

Λ
(

𝑒2,𝑖, 𝜑
) is 0 for every 𝑖 ∈ {1,… , 9} ⧵ {2, 6}, i.e.,

𝑥𝜑,𝑡2 = ⟨0, 1, 0, 0, 0, 1, 0, 0, 0⟩.

In what follows, we assume that 𝑃 (𝜑(𝑡)) (the probability of
𝑡 to satisfy 𝜑), is independent of the position of the event
in the trace. This is an uninformative prior assumption, i.e.,
we assume that we are unaware of the values of other events
and of the event location within the trace when evaluating a
specific event. Thus, the sequence 𝑥𝜑,𝑡 can be viewed as an
independent and identically distributed (i.id.) draw from a
Bernoulli random variable 𝑋𝜑,𝑡, which takes the value of 1
with probability 𝑃 (𝜑(𝑡)) and 0 otherwise, i.e.,

𝑋𝜑,𝑡 =
{1, w.p. 𝑃 (𝜑(𝑡)),
0, otherwise. (1)

This leads us to our first estimator, namely that of 𝑃 (𝜑(𝑡)).1
Proposition 5.1. The maximum likelihood estimator (MLE)2
for 𝑃 (𝜑(𝑡)) where 𝑡 = ⟨𝑒1,… , 𝑒𝑛⟩ is

𝑃 (𝜑(𝑡)) = 1
𝑛

𝑛
∑

𝑖=1
Λ(𝑒𝑖, 𝜑). (2)

Proof. Since 𝑋𝜑,𝑡 is a univariate Bernoulli random variable
its MLE is well-established in the literature (see, e.g., [33]).
Specifically, it equals to the ratio of ‘successful trials’ over
the 𝑛 trials.

1We write 𝑃 (𝜑(𝑡)) for the probability of specific events such as the
satisfaction of a formula, and 𝑃 (𝑋 = 𝑥) for the probability that a random
variable 𝑋 is set to a specific value 𝑥. See Appendix A for basic probability
notation.

2MLE estimators exhibit important statistical properties such as unbi-
asedness and consistency (see Appendix B).
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Returning to our running example (Table 1), the MLE
estimator is used to compute the trace probabilities of the
𝜑𝛼 formula (𝑃 of act.) and of the 𝜑𝜏 formula (𝑃 of target)
for each RCon 𝜑𝛼 𝜑𝜏 in  and for every trace 𝑡 ∈ 𝐿. Let
us consider again trace 𝑡4 = ⟨b, c, a, c, e, a⟩ and the RCon
Ψ1 = 𝜑𝛼1 𝜑𝜏1 = c ◊a. As we have previously
discussed in Section 3, the evaluation of 𝜑𝛼1 and 𝜑𝜏1 on
𝑡4 leads to the following sequences of labels, respectively:
⟨0, 1, 0, 1, 0, 0⟩ and ⟨0, 0, 1, 1, 1, 1⟩. Therefore, we conclude
that ̂

𝑃
(

𝜑𝛼1
(

𝑡4
)

)

is 2
6 and ̂

𝑃
(

𝜑𝜏1
(

𝑡4
)

)

is 4
6 .

In order to obtain measures of interest for formulae and
specifications we must, in addition, obtain estimators for the
intersection of two LTL𝑓 formulae 𝜑1 and 𝜑2 being satisfied
by a trace, e.g., 𝑃 (𝜑1(𝑡) ∩ 𝜑2(𝑡)), and for the conditional
distribution of 𝜑1 to be satisfied by trace 𝑡 conditional on 𝜑2being satisfied by the trace, e.g., 𝑃 (𝜑1(𝑡)|𝜑2(𝑡)).The latter will be particularly useful to extend the es-
timators to entire process specifications. Notice that we
provide results for the satisfaction of formulae, yet similar
results can be derived for violations by quantifying, e.g.,
𝑃
(

¬𝜑1(𝑡) ∩ 𝜑2(𝑡)
) and 𝑃

(

¬𝜑1(𝑡)|𝜑2(𝑡)
). Formalizing the

above, we wish to estimate the quantities of interest from
a labeled sequence,

𝑥(𝜑1,𝜑2),𝑡 =
⟨(

Λ
(

𝑒𝑖, 𝜑1
)

,Λ
(

𝑒𝑖, 𝜑2
))⟩𝑛

𝑖=1 ,

for 𝑡 = ⟨𝑒1,… , 𝑒𝑛⟩.Take, for example, 𝑡4 = ⟨b, c, a, c, e, a⟩ from Table 1 and
the pair of activator and target of Ψ1 = c ◊a, i.e., 𝜑𝛼1 = c

and 𝜑𝜏1 = ◊a, respectively. We have that 𝑥(𝜑𝛼1 ,𝜑𝜏1 ),𝑡4 is
⟨(0, 0), (1, 0), (0, 1), (1, 1), (0, 1), (0, 1)⟩.

The resulting joint sequence 𝑥(𝜑1,𝜑2),𝑡 is again assumed
to be an i.id. draw from a bivariate Bernoulli random
variable 𝑋(𝜑1,𝜑2),𝑡. The bivariate Bernoulli corresponds to
four parameters related to the four possible outcomes, namely:

𝑋(𝜑1,𝜑2),𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(0, 0), w.p 𝑝00,
(0, 1), w.p 𝑝01,
(1, 0), w.p 𝑝10,
(1, 1), w.p 𝑝11,

(3)

such that ∑

𝑖,𝑗 𝑝𝑖𝑗 = 1. A more detailed definition of
bivariate Bernoulli random variables is given in [34]. The
MLE for each 𝑝𝑖𝑗 is proposed in [35]. When estimating
𝑃
(

𝜑1(𝑡) ∩ 𝜑2(𝑡)
) we are essentially interested in an estimator

for 𝑝11, which is the probability that both formulae are
satisfied by the trace.
Proposition 5.2. The MLE for 𝑃

(

𝜑1(𝑡) ∩ 𝜑2(𝑡)
)

given a
trace 𝑡 = ⟨𝑒1,… , 𝑒𝑛⟩ is

̂𝑃
(

𝜑1(𝑡) ∩ 𝜑2(𝑡)
)

= 𝑝̂11 =
1
𝑛

𝑛
∑

𝑖=1
Λ
(

𝑒𝑖, 𝜑1
)

⋅Λ
(

𝑒𝑖, 𝜑2
)

. (4)

Proof. The proof follows from the MLE estimators for Bivari-
ate Bernoulli random variables with corresponding success
probabilities, 𝑝𝑖𝑗 , with 𝑖, 𝑗 ∈ {0, 1} (see [35]).

From the example above, we conclude that
̂

𝑃
(

𝜑𝛼1
(

𝑡4
)

∩ 𝜑𝜏1
(

𝑡4
)

)

= 1
6
, (5)

as only one element in the sequence is (1, 1). Similarly to
𝑃 (𝜑1(𝑡) ∩ 𝜑2(𝑡)), we can estimate the other combinations of
satisfaction and violation of the two formulae (using 𝑝̂00, 𝑝̂01,
and 𝑝̂10).
Remark 5.1. One may be tempted to assume independence
between the two sequences Λ

(

𝑒𝑖, 𝜑1
)𝑛
𝑖=1 and Λ

(

𝑒𝑖, 𝜑2
)𝑛
𝑖=1.

However, this is seldomly the case. Consider two formulae:
one that requires activity 𝑎 to happen at least once in 𝑡, and the
other that requires that activity 𝑎 never occurs. Clearly, the
evaluation of these two formulae would not be independent.

Having modeled the joint probability of two LTL𝑓 for-
mulae satisfied by a trace, we can now define the probability
of one formula being satisfied (or violated) by 𝑡 conditioned
on another formula being satisfied (or violated) by the same
trace 𝑡. The conditional distribution of the random variable,
𝑋𝜑1,𝑡 | 𝑋𝜑2,𝑡 = 𝑥2, is a univariate Bernoulli that depends on
the sequence 𝑥2 (which results from applying Λ to 𝜑2 and 𝑡)
and on the four parameters 𝑝𝑖𝑗 of the joint bivariate Bernoulli
distribution (see the proof in [34]). This result leads to the
following estimator of the conditional probability.
Proposition 5.3. The MLE for 𝑃

(

𝜑1(𝑡)|𝜑2(𝑡)
)

given a trace
𝑡 = ⟨𝑒1,… , 𝑒𝑛⟩ is

̂𝑃
(

𝜑1(𝑡)|𝜑2(𝑡)
)

=
∑𝑛
𝑖=1 Λ

(

𝑒𝑖, 𝜑1
)

⋅ Λ
(

𝑒𝑖, 𝜑2
)

∑𝑛
𝑖=1 Λ

(

𝑒𝑖, 𝜑2
) . (6)

Proof. The conditional distribution for bivariate Bernoulli is
a univariate Bernoulli with success probability of 𝑝̂11

𝑝̂01+𝑝̂11
[34].

Therefore, the MLE estimation of ̂𝑃
(

𝜑1(𝑡)|𝜑2(𝑡)
)

is that of a
univariate Bernoulli with that success probability [33].
This leads to the following estimator:

̂𝑃
(

𝜑1(𝑡)|𝜑2(𝑡)
)

=
𝑝̂11

𝑝̂01 + 𝑝̂11
,

with 𝑝̂11 as derived in Prop. 5.2 and 𝑝̂01 being

𝑝̂01 =
1
𝑛

𝑛
∑

𝑖=1

(

1 − Λ
(

𝑒𝑖, 𝜑1
))

⋅ Λ
(

𝑒𝑖, 𝜑2
)

.

Therefore,

̂𝑃
(

𝜑1(𝑡)|𝜑2(𝑡)
)

=
𝑝̂11

𝑝̂01 + 𝑝̂11
=

∑𝑛
𝑖=1 Λ

(

𝑒𝑖, 𝜑1
)

⋅ Λ
(

𝑒𝑖, 𝜑2
)

∑𝑛
𝑖=1 Λ

(

𝑒𝑖, 𝜑2
) .

Remark 5.2. When estimating ̂𝑃
(

𝜑1(𝑡)|𝜑2(𝑡)
)

, the denomi-
nator of the estimator may be equal to 0. In such a case, the
conditional probability is ill-defined and the trace is ignored
for log-level computations; the value is denoted as NaN.
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Take, e.g., 𝑡4 = ⟨b, c, a, c, e, a⟩ from Table 1 as above,
𝜑𝛼1 = c and 𝜑𝜏1 = ◊a, namely the activator and target of Ψ1.
We have that ̂

𝑃
(

𝜑𝜏1
(

𝑡4
)

|𝜑𝛼1
(

𝑡4
)

)

is 1
2 as 𝜑𝛼1 is satisfied

by two events, only one of which satisfies 𝜑𝜏1 too.
Similarly, we can estimate the remaining that corre-

spond to the random variable, 𝑋𝜑1,𝑡 | 𝑋𝜑2,𝑡 = 𝑥2, i.e.,
𝑃
(

¬𝜑1(𝑡)|¬𝜑2(𝑡)
), 𝑃 (𝜑1(𝑡)|¬𝜑2(𝑡)

), and 𝑃 (¬𝜑1(𝑡)|𝜑2(𝑡)
),

since all of them are derived from the random variable
𝑋𝜑1,𝑡 |𝑋𝜑2,𝑡 = 𝑥2 and the fact that it is a univariate Bernoulli.
5.2. Log estimators

We lift our results from traces to logs by estimating
𝑃 (𝜑(𝐿)), i.e., the probability that the log𝐿 satisfies a formula
𝜑. Recall that an event log 𝐿 =

{

𝑡𝑗11 ,… , 𝑡𝑗𝑚𝑚
}

is a bag of
traces with trace 𝑡𝑗𝑖𝑖 occurring 𝑗𝑖 times in the log. The size of
the log |𝐿| =

∑𝑚
𝑖=1 𝑗𝑖 is the total number of traces.

Let us denote with 𝐿̄ = {𝑡1,… , 𝑡𝑚} the set of unique
traces in 𝐿. We assume that the traces in 𝐿 are independently
generated by a trace generator 𝑇 , which is, in turn, associated
with a discrete probability function 𝑃 (𝑇 = 𝑡).3 Let  be the
support of the probability distribution of 𝑇 , i.e.,

 = {𝑡 | 𝑃 (𝑇 = 𝑡) > 0}. (7)
First, we generalize our definitions from a given trace 𝑡 to a
random trace 𝑇 . To this end, we assume log completeness:
the log contains all possible traces that can be generated from
𝑇 , i.e., 𝐿̄ =  . We plan to lift this assumption in future work.

Next, we shall define 𝑋𝜑,𝑇 as a sequence of binary
evaluations – similarly to the approach we adopted to define
𝑋𝜑,𝑡 in Eq. (1), yet over a random trace 𝑇 . Note that
𝑋𝜑,𝑇 is essentially a doubly stochastic random variable,
as its success probability, 𝑃 (𝑋𝜑,𝑇 = 1

), changes for traces
randomly sampled from the distribution of 𝑇 (which we
assume to be generalized Bernoulli, i.e., Bernoulli with
multiple outcomes). We shall use 𝑋𝜑,𝑇 together with our log
completeness assumption to derive an estimator for 𝑃 (𝜑(𝐿)).
Proposition 5.4. The MLE for 𝑃 (𝜑(𝐿)) for a log 𝐿 with a
trace set 𝐿̄ = {𝑡𝑖 = ⟨𝑒𝑖,1,… , 𝑒𝑖,𝑛𝑖⟩}

𝑚
𝑖=1 is

̂𝑃 (𝜑(𝐿)) = 1
|𝐿|

𝑚
∑

𝑖=1

𝑗𝑖
𝑛𝑖

𝑛𝑖
∑

𝑘=1
Λ
(

𝑒𝑖,𝑘, 𝜑
)

. (8)

with 𝑚 being the number of unique traces in 𝐿 and |𝐿|
denoting the number of traces in the log.

Proof. From the law of total probability (see Appendix A) we
get that

𝑃
(

𝑋𝜑,𝑇 = 𝑥
)

=
∑

𝑡∈
𝑃 (𝑇 = 𝑡)𝑃

(

𝑋𝜑,𝑇 = 𝑥 ∣ 𝑇 = 𝑡
)

=

=
∑

𝑡∈
𝑃 (𝑇 = 𝑡)𝑃

(

𝑋𝜑,𝑡 = 𝑥
)

, (9)

3In practice, the trace can be generated via a random walk over, e.g., a
finite-state automaton [36].

which provides a link between log-based evaluation of
formulae and trace-based evaluation. Since we assume log
completeness, we may replace  with 𝐿̄ in Eq. (9), and plug
in 𝑃 (𝜑(𝐿)) for 𝑃

(

𝑋𝜑,𝑇 = 1
)

and 𝑃 (𝜑(𝑡)) for 𝑃 (𝑋𝜑,𝑡 = 1),
thus yielding the following:

̂𝑃 (𝜑(𝐿)) =
𝑚
∑

𝑖=1

̂𝑃 (𝑇 = 𝑡𝑖) ̂𝑃 (𝜑(𝑡𝑖)). (10)

The term ̂𝑃 (𝜑(𝑡𝑖)) is estimated using Prop. 5.1, and 𝑇 is
assumed to be a generalized Bernoulli random variable which
has a known MLE estimator as follows (it is a special case
of the Multinomial random variable),

̂𝑃 (𝑇 = 𝑡𝑖) =
𝑗𝑖

∑𝑚
𝑘=1 𝑗𝑘

=
𝑗𝑖
|𝐿|

. (11)

The proof for the latter can be found in [37].
Finally, to show that the proposed estimator for ̂𝑃 (𝜑(𝐿))

is indeed an MLE we use a well-known result in statistics is
that any function of multiple MLE estimators yields an MLE
estimator [38, Ch. 7], which completes our proof.

For example, 𝑡4 has a multiplicity of 12 considering
the example log in Table 1. The cardinality of the example
log 𝐿 is 45, so ̂𝑃 (𝑡 = 𝑡4) is 12

45 . We saw in Section 5.1 that
̂

𝑃
(

𝜑𝛼1 (𝑡4)
)

is 2
6 for 𝜑𝛼1 = c. Therefore, the term for 𝑖 = 4 in

the summation of Eq. (8) is 12
45 ⋅

2
6 ≊ 0.09 for 𝜑𝛼1 . Extending

the sum to all the traces in 𝐿̄, we have that the value of
̂

𝑃
(

𝜑𝛼1 (𝐿)
)

is approximately 0.274.
To lift the estimators of intersection and conditional

probabilities from traces to logs, we can again apply the law
of total probability and derive the following.
Theorem 5.1. The MLE of 𝑃

(

𝜑1(𝐿) ∩ 𝜑2(𝐿)
)

for a log 𝐿
with a trace set 𝐿̄ = {𝑡𝑖 = ⟨𝑒𝑖,1,… , 𝑒𝑖,𝑛𝑖⟩}

𝑚
𝑖=1 is

̂𝑃
(

𝜑1(𝐿) ∩ 𝜑2(𝐿)
)

= 1
|𝐿|

𝑚
∑

𝑖=1

𝑗𝑖
𝑛𝑖

𝑛𝑖
∑

𝑘=1
Λ
(

𝑒𝑖,𝑘, 𝜑1
)

Λ
(

𝑒𝑖,𝑘, 𝜑2
)

. (12)

Proof. From the law of total probability, we get that

𝑃
(

𝜑1(𝐿) ∩ 𝜑2(𝐿)
)

=
𝑚
∑

𝑖=1
𝑃 (𝑇 = 𝑡𝑖)𝑃

(

𝜑1(𝑇𝑖) ∩ 𝜑2(𝑇𝑖) ∣ 𝑇𝑖 = 𝑡𝑖
)

=

=
𝑚
∑

𝑖=1
𝑃 (𝑇 = 𝑡𝑖)𝑃

(

𝜑1(𝑡𝑖) ∩ 𝜑2(𝑡𝑖)
)

,

which leads to the following estimate:

̂𝑃
(

𝜑1(𝐿) ∩ 𝜑2(𝐿)
)

=
𝑚
∑

𝑖=1

̂𝑃 (𝑇 = 𝑡𝑖)
̂𝑃

(

𝜑1(𝑡𝑖) ∩ 𝜑2(𝑡𝑖)
)

=

= 1
|𝐿|

𝑚
∑

𝑖=1

𝑗𝑖
𝑛𝑖

𝑛𝑖
∑

𝑘=1
Λ
(

𝑒𝑖,𝑘, 𝜑1
)

Λ
(

𝑒𝑖,𝑘, 𝜑2
)

.

(13)
To obtain the result in Eq. (13) we estimate 𝑃

(

𝑇 = 𝑡𝑖
)

as
in Prop. 5.4 (Multinomial MLE) and 𝑃

(

𝜑1(𝑡) ∩ 𝜑2(𝑡)
)

as
in Prop. 5.2 (bivariate Bernoulli). Since both are MLEs, we
get that ̂𝑃

(

𝜑1(𝐿) ∩ 𝜑2(𝐿)
)

is an MLE [38, Ch. 7].
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In Section 5.1, e.g., we showed that ̂
𝑃
(

𝜑𝛼1 (𝑡4) ∩ 𝜑𝜏1 (𝑡4)
)

is 1
6 considering the example log,𝜑𝛼1 as above, and𝜑𝜏1 = ◊a.

Recalling that ̂𝑃
(

𝑡 = 𝑡4
) is 12

45 , we have that the term of the
summation in Eq. (12) for 𝑡 = 𝑡4 is 12

45 ⋅ 1
6 ≊ 0.04. The

value of ̂
𝑃
(

𝜑𝛼1 (𝐿) ∩ 𝜑𝜏1 (𝐿)
)

is computed by summing up
the elements obtained for every 𝑡 ∈ 𝐿̄, thus obtaining 0.219.

Lastly, we show an estimator for the conditional distribu-
tion 𝑃 (𝜑1(𝐿) ∣ 𝜑2(𝐿)

) – similarly, one can derive estimators
for the other conditional probabilities as for traces.
Theorem 5.2. The MLE for 𝑃

(

𝜑1(𝐿) ∣ 𝜑2(𝐿)
)

for a log 𝐿
with a trace set 𝐿̄ = {𝑡𝑖 = ⟨𝑒𝑖,1,… , 𝑒𝑖,𝑛𝑖⟩}

𝑚
𝑖=1 is

̂𝑃
(

𝜑1(𝐿) | 𝜑2(𝐿)
)

=

∑𝑚
𝑖=1

𝑗𝑖
𝑛𝑖

∑𝑛𝑖
𝑘=1 Λ

(

𝑒𝑖,𝑘, 𝜑1
)

⋅ Λ
(

𝑒𝑖,𝑘, 𝜑2
)

∑𝑚
𝑖=1

𝑗𝑖
𝑛𝑖

∑𝑛𝑖
𝑘=1 Λ

(

𝑒𝑖,𝑘, 𝜑2
)

.

(14)
Proof. By definition of conditional probability we get that

̂𝑃
(

𝜑1(𝐿) | 𝜑2(𝐿)
)

=
̂𝑃

(

𝜑1(𝐿) ∩ 𝜑2(𝐿)
)

̂𝑃
(

𝜑2(𝐿)
)

,

with ̂𝑃
(

𝜑1(𝐿) ∩ 𝜑2(𝐿)
)

estimated as in Theorem 5.1, and
̂𝑃
(

𝜑2(𝐿)
)

as in Prop. 5.4. Plugging the two expressions gets
us to the estimator in Eq. (14). We once more use the result
in [38, Chapter 7] to prove that the estimator is an MLE.

For instance, we showed above that for the example
log 𝐿 in Table 1 the estimations ̂

𝑃
(

𝜑𝛼1 (𝐿) ∩ 𝜑𝜏1 (𝐿)
)

and
̂

𝑃
(

𝜑𝛼1 (𝐿)
)

are 0.219 and 0.274, respectively. By applying
the computation above, we have that ̂

𝑃
(

𝜑𝜏1 (𝐿) | 𝜑𝛼1 (𝐿)
)

is
0.219
0.274 ≊ 0.80.

We conclude this section by highlighting that the compu-
tation of the estimators described thus far is tractable.
Theorem 5.3. The estimators for LTL𝑓 formulae being satis-
fied by a trace or a log, and the intersection and conditional
probabilities thereof are computable in polynomial time.

Proof. The proof relies on Theorem 2.1 and Corollary 2.1:
once we have checked and labeled the traces, the computation
of estimators requires only queries over the resulting labels,
which can be performed in 𝑂(|𝐿| × 𝑛) considering 𝑛 as the
length of the longest trace in the log.

6. Evaluation and measurement of
specifications
In the previous section, we estimated the probabilities

of any LTL𝑓 formula. Yet, as the evaluation of an RCon
differs from that of an LTL𝑓 formula (see Section 3), the

evaluation of a specification consisting of RCons should
take into account the interplay of activators and targets.
The key point is in how to evaluate an intersection of
RCons (i.e., a specification) on events. The rationale is that
once we have the evaluation of the specification on every
event, we can estimate the probabilities and consequently
its measures like for any other RCon. In the remainder of
this section, we start formalizing the semantics of RCon
intersections in Section 6.1, continue proposing estimators of
probabilities of traces and log satisfying such specifications
(Section 6.2.2), describe the computation of interestingness
measures (Section 6.3), and finally highlight advantages and
practical implications of our approach (Section 6.4).
6.1. Evaluating specifications

Formally, we define the semantics of a specification  as
follows: given a trace 𝑡 of length 𝑛, an instant 𝑖with 1 ≤ 𝑖 ≤ 𝑛,
and a specification  ≜ {Ψ1,… ,Ψ𝑠}, with 𝑠 ∈ ℕ and
Ψ𝑗 = 𝜑𝛼𝑗 𝜑𝜏𝑗 for every 𝑗 s.t. 1 ≤ 𝑗 ≤ 𝑠, we say that

•  is activated by 𝑡 in 𝑖, i.e., (𝑡, 𝑖) ⊧ 𝛼 , iff there exists
a Ψ𝑗 ∈  s.t. (𝑡, 𝑖) ⊨ 𝜑𝛼𝑗 ;•  is satisfied by 𝑡 in 𝑖, (𝑡, 𝑖) ⊧  , iff (𝑡, 𝑖) ⊧ 𝛼 and there
does not exist any Ψ𝑗 ∈  s.t. (𝑡, 𝑖) ⊭ Ψ𝑗 ;•  is violated by 𝑡 in 𝑖, (𝑡, 𝑖) ⊭  , iff there exists a
Ψ𝑗 ∈  s.t. (𝑡, 𝑖) ⊭ Ψ𝑗 ;•  is unaffected by 𝑡 in 𝑖 iff (𝑡, 𝑖) ⊭ 𝛼 .

In other words,  is activated if at least one of its RCons
is activated, satisfied if all and only its activated RCons are
satisfied, violated if at least one activated RCon is violated,
and unaffected if it is not activated.

In light of the above, we can express a specification
 = {Ψ1,… ,Ψ𝑠} as an RCon,  = 𝛼 𝜏 , where 𝛼and 𝜏 are LTL𝑓 formulae expressed as follows:

𝛼 =
𝑠
⋁

𝑗=1
𝜑𝛼𝑗 ; 𝜏 =

𝑠
⋀

𝑗=1
¬
(

𝜑𝛼𝑗 ∧ ¬𝜑𝜏𝑗
)

. (15)

For example,  from Table 1 is activated when either Ψ1 or
Ψ2 are (i.e.,𝛼 = c∨d) and it is satisfied when all the activated
constraints are satisfied, i.e., 𝜏 = (¬c ∨ ◊a) ∧ (¬d ∨ ◊e).
Hence,  is violated in (𝑡3, 1), e.g, because Ψ1 is violated
and satisfied in (𝑡3, 2), because Ψ2 is satisfied and Ψ1 is
unaffected.

The possibility to reduce a specification to a single RCon
is key to defining the corresponding estimators and thereby
computing the probability a trace and a log satisfy it.
6.2. Estimators for Specifications

In this part, we define what trace and log estimators for
single RCons, as well as for RCon specifications.
6.2.1. Trace Estimators

We first start by estimating the interestingness degree
of an RCon. Let Λ𝑅 be an RCon interpreter that takes an
event and an RCon Ψ = 𝜑𝛼 𝜑𝜏 and returns a label
Λ𝑅(𝑒,Ψ) ∈ {0, x, 1} corresponding to Ψ being violated,
unaffected, and satisfied by 𝑒, respectively. The labeling of an

Cecconi, Barbaro, Di Ciccio, Senderovich: Preprint submitted to Elsevier Page 8 of 24



Measurement of Rule-based LTLf Declarative Process Specifications

event given an RCon Ψ resorts to Λ (explained in Section 5.1)
as follows:

Λ𝑅(𝑒,Ψ) =

⎧

⎪

⎨

⎪

⎩

0, if Λ
(

𝑒, 𝜑𝛼
)

= 1 and Λ
(

𝑒, 𝜑𝜏
)

= 0,
1, if Λ

(

𝑒, 𝜑𝛼
)

= 1 and Λ
(

𝑒, 𝜑𝜏
)

= 1,
x, otherwise.

(16)
Notice that x is a new outcome of the labeling function Λ𝑅that solely applies to RCons but not toLTL𝑓 formulae (see the
definition of Λ in Section 5.1). The second column of Table 1
lists the labels assigned by Λ𝑅 to every event in the traces
and all RCons in a sequence. For example, the evaluation
of Ψ1 = 𝜑𝛼1 𝜑𝜏1 = c ◊a on 𝑡4 = ⟨𝑒4,1,… , 𝑒4,6⟩ =
⟨b, c, a, c, e, a⟩ is such that (𝑡4, 1) ⊭ c, thus Λ𝑅(𝑒4,1,Ψ1) = x;
also, we observe that (𝑡4, 2) ⊨ c but (𝑡4, 2) ⊭ ◊a, therefore
Λ𝑅(𝑒4,2,Ψ1) = 0; finally, we have that (𝑡4, 4) ⊨ c and
(𝑡4, 4) ⊨ ◊a, so Λ𝑅(𝑒4,4,Ψ1) = 1. Following this approach,
we attain the following sequence of labels from 𝑡4 via Λ𝑅 on
Ψ1: ⟨x, 0, x, 1, x, x⟩.

We aim at estimating the probabilities of interesting
satisfaction and violation of a given RCon in a trace, which
correspond to cases in which the RCon is activated by it (see
Section 3.1). Therefore, the corresponding random variable
that describes an ‘interesting’ RCon (i.e., an RCon that is
activated by a trace and satisfied in it), is

𝑋𝜑𝜏 ,𝑡 ∣ 𝑋𝜑𝛼 ,𝑡 = 1.

As before, the latter is a univariate Bernoulli random variable
with success probability of

𝑃 (Ψ(𝑡)) = 𝑃
(

𝜑𝜏 (𝑡) | 𝜑𝛼(𝑡)
)

.

In other words, 𝑃 (Ψ(𝑡)) is the probability that an RCon Ψ is
interestingly satisfied by some trace 𝑡. We are now ready to
state our first estimation result.
Proposition 6.1. The MLE of 𝑃 (Ψ(𝑡)) for a given trace
𝑡 = ⟨𝑒1,… , 𝑒𝑛⟩ is

𝑃 (Ψ(𝑡)) =
∑𝑛

𝑖=1 Λ
(

𝑒𝑖, 𝜑𝜏 (𝑡)
)

⋅ Λ
(

𝑒𝑖, 𝜑𝛼(𝑡)
)

∑𝑛
𝑖=1 Λ

(

𝑒𝑖, 𝜑𝛼(𝑡)
) . (17)

Proof. We need to estimate the probability that an RCon is
interestingly satisfied by 𝑡,

𝑃 (Ψ(𝑡)) = 𝑃
(

𝜑𝜏 (𝑡) | 𝜑𝛼(𝑡)
)

.

To this end, we can employ Prop. 5.3 to compute the
corresponding MLE:

̂𝑃
(

𝜑𝜏 (𝑡) | 𝜑𝛼(𝑡)
)

=
∑𝑛

𝑖=1 Λ
(

𝑒𝑖, 𝜑𝜏 (𝑡)
)

⋅ Λ
(

𝑒𝑖, 𝜑𝛼(𝑡)
)

∑𝑛
𝑖=1 Λ

(

𝑒𝑖, 𝜑𝛼(𝑡)
) .

For example, ̂𝑃
(

Ψ1(𝑡4)
)

= 1
2 , as shown in Section 5.1.

Moreover, note that for 𝑡4, Ψ2 is never activated, which leads

to ̂𝑃
(

Ψ2(𝑡4)
)

= NaN. To obtain an MLE for ̂𝑃 (¬Ψ(𝑡)) we
can write

̂𝑃 (¬Ψ(𝑡)) = 1 − 𝑃 (Ψ(𝑡)), (18)
due to the result that a function of an MLE is an MLE [38].

At this stage, we turn to estimate the probabilities of
interest for a specification (i.e., a set of RCons). Specifically,
since a specification is interpreted similarly to a single RCon,
once we obtained the interpretation for 𝛼 and 𝜏 , we apply
the labeling mechanism Λ𝑅 again to obtain one of the three
possible outcomes:

Λ𝑅(𝑒,) =
⎧

⎪

⎨

⎪

⎩

0, if Λ(𝑒,𝛼
)

= 1 and Λ
(

𝑒,𝜏
)

= 0,
1, if Λ(𝑒,𝛼

)

= 1 and Λ
(

𝑒,𝜏
)

= 1,
x, otherwise.

(19)
Note that 𝜑𝛼 and 𝜑𝜏 are replaced by 𝛼 and 𝜏 , respec-
tively, but the event-based labeling mechanism Λ𝑅 remains
unchanged. This allows for the re-use of Prop. 6.1 to obtain
estimators for interesting satisfaction and violation of specifi-
cations denoted by 𝑃 ((𝑡)) and 𝑃 (¬(𝑡)), respectively.

For estimating interesting satisfaction recall that𝑃 ((𝑡)) =
𝑃
(

𝜏 (𝑡) | 𝛼(𝑡)
). Thus, we get the following result.

Proposition 6.2. The MLE of 𝑃 ((𝑡)) for a given trace
𝑡 = ⟨𝑒1,… , 𝑒𝑛⟩ is

𝑃 ((𝑡)) = ̂𝑃
(

𝜏 (𝑡) | 𝛼(𝑡)
)

=
∑𝑛

𝑖=1 Λ
(

𝑒𝑖,𝜏
)

⋅ Λ
(

𝑒𝑖,𝛼
)

∑𝑛
𝑖=1 Λ

(

𝑒𝑖,𝛼
) . (20)

Proof. Since  is an RCon, the MLE for the probability of
interestingly satisfying it is given in Prop. 6.1. We plug-in the
activator and target of the RCon, 𝛼 and 𝜏 instead of 𝜑𝛼
and 𝜑𝜏 , respectively, to complete the proof.

Notice that we use a similar notation for single RCons,
replacing Ψ(𝑡) with (𝑡) to denote satisfaction of a specifica-
tion. For example, ̂𝑃

(

(𝑡4)
)

= 1
2 , as we consider only 0 or 1

outcomes applying the computation described in Prop. 6.2.
To obtain an MLE for ̂𝑃 (¬(𝑡)) we can write

̂𝑃 (¬(𝑡)) = 1 − 𝑃 ((𝑡)), (21)
due to the result that a function of an MLE is an MLE [38].
6.2.2. Log Estimators

To derive log estimators we again assume that 𝐿 is
complete, i.e., 𝐿̄ =  with  being the support of the
probability distribution of 𝑇 . In what follows, we provide
a result for a specification of RCons (including the special
case that the specification is a single RCon). Let 𝑃 ((𝐿))
denote the probability of a log 𝐿 to interestingly satisfy a
specification  .
Theorem 6.1. The MLE of 𝑃 ((𝐿)) for a log 𝐿 with a trace
set 𝐿̄ = {𝑡𝑖 = ⟨𝑒𝑖,1,… , 𝑒𝑖,𝑛𝑖⟩}

𝑚
𝑖=1 is given by
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Table 3: Interestingness measures from Table 2 defined for
specifications

Measure Trace Log

Support 𝑃
(

𝛼 ∩ 𝜏 , 𝑡
)

𝑃
(

𝛼 ∩ 𝜏 , 𝐿
)

Confidence 𝑃
(

𝜏 |𝛼 , 𝑡
)

𝑃
(

𝜏 |𝛼 , 𝐿
)

Recall 𝑃
(

𝛼 |𝜏 , 𝑡
)

𝑃
(

𝛼 |𝜏 , 𝐿
)

Specificity 𝑃
(

¬𝜏 |¬𝛼 , 𝑡
)

𝑃
(

¬𝜏 |¬𝛼 , 𝐿
)

Lift 𝑃
(

𝛼 ∩ 𝜏 , 𝑡
)

𝑃
(

𝛼 , 𝑡
)

𝑃
(

𝜏 , 𝑡
)

𝑃
(

𝛼 ∩ 𝜏 , 𝐿
)

𝑃
(

𝛼 , 𝐿
)

𝑃
(

𝜏 , 𝐿
)

̂𝑃 ((𝐿)) = ̂𝑃
(

𝜏 (𝐿) | 𝛼(𝐿)
)

= (22)

=

∑𝑚
𝑖=1

𝑗𝑖
𝑛𝑖

∑𝑛𝑖
𝑘=1 Λ

(

𝑒𝑖,𝑘,𝜏
)

⋅ Λ
(

𝑒𝑖,𝑘,𝛼
)

∑𝑚
𝑖=1

𝑗𝑖
𝑛𝑖

∑𝑛𝑖
𝑘=1 Λ

(

𝑒𝑖,𝑘,𝛼
)

.

Proof. The proof follows from Theorem 5.2. Specifically,
we replace 𝜑𝛼 and 𝜑𝜏 in Eq. (14) with 𝛼 and 𝜏 , respec-
tively.

Returning to the running example in Table 1, we have that
̂𝑃 ((𝐿)) is (17⋅0.44)+(6⋅0.33)+(5⋅0.40)+(12⋅0.17)+(5⋅0.0)

(17⋅0.44)+(6⋅0.44)+(5⋅0.50)+(12⋅0.33)+(5⋅0.0) ≊ 0.81. To
obtain an MLE for ̂𝑃 (¬(𝐿)) we can write

̂𝑃 (¬(𝐿)) = 1 − ̂𝑃 ((𝐿)), (23)
due to the result that a function of an MLE is an MLE [38].
Notice that to obtain an estimator for a single RCon with
activator 𝜑𝛼 and target 𝜑𝜏 , we replace 𝛼 and 𝜏 with 𝜑𝛼and 𝜑𝜏 , respectively.

Similarly to Section 5, we conclude by providing a result
that states the computational complexity of our technique.
Theorem 6.2. The estimation of the interestingness measures
over specifications of RCon given an event log is polynomial.

Proof. The proof relies on a similar argument to the proof of
Theorem 5.3: each of the estimators is a query over the labeled
sequences that can be computed in 𝑂 (|𝐿| × 𝑛), considering
𝑛 as the length of the longest trace in 𝐿.

6.3. Computing Measures of Interestingness for
Specifications

Having defined the estimators, we can now quantify the
interestingness of rule-based LTL𝑓 process specifications
relying on association rule mining measures. Specifically,
the estimates that we derive for specifications (i.e., Prop. 6.2
and Theorem 6.1) allow us to compute a plethora of inter-
estingness measures while considering the joint effects of
multiple rules at once. Thereby, we advance the state of the
art as measures were previously restricted to a single-rule
scope [16].

Table 3 shows the measures presented in Table 2 com-
puted for a specification  . In the following, we describe
what these measures intuitively mean given a specification
and an event log. As previously described, the event log serves

as a means to estimate probabilities, which in turn are the
building block of the interestingness measures. We define
these measures on two levels. At a trace-level, they gauge
interestingness of a specification based on the number of
events that satisfy specific conditions. At a log-level, they take
into account events and traces, which we shall collectively
name as “fraction of the log” (or log fraction) for simplicity.
Without loss of generality, we will describe the measures at
a log-level. As it can be seen in Table 3, the same concepts
seamlessly apply by restricting the notion of “log fraction” to
that of “trace fraction” as the part of events in a single trace
for the trace-level, due to the regularity of the definitions.

To determine the interestingness of a specification, Sup-
port considers the fraction of the log satisfying both its
activator and its target. Confidence assesses in how far the
target is satisfied within the log fraction that satisfies the
activator. Dually, Recall reports on the events and traces
that satisfy the activator among those that belong to the
log fraction satisfying the target. Specificity quantifies the
violation of the target within the fraction of the log that
violates the activator. Finally, Lift scales Support by the
product of the estimated probabilities of activator and target.

In the running example (see Table 1), we use Prop. 6.2
and Theorem 6.1 to compute the measures that appear in
the last five columns (Support, Confidence, etc.) for  =
{Ψ1,Ψ2}. Observing the result in the last line of Table 1,
e.g., we have that ̂𝑃 ((𝐿)) is 0.81, which together with the
probabilities of activator and target of  yield a Support of
0.3 and Confidence of 0.81.

The measures used here are only an explanatory subset
of the available ones. Thanks to the estimators presented
throughout Section 6, it is possible to seamlessly compute all
the ones presented in [16] and define new ones, based on the
probabilities of activators and targets.
6.4. Discussion

Having laid down the theoretical foundations, we turn
to discussing the proposed approach from a practical per-
spective. Intuitively, the probability estimators of an entire
specification can be viewed as a relaxed metric of satisfaction,
i.e., the extent to which the specification is satisfied in the
given trace or log. It is a relaxed notion of satisfaction because
it does not employ a strict boolean evaluation for the entire
trace (as commonly done when evaluating LTL𝑓 formulae).
The logical evaluation is performed at the level of single
events, while for traces and logs we use probability theory
leading to relaxed statistical estimators. These estimators
provide details about the severity of the observed violations
in traces and logs.

Furthermore, log estimators are not biased by the length
of the traces, but only by their frequency. Consider the
following example: given a log of two traces, one composed
of 100 events and the other of 10 events, suppose that every
event in the first trace satisfies the specification, whereas
every event of the second one violates it. Thus, 100 out
of 110 events, namely about the 91% of them, satisfy
the specification. However, only 50% of the traces satisfy
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Table 4: Example of a specification violated by high proba-
bility constraints.

Log Evaluation RCon
/ Specification

𝑃 of RCon
/ 𝑃 of 

𝑡1 = ⟨a, b, c, d, e, f⟩

⟨0, 1, 1, 1, 1, 1⟩
⟨1, 0, 1, 1, 1, 1⟩
⟨1, 1, 0, 1, 1, 1⟩
⟨1, 1, 1, 0, 1, 1⟩
⟨1, 1, 1, 1, 0, 1⟩
⟨1, 1, 1, 1, 1, 0⟩
⟨0, 0, 0, 0, 0, 0⟩

Ψ1 = True ¬a
Ψ2 = True ¬b
Ψ3 = True ¬c
Ψ4 = True ¬d
Ψ5 = True ¬e
Ψ6 = True ¬f
 = {Ψ1,… ,Ψ6}

0.83
0.83
0.83
0.83
0.83
0.83
0.00

𝑡2 = ⟨a, y, y, y, e, f⟩

⟨0, 1, 1, 1, 1, 1⟩
⟨1, 1, 1, 1, 1, 1⟩
⟨1, 1, 1, 1, 1, 1⟩
⟨1, 1, 1, 1, 1, 1⟩
⟨1, 1, 1, 1, 0, 1⟩
⟨1, 1, 1, 1, 1, 0⟩
⟨0, 1, 1, 1, 0, 0⟩

Ψ1 = True ¬a
Ψ2 = True ¬b
Ψ3 = True ¬c
Ψ4 = True ¬d
Ψ5 = True ¬e
Ψ6 = True ¬f
 = {Ψ1,… ,Ψ6}

0.83
1.00
1.00
1.00
0.83
0.83
0.50

𝐿 = {𝑡51, 𝑡
10
2 }

|𝐿| = 15

Ψ1 = True ¬a
Ψ2 = True ¬b
Ψ3 = True ¬c
Ψ4 = True ¬d
Ψ5 = True ¬e
Ψ6 = True ¬f
 = {Ψ1,… ,Ψ6}

0.83
0.94
0.94
0.94
0.83
0.83
0.33

it. A trace represents the execution of a process instance.
Indeed, regardless of the number of steps required, the main
information is the overall outcome from that instance, e.g.,
to which extent a specification holds true in that trace. This
aspect is reflected in our log estimators: Given their definition
in Section 6.2.2, it can be intuitively observed that the
information of the trace used for the log aggregation is a
fraction of events in the trace (i.e., those that satisfy a formula)
and not their total number. Notice that the frequency of the
trace in the log plays a major role, as it signals the probability
of running the process in the way the trace reports.

The combination of rules in a specification is also a
pivotal point of the contribution of our approach. Recall that
a specification is not simply a container of independent rules,
but a unique system composed of their simultaneous interac-
tions. The classical approach to reason about specifications
is to build a unique LTL𝑓 formula formed by the logical
conjunction of all the rules [39]. The disadvantage of such
an approach is that the specification may be considered as
violated by an entire trace for the violation of a rule by a
single event. Since the specification is a unique system, it
is agreeable that a violated rule implies the violation of the
entire RCons specification, yet the finer granular level of the
analysis confines this violation to a single event, and not to the
entire trace. Therefore, an estimator for specifications should
score low values in traces only if multiple events violate the
rule. Extending the focus on event logs, the estimator should
assign low values if numerous events in considerably many
traces violate it.

Table 4 exemplifies the above reasoning. The specifi-
cation  = {Ψ1,… ,Ψ6} is composed only of constraints
formulated as True ¬𝑧, i.e., every event should be different
from a given event 𝑧 (with 𝑧 ∈ {a,… , f}). In the first trace,
𝑡1, every single constraint is individually violated only by one
event of the trace and satisfied by the others. Accordingly,
their estimators assign high values (1.00). Nonetheless, the
specification is violated in every single event by at least one

Table 5: Details of the real-world event logs used for the
evaluation

Event log Traces Tasks Events

BPIC12 [41] 13 087 36 262 200

BPIC13_cp [42] 1487 7 6660

BPIC14_f [43] 41 353 9 369 485

BPIC15_1f [44] 902 70 21 656

RTFMP [45] 150 370 11 561 470

Sepsis [14] 1050 16 15 214

Help-Desk [46] 4580 14 21 348

constraint, thus the estimator’s score for  is 0.00. Instead,
every event of the second trace, 𝑡2, satisfies Ψ2, Ψ3 and Ψ4(scoring 1.00), while Ψ1, Ψ5 and Ψ6 are violated by one event
therein each (scoring 0.83). In this case, then, the estimator
assigns 0.50 to the specification. Since the numerosity of 𝑡1in the event log is 5 and the numerosity of 𝑡2 is twice as much
(10), the specification on the entire log is assigned 0.33 by
the estimator.

This is a desirable behavior: A specification is evaluated
for the combination of its constraints, not its single parts. The
first trace shows clearly that, despite the single constraints
being mostly satisfied, together they do not properly capture
the execution of the trace. Thus, the average of the mea-
sures would be a descriptive statistic for the single rules
but a misleading indicator for the specification. Exploring
extensions of weighted evaluations of specifications where
specific constraints may be more relevant than others and
treated unequally is an interesting future outlook.

7. Evaluation
The goal of this section is to demonstrate how gauging

the interestingness of an entire process specification with
multiple measures leads to novel results that are not achiev-
able via the analysis of typical, single-rule based measures.
To this end, we conduct three experiments. In Section 7.1,
we show how the measure of a specification differs from the
assemblage of the measures of single rules; in Section 7.2,
we provide experimental evidence of the fact that distinct
measures show different aspects of a specification, even in
the case of full compliance with a Confidence level of 1.0;
in Section 7.3, we propose a use-case application of our
approach, analyzing its support to process drift detection.
Finally, Section 7.4 concludes the section with a discussion
of our findings.

We implemented our technique in a proof-of-concept Java
tool, publicly available at https://github.com/Oneiroe/Janus.
The implementation natively supports a relevant set of rule
templates based on [40], but we already showed in Section 6
that the technique is seamlessly applicable to any RCon.
Furthermore, inspired by [18], it supports the computation
of 37 interestingness measures.

In our experiments, we used a set of openly available, real-
world event logs. The details and references to the datasets
are reported in Table 5. Note that our tool scales linearly with
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the size of the event log, the size of the specification, and
the number of measures to compute. For example, for the
Sepsis dataset the measurement took around 35 s with the
heaviest setup (i.e., to compute 37measures for a specification
containing 3202 rules and a log with 1050 traces) on an Intel
Core i5-7300U CPU at 2.60GHz, quad-core, 16GB of RAM,
running Ubuntu 18.04.6.
7.1. Measuring single rules and entire

specifications
In the following, we assess the usefulness of specifications

measurement on real-life data, applying our technique to the
results of various pattern-based LTL𝑓 specification miners,
i.e., Janus [17], MINERful [47], and Perracotta [48]. The
goal is to highlight the importance of checking an entire
specification, as opposed to the analysis of individual rules.
The rationale is that while many specification miners use a
threshold to retrieve only rules satisfied above that value, the
corresponding specification may present a satisfaction degree
below the desired level, following Morin’s principle that the
whole may be less than the sum of its parts [49].

The interested reader can find the scripts and input files
to reproduce the tests alongside output reports and the full
collection of specification rules at https://oneiroe.github.

io/DeclarativeSpecificationMeasurements-Journal-static/.
We conducted the experiment as follows. We discovered
a specification from the log with each miner. Then, we used
our tool to compute the interestingness measures on the log.
Here we focus on Confidence, as all miners implement a
custom calculation for it. We repeated the discovery step
with increasing Confidence thresholds, from 0 to 1, with
step size of 0.05. Finally, we compared the measures of the
specifications to the input threshold.

The results can be found in Figs. 1 to 7. As highlighted
in Figs. 1, 4 and 5, every miner returned specifications whose
overall Confidence is lower than the initially set threshold,
even for thresholds greater that 0.7. This means that although
every rule in a specification has a Confidence value greater
or equal to the threshold, the overall specification performs
worse than the user-defined minimum accepted level. Other
datasets (see Figs. 2, 3, 6 and 7), exhibit a similar behavior
for lower thresholds.

This issue may lead to sub-optimal results, akin to the
multiple testing problem [50] in statistical inference: assum-
ing the independence of each hypothesis, thus not considering
their inter-dependency, leads to erroneous outcomes. With
our technique, this kind of issue becomes evident. Improving
declarative process specification miners with the integration
of our technique paves the path for interesting future en-
deavors. However, we remark that this analysis focuses on
the quantitative matching of the specification to the logs,
regardless of the semantics of the discovered specifications.
Next, we broaden the perspective of interestingness from the
sole Confidence to a larger set of measures.
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Figure 1: Confidence of the mined specifications with respect
to the threshold used for their discovery with the Sepsis
dataset [14].
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Figure 2: Confidence of the mined specifications with respect
to the threshold used for their discovery with the BPIC12
dataset [41].
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Figure 3: Confidence of the mined specifications with respect
to the threshold used for their discovery with the BPIC13
dataset [42].
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Figure 4: Confidence of the mined specifications with respect
to the threshold used for their discovery with the BPIC14_f
dataset [43]. Note: Perracotta did not return any rules with
thresholds above 0.55 with this dataset.
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Figure 5: Confidence of the mined specifications with respect
to the threshold used for their discovery with the BPIC15_1f
dataset [44].
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Figure 6: Confidence of the mined specifications with respect
to the threshold used for their discovery with the RTFMP
dataset [45].
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Figure 7: Confidence of the mined specifications with respect
to the threshold used for their discovery for the Help-Desk
dataset [46].

Table 6: Measurements of sub-specifications
Measure Original  1 2 3 4 5

Confidence 1.000 1.000 1.000 1.000 1.000 1.000
Support 1.000 0.003 0.011 0.074 0.522 0.683
Recall 1.000 0.011 1.000 1.000 1.000 1.000

Specificity NaN 0.741 1.000 1.000 1.000 1.000
Lift 1.000 3.831 89.691 13.512 1.916 1.465

7.2. Differing measures
In this part, we show how different specifications, though

never violated in the log, may exhibit different characteristics
through the inspection of multiple measures.

In this experiment, we make use of the Sepsis event
log [14]. The dataset refers to a real-world process in the
healthcare domain and contains records of patient visits with
sepsis symptoms at a Dutch hospital. The dataset exhibits
high variability: 75% of the traces are unique, which makes it
a good candidate to evaluate partial specifications. To retrieve
multiple distinct specifications, we first mined a specification
with the miner set to discard partly violated rules. Any miner
would be fit for the task, thus without loss of generality we
employed Janus with a Confidence threshold set to 1 for
all rules. The resulting specification consisted of 238 rules,
which we partitioned randomly into 5 subsets of RCons.
Finally, we computed interestingness measures for each of
the sub-specifications. An excerpt of the results is reported
in Table 6.

The results show that despite a Confidence level of 1
for every specification (i.e., there are no violated rules),
other measures can still detect differences. For example,
Support shows that 1,2, and 3 are applied to a very
small portion of events of the log, while 4 and 5 are
activated by more than half of it. Specificity and Recall
signal that for every specification the respective targets and
activators always occur together, except for 1: its target
occurs without the activator the vast majority of the time.
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The division by zero for the original  Specificity suggests
that the specification was activated in every event of the log.
Also, Lift shows that, in all the models, the joint probability
of activator and target is higher than their individual one, yet
with different strengths, e.g., 2 towering any other one. The
input specifications and output measurements are available
for reproducibility purposes at https://oneiroe.github.io/

DeclarativeSpecificationMeasurements-Journal-static/.
To conclude, this experiment demonstrates the advan-

tages of the availability of a full set of measures, going beyond
the mere satisfaction of specifications. Indeed, the choice of
the most appropriate measure will depend on the specific
application of use, as we will exemplify next.
7.3. Impact of process drift on specification

measures
Throughout this section, we analyze the impact that

drifts [51] in process specifications may have on the various
interestingness measures. Our objective is twofold. On the
one hand, we aim to undertake a preliminary assessment
of the capability of measures to reflect modifications in the
process behavior. On the other hand, we want to observe the
difference in sensitivity to changes exhibited by the measures
originally suggested in the literature for association rule
mining [32, 31] and adopted in the context of declarative
process mining in [19]. Specifically, we perform the analysis
for entire specifications and not only for individual rules.

We used the Visual Drift Detection (VDD) tool [52] as
a benchmark to detect the points in which the process is
subject to variations over time. VDD divides event logs into
sub-logs of consecutive traces, measures the Confidence of
all discoverable DECLARE constraints in each sub-log, and
analyzes the time sequences generated by the Confidence
measurements while grouping together constraints that ex-
hibit similar trends over time. It automatically detects change
points within groups based on the oscillation of values in
the sequence. Then, it automatically classifies those change
points as either process drifts or evidence of erratic behavior
and outliers [53].
7.3.1. Experimental setting

Taking the results illustrated in [53, 54] as a reference, we
conducted our experiments with the following two real-world
event logs: (i) the aforementioned Sepsis log [14], which
reports on the tasks executed from the registration to the
discharge of patients affected by sepsis, and (ii) the Help-
Desk log [46], recording the activities carried out within a
management process of the Help-desk of an Italian software
company. The scripts we use for our tests can be found
alongside the analysis results at the following address: https:
//github.com/l2brb/Measurement-change-point-evaluation.

To carry out our experiments, we went through the follow-
ing steps. We first mined a process specification consisting
of rules with high Confidence (rarely violated whenever
triggered) from the event logs taken as a whole. To this end,
we used Janus4 [17] with the Confidence threshold set to 0.95.

4https://github.com/Oneiroe/Janus/

Then, we sliced the event log into consecutive sub-logs with
a tumbling window approach, namely extracting sequences
of 50 consecutive, non-overlapping trace sets. We resorted to
the dedicated pre-processing feature of MINERful5 [47] to
this extent. We fed the sub-logs into VDD for the detection
of change points, setting the parameters as follows: (i) 50
for the window size, (ii) 50 for slide size, and (iii) 300 for
the cut threshold. Finally, we made our tool compute the
value of the measures of the initial specification on every
sub-log in a sequence. Thereupon, we analyzed the trend
of the specification measurements of the specification in
correspondence with the change points detected by VDD,
to observe if, and in how far, they exhibit variations. In the
following, we discuss the results of our analysis.
7.3.2. Experimental results

Figures 8 and 9 illustrate the trends of Confidence (on
the 𝑦-axis) for the mined specifications on the sub-logs of the
Help-Desk and the Sepsis datasets, respectively. The points
on the 𝑥-axis represent the timestamp of the first event in
every sub-log. We add colored bars in correspondence with
the change points detected by VDD. As Yeshchenko et al.
explain in [53], two drifts occur in the course of the process
executions recorded in the Help-Desk log. They are located
in the first and the last quarter of the diagram.

In Fig. 8, we highlight the corresponding points with a
dark green bar. The lighter bars refer to the erratic behavior of
the process in correspondence with other changing points of
lower impact. We observe that all changing points correspond
to upward or downward peaks in the poly-line plotting the
Confidence values. However, they are not the sole steep slopes
that can be noticed in the diagram. The reason is, VDD
considers the trend of Confidence values for all discoverable
constraints. In our case, instead, we focus on a selection
of constraints, namely those that were discovered by Janus
from the whole log setting a minimum threshold of 95%
for Confidence. Therefore, variations in the measure can be
more visible considering the derived specification, while
the oscillation may be mitigated by taking into account
other constraints that are violated more often. Also, notice
that VDD takes every constraint in isolation, while our
holistic approach aims at measuring the interestingness of a
specification as a whole.

Similar results are visible in Fig. 9. The bars in the
diagram highlight the change points identified by VDD. As
discussed in [54], none of the detected change points cor-
responds to actual process drifts. Instead, these oscillations
are evidence of the erratic behavior characterizing the event
log, most likely due to the reportedly flexible nature of
the healthcare process involved [14]; moreover, the latest
oscillation is an outlier that occurs towards the end of the
event log. We observe that this characteristic is also evidenced
by the fact that seasonal oscillations characterize the entire
diagram, though their amplitude is limited compared to the
Help-Desk case.

5https://github.com/cdc08x/MINERful/
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Figure 8: Help-Desk sub-log confidence values. The plot is visually edited with the addition of vertical bands in the areas
where drifts (darker) and erratic behavior (lighter) are detected by VDD as in [53].
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Figure 9: Sepsis sub-log confidence values. The plot is visually edited with the addition of vertical bands in the areas where
erratic behavior is detected by VDD as in [54].

Our approach allows one to gauge the interestingness of
a specification for additional measures beyond Confidence.
Specifically, Table 7 lists a comprehensive set of the measures
that we used in our experiments. For every measure, we report
the formula to compute it and its range.

The Sebag-Schoenauer measure of a specification given
an event log 𝐿, e.g., is computed as

1 −
𝑃 (𝛼 , 𝐿)𝑃 (¬𝜏 , 𝐿)
𝑃 (𝛼 ∩ ¬𝜏 , 𝐿)

,

and its values range from 0 (included) to +∞. Least Contra-
diction is defined as

𝑃 (𝛼 ∩ 𝜏 , 𝐿) − 𝑃 (𝛼 ∩ ¬𝜏 , 𝐿)
𝑃 (𝜏 , 𝐿)

,

on the range (−∞,+∞). Equipped with this set of measures,
we conducted a comparative analysis to evaluate their ability
to signal change points.

To allow for a comparison between measures defined on
different ranges (e.g., [0,+∞) for the Sebag-Schoenauer mea-
sure, and (−∞,+∞) for Least Contradiction), we normalize
the values applying the method used in [19], which projects
all values on a [0, 1] interval (i.e., the range of Confidence,
among others).

Tables 8(a) and 8(b) show the result of our analysis on
both the Sepsis and Help-Desk logs, respectively. We report
only measures with non-null values. For every measure, we
indicate the mean value, the standard deviation, and the
Coefficient of Variation (CV). CV, expressed as the ratio
of the standard deviation to the mean, shows the extent of
variability in relation to the average value along the sequence
of collected values. We sort the measures in descending
order by CV, standard deviation and mean. Measures that
exhibit relatively more ample oscillations (hence, most
sensitive to changes) are thus at the top. Both with the Sepsis
and Help-Desk logs, the Sebag-Schoenauer measure ranks
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Table 7: Quality measures employed in the sensitivity experi-
ment. For the sake of readability, we omit parameter 𝐿 (the
event log) from the formulae.

Measure Formula Range

Support 𝑃 (𝛼 ∩ 𝜏 ) [0, 1]

Confidence/
Precision 𝑃 (𝜏 |𝛼 ) [0, 1]

Recall 𝑃 (𝛼 |𝜏 ) [0, 1]

Accuracy 𝑃 (𝛼 ∩ 𝜏 ) + 𝑃 (¬𝛼 ∩ ¬𝜏 ) [0, 1]

Lift/
Interest

𝑃 (𝛼 ∩ 𝜏 )
𝑃 (𝛼 )𝑃 (𝜏 )

[0,+∞)

Leverage 𝑃 (𝜏 |𝛼 ) − 𝑃 (𝛼 )𝑃 (𝜏 ) [−1, 1]

Added Value 𝑃 (𝜏 |𝛼 ) − 𝑃 (𝜏 ) [−1, 1]

Jaccard 𝑃 (𝛼 ∩ 𝜏 )
𝑃 (𝛼 ) + 𝑃 (𝜏 ) − 𝑃 (𝛼 ∩ 𝜏 )

[0, 1]

Certainty factor 𝑃 (𝜏 |𝛼 ) − 𝑃 (𝜏 )
1 − 𝑃 (𝜏 )

[−1, 1]

Klosgen
√

𝑃 (𝛼 ∩ 𝜏 )
×max

(

𝑃 (𝜏 |𝛼 ) − 𝑃 (𝜏 ), 𝑃 (𝛼 |𝜏 ) − 𝑃 (𝛼 )
) [−1, 1]

Conviction 𝑃 (𝛼 )𝑃 (¬𝜏 )
𝑃 (𝛼 ∩ ¬𝜏 )

[0,+∞)

J-Measure 𝑃 (𝛼 ∩ 𝜏 ) log
𝑃 (𝜏 |𝛼 )
𝑃 (𝜏 )

+ 𝑃 (𝛼 ∩ ¬𝜏 ) log
𝑃 (¬𝜏 |𝛼 )
𝑃 (¬𝜏 )

(−∞,+∞)

One-Way Support 𝑃 (𝜏 |𝛼 ) log2
𝑃 (𝛼 ∩ 𝜏 )
𝑃 (𝛼 )𝑃 (𝜏 )

(−∞,+∞)

Two-Way Support 𝑃 (𝛼 ∩ 𝜏 ) log2
𝑃 (𝛼 ∩ 𝜏 )
𝑃 (𝛼 )𝑃 (𝜏 )

(−∞,+∞)

Piatetsky-Shapiro 𝑃 (𝛼 ∩ 𝜏 ) − 𝑃 (𝛼 )𝑃 (𝜏 ) [−1, 1]

Cosine 𝑃 (𝛼 ∩ 𝜏 )
√

𝑃 (𝛼 )𝑃 (𝜏 )
[0,+∞)

Loevinger 1 −
𝑃 (𝛼 )𝑃 (¬𝜏 )
𝑃 (𝛼 ∩ ¬𝜏 )

(−∞, 1]

Information Gain log
𝑃 (𝛼 ∩ 𝜏 )
𝑃 (𝛼 )𝑃 (𝜏 )

(−∞,+∞)

Sebag-Schoenauer 𝑃 (𝛼 ∩ 𝜏 )
𝑃 (𝛼 ∩ ¬𝜏 )

[0,+∞)

Least Contradiction 𝑃 (𝛼 ∩ 𝜏 ) − 𝑃 (𝛼 ∩ ¬𝜏 )
𝑃 (𝜏 )

(−∞,+∞)

Odd Multiplier 𝑃 (𝛼 ∩ 𝜏 )𝑃 (¬𝜏 )
𝑃 (𝜏 )𝑃 (𝛼 ∩ ¬𝜏 )

[0,+∞)

Example and
Counterexample

Rate
1 −

𝑃 (𝛼 ∩ ¬𝜏 )
𝑃 (𝛼 ∩ 𝜏 )

(−∞, 1]

Zhang 𝑃 (𝛼 ∩ 𝜏 ) − 𝑃 (𝛼 )𝑃 (𝜏 )
max

(

𝑃 (𝛼 ∩ 𝜏 )𝑃 (¬𝜏 ), 𝑃 (𝜏 )𝑃 (𝛼 ∩ ¬𝜏 )
) (−∞,+∞)

first, followed by a group of measures including Support
and Confidence with very close values. From the Least
Contradiction on, all measures follow with a CV that is
lower by orders of magnitude (from 10−4 down to 10−13
and below). The Recall measure closes the list with a steady
mean of 1.0, as both CV and standard deviation equate to 0.
Notice that, besides minimal variations in the ranking, the
aforementioned groups are composed by the same measures
both in Tables 8(a) and 8(b), thus regardless of the event log
under examination.

Figures 10 and 11 plot the trends of those measures to
visually compare their variations with the sub-logs extracted
from the Sepsis and Help-Desk datasets, respectively. In both
cases, we observe that the amplest oscillations are exhibited
by the Sebag-Schoenauer measure, as expected in light of the
previous discussion. Similar trends characterize the polylines
associated with measures representing the group at the top of
Tables 8(a) and 8(b), such as Confidence and Cosine. Least
Contradiction lies in the middle of the diagrams and, though
subject to variations, shows a lower sensitivity to changes.
Lift is a representative of a large group of measures showing
only imperceptible fluctuations. Finally, as anticipated above,
Recall remains steadily equal to 1.0.

The trends exhibited in Figs. 8 to 11 pertain to full
specifications mined from the original event logs. Our
approach, however, can gauge the interestingness of any
sets of constraints, including sub-specifications (as illus-
trated in the experiment on synthetic data in Section 7.1).
Here, we observe the variations that Confidence undergoes
for some sub-specifications in particular. To have a better
understanding of the rules that have led to the drifts, we
form these sub-specifications by joining the constraints in
the clusters that exhibit the most erratic trends in the Help-
Desk log [46] and the Sepsis log [46] according to [53] and
[54], respectively. The authors of [53, 54] indicate that those
clusters are the ones that mainly signal change points in the
process. Here, we leverage the capability of our approach
to assess the behavior of those constraints taken together
as sub-specifications, rather than individually as in [53, 54].
Thereafter, we also create specifications that join those sub-
specifications. Finally, we measure Confidence for every
sub-specification and specification on the respective sub-
logs, using the same tumbling window approach as in the
experiments above.

Tables 9 and 10 report on the minimum, maximum, and
average values of Confidence together with the standard
deviation and coefficient of variation for the clusters and the
specifications derived therefrom on the Help-Desk and Sepsis
event logs, respectively. We can observe that the erraticity of
the clusters’ behavior is confirmed by the CV, which is orders
of magnitude higher than the values reported in Tables 8(a)
and 8(b). Figures 12 and 13 illustrate the trend of Confidence
over the subsequent sub-logs from the Help-Desk and Sepsis
datasets, respectively. Both figures consider the individual
clusters alone (Figs. 12(a) to 12(c), 13(a) and 13(b)) and
the joined specifications (Figs. 12(d) and 13(c)). The plots
in Figs. 12(a) to 12(c), 13(a) and 13(b), pertaining to the
individual sub-specifications, closely resemble the trends il-
lustrated in [53, 54]. However, we can also observe particular
phenomena due to the definition of Confidence itself (see
Table 7): (i) The Confidence of joined specifications tend
to take the non-zero values from the sub-specifications, on
one hand; (ii) On the other hand, the height of the peaks
stemming from some sub-specifications is reduced whenever
in other sub-specifications a corresponding lower Confidence
is reported.

The former effect is particularly visible comparing
Figs. 13(a) and 13(b) with Fig. 13(c): the plateaus lying
at 0 occur in Fig. 13(c) only in correspondence of 0 values
for the Confidence of both the clusters the specification is
composed of. Such a plateau, e.g., occurs between the marks
“2014/03/09” and “2014/12/25” in Fig. 13(b) (cluster 12), but
not in Fig. 13(a) (cluster 8). Then, the plateau does not occur
in the Confidence plot for the whole specification in Fig. 13(c).
We see plateaus of Confidence equal to 0 in Fig. 13(c) right
before the “2014/03/09” and “2014/11/07”, instead, as the
Confidence of neither of the sub-specifications goes beyond
the minimum.

The conjunction of the two aforementioned effects is
instead noticeable from Figs. 12(c) and 12(d). Confidence for
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Table 8: Variability of specification measures in the context of drift detection.
(a) Sepsis [14]

Measure Mean Std. Dev. CV

Sebag-Schoenauer 0.861 505 846 320 0.002 053 050 180 0.002 383 094 890

Compliance 0.924 989 480 532 0.000 696 413 129 0.000 752 887 620

Jaccard 0.924 989 494 280 0.000 696 413 103 0.000 752 887 582

Accuracy 0.924 989 494 150 0.000 696 412 945 0.000 752 887 410

Support 0.924 989 494 150 0.000 696 412 945 0.000 752 887 410

Confidence 0.924 989 487 357 0.000 696 412 870 0.000 752 887 335

Cosine 0.962 422 081 608 0.000 175 943 255 0.000 182 812 987

Example and Counterexample Rate 0.969 838 405 557 0.000 159 563 237 0.000 164 525 591

Least Contradiction 0.727 378 805 369 8.975 428 878 985 × 10−5 1.233 941 491 385 × 10−4

Certainty factor 0.499 999 875 531 3.627 784 544 022 × 10−13 7.255 570 894 236 × 10−13

Zhang 0.499 999 929 596 1.143 870 607 449 × 10−13 2.287 741 537 031 × 10−13

Leverage 0.499 999 971 617 1.833 876 167 754 × 10−14 3.667 752 543 712 × 10−14

Added Value 0.499 999 985 808 4.584 691 433 807 × 10−15 9.169 383 127 870 × 10−15

Piatetsky-Shapiro 0.499 999 985 808 4.584 691 433 807 × 10−15 9.169 383 127 870 × 10−15

Klosgen 0.499 999 986 751 3.992 108 862 561 × 10−15 7.984 217 936 682 × 10−15

Two-way Support 0.499 999 994 921 2.812 996 585 923 × 10−15 5.625 993 228 996 × 10−15

One-way Support 0.499 999 994 921 2.812 996 238 645 × 10−15 5.625 992 534 439 × 10−15

Lovinger 0.666 666 658 768 2.571 487 448 916 × 10−15 3.857 231 219 076 × 10−15

Information Gain 0.499 999 995 743 1.801 732 986 214 × 10−15 3.603 466 003 112 × 10−15

J Measure 0.499 999 996 042 1.750 513 976 295 × 10−15 3.501 027 980 303 × 10−15

Lift 0.500 000 002 619 3.690 476 483 444 × 10−16 7.380 952 928 225 × 10−16

Conviction 0.500 000 006 667 2.583 333 354 669 × 10−16 5.166 666 640 448 × 10−16

Odd Multiplier 0.500 000 005 000 5.176 899 690 513 × 10−32 1.035 379 927 749 × 10−31

Recall 1.000 000 000 000 0.000 000 000 000 0.000 000 000 000

(b) Help-Desk [46]
Measure Mean Std. Dev. CV

Sebag-Schoenauer 0.900 819 237 282 0.006 297 508 246 0.006 990 867 852

Accuracy 0.950 622 074 373 0.002 179 473 562 0.002 292 681 414

Support 0.950 622 074 373 0.002 179 473 562 0.002 292 681 414

Compliance 0.950 622 071 166 0.002 179 473 472 0.002 292 681 328

Confidence 0.950 622 076 105 0.002 179 473 334 0.002 292 681 170

Jaccard 0.950 622 081 188 0.002 179 473 205 0.002 292 681 022

Cosine 0.975 239 803 262 0.000 551 582 239 0.000 565 586 266

Example and Counterexample Rate 0.979 413 924 601 0.000 524 304 351 0.000 535 324 584

Least Contradiction 0.734 560 445 157 0.000 294 921 192 0.000 401 493 430

Certainty factor 0.500 000 047 986 3.021 126 604 882 × 10−13 6.042 252 629 875 × 10−13

Zhang 0.500 000 026 811 8.434 163 170 167 × 10−14 1.686 832 543 582 × 10−13

Leverage 0.500 000 009 070 4.133 232 125 709 × 10−15 8.266 464 101 459 × 10−15

One-way Support 0.500 000 008 712 1.037 287 060 395 × 10−15 2.074 574 084 643 × 10−15

Two-way Support 0.500 000 008 712 1.037 287 000 451 × 10−15 2.074 573 964 754 × 10−15

Added Value 0.500 000 004 535 1.033 308 212 580 × 10−15 2.066 616 406 415 × 10−15

Piatetsky-Shapiro 0.500 000 004 535 1.033 308 212 580 × 10−15 2.066 616 406 415 × 10−15

Klosgen 0.500 000 004 274 9.205 376 653 863 × 10−16 1.841 075 315 036 × 10−15

J Measure 0.500 000 007 383 6.863 433 069 274 × 10−16 1.372 686 593 585 × 10−15

Information Gain 0.500 000 006 803 6.266 684 578 018 × 10−16 1.253 336 898 551 × 10−15

Lovinger 0.666 666 669 648 8.286 719 455 800 × 10−16 1.243 007 912 811 × 10−15

Lift 0.500 000 007 826 1.111 562 317 104 × 10−16 2.223 124 599 412 × 10−16

Conviction 0.500 000 003 095 8.849 684 779 794 × 10−17 1.769 936 945 002 × 10−16

Odd Multiplier 0.500 000 005 000 1.995 913 133 692 × 10−31 3.991 826 227 465 × 10−31

Recall 1.000 000 000 000 0.000 000 000 000 0.000 000 000 000
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Figure 10: Specification measure oscillations on the Sepsis event log

Table 9: Aggregate confidence in the Help-Desk sub-logs [46]
for the constraint clusters exhibiting the most erratic behav-
ior [53]

Cluster Mean Std. Dev CV Max Min

Cluster 4 0.6336 0.0083 0.0131 0.8912 0.5129

Cluster 9 0.3164 0.2110 0.6670 1.0000 0.0000

Cluster 11 0.0543 0.0520 0.9560 1.0000 0.0000

Joint specification 0.6346 0.0082 0.0128 0.8918 0.5129

cluster 4 (Fig. 12(c)) neither drops to 0 nor raises to 1with any
sub-log, as opposed to clusters 9 and 11 (Figs. 12(a) and 12(b);
see also the minimum and maximum values reported in
Table 8(b)). Then, the plot in Fig. 12(d) tends to almost
completely overlap with that of Fig. 12(c). We remark that
this effect differs from what we would have obtained by

Table 10: Aggregate confidence in the Sepsis sub-logs [14]
for the constraint clusters exhibiting the most erratic behav-
ior [54]

Cluster Mean Std. Dev CV Max Min

Cluster 8 0.4977 0.2404 0.4831 1.0000 0.0000

Cluster 12 0.3025 0.1775 0.5866 1.0000 0.0000

Joint specification 0.5518 0.1481 0.2683 1.0000 0.0000

merely averaging the Confidence values of the clusters’ sub-
specifications to assign the Confidence values of the joined
specification.
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Figure 11: Specification measure oscillations on the Help-Desk event log
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Figure 12: Confidence of the constraint clusters with the most erratic behavior with the Help-Desk log, and of the specification
stemming from their union

7.4. Discussion
Thus far, we have investigated various aspects to which

the application of our measurement framework contributes
with novel insights. We provide their summary below.

First of all, we observed in Section 7.1 that the overall
compliance of an event log to a whole specification tends to
be lower than its compliance to every rule taken individually.
This aspect is of considerable relevance in the context of
process and specification mining, as current works in the

literature still tend to resort to an analysis centered around
individual rules, thus neglecting their effect on the expected
behavior in combination [48, 55, 56, 47, 57, 58].

Also, the opportunity to compute a large array of mea-
sures, including but not limited to those that derive from
association rule mining, sheds light on interesting facts
from different perspectives. The empirical piece of evidence
presented in Section 7.2 confirms that a single measure is not
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Figure 13: Confidence of the constraint clusters with the most erratic behavior with the Sepsis log, and of the specification
stemming from their union

sufficient to provide a full account of the degree of interesting-
ness of a mined process specification. The use case illustrated
in Section 7.3 shows a possible application of our approach
to assessing the variability of the degree of compliance of
process executions with the overall specification over time.
Our tool is not meant to be a drift identification technique.
Other approaches, such as the aforementioned VDD [54],
are specifically designed to achieve this goal. However, our
method can be used in practice to observe the effect that drifts
and other change points in the process may have on an entire
specification [59]. The most suitable measure to consider for
this kind of analysis appears to be the Least Contradiction.
Also, the oscillations of measures in the sequence highlight
that process executions are subject to variations over time,
while the mining of a whole event log cannot represent these
changes in behavior (either temporary or not). Furthermore,
we have observed that the mere aggregation of measures
stemming from sub-specifications does not properly account
for the measurement of a conjoint specification.

In the next section, we provide an overview of the related
literature and position our contribution against the existing
background.

8. Related work
Different contributions in the literature aim at quantitative

extensions of LTL/LTL𝑓 enriching the languages with quan-
titative operators. [60, 61, 62] all proposed the addition of
quantitative operators into the logic. LTL[ ] [60] introduces
quality operators quantifying over distinct satisfactions of
a formula. Quantified-LTL [62] uses quantifiers over its
propositional variables, also in probabilistic systems such
as Markov chains.

In [61], the quantification of satisfaction, applied in
the context of planning, is based on associating costs to
specification violations based on user ranking of tasks priority.
Differently from these methods, we do not extend the syntax
and semantics of LTL𝑓 with new operators, as we quantify
the satisfaction of formulae based on standard LTL𝑓 .

As for the interplay of temporal logic and probabili-
ties, statistical model checking techniques [63] retrieve the
probability for a formula to be satisfied in a probabilistic
environment as Markov chains. Their goal is to predict
the likelihood of a formula for any possible execution (a
probabilistic relaxation of traditional model checking), while
we study only already executed traces. The method proposed
in [64] is close to our investigation, as it resorts to the
association of a probability threshold to each rule. The
threshold is used to perform relaxed conformance checking:
each rule should hold in at least a portion of the log that
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is greater than that value. However, only single rules are
analyzed and the trace satisfaction is not quantified but
considered as boolean, whereas we can assess the partial
satisfaction of specifications, also on single traces.

In process mining, the compliance of process models to
the data is usually gauged with four scores: Fitness, Precision,
Generalization, and Simplicity [65]. In [66] Fitness, Preci-
sion, and Generalization are devised for DECLARE models
through alignments, while in [67] Fitness and Precision are
computed for any regular language through entropy. Our
framework focuses on a different set of measures, inspired
by association rule mining. The comparison and integration
of the four measures above paves the path for future research
endeavors. Notably, the novel measure of informativeness
is proposed in [68] to understand the differences between
compliant traces. We showed in Section 7 how separate
measures can spot differences in compliant specifications,
thus a deeper analysis in this direction is an interesting
research outlook.

9. Conclusion
In this paper, we presented a tractable approach to quan-

tify the satisfaction degree of rule-based LTL𝑓 specifications
on bags of traces. Our approach is grounded in probabilistic
models with which we have derived maximum-likelihood
estimators for LTL𝑓 formulae, RCons, and process specifi-
cations. We apply our prototype to real-world data, showing
its broad range of employment. We provide experimental
evidence that the Confidence of a mined specification is often
below the minimum levels set for the discovery of its rules.
Also, we observe that a single measure does not give a full
picture of the level of interestingness of a specification for an
event log. Furthermore, we describe the effect of drifts and
anomalies on the specification measurements, with insights
into the measures that are more suitable for the signaling of
behavioral changes over time.

The advantage of analyzing processes at the higher level
of a specification is complementary to the details provided
by its single rules. The specification measurement gives a
holistic view of the status of the process, which could not
be achieved by the sum of its single parts. This information
can guide subsequent detailed analysis, e.g., highlighting
the overall mismatch between the specification and the data,
whenever it diverges significantly enough to call for an in-
depth analysis.

Looking onward, our result for LTL𝑓 can be easily
extended to Linear Dynamic Logic over Finite Traces [20],
which has the expressive power of Monadic Second Order
Logic, but with the same computational cost of LTL𝑓 .
Moreover, we aim to explore the enrichment of log labeling
with additional contextual data (such as patient diagnoses)
akin to [69] and construct estimators that take this information
into account. Specifically, a possible extension would be
to model the event of satisfying a formula conditional on
context via logistic regression. Also, a relevant direction
for practical implementations is the assessment of measures
based on the most common specification and process mining

tasks. To this end, the definition of desirable propositions for
the interestingness measures and the properties they should
guarantee is crucial, similarly to what has been done in [70]
for conformance measures in process mining. Another inter-
esting outlook is the employment of specifications measures
as data features for machine learning applications, e.g., trace
clustering [71]. Similarly, as hinted in the evaluation, our
measurement framework can be used to support process
mining applications, such as drift detection (with statistically
significant identification of change points and pinpointing of
the sub-specifications exhibiting the most erratic behavior),
or post-processing filtering for declarative process discovery
techniques. A highly stimulating research endeavor can be
spurred by the application of our technique on the field, in
the context of highly flexible, dynamic system and process
execution scenarios such as healthcare with the checking
and monitoring of rules defined in clinical pathways [72],
with extensions aimed at weighting differently constraints
according to their compulsory or best-practice nature [73].
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A. Basic Probability Notation and Results
The theory of probability is a fundamental mathematical

concept that underpins a wide range of fields, including
statistics, economics, and physics [74]. The key concepts
in probability theory include the sample space Ω, events

𝐴,𝐵, 𝐶,… , probability functions 𝑃 (⋅), and conditional prob-
abilities 𝑃 (𝐴 ∣ 𝐵). The sample space Ω represents the set
of all possible outcomes of an experiment. For example,
when flipping a coin, the sample space is {H,T}, where H
represents heads and T represents tails.

Events 𝐴,𝐵, 𝐶,… in probability theory are subsets of
the sample space (𝐴 ∪ 𝐵 ∪ 𝐶… ⊆ Ω) representing specific
outcomes of interest. For example, 𝐴 could represent the
event of getting heads when flipping a coin. Probability
functions 𝑃 (⋅) assign probabilities to events: 𝑃 (𝐴), e.g.,
represents the probability of event 𝐴 occurring, and it is
a number between 0 and 1, inclusive. 𝑃 (𝐴 ∩ 𝐵) represents
the probability of both 𝐴 and 𝐵 occurring, also known as the
intersection of𝐴 and𝐵.𝑃 (𝐴∪𝐵) represents the probability of
either 𝐴 or 𝐵 occurring, also known as the union of 𝐴 and 𝐵.
Notice that the notion of event in probability slightly differs
from that of event in the context of process and specification
mining (see Def. 2.1). 𝑃 (𝐴) represents the probability that
a record in the trace satisfies 𝐴. In this setting, then, 𝐴 is a
statement that can hold true, or not, in the elements that a
trace consists of.
A.1. Conditional Probability

Conditional probability is the probability of an event
𝐴 given that another event 𝐵 has occurred. We write it as
𝑃 (𝐴 ∣ 𝐵) and define it using Kolmogorov’s analysis:

𝑃 (𝐴 ∣ 𝐵) =
𝑃 (𝐴 ∩ 𝐵)
𝑃 (𝐵)

. (24)

This formula allows us to update our beliefs about the
occurrence of an event based on new information. The
following properties of conditional probability hold. Firstly,
𝑃 (𝐴 ∣ 𝐵) ≥ 0 for all events 𝐴 and 𝐵. This means that the
conditional probability of 𝐴 given 𝐵 is always non-negative.

Secondly, 𝑃 (Ω ∣ 𝐵) = 1 for any event 𝐵. This means
that the probability of the entire sample space given that 𝐵
has occurred is equal to 1. Thirdly, if 𝐴 and 𝐵 are mutually
exclusive events (i.e., 𝐴 ∩ 𝐵 = ∅), then 𝑃 (𝐴 ∣ 𝐵) = 0. This
is because if 𝐴 and 𝐵 cannot occur simultaneously, then the
occurrence of 𝐵 rules out the possibility of 𝐴 occurring.

The law of total probability (LTP) can be used to compute
conditional probabilities. If 𝐴1, 𝐴2,… , 𝐴𝑛 are mutually
exclusive events that partition the sample space, then

𝑃 (𝐵) =
𝑛
∑

𝑖=1
𝑃 (𝐵 ∣ 𝐴𝑖)𝑃 (𝐴𝑖). (25)

This formula can be rearranged to compute conditional
probabilities as follows (for any 1 ≤ 𝑗 ≤ 𝑛):

𝑃 (𝐴𝑗 ∣ 𝐵) =
𝑃 (𝐵 ∣ 𝐴𝑗)𝑃 (𝐴𝑗)

∑𝑛
𝑖=1 𝑃 (𝐵 ∣ 𝐴𝑖)𝑃 (𝐴𝑖)

. (26)

A.2. Discrete Random Variables
A discrete random variable is a random variable that takes

on a countable number of values, such as the number of heads
obtained in a series of coin flips, or the number of defects in
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a batch of products. We denote a discrete random variable as
𝑋 and its possible values as 𝑥1, 𝑥2,… , 𝑥𝑛. The probability
distribution of 𝑋 specifies the probabilities 𝑃 (𝑋 = 𝑥𝑘) for
each possible value 𝑥𝑘 with 1 ≤ 𝑘 ≤ 𝑛. For random variables,
the conditional probability is defined as

𝑃 (𝑋 = 𝑥|𝑌 = 𝑦) =
𝑃 (𝑋 = 𝑥 ∩ 𝑌 = 𝑦)

𝑃 (𝑌 = 𝑦)
(27)

where 𝑋 and 𝑌 are discrete random variables, and 𝑥 and
𝑦 are possible values that 𝑋 and 𝑌 can take, respectively.
𝑃 (𝑋 = 𝑥 ∩ 𝑌 = 𝑦) is the probability that 𝑋 = 𝑥 and 𝑌 = 𝑦
occur simultaneously, and 𝑃 (𝑌 = 𝑦) is the probability that
𝑌 = 𝑦 occurs.

The law of total probability for discrete random variables
can be written as follows. Let𝑋 be a discrete random variable
and let 𝑌1, 𝑌2,… , 𝑌𝑚 be a partition of the sample space Ω,
i.e., Ω = 𝑌1 ∪ 𝑌2 ∪⋯ ∪ 𝑌𝑚 and 𝑌𝑖 ∩ 𝑌𝑗 = ∅ for 1 ≤ 𝑖 ≤ 𝑚,
1 ≤ 𝑗 ≤ 𝑚, and 𝑖 ≠ 𝑗. Then, for any event 𝐴, the law of total
probability states:

𝑃 (𝐴) =
𝑚
∑

𝑖=1
𝑃 (𝑌𝑖)𝑃 (𝐴|𝑌𝑖) (28)

where the sum is taken over all possible values of 𝑖.

B. Maximum Likelihood Estimation
Maximum Likelihood Estimation (MLE) is a popular

statistical method for estimating the parameters of a statistical
model. MLE is widely used in many fields, including econo-
metrics, biostatistics, and engineering, due to its desirable
properties (see [38, Chapter 7]). One of the key strengths of
MLE is its asymptotic efficiency, which means that as the
sample size increases, the MLE estimates converge to the
true parameter values at the fastest possible rate among all
consistent estimators. This means that MLE produces the
most precise estimates possible, given the available data.

Furthermore, MLE is a consistent estimator, meaning that
as the sample size increases, the MLE estimates converge to
the true parameter values. As a result, the accuracy of the
MLE estimates increases with more data becoming available.
Under certain conditions, MLE is also an unbiased estimator,
meaning that the expected value of the estimates is equal
to the true parameter value. This requires that the model is
correctly specified and the sample size is sufficiently large.

Finally, MLE has solid theoretical foundations based on
sound statistical theory and has been extensively studied
in the literature, providing a large body of knowledge for
understanding its properties and effective use. Additionally,
the computation of MLE is widely supported by several
existing software packages encoded in R and Python, among
others.

C. Linear Temporal Logic on Finite Traces
Linear Temporal Logic on Finite Traces (LTL𝑓 ) [20]

expresses propositions over linear discrete-time structures
of finite length – namely, traces. LTL𝑓 has the same syntax

of Linear Temporal Logic (LTL) [21], but is interpreted on
finite traces. In this paper, in particular, we consider the LTL
dialect including past modalities [22].

LTL𝑓 formulae are built from an alphabet Σ ⊇ {𝑎} of
propositional symbols, auxiliary symbols ‘(’ and ‘)’, propo-
sitional constants True and False, the logical connectives
¬ (negation, unary) and ∧ (conjunction, binary), the unary
temporal operators○ (next) and⊖ (yesterday), and the binary
temporal operators 𝐔 (until) and 𝐒 (since). Typically, their
syntax is enriched with additional binary logical connectives,
namely ∨ (disjunction) and → (implication), and unary
temporal operators ◊ (eventually), ◊ (once), □ (always),
and ⊟ (historically). Finally, we introduce two additional
temporal constants, 𝑡Start and 𝑡End, intuitively denoting the
initial and final event of a trace.

Although they do not add expressive power, they con-
tribute to more succinct formulations. The following grammar
provides the syntax rules to build a well-formed LTL𝑓formula:

𝜑 ∶∶= True ∣ False ∣ 𝑡Start ∣ 𝑡End ∣ 𝑎 ∣
(¬𝜑) ∣ (𝜑1 ∧ 𝜑2) ∣ (𝜑1 ∨ 𝜑2) ∣ (𝜑1 → 𝜑2) ∣
(○𝜑) ∣ (𝜑1 𝐔 𝜑2) ∣ (◊𝜑) ∣ (□𝜑) ∣
(⊖𝜑) ∣ (𝜑1 𝐒 𝜑2) ∣ (◊𝜑) ∣ (⊟𝜑)

We may omit parentheses when the operator precedence
intuitively follows from the expression. Given {a, b} ⊆ Σ, e.g.,
the following is a well-formed LTL𝑓 formula: (○¬a) 𝐔 b.

Semantics of LTL𝑓 is given in terms of finite traces, i.e.,
finite words over the alphabet 2Σ. We name the index of the
element in the trace as instant. Intuitively, True and False
denote truth and falsity, ¬𝜑 means that 𝜑 does not hold true,
𝜑1 ∧ 𝜑2 signifies that both 𝜑1 and 𝜑2 hold true, 𝜑1 ∨ 𝜑2indicates that𝜑1 or𝜑2 (or both) hold true, and𝜑1 → 𝜑2 states
that if 𝜑1 holds true then 𝜑2 must be verified (whereas if 𝜑1does not hold true, no condition is exerted on 𝜑2). Formulae
consisting of propositional symbols, constants and logical
connectives are verified in a specific point in time (an instant).
Temporal operators and constants require an evaluation of
the formula on a trace of subsequent instants. ○𝜑 and ⊖𝜑
indicate that 𝜑 holds true at the next and previous instant,
respectively; 𝜑1 𝐔 𝜑2 states that 𝜑2 will eventually hold
and, until then, 𝜑1 holds too; dually, 𝜑1 𝐒 𝜑2 signifies that
𝜑2 holds at some point and, from that instant on, 𝜑1 holds
too. ◊𝜑 and ◊𝜑 mean that 𝜑 holds true eventually in the
future, or at some instant in the past. Finally, □𝜑 and ⊟𝜑
express the truthness of 𝜑 in every instant from the current
one on, and in every instant from the current one back in the
trace, respectively. We formalize the above as follows.

Given a finite trace 𝑡 of length 𝑛 ∈ ℕ, we write (𝑡, 𝑖) ⊧ 𝜑
to denote that anLTL𝑓 formula𝜑 is satisfied at a given instant
𝑖 ∈ ℕ, with 1 ≤ 𝑖 ≤ 𝑛, by induction of the following:
(𝑡, 𝑖) ⊧ True; (𝑡, 𝑖) ⊭ False;
(𝑡, 𝑖) ⊧ 𝑎 iff 𝑎 is True in 𝑡 at instant 𝑖;
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(𝑡, 𝑖) ⊧ ¬𝜑 iff (𝑡, 𝑖) ⊭ 𝜑;
(𝑡, 𝑖) ⊧ 𝜑1 ∧ 𝜑2 iff (𝑡, 𝑖) ⊧ 𝜑1 and (𝑡, 𝑖) ⊧ 𝜑2;
(𝑡, 𝑖) ⊧ 𝜑1 ∨ 𝜑2 iff (𝑡, 𝑖) ⊧ 𝜑1 or (𝑡, 𝑖) ⊧ 𝜑2;
(𝑡, 𝑖) ⊧ 𝜑1 → 𝜑2 iff (𝑡, 𝑖) ⊭ 𝜑1 or (𝑡, 𝑖) ⊧ 𝜑2;
(𝑡, 𝑖) ⊧ ○𝜑 iff 𝑖 < 𝑛 and (𝑡, 𝑖 + 1) ⊧ 𝜑;
(𝑡, 𝑖) ⊧ ⊖𝜑 iff 𝑖 > 1 and (𝑡, 𝑖 − 1) ⊧ 𝜑;
(𝑡, 𝑖) ⊧ 𝜑1 𝐔 𝜑2 iff there exists a 𝑗 ∈ ℕ with 𝑖 ≤ 𝑗 ≤ 𝑛

s.t. (𝑡, 𝑗) ⊧ 𝜑2 and (𝑡, 𝑘) ⊧ 𝜑1 for every 𝑘 ∈ ℕ s.t.
𝑖 ≤ 𝑘 < 𝑗;

(𝑡, 𝑖) ⊧ 𝜑1 𝐒 𝜑2 iff there exists a 𝑗 ∈ ℕ with 1 ≤ 𝑗 ≤ 𝑖
s.t. (𝑡, 𝑗) ⊧ 𝜑2 and (𝑡, 𝑘) ⊧ 𝜑1 for every 𝑘 ∈ ℕ s.t.
𝑗 < 𝑘 ≤ 𝑖.

(𝑡, 𝑖) ⊧ ◊𝜑 iff there exists a 𝑗 ∈ ℕ with 𝑖 ≤ 𝑗 ≤ 𝑛 s.t.
(𝑡, 𝑗) ⊧ 𝜑;

(𝑡, 𝑖) ⊧ ◊𝜑 iff there exists a 𝑗 ∈ ℕ with 1 ≤ 𝑗 ≤ 𝑖 s.t.
(𝑡, 𝑗) ⊧ 𝜑;

(𝑡, 𝑖) ⊧ □𝜑 iff (𝑡, 𝑘) ⊧ 𝜑 for every 𝑘 ∈ ℕ s.t. 𝑖 ≤ 𝑘 ≤ 𝑛;
(𝑡, 𝑖) ⊧ ⊟𝜑 iff (𝑡, 𝑘) ⊧ 𝜑 for every 𝑘 ∈ ℕ s.t. 1 ≤ 𝑘 ≤ 𝑖;
(𝑡, 𝑖) ⊧ 𝑡Start iff (𝑡, 1) ⊧ 𝜑;
(𝑡, 𝑖) ⊧ 𝑡End iff (𝑡, 𝑛) ⊧ 𝜑.

For example, (𝑡, 𝑖) ⊧ a ∧ ◊b (i.e., a ∧ ◊b is satisfied in a
trace 𝑡 of length 𝑛 at instant 𝑖) when the propositional atom
a holds true in 𝑡 at 𝑖 ≤ 𝑛 and b holds true at a later instant 𝑗
with 𝑖 ≤ 𝑗 ≤ 𝑛 in the same trace 𝑡.
From the above operators, we observe the following logical
equivalences:

• 𝜑1 ∨ 𝜑2 ≡ ¬(¬𝜑1 ∧ ¬𝜑2);
• 𝜑1 → 𝜑2 ≡ ¬𝜑1 ∨ 𝜑2;
• 𝑡End ≡ ¬(○True);
• 𝑡Start ≡ ¬(⊖True);
• ◊𝜑 ≡ True 𝐔 𝜑;
• ◊𝜑 ≡ True 𝐒 𝜑;
• □𝜑 ≡ ¬◊¬𝜑;
• ⊟𝜑 ≡ ¬◊¬𝜑.
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