
Oblivious and Fair Server-Aided
Two-Party Computation

Amir Herzberg and Haya Shulman,
Department of Computer Science

Bar Ilan University
Ramat Gan, Israel 52900

Email: {amir.herzberg,haya.shulman}@gmail.com

Abstract

We show efficient, practical (server-aided) secure two-party computation protocols ensuring privacy, correctness and
fairness in the presence of malicious (Byzantine) faults. Our requirements from the server are modest. To ensure
privacy and correctness, we only assume trusted execution service, executing an initialization program provided by
both parties. To further ensure fairness, we further assume a trusted-decryption service, providing decryption service
using known public key.

Both of these trusted services are feasible in practice, and may be useful for additional tasks; both can also be
distributed, with linear overhead, for redundancy. Formally, we model them as ideal functionalities, allowing proof of
security using the hybrid model. Our fairness-ensuring protocol is optimistic, i.e., the decryption service is invoked
only in case of faults. We believe that the protocols are sufficiently efficient, to allow deployment, in particular for
financial applications.

Keywords: Two-party computation, fair optimistic protocols, server-aided computation.

1. Introduction

Secure computation, beginning with the seminal papers of Yao [1] and Goldreich et al. [2], investigates how
to securely compute functionalities over inputs of two (or multiple) parties. Security implies correctness, i.e., both
parties receive the correct function of the inputs, and privacy, i.e., even corrupt participant cannot learn more (e.g.,
learn secret input of the other party) than his output. Secure computation can trivially be done by a fully trusted
third party, which receives the inputs, and then computes and announces the results. The goal of secure computation
protocols is to achieve the same impact but without a trusted party, i.e., using a protocol between the parties.

Secure computation received a lot of attention during the last two decades, with numerous works, including several
implementations, e.g., [3], and few real-world applications [4]. However, it is widely recognised, that (standard)
secure computation mechanisms have very high computational costs, which are prohibitive for most applications;
moreover, this is unlikely to change in the forseeable future.

Another challenge with (standard) secure computation is fairness, especially when focusing on two-party com-
putations (or, in general, without honest majority). Cleve [5] showed that complete fairness cannot be achieved for
general two-party computation. Fairness can be acheived for some non-trivial computations, e.g., see [6], however, it
seems prudent to assume that fairness is not possible for most practical secure computation problems.

Like several other works, e.g., [7], our goal is to apply the theory of secure computation to the design of practical
systems, in particular, for financial applications. This requires protocols that ensure secure and fair computations,
with reasonable efficiency against potentially malicious, and possibly colluding, participants. Formally, we use a
hybrid model, where we assume very restricted ideal functionalities; in practice, these ideal functionalities can be
implemented by simple, highly-feasible services.

Such practical implementation requires modest computational resources and very limited trust; security is assured
as long as the service does not collude with one of the parties. The use of these ideal functionalities (or, in practice,
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weakly-trusted services), allows us to address the two main challenges: efficiency and fairness. We next briefly discuss
these challenges.

Efficiency. Secure computation protocols suffer from a significant overhead, especially when considering arbi-
trary (byzantine) faults, as often required in practice. The basic secure function evaluation technique for two-party
computation, [1], ensures security, privacy and integrity only against passive, semi-honest, adversaries that follow
the steps of the protocol. This protection however does not suffice for real life systems, where malicious participants
may arbitrarily deviate from the prescribed steps of the protocol, e.g., in an attempt to gain an unfair advantage. The
basic protocol of [1] was extended by Goldreich et al. [2] to ensure security against malicious adversaries, e.g., those
that may try to alter the agreed computation. Several later works improved efficiency, e.g., [8–10]. However, these
protocols are still so computationally intensive, that they are impractical for many real life applications, and specifi-
cally for most financial applications. Indeed, there is little hope of sufficient improvements in the efficiency of secure
computation protocols, to allow their use for such tasks in the forseenable future.

Fairness. Protocols for financial applications, e.g., for currency exchange, must also ensure fairness to the trans-
action performed by the parties, i.e., either both parties receive the result of the computation, e.g., a signed check,
or no one does. Indeed, in the malicious model, an adversary can always abort after receiving its output and before
the honest party receives output. As early as in 1986, Cleve [5] showed that fairness cannot be achieved for general
computation without an honest majority. Hence, to ensure fairness and efficiency against malicious faults, as required
for practical (financial) applications, some extra assumptions are necessary. Indeed, for fairness, most works assume
that the protocol involves an additional party, usually referred to as the Trusted Third Party (TTP), that provides a
service ensuring fairness.

An important goal is to reduce the requirements from this service, thereby making the solutions more practical
and effective, including computations requirements, communication requirements, implementation complexity re-
quirements and trust requirements. In this work, we study the use of highly restricted third party services; formally,
we model these services as simple ideal functionalities, allowing us to prove security of our constructions in the hybrid
model.

The first third party (or ideal functionality) we define is the Common Circuit Evaluation (CCE), a generalisation
of the Common Reference String (CRS) functionality of [11]. The CCE service receives, from each of the two
participants (Alice and Bob), a circuit (CA, CB), confirms it is the same (CA = CB), and produces the result of
running it on random inputs. We show that the CCE service allows an efficient implementation of two party secure
computation, secure against malicious participants; additional applications are also possible. Note that this service
is simple, rather efficient, and easily parallelised (for scalability and availability) as well as distributed (for security
against a rogue server).

The second third party (aka ideal functionality) we define is the decryption service, which is used to ensure
fairness to the two-party computation protocol. This service operates in two phases. During the initial phase, after
being invoked by the two parties Alice and Bob, it produces a decryption key and sends to both parties. The first
phase is not required in practice: the service can register its encryption key in a public repository, and the parties can
retrieve it from there as needed. If one of the parties misbehaves, the decryption service is invoked to restore fairness:
it decrypts a message (which it receives from one of the parties) with its secret decryption key, and again sends the
result to both parties. Note that, like the CCE service, the trusted decryption service is also simple, efficient, and
easily parallelised and distributed.

The ideal functionalities capturing the models can be realised, e.g., by weakly-trusted additional parties. Further
research is required to determine whether these models are indeed the minimal necessary, or whether the same goals
(efficiency, fairness) be achieved in even weaker models; furthermore, the models that we present may also be useful
for other tasks.

Following many previous protocols for ensuring fairness using a TTP, our fairness-ensuring protocol is optimistic;
specifically, the parties involve the TTP only in case of a misbehaviour by the peer or in case of faults. In this sense,
our work is related to many existing works on optimistic fair exchange and similar tasks, e.g., see [12, 13], except that
these works support only specific, relatively simple interactions, e.g., certified mail, contract signing, and do not hide
the values exchanged from the trusted third party. In contrast, our protocol supports arbitrary computations, and does
not expose the inputs (or respective outputs) of the parties to the ideal functionality that ensures fairness.
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1.1. Related Work
Following to [5], which showed that fairness cannot be achieved for general computation without an honest ma-

jority, different relaxed definitions of fairness were considered.
One approach, the gradual release, see [14–22], considers a relaxed notion of fairness, where the output is revealed

gradually, and a cheating party does not obtain a significant advantage over the honest party, by aborting early. In order
to release the output gradually many rounds of interaction are required, which may render this approach impractical
for realistic applications.

Another approach towards ensuring fairness is to use an optimistic trusted third party, which allows to restore
complete fairness in case one of the parties aborts; optimistic approach was proposed mostly for specific tasks, esp.
fair exchange [12, 13, 23].

In [24], Lindell considered a relaxed notion of fairness, and presented the legally enforceable fair secure two-party
computation, using trusted third parties. An outcome of the protocol is that either both parties receive the output, or
only one receives the output while the other receives a digitally signed check from the other party which can be
then used at a court of law or a bank. In contrast to optimistic model, [24] provides a weaker security guarantee by
allowing an adversary to breach fairness. Cachin and Camenisch, [25], presented optimistic fair secure computation
protocol, with constant number of interactions. Our protocols essentially improve over this earlier work, in efficiency,
see comparison and analysis in Section 6.1, provable security, and most notably, by allowing a guarantee to the
computation.

1.2. Contributions
This work has both practical and theoretical contributions:

• Efficient, practical protocols for (fair) two party computation, with set-up assumptions formulating the new
models which we introduce in this work. The models are implementable using a weakly-trusted ‘third party’.
Our protocols are secure against malicious (byzantine) faults, but with efficiency comparable to that of the
existing protocols that are secure only against honest-but-curious participants.

• Introduction of two new models, the Common Circuit Evaluation (CCE) model where we use a CCE service
to improve efficiency, and the decryption model which provides basic generic facility allowing resolution of
conflicts (e.g., for fairness).

1.3. Organisation
In the next section, we present definitions and preliminaries. Then, in Section 3, we introduce the Common Circuit

Evaluation (CCE) model, allowing offline set-up assumption for greater efficiency; we subsequently use this model
in Section 4. In Section 5 we introduce the decryption functionality that upon requests validates and decrypts the
input ciphertext. We later use this functionality in Section 6 in the construction of a fair two-party protocol, where
we use the decryption functionality to restore fairness in case of failures or misbehaviour by one of the participants.
In Section 7 we present sample financial applications based on our protocols. Finally, in Section 8, we conclude and
present future research directions.

A preliminary version of this work appeared in [26].

2. Definitions and Preliminaries

In this section we present the definition for secure two-party computation, following the standard definitions
presented in prior art, specifically [27–29]. We begin, in subsection 2.1, by defining fair two-party computation, for
functions f (x1, x2) = ( f1(x1, x2), f2(x1, x2)), where x1, x2 are the inputs from the corresponding parties P1, P2, with
f1, f2 defining the corresponding outputs.

Later in the paper, we present two efficient protocols; first, in Section 4, we present a protocol that ensures
two-party secure computation for the special case of functions with output only at the second party (‘Bob’), i.e.,
f (x1, x2) = (⊥, g(x1, x2)), assuming a Common Circuit Evaluation (CCE) service. Then, in Section 6, we present
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a protocol that ensures fair two party secure computation for functions f with outputs at both parties, using the
protocol of Section 4 and further assuming and using a Decryption service. In subsection 2.2, we define cryptographic
mechanisms used by both protocols.

2.1. Fair Two-Party Computation

The goal of a secure two-party protocol is to allow two parties P1, P2 to securely compute a functionality1 f (x1, x2)
over their private inputs (x1, x2 ∈ {0, 1}n, respectively, where n ∈ N is the security parameter). The functionality f
may have different outputs for each party, which we often denote as two single-output functionalities, one for each of
the two parties (correspondingly), i.e., f (x1, x2) = ( f1(x1, x2), f2(x1, x2)).

The security requirements are essentially correctness, i.e., that the output will be consistent with the inputs and
with the function; and privacy, i.e., that neither party Pi|i∈{1,2} can learn more than its output fi(x1, x2).

These security requirements are trivially satisfied, if the parties can use an ‘ideal’ third party, which would simply
compute the functionality and provide each of them with the respective output, i.e., received x1 from P1 and x2 from
P2, and then compute and send fi(x1, x2) to Pi, for i ∈ {1, 2}. This ‘ideal’ trusted third party is usually referred to as
the ideal functionality, and denoted F f .

Execution in the Ideal Model
The execution in the ideal model is defined by an interaction of F f with a (polytime) machine S , which acts as an

adversary, however, for reasons to become apparent later, is referred to as the simulator, and with one of the honest
parties, Pi|i∈{1,2}. The complete interaction is in Alg. 2.1; notice, in particular, that the adversary selects which party
will interact with F f , and ‘takes over’ the other party.

1. S selects i, j ∈ {1, 2} s.t. i , j
2. Let x′i = xi

3. Let S specify x′j
4. The ideal functionality F f sends fi(x′1, x

′
2) to Pi, and f j(x′1, x

′
2) to S .

5. The honest party Pi output what it received, and S outputs arbitrary strings.

Algorithm 1: The ideal execution with functionality F f for computing f (·, ·), with P1, P2, and simulator (adversary) S .

The pair of outputs of the honest party and an adversary S in an ideal execution, where the trusted party computes
f , is denoted ideal f ,S (z)(x1, x2, n); z is an auxiliary input of the adversary S . Notice that this is a function of the
function f , the simulator S , the auxiliary information z, the inputs x1, x2, and the security parameter n.

Execution in the Real Model
The goal of a secure computation protocol, is to achieve the same results as that of the ideal execution - but using

only protocol between the two parties, without depending on any trusted third party/service, and in particular, without
using an ideal functionality oracle F f for computing f . We next define such execution of the protocol, where it runs
against an adversary; this is called the real model.

In the real model, a two party protocol Π f = (Π f ,1,Π f ,2) is executed by P1 and P2, without a trusted party. The
adversary A controls one of the parties, obtains the inputs of that (corrupted) party, and sends messages on behalf of
that party. The honest party i follows the protocol Π f ,i and returns the output specified by Π f ,i. The adversary outputs
an arbitrary function of its view. The pair of outputs of the honest party and of the adversary A in the real protocol
execution is denoted realΠ f ,A(z)(x1,x2,n). The details of the real model execution are presented in Alg. 2.1.

1A functionality f (x1, x2) is essentially a function which has, in addition to x1, x2, an additional input r, selected uniformly at random from the
set {0, 1}n; we can write it as the function f (x1, x2; r).
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1. A selects i, j ∈ {1, 2} s.t. i , j
2. A receives x j.
3. A, impersonating as P j, interacts with Pi, which runs Π f ,i with input xi.
4. The output of the real execution, denoted realΠ f ,A(z)(x1 ,x2 ,n), is the output of Pi together with the output of A.

Algorithm 2: The real execution of protocol Π f for computing f (·, ·), with P1, P2, and adversary A.

Emulation of Ideal Model in Real Model
We now define a secure two party protocol, as a protocol where the results of executions in the real model, against

arbitrary polytime adversary A, are indistinguishable from the results of executions of some polytime ‘simulating-
adversary’ S , in the ideal model (where the computation is done by the ideal functionality F f . Namely, a secure
protocol in the real model emulates the ideal model.

Definition 2.1 (Secure Fair Two-Party Computation). Let Π f be a protocol and let f be a polynomial two-party
functionality. Protocol Π f is said to securely compute f if for every probabilistic polynomial-time adversarial algo-
rithm A in the real model running with Π f , there exists a probabilistic polynomial-time simulator S in the ideal model,
such that for every x1, x2, z ∈ {0, 1}n, holds{

realΠ f ,A(z)(x1, x2, n)
}
n∈N

poly
=
{
ideal f ,S (z)(x1, x2, n)

}
n∈N

This definition requires that the fairness achieved in the ideal model is indistinguishable from the fairness achieved
in the real protocol execution. Unfortunately, this is impossible to achieve for arbitrary functionalities, as well as for
typical, useful functionalities, such as exchange of signatures.

One approach to deal with this impossibility, is to relax2 or eliminate the fairness requirement, and allow the
adversary to abort the protocol when only one party received output (‘secure computation with abort’). Equivalently
(see [29], Section 2.2), we can simply focus on functions with output at only one party, say ‘Bob’ (the second party),
as follows.

Definition 2.2 (Secure Two-Party Computation for functions with output only at Bob). Let Π be a protocol and
let g : {0, 1}n × {0, 1}n → {0, 1}n be a polynomial two-party functionality (with single output). Protocol Π is said to
securely compute g with output at Bob, if Π securely computes f (x1, x2) = (⊥, g(x1, x2))

Another approach to deal with the impossibility of secure two-party computation for arbitrary functionalities (with
output at both parties), is to assume some trusted third party (of course, ‘weaker’ than just assuming F f ). In the rest
of this subsection, we take this approach, and present a definition of execution in a hybrid model, which is similar to
the real model, except for the inclusion of one or more trusted parties/services.

We use the hybrid model with abort to present efficient secure two party computation protocols: in Section 4,
restricted for functionalities with output only at Bob, and in Section 6, for functionalities with output at both parties;
both protocols use simple and highly-efficient trusted services.

Execution in the Hybrid Model
In the hybrid model, the parties run a protocol Π f between them and during the execution they also have access

to an ideal functionality computing some specific functionality (of course, not f ). We use the hybrid model for our
functionalities: common circuit evaluation functionality and the decryption functionality.

The pair of outputs of the honest party and the adversary A, in a hybrid protocol execution of a protocol Π f with
ideal functionality Fh, is denoted hybridh

Π f ,A(z)(x1,x2,n). The details of the hybrid model execution are presented in Alg.
2.1.

We can now present the main security definition which we use: fair two-party computation in the hybrid model,
i.e., security of a server-aided two-party computation protocol Π f (with access to an oracle for h).

2Indeed, the fairness requirement as we presented, is often referred to as ‘complete fairness’, to distinguish from weaker variants; however we
do not discuss such variants in this work.
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1. A selects i, j ∈ {1, 2} s.t. i , j
2. A receives x j.
3. A, impersonating as P j, interacts with Pi, which runs Π f ,i with input xi. Both A and Pi may also interact with the ideal

functionality Fh.
4. The output of the hybrid execution, denoted hybridh

Π f ,A(z)(x1 ,x2 ,n), is the output of Pi together with the output of A.

Algorithm 3: The hybrid execution of protocol Π f for computing f (x1, x2), with P1, P2, adversary A and ideal functionality
Fh.

Definition 2.3 (Fair Two-Party Computation in Hybrid Model). Let Π f be a protocol and let h be a polynomial
two-party functionality. Protocol Π f is said to securely compute f in the h-hybrid model if for every probabilistic
polynomial-time adversarial algorithm A in the hybrid model running with Π f , there exists a probabilistic polynomial-
time simulator S in the ideal model, such that for every x1, p2, z ∈ {0, 1}n, holds{

hybridhΠ f ,A(z)(x1, x2, n)
}
n∈N

poly
=
{
ideal f ,S (z)(x1, x2, n)

}
n∈N

We next define secure computation in the hybrid model, of functions with output only at Bob, as we present later
in Section 4. Note that such functions can also be computed in the real model; however, our protocol (in the hybrid
model) allows to significantly improve performance, and we later use it to build the protocol for functionalities with
output at both parties.

Definition 2.4 (Secure Two-Party Computation for functions with output only at Bob, in Hybrid Model). Let Π

be a protocol and let g : {0, 1}n × {0, 1}n → {0, 1}n be a polynomial two-party functionality (with single output), and h
be a polynomial two-party functionality. Protocol Π is said to securely compute g with output at Bob in the h-hybrid
model, if Π securely computes f (x1, x2) = (⊥, g(x1, x2)) in the h-hybrid model.

2.2. Cryptographic Tools
Our constructions use several tools, i.e., standard cryptographic mechanisms:

Authenticated symmetric-key encryption scheme (K ,E,D), to ensure confidentiality and integrity of the inputs
and outputs of the participants, see [30]. When applying EK(x) we perform an authenticated encryption of input
x using the key K.

Non-malleable public-key encryption scheme (NG,NE,ND) to ensure confidentiality and non-malleability, [31].

Signature scheme (G,S,V), [32], where we use ⊥ to denote authentication failure.

Two-party (1-2) oblivious transfer which we denote by the ideal functionality F 2
ot, [33].

3. Common Circuit Evaluation Model

In this section we introduce the Common Circuit Evaluation (CCE) model allowing efficient protocols for secure
computation in the malicious setting. The model assumes that two (or multiple3) parties in the protocol have access to
an ideal functionality (oracle), which upon invocation provides them with output strings (one for each party) that they
later use to carry out the protocol between them. The oracle is not involved in the two-party computation, and is used
prior to the protocol execution between the two parties, to generate the respective output strings for the parties, which
they later use to carry out the computation. The CCE oracle functionality is one of our basic set-up assumptions and
it is captured with the ideal functionality Fcce, in Algorithm 4. In the next section we show how the strings, generated
by the oracle, can assist in ensuring privacy and correctness to the computation during the protocol execution, while
allowing efficiency equivalent to that of the semi-honest setting. The oracle does not learn anything about the inputs

3In this work we focus on the two-party computation; the CCE model can be extended to multi-party computation.
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Functionality Fcce

Input: C1 from party P1 and C2 from party P2, input length n
Computation Phase

r
R
← {0, 1}n

if C1 , C2 then
output ⊥

Evaluate C1 on r and obtain (p1 ||p2)← C1(r)
end
Output: send p1 to P1 and p2 to P2

Algorithm 4: The functionality Fcce for executing a ‘common’ circuit, which description it receives in an input from both parties. The functionality checks
if the circuits supplied by both parties are equivalent, in which case it evaluates the circuit on a random string r, and obtains p1 ||p2 where p1 is the output of P1
and p2 is the output of P2, and sends the outputs to the respective parties. Otherwise, if the circuits are not the same, then it returns ⊥.

of the parties from the computation that it performs since it does not obtain the secret inputs of the parties.
The CCE oracle receives a circuit that it should compute. This allows for a general definition, one that allows

the parties to define the computation that they wish the oracle to perform. Our CCE model is a generalisation of the
Common Reference String (CRS) model, [33, 34]. In the CRS model the parties are given a common public reference
string that was chosen from a given distribution. Note that, similarly to CSR, the computation that the CCE oracle
performs is not a function of the private inputs of the parties, and neither does it observe the output from the protocol.
Furthermore, the parties are not required to identify themselves before participating in the protocol. In contrast, the
string produced by the CCE consists of two parts: one public, which both parties obtain access to, and one private,
which only the party that initiates the protocol obtains.

More precisely, the FCCE oracle computes a universal function which receives in an input a description of a
function (or rather a description of a circuit C implementing a function that the parties agreed upon) from the parties
and evaluates that function on a random string. We capture the CCE model with the ideal functionality Fcce: Fcce

receives a description of two circuits, C1 and C2, (computing an agreed upon function) from both participants, executes
that circuit on a random string r, obtains two outputs p1, p2 and returns each output to the corresponding party. The
Fcce ideal functionality is not involved during the computation performed by the parties.

4. Two-Party Protocol in Common Circuit Evaluation Model

In this section we consider functionalities with output only at Bob (the circuit evaluator). Let g : {0, 1}n × {0, 1}n → {0, 1}n

be such a two-party functionality, and let a, b be the inputs of Alice and Bob respectively. We construct a two-party
protocol, in Algorithm 6, for evaluation of inputs of Alice and Bob on a known function g using the FCCE functionality
presented in Algorithm 4.

During the preprocessing phase, Alice and Bob send a description of a circuit, which they agreed on, to the
third party, and receive an output. For the purpose of our construction the output that FCCE produces is an encoding
of a garbled circuit, see description in Section 4.1, which is then used by Alice and Bob to evaluate the function
g : {0, 1}n × {0, 1}n → {0, 1}n on their respective inputs.

When Alice and Bob have the inputs they run the two-party computation protocol, whereby Alice transfers the
strings representing her input to Bob and runs an F 2

ot functionality (capturing the oblivious transfer protocol, [33]),
for strings representing Bob’s input bits; Bob evaluates the circuit on both inputs, concluding the protocol. After
evaluating the g on a and b, Bob obtains g(a, b), while Alice learns nothing at all.

The preprocessing phase ensures that the circuit was correctly constructed and prevents cheating by either party.
In Section 4.1 we present a description of the circuit that Alice and Bob send to the FCCE functionality, which

allows for garbled circuit pre-generation, and in Section 4.2 we construct the two-party protocol in the preprocessing
model.

4.1. Garbled Circuit Pre-Generation

To allow for evaluation of arbitrary functions we define a garbler to be a circuit that receives in an input a descrip-
tion of a circuit and generates a garbled circuit from it. The garbler is illustrated in Algorithm 5. It receives in an
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input a circuit Cg that the parties agreed on; Cg is parametrised by a function g : {0, 1}n × {0, 1}n → {0, 1}n. The circuit
generates a signature key pair (skCCE , vkCCE), then constructs and garbles a circuit C, and signs the circuit with the
freshly generated signature key skCCE . We use part of the string r (which is selected at random by Fcce) for garbled
circuit generation, and another part for keys generation and signatures. Then C will be used by the parties during the
protocol execution.

The circuit Cg, in Algorithm 5, consists of gates; in the first level each gate has two input wires, one for input bit
of Alice and another for input bit of Bob. Fcce generates a garbled circuit C as follows: it first modifies the circuit
Cg to a circuit C′g where each input wire of Bob is replaced with a xor-gate with s input wires; Bob later uses this
redundancy, to thwart the attempts by a malicious Alice to expose his secret inputs, by providing Bob with incorrect
random strings for his input values (during the oblivious transfer protocol); see [8] for details. Next, random strings,
corresponding to each input bit of Alice and Bob, are generated, and the gates of the circuit are replaced with garbled
gates, i.e., boolean tables incorporating the outputs from a gate for all possible combinations of inputs of Alice and
Bob.

Eventually, after running the garbler (i.e., the circuit in Algorithm 5) on the input circuit Cg, Fcce sends the random
input strings (corresponding to all possible inputs) to Alice, and the garbled gates and output decryption tables to Bob.
Note that it is possible to send the entire output (the signed garbled circuit) to Alice and the output of Bob can be set
to ⊥ (i.e., no private output), and Alice in turn will forward to Bob the signed garbled tables and output decryption
tables. For efficiency (and simplicity) we let Fcce send the garbled tables and output decryption tables directly to Bob
(this is only a simplifying assumption since these tables constitute an output that is not secret, i.e., known to both
Alice and Bob).

4.2. Two-Party Protocol Construction
In Algorithm 6 we construct a two-party protocol by applying the Fcce functionality during the preprocessing

phase. The resulting two-party protocol illustrates one of the applications of the preprocessing model. We also
use this mechanism in the subsequent section as a building block in our fair two-party computation protocol. The
procedure that generates the garbled circuit using a third party4 during the preprocessing phase can be of independent
interest to enhance efficiency (see Section 4.2.2 for efficiency comparison of techniques employed in malicious model)
of two-party protocols in malicious setting. Assuming preprocessing phase allows a simpler and much more efficient
protocol (cf. to [8, 35–37]).

Input: Cg, s, n

1. Generate signature key-pair: (vkCCE , skCCE )← G(1s)
2. Let Cg be a circuit that computes g
3. Construct C′g from Cg by replacing each input wire of Bob with a xor-gate of s new input wires of Bob
4. Garble the circuit C′g to obtain C. The garbled circuit consists of:

(a) Random strings corresponding to all possible input bits of Alice: KA = ((K0
A[1],K1

A[1]), ..., (K0
A[n],K1

A[n]))
(b) Random strings corresponding to all possible input bits of Bob: KB = ((K0

B[1],K1
B[1]), ..., (K0

B[sn],K1
B[sn]))

(c) Garbled boolean tables TG for each garbled gate G of the circuit
(d) Output decryption tables TD mapping output strings to bits

5. Sign the random input strings KA of Alice: σA = ((σ0
A[1], σ1

A[1]), ..., (σ0
A[n], σ1

A[n])) where ∀i, j : σ j
A[i] = Sskpre (K j

A[i], i)

6. Sign the random input strings KB of Bob: σB = ((σ0
B[1], σ1

B[1]), ..., (σ0
B[sn], σ1

B[sn])) where ∀i, j : σ j
B[i] = Sskpre (K j

B[i], i, j)

Output: ((KA, σA), (KB, σB), vkCCE ) to Alice and (TG ,TD, vkCCE ) to Bob.

Algorithm 5: The description of a garbler circuit, that receives in an input a circuit Cg, that both parties agreed upon, and generates a garbled circuit C.

4.2.1. Security Analysis
We analyse Πg in a hybrid model where there is a trusted party computing Fcce and F 2

ot. The simulator S interacts
with the ideal functionality Fg and uses the adversary A in a black-box manner, simulating for A the real protocol
execution and emulating the ideal functionalities Fcce and F 2

ot.

4Especially when the third party is unavoidable, e.g., to achieve fairness in general computation, the third party can also be used to run the
preprocessing phase.
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Input: security parameter s, number of bits n
Output: yB = g(a, b)
Offline Generation Phase

Alice and Bob send C1, C2 (respectively) to Fcce

Alice receives ((KA, σA), (KB, σB), vkCCE )
Bob receives (TG ,TD, vkCCE ) (see Algorithm 5)

end
Computation Phase

Alice receives a = [ai]n
i=1

Bob receives b = [bi]n
i=1

Input Encoding
encodeInput([bi]n

i=1) {
b′ = ∅

for i← 1 to n do
Let bi

1, ..., b
i
s ∈R {0, 1} s.t. bi = bi

1 ⊕ ... ⊕ bi
s

b′ ← (b′ ||bi
1, ..., b

i
s)

return b′ }
//in n iterations b′ = [b′i ]

n·s
i=1 = (b1

1, ..., b
1
s , ..., b

n
1, ..., b

n
s )

end
Alice: sends to Bob: ((Ka[1]

A [1], σa[1]
A [1]), ..., (Ka[n]

A [n], σa[n]
A [n]))

Bob:
if ∃(Ka[i]

A [i], σa[i]
A [i]), s.t., VvkCCE (Ka[i]

A [i], i, σa[i]
A [i]) = false then

output ⊥ and halt
for i← 1 to n · s do

run with Alice F 2
ot((K

0
B[i], σ0

B[i]), (K1
B[i], σ1

B[i]), b′i )
//run oblivious transfer, Alice provides (K0

B[i], σ0
B[i]), (K1

B[i], σ1
B[i]) and Bob b′i

receive (Kb′ [i]
B [i], σb′ [i]

B [i])

if VvkCCE (Kb′[i]
B [i], σb′[i]

B [i]) == false then
output ⊥ and halt

(yB = (yB[1], ..., yB[n]))← C((Ka[1]
A [1], ...,Ka[n]

A [n]), (Kb′ [1]
B [1], ...,Kb′[sn]

B [sn])) (below)

end
end
Circuit Evaluation

C((Ka[1]
A [1], ...,Ka[n]

A [n]), (Kb′ [1]
B [1], ...,Kb′[sn]

B [sn])) {

(K y[1]
Y [1], ...,K y[n]

Y [n])← TG((Ka[1]
A [1], ...,Ka[n]

A [n]), (Kb′[1]
B [1], ...,Kb′ [sn]

B [sn]))
return ω← TD(K y[1]

Y [1], ...,K y[n]
Y [n]) }

end
//C(a, b) = TG(TD(K

a
A,K

b
B))

Algorithm 6: Secure Two Party Protocol ΠE
g in the (Fcce,F 2

ot)-hybrid model, for computing g(a, b) = yB, where g : {0, 1}n × {0, 1}n → {0, 1}n.

Claim 4.1. Let g : {0, 1}n × {0, 1}n → {0, 1}n be a polynomial time two-party functionality. Assume that the signature
scheme (G,S,V) is existentially unforgeable under a chosen-message attack. Then protocol Πg securely realises a
two-party functionality with output at Bob only (according to Definition 2.4), in the presence of malicious adversaries
in the (Fcce,F 2

ot)-hybrid model.

Proof. We analyse Πg in a (Fcce,F 2
ot)-hybrid model, and show that the execution of Πg is computationally indistin-

guishable from computation of g in the ideal model. We prove the Claim 4.1 in Propositions 4.2 and 4.3 for cases
where the adversary controlls Alice or Bob, respectively. �

In our construction we assume an ideal functionality Fg. However, the third party is not required to be honest,
and is only required to correctly construct the garbled circuit based on the inputs from Alice and Bob, to ensure
correctness and privacy when a malicious behaviour of the participants is considered. The privacy of Bob’s input is
ensured against a malicious third party that colludes with Alice. However, the privacy of Alice is not ensured in case
of collusion between the third party and Bob.

Proposition 4.2 (Security Against Malicious Alice). For every polynomial time adversary A corrupting Alice and
running with Πg with abort in a hybrid model with access to Fcce and F 2

ot, there exists a probabilistic polynomial-time
simulator S corrupting Alice and running in the ideal model with access to an ideal functionality Fg, such that for
every a, b, z ∈ {0, 1}∗ holds:
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{
idealg,S (a,C1 ,z,1n)(a, b, n)

}
n∈N

poly
=
{
hybrid

FCCE ,Fot
Πg ,A(a,C1 ,z,1n)(a, b, n)

}
n∈N

Proof. Let A be a malicious static (hybrid model) adversary controlling Alice, and running the protocol in Algorithm 6.
We construct an ideal model simulator S which has access to Alice and to the trusted party computing Fg, and can
simulate the view of the execution of the protocol to the adversary. In Algorithm 7 we construct a simulator S given a
black-box access to A. The view of A in a simulation with S is identical to its view in an (Fcce,F 2

ot)-hybrid execution
of Πg with a honest Bob. The joint distribution of A’s view and Bob’s output in a hybrid execution is identical to the
joint distribution of S and Bob’s output in an ideal model. In addition, there is only a negligible probability for the
adversary to forge the signature, thus the output distribution of the simulator and the honest party in the ideal model
is identical to that of the adversary and the honest party in the real protocol execution. �

S (a,C1, 1n)

CA
1

FCCE
←− A(a,C1, 1n)

if CA
1 = ⊥ ∨CA

1 , C1 then
send ⊥ to A as its response from Fcce
output whatever A outputs and halt

else
simulate functionality Fcce for A:

1. choose a key pair (vk, sk)← G(1n)
2. construct C′1 from C1, by replacing each input wire of Bob with a xor-gate consisting of s input wires of Bob
3. garble the resulting circuit C′1 and obtain C, consisting of:

(a) Random strings corresponding to all possible input bits of Alice: K̄A = ((K0
A[0],K1

A[0]), ..., (K0
A[n],K1

A[n]))
(b) Random strings corresponding to all possible input bits of Bob: K̄B = ((K0

B[0],K1
B[0]), ..., (K0

B[n],K1
B[n]))

(c) Garbled boolean tables T̄G for each garbled gate G of the circuit C
(d) Output decryption tables T̄D mapping output strings to bits

4. sign the random input strings K̄B of Bob: σ̄ = Ssk(K̄B), where σ̄ = ((σ0
0, σ

1
0), ..., (σ0

n, σ
1
n))

5. send (K̄A, (K̄B, σ̄), vk) to A as its output from Fcce;

A sends K̄ ′A, intended for Bob and ( ¯K ′B, σ̄′) for ideal functionality F 2
ot

if ((K̄ ′A , K̄A) ∨ (( ¯K ′B, σ̄′) , (K̄B, σ̄))) then
send input ⊥ to the trusted party computing Fcce as Alice’s input
send ⊥ to A as its input from F 2

ot
output whatever A outputs and halt

A outputs its view and halts, S outputs the same and halts
end

Algorithm 7: Simulator S , simulating the view of Alice.

Proposition 4.3 (Security Against Malicious Bob). For every polynomial time adversary A corrupting Bob and run-
ning with Πg with abort in a hybrid model with access to Fcce and F 2

ot, there exists a probabilistic polynomial-time
simulator S corrupting Bob and running in the ideal model with access to an ideal functionality computing Fg, such
that for every a, b, z ∈ {0, 1}∗ holds:{

idealg,S (a,C1 ,z,1n)(a, b, n)
}
n∈N

poly
=
{
hybrid

FCCE ,Fot
Πg ,A(a,C1 ,z,1n)(a, b, n)

}
n∈N

Proof. Let A be a malicious static adversary with Alice and Bob running the protocol in Algorithm 6. We construct
an ideal model simulator S which has access to Bob and to the trusted party computing Fg, and can simulate the view
of the execution of the protocol. Assume that Bob is corrupted by a hybrid model adversary A. In Algorithm 8 we
construct a simulator S given a black-box access to A. The security is based on the fact that the 1-2 oblivious transfer
functionality F 2

ot is secure and as a result Bob learns only a single set of random strings, corresponding to its input.
The view of A is identical to its view in a (Fcce,F 2

ot)-hybrid execution of protocol Πg with a honest Alice. In addition,
the joint distribution of A and Alice’s output in a hybrid execution of the protocol is identical to that of S and Alice’s
output in an ideal execution. �
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S (b,C2, 1n)

CB
2

CCE
←− A(b,C2, 1n)

if CB
2 = ⊥ ∨CB

2 , C2 then
send ⊥ to A as its input from Fcce
output whatever A outputs and halt

else
simulate functionality Fcce for A:

1. choose a key pair (vk, sk)← G(1n)
2. construct C′2 from C2, by replacing each input wire of Bob with a xor-gate consisting of s input wires of Bob
3. garble the resulting circuit and obtain C, consisting of:

(a) Random strings corresponding to all possible input bits of Alice: K̄A = ((K0
A[0],K1

A[0]), ..., (K0
A[n],K1

A[n]))
(b) Random strings corresponding to all possible input bits of Bob: K̄B = ((K0

B[0],K1
B[0]), ..., (K0

B[n],K1
B[n]))

(c) Garbled boolean tables T̄G for each garbled gate G of the circuit C
(d) Output decryption tables T̄D mapping output strings to bits

4. sign the random input strings K̄B of Bob: σ̄ = SskT (K̄B), where σ̄ = ((σ0
0, σ

1
0), ..., (σ0

n, σ
1
n))

5. send (T̄G , T̄D, vk) to A as its output from Fcce

6. for i← 1 to |b| do

(a) run F 2
ot((K

0
B[i], σ0

i ), (K1
B[i], σ1

i ), bi), providing (K0
B[i], σ0

i ), (K1
B[i], σ1

i ) and A provides bi

(b) A receives (Kbi
B [i], σbi

i )

7. output whatever A outputs and halt

end

Algorithm 8: Simulator S , simulating the view of Bob.

4.2.2. Efficiency Discussion
Secure function evaluation based on garbled circuits, [1], allows to perform a two-party computation in a secure

manner, i.e., ensuring privacy, correctness and inputs independence (see [38]). The computation is constant-round but
ensures security only against semi-honest adversaries. When considering malicious adversaries, which is the typical
model in practice, additional security concerns arise, that are not addressed by the basic secure function evaluation
protocol, [1, 38].

Any two-party protocol can be transformed into a secure protocol in the malicious setting, e.g.,[2], but the resulting
protocol is not constant round. Subsequently, constant round protocols were presented, e.g., see [2, 25, 32, 39–41].
However, these protocols are based on zero knowledge proofs, which renders them inefficient for practical purposes.
Also protocols that do not employ zero knowledge were constructed, e.g., [42], however their round complexity is
linear in the depth of the circuit.

In [35] the authors apply the cut-and-choose approach to Yao’s protocol, which reduces the probability of evalu-
ating an incorrect circuit, and the efficiency is correlated to the cheating probability; specifically, their protocol has
a communication overhead of O(s|C| + sn2) (where n is the number of input bits to the circuit C and s is the sta-
tistical security parameter). Then [36] improved the communication complexity of [35] to O(s|C|) using expanders.
However as [8] observed, the protocol in [35] is susceptible to ‘input corruption’ attack; [8] also present a protocol
with roughly the same communication complexity as [35], of O(s|C| + s2n) (this protocol was implemented in [43]).
Another improvement to two-party computation in malicious setting was made by [9] using homomorphic encryption;
they present a protocol in the common reference string (CRS) model, that has a constant number of rounds, and has
an O(|C|) public-key operations (cf. O(s|C| + s2n) in [8]), and computational complexity of O(|C|) (as opposed to
O(n) in [8]). Subsequently, the work of [37], also followed the cut-and choose approach in a different manner and
improved the complexity to O( s|C|

log(|C|) ). Efficiency improvements were also designed for multi-party computation, [44],
by optimising AES encryption; their ideas can be applied when implementing the encrypion in our protocols. A new
multi-party protocol to securely evaluate reactive arithmetic circuits, offering security against an active adversary in
the universally composable security framework, was proposed by [45]; the protocol is based on a design of an efficient
‘cut-and-choose’ technique. Techniques reducing the size of garbled tables, thus improving computation and com-
munication complexity, were proposed in [46]; the design of the gates rely on a ‘free-XOR’ technique. [47] present a
framework for secure function evaluation using ‘privately programmable blocks’.

Our protocol, in Algorithm 6, is computationally efficient as it uses public key operations only for signing (by Cg)
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and verifying (by Bob) the strings supplied by Alice to Bob, and for oblivious transfer (for every input bit of Bob).
The communication and computational overhead is O(|C|) (roughly as that of the original Yao’s protocol, see [1, 38]).
Our protocol is efficient in that it has only a constant number of rounds and uses only one oblivious transfer operation
per each input bit. This is in contrast to the complexity of [8], which due to the cut-and-choose incur a multiplicative
increase by a factor of s (the statistical security parameter) and results in communication complexity of O(s|C|+ s2n).

5. The Decryption Model

The decryption model provides the parties in the two-party protocol with access to the decryption oracle that upon
invocation with a ciphertext, validates and decrypts the ciphertext, and returns the result to Alice and Bob.

The decryption model is captured with the FDecryption functionality, Algorithm 9. In contrast to Fcce (Algorithm 4),
even if FDecryption is corrupt, the implication is on fairness only, but not on privacy or correctness. We use FDecryption

ideal functionality in the fair protocol which we present in Section 6. However, we believe that the FDecryption could be
useful for other tasks too, and not only to ensure fairness. This functionality can be implemented using simple, secure
(stateless) hardware, or via a set of servers (using distributed/proactive decryption), [48].

6. Fair Two-Party Protocol with Decryption

The standard definition of two-party computation [32] allows Alice and Bob to securely evaluate a function over
their private inputs; however, a corrupted party can abort the protocol execution prematurely after it receives its output,
while preventing the honest party from receiving output. In many scenarios both parties should receive output, which
requires an additional property of fairness. Specifically, Alice receives her output if and only if Bob receives his, or
no party receives the output. Fairness is especially important for financially oriented tasks, e.g., exchange of signed
checks, or currency exchange. In our construction Alice receives her output first (the case where Bob receives output
first is symmetric), and should send to Bob his output. If Alice does not send the output to Bob, Bob contacts the third
party, an decryption service, and receives his output.

In Algorithm 12 we construct a protocol Π f that realises the complete fairness functionality F f presented in Al-
gorithm 2.1; the protocol Π f uses as a building block a secure (with abort) two-party protocol in the malicious setting,
e.g., the one we presented in Section 4. Concretely, protocol Π f computes functionality f (a, b) = ( fA(a, b), fB(a, b)),
providing output at both Alice and Bob while ensuring complete fairness, i.e., either neither party receives output or
both participants do, Definition 2.3.

The protocol in Algorithm 12 uses a weakly trusted (oblivious) third party that is involved only for resolution in
case one of the parties misbehaves. We call this third party the decryption and capture it with the ideal functionality
FDecryption in Algorithm 9. The fair protocol, in Algorithm 12, also uses as a building block the Fcce ideal functionality.
As a result, the functionality, Fcce, ensures correctness and privacy, and the optimistic ideal functionality FDecryption,
involved during the evaluation phase in case of malicious behaviour, ensures fairness of the computation. The third
parties do not learn anything about the inputs or the result of the computation.

We now informally describe the protocol presented in Algorithm 12. When the protocol is initiated the decryption
functionality FDecryption, generates a key pair (dkR, ekR) ← NG(1n), and this key ekR is part of the function g. Alice
and Bob obtain the public encryption key ekR of FDecryption which defines the function that they agreed to compute. We
use, as a module, the ideal two-party computation functionality with output at Bob, as implemented by the protocol
Πg in the (Fcce,F 2

ot)-hybrid model, in Section 4 (Algorithm 6). The parties then run a protocol Πg between them, to
compute the function gekR (presented in Equation 1). The functionality Fcce generates a garbled circuit that computes
g such that part of the output is encrypted with the key ekR. We take the function g for Πg (that provides output at Bob
only) to be the function computing the following:

gekR ((a||KA), (b||KB)) = NEekR (cA||cB)||(EKA ( fA(a, b), cB)) (1)

where cA = EKA ( fA(a, b)) and cB = EKB ( fB(a, b)). At the execution, Alice has input a and Bob has input b; they both
generate secret keys, KA and KB respectively, for symmetric authenticated encryption (K ,E,D), that will protect their
corresponding outputs; then they run a protocol Πg and provide their inputs, (a||KA) and (b||KB) respectively. The
protocol Πg evaluates the function over the inputs and generates output at Bob. The output consists of two parts: one
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encrypted with Alice’s key and another encrypted with the key ekR of the FDecryption (containing both the output of Bob
and of Alice). The output part of the FDecryption is encrypted with a non-malleable encryption scheme (NG,NE,ND)
and is used in case of malicious behaviour, for resolution (non-malleability is required to ensure that the output cannot
be maliciously altered in a meaningful way). If Alice does not respond, Bob contacts the FDecryption with the part of
the output encrypted with the key ekR. The FDecryption validates, decrypts and sends to Alice her output, and to Bob
his (restoring fairness). Upon receipt of an output from Bob, Alice validates and decrypts her part of the output and
Bob’s output encrypted with his secret key. Alice then sends this part to Bob, who validates and decrypts the result,
which concludes the protocol. We first informally analyse the security of the protocol in situations when one of the

Functionality FDecryption

generate encryption key-pair: (dkR, ekR)← NG(1n)
send the encryption key: (decryption, ekR) to Alice and Bob
Computation Phase

receive c
(yA, yB)← NDdkR (c)

end
Output: send yA to Alice

send yB to Bob

Algorithm 9: The decryption functionality FDecryption

parties aborts the execution, and then provide a formal security analysis.

1. Either Alice or Bob abort prior to performing the computation. In this case, no one learns anything and fairness
is preserved.

2. Bob performs the computation and then aborts and does not send the output to Alice. Since the output is
encrypted with the secret key KA of Alice, Bob cannot recover his output either, thus fairness is ensured.

3. Alice receives the output from Bob, recovers her output, and aborts. Bob will contact the decryption func-
tionality, which will send the output both to Alice and Bob. Since both parties receive the output fairness is
restored.

Claim 6.1. Let f : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n be a polynomial two-party functionality, let (K ,E,D) be a
secure symmetric authenticated encryption scheme, and let (NG,NE,ND) be a secure non-malleable encryption
scheme. Then, the protocol Π f securely realises a two-party functionality F f with complete fairness (Definition 2.3)
in the presence of malicious static adversaries in the (FDecryption,FCCE)-hybrid model.

Proof. We analyse Π f in a (FDecryption,FCCE)-hybrid model, and show that the execution of Π f is computationally
indistinguishable from computation of f in the ideal model with complete fairness. Our claim (and its proof) relies
on the composability theorem, [33], and allows to prove security in the FCCE-hybrid model, instead of assuming Fg.
We prove Claim 6.1 in Propositions 6.2 and 6.3 respectively. �

Proposition 6.2 (Security Against Malicious Alice). For every non-uniform polynomial time adversary A corrupt-
ing Alice and running Π f with complete fairness in a hybrid model with access to FDecryption and Fg, there exists a
non-uniform polynomial time simulator S corrupting Alice and running in the ideal model with access to an ideal
functionality F f , such that for every a, b, z ∈ {0, 1}∗ holds:{

ideal f ,S (z)(a, b, n)
}
n∈N

poly
=
{
hybrid

FDecrypt ,Fg
Π f ,A(z) (a, b, n)

}
n∈N

Proof. We construct an ideal model simulator which has access to Alice and to the universally trusted party, and
can simulate the view of the execution of the protocol. Assume that Alice is corrupted by a hybrid model adversary
A. In Algorithm 10 we construct a simulator S given a black-box access to A.

The view of A in a simulation with S is identical to its view in an (FDecryption,Fg)-hybrid execution of Π f with
a honest Bob. The joint distribution of A’s view and Bob’s output in a hybrid execution is identical to the joint
distribution of S and Bob’s output in an ideal model. �
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S (a, 1n)

1. generate (dk, ek)← K(1n) and select a random key KS ∈ {0, 1}n

2. invoke A with input a, n
3. send A the public key ek
4. obtain (a′ ||KA) from A
5. send a′ to F f and obtain y′A
6. select sB ∈ {0, 1}∗ at random and compute EKA (y′A,EKS (sB)) and hand it to A
7. if A sends abort then send abort to trusted party

else if A sends cB == EKS (sB)send fair to trusted party
8. S outputs whatever A outputs

end

Algorithm 10: The simulator S running in ideal model with trusted party computing F f , and simulating the view of Alice.

Proposition 6.3 (Security Against Malicious Bob). For every non-uniform polynomial time adversary A corrupt-
ing Bob and running Π f with complete fairness in a hybrid model with access to FDecrypt and Fg, there exists a
non-uniform polynomial time simulator S corrupting Bob and running in the ideal model with access to an ideal
functionality F f , such that for every a, b, z ∈ {0, 1}∗ holds:{

ideal f ,S (z)(a, b, n)
}
n∈N

poly
=
{
hybrid

FDecrypt ,Fg
Π f ,A(z) (a, b, n)

}
n∈N

Proof. We construct an ideal model simulator which has access to Bob and to the universally trusted party, and can
simulate the view of the execution of the protocol. Assume that Bob is corrupted by a hybrid model adversary A. In
Algorithm 11 we construct a simulator S given a black-box access to A.

The view of A in a simulation with S is identical to its view in an (FDecryption,Fg)-hybrid execution of Π f with
a honest Alice. The joint distribution of A’s view and Alice’s output in a hybrid execution is identical to the joint
distribution of S and Alice’s output in an ideal model. �

S (b, 1n)

1. generate (dk, ek)← K(1n) and select a random key KS ∈ {0, 1}n

2. invoke A with input b, n
3. send A the public key ek
4. obtain (b′ ||KB) from A
5. send b′ to F f and obtain y′B
6. select sA ∈R {0, 1}∗ and compute NEek(cA, cB),EKS (sA ||EKB (y′B))
7. send NEek(cA, cB),EKS (sA ||EKB (y′B)) to A
8. on input ω from A, check

if DKS (ω) = (sA ||EKB (y′B)) then send EKB (y′B) to A
else if (ω = ω1 ||ω2) ∨ NDdk(ω1 ||ω2) = (cA ||cB) then send cB to A
else send ⊥ to trusted party

9. S outputs whatever A outputs

end

Algorithm 11: The simulator S running in ideal model with trusted party computing F f , and simulating the view of Bob.

6.1. Efficiency Discussion

In [25], the authors designed an efficient optimistic fair protocol using proofs of knowledge. The number of rounds
in their protocol is constant, and does not depend on the security parameter. Yet their protocol incurs a significant
efficiency degradation, since the zero-knowledge proofs are required for every gate of the circuit, resulting in O(s|C|)
communication and computational complexity. Furthermore, the protocol of [25] seems to be susceptible to ‘inputs
corruption’ attack, whereby Alice corrupts one of the inputs to oblivious transfer protocol, and based on the behaviour
of Bob learns the corresponding value of his input bit. In our protocol, when the parties are honest and follow the
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steps of the protocol (which is the typical case), the computation complexity is roughly as that of the Yao’s original
protocol (see Section 4.2.2 for discussion). When one of the parties misbehaves, the protocol requires an additional
round, to send the encrypted result to the FDecryption and to receive a decrypted response back.

Input: security parameters n, s, a = [ai]n
i=1 from Alice, b = [bi]n

i=1 from Bob
Output: y = (yA, yB)
Alice and Bob obtain (decryption, ekR) (each)
Computation Phase

Alice and Bob do:
generate secret keys KA and KB respectively
run a protocol Πg (in Algorithm 6 realising Fg) computing gekR (gekR is constructed from f as in Equation 1) with key ekR of FDecryption, on inputs

(a||KA, b||KB)
Alice provides (a||KA) and Bob provides (b||KB)

Bob:
onReceive(α||β) from the protocol Πg

send(β) to Alice
onReceive(cB) from FDecrypt

if (DKB (cB) , ⊥) then
recover and outputDKB (cB)

onWakeup()
send NEekR (cA, cB) to FDecryption

end

Alice:
onReceive(β) from Bob

let (yA, cB)← DKA (β)
if (yA , bot) then

send(cB) to Bob
recover and output yA = fA(a, b)

onReceive(β) from FDecrypt
recover and outputDKA (β)

end

end

Algorithm 12: Secure Two Party Protocol Π f that realises F f according to Definition 2.3, in the (FDecryption,Fg)-hybrid model for computing f (a, b) =

( fA(a), fB(b)), where f : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n; and gekR ((a||KA), (b||KB)) = NEekR (cA ||cB)||(EKA ( fA(a, b), cB)), cA = EKA ( fA(a, b)) and cB =

EKB ( fB(a, b)).

7. Applications

In this work we investigated applications of secure computation, and constructed efficient and secure two-party
protocols, based on assumptions of weakly-trusted, simple and efficient services (or, formally, on corresponding ideal
functionalities).

We believe that these protocols could be particularly useful for financial applications, which typically involve third
parties (that often cannot be avoided, and are often trusted much more than needed by our protocols). We suggest
to use these ‘already present’ third parties, to produce efficient and practical systems. We next present two specific
applications: stocks trade and currency exchange:

7.1. Stocks Trade

Consider the following sample application for stocks trade, utilising the protocols presented in this work. Alice
wishes to sell IBM stocks and Bob wants to buy them. The challenge here is to agree on a rate, yet without exposing
each other’s private inputs. Exposing the input of the other party will allow to adjust the price offered by the other
party.
stocks trade via server-aided two-party computation. Alice contacts a third party (which they both trust to some

extent) e.g., a broker, to obtain a program for this specific transaction. Both Alice and Bob provide some secret policy,
as their respective inputs, and possibly their secret signature keys (which are essential since the algorithm produces
signed orders); then the algorithm, constructed by the third party, will produce corresponding signed orders if there is
a match between the policies, or ⊥ if there is no match. Concretely, the protocol satisfies the following requirements:
(1) it does not expose the policies (nor the secret inputs, e.g., secret keys); (2) it ensures correctness of computation
(since the program, implementing the algorithm, was supplied and signed by a third party); (3) ensures fairness (if,
say, Alice aborts after receiving her signed order, Bob can contact the resolver, e.g., a broker, or a clearing house, to
recover his order).
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7.2. Currency Exchange
Alice and Bob wish to sign an agreement for currency exchange, e.g., to exchange AC for $. The goal is to sign the

agreement without exposing their respective private inputs, e.g., if a malicious party learns the policy or the rates of
the honest party, it can cheat by adjusting its own input accordingly.
currency exchange via server-aided two-party computation. Alice contacts a third party, which they both trust,

e.g., a broker, to obtain a program implementing the agreement. The agreement receives the XAC of Alice, and Y$ of
Bob, and outputs two signed checks, for Alice and Bob respectively. Since the program (implementing the agreement)
was supplied and signed by a third party, Alice and Bob are assured that it is correct. Also fairness is assured, since if
Alice decides to cheat and aborts after receiving her check, Bob can contact a resolver, that will recover and send the
checks to both parties.

8. Conclusion

Two-party computation received a lot of attention during the last two decades, with numerous works, and although
it was shown to be practical (see [3]), there are no applications or systems utilising it. In this work we present
financially oriented protocols, facilitating two-party computation as a basic building block, which can fit well in
the field of secure ecommerce. Such financial applications are often required to ensure fairness to the transactions
performed by the parties, as well as guaranteed compensation, in case of failures. Other critical properties of financial
protocols is ensuring privacy to the inputs of the participants, correctness of the transaction, and efficiency.

Our protocols assume weakly trusted (oblivious) third parties, e.g., involved only in case of misbehaviour or
failures, that cannot observe neither the inputs of the parties to the transaction, nor the compensation granted in case
of failures. Hiding the inputs and outputs from the third parties is critical to financial applications. We stress that the
success of electronic financial applications may depend on the ability to construct efficient protocols with rigorous
security guarantees. We believe that applying server-aided two-party computation to produce practical, efficient and
secure protocols, is an important challenge of the research on two-party computation. Specifically, we suggest carrying
this research forward and encourage improving over the efficiency of our protocols, and further reducing the trust
assumption in third parties. In addition, providing efficient real life implementations for specific tasks is a significant
goal that would utilise the potential of the Internet to allow arbitrary parties to perform commerce, with automated,
trustworthy dispute-resolution and compensation mechanisms.
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