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Image mining for drought monitoring in eastern Africa using Meteosat SEVIRI data
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A B S T R A C T

We propose an image mining approach to monitor drought using Meteosat Spinning Enhanced Visible

and InfraRed Imager (SEVIRI) image data. SEVIRI image data provide frequent Normalized Difference

Vegetation Index (NDVI) time series which are important to assess the evolution of drought conditions.

Vegetation condition is characterized in space by the deviation of the current NDVI observations at

locations from their temporal mean values. In this paper we assume a gradual evolution of vegetation

stress caused by drought and hence address this aspect with the use of a membership function applied to

vegetation stress values to model drought. Our approach is implemented on subset image data of eastern

Africa. Vegetated sites in a drought prone area of the region serve as an illustration using the drought

spell at the end of 2005. This study shows that the use of a membership function allows capturing the

gradual evolution of drought and can be used to model drought from observed vegetation conditions.
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1. Introduction and background

Drought is defined as an extended period of abnormally dry
weather that causes water shortage and damage to vegetation. It is
a creeping and recurrent natural phenomenon and its impacts,
covering large areas, can last for weeks or months (Wilhite, 2005).
The onset, duration and severity of droughts are often difficult to
determine and their characteristics may vary significantly from
one region to another. In systems reliant on rainfall as the sole
source of moisture for crop or pasture growth, seasonal rainfall
variability is inevitably mirrored in both highly variable produc-
tion levels as well as in the risk-averse livelihoods (Cooper et al.,
2008).

Africa has a long history of rainfall fluctuations of varying
lengths and intensities (Nicholson, 1994, 2000). At different spatial
and temporal scales, studies showed different behavior of rainfall
trends in Africa; while studies by Olsson et al. (2005) and Herman
et al. (2005) showed an increase of rainfall and greenness in parts
of the Sahel region, Swenson and Wahr (2009) showed a decrease
of water shortage in eastern Africa between 2003 and 2008 where
drought and famine situations were periodically reported (FEWSN,
2005c, 2006b).

Drought has particularly negative impacts on agricultural
production in the eastern African region, as most of agriculture
is dependent on rainfall (Barron et al., 2003; Slegers, 2008; Thorton
et al., 2009). In this study we focus on monitoring the impacts of
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drought on vegetation, referred to as vegetative drought, using a
membership function applied to Meteosat Spinning Enhanced
Visible and Infrared Imager (SEVIRI) data.

1.1. Vegetation index

Satellite vegetation monitoring involves the exploitation of
information from the red and near-infrared wavelengths combined
into the Normalized Difference Vegetation Index (NDVI) (Tucker,
1979). NDVI is calculated as in Eq. (1):

NDVI ¼ lNIR � lRED

lNIR þ lRED
(1)

where lNIR and lRED are the spectral reflectance in the near
infrared (0.75–1.1 mm) and red (0.4–0.7 mm) respectively. NDVI is
the most commonly used vegetation index and has been shown to
be related to vegetation vigor, percentage green cover and biomass
(Myneni and Asrar, 1994; Anyamba and Tucker, 2003; Tucker and
Stenseth, 2005). It is a non-linear function that varies between �1
and +1, and is undefined when both lNIR and lRED are zero. NDVI
values for vegetated land areas generally range from approxi-
mately 0.1 to 0.7, with values greater than 0.5 indicating dense
vegetation. Values less than 0.1 indicate no vegetation but barren
area, rock, sand or snow (Tucker, 1979).

1.2. Monitoring vegetative drought

Monitoring vegetative drought usually requires a large amount
of temporal data, and Remote Sensing (RS) technologies provide
necessary means to collect these at regular intervals. NDVI is
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Fig. 1. Subset of eastern Africa with approximate locations of selected sites labeled

as K1 to K4 in Kenya (A) and R1 to R4 in Rwanda (B) and L1 to L3.
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commonly calculated using image data from polar orbiting
satellites which carry sensors detecting radiation in red and
infrared wavelengths. Despite their daily image data acquisitions,
it may not be possible to obtain frequent cloud-free image data. In
order to minimize the effects of clouds and atmospheric influence
from aerosols and water vapor, temporal composites of 10 or 16
days are often used (Holben, 1986). The high temporal frequency of
SEVIRI data increases the chance to obtain cloud-free images
during a day and daily NDVI data is now more often available
(Fensholt et al., 2006).

Vegetation conditions can be characterized by the deviation of
the current NDVI values from their corresponding temporal mean
NDVI values, usually calculated over a long period such as one or
more decades. At each pixel site, this deviation, referred to in this
paper as DV(t,s), is calculated as the difference between the current
NDVI value and its corresponding time series mean, see Eq. (2)
(Anyamba and Tucker, 2003).

DVðt; sÞ ¼ NDVIðt; sÞ �NDVIðsÞ (2)

where NDVIðt; sÞ is the current NDVI at site s and time t and NDVI
(s) is the mean NDVI value for different times, calculated for the
time frame of the data series. When DV(t,s) is negative, it indicates
below normal vegetation conditions and therefore suggests
prevailing drought conditions; a large negative, persistent in time,
corresponds with a severe drought. This indicator has been used
and discussed in various studies (Anyamba and Tucker, 2003;
Bajgiran et al., 2008).

1.3. Vegetative drought monitoring and uncertainties

Vegetation condition values, characterized by DV(t,s), are an
interpretation of quantitative measurements of vegetation condi-
tions. Drought classes are traditionally defined based on these
quantitative measurements and modeled in geographic informa-
tion systems (GIS) using traditional crisp classification techniques.
This approach does not reflect the transition between the
‘‘drought’’ and ‘‘non-drought’’ classes. For drought, a gradual
transition reflecting its severity is more appropriate. Moreover, at a
location, the severity of drought depends not only on the intensity
of vegetation stress but also on its duration (IWMI, 2008). Since
vegetation stress caused by drought increases gradually over time,
a hard spatial classification cannot discriminate potential informa-
tion that can lead to a better understanding of drought onset and
development. The coarse spatial resolution of SEVIRI data, equal to
3 km at the sub-satellite point, introduces further spatial
uncertainties due to the mixture of land cover elements.

1.4. Image mining to monitor drought

Monitoring drought using remote sensing commonly requires a
large time series of multi-spectral data. Image mining techniques
(Stein, 2008) allow handling those and have been used in studies
such as modeling of forest fires from Meteosat images (Umama-
heshwaran et al., 2007) and using multi-sensor, multi-resolution
data and multi-scale data (Tadesse et al., 2005). We propose an
image mining approach to handle the large amount of data used in
the processing of hourly NDVI images to obtain drought indicator
metrics.

The aim of this study is to improve the early detection of
drought using Meteosat SEVIRI data in eastern Africa. In doing so,
combine image mining with the use of a membership function to
process the large amount of image data and to account for
uncertainties in the definition of vegetative drought. The drought
spell in eastern Africa at the end of the year 2005 illustrates our
approach.
2. Study area and study period

The eastern African region consists of nine countries usually
divided geographically into sub-regions based on different types of
vegetation, availability of water and topography. The continental
sub-regions of eastern Africa include the Great Lakes Region and
the Horn of Africa. Lakes and rivers are the main water sources in
eastern Africa and where these are absent, sub-regions depend on
rainfall. The first, more abundant rainy season is from around April
to May and the second, more variable rainy season from around
October to November (Hastenrath, 2001).

For this study, we selected a subset of images of eastern Africa,
acquired for the months of September to December, between 2005
and 2007. The method was applied to the whole subset image data
of eastern Africa, whereas eight crop field locations in drought
prone areas of eastern Africa (see Fig. 1) are analyzed in more
detail. The characteristics of these selected sites are presented in
Table 1. Moreover, Fig. 1 shows three other locations (L1;3) which
are selected for the observation of NDVI diurnal variation. More
details are given in Section 3.3.

Rainfall in Kenya is closely linked to the livelihoods of its
citizens and the health of the nation’s economy. For example, the
La Niñ a drought of 1998–2000 caused damages such as the loss of
hydropower and industrial production, the loss of crop and
livestock, and with severe economic impacts, estimated at 16% of
GDP in each of the 2 years. Since 98% of Kenya’s cropping is rainfed,
most farmers are exposed to the high variability of rainfall within
and between years (WRI, 2007; Slegers, 2008). Rwanda’s crop
seasons are directly related to the two rainy seasons, with the first
season running from September to December, followed by the
second season from February to July. There is also a third
marshland season that runs from June to September and October
(MINAGRI, 2009). Rwanda is frequently confronted with inci-
dences of drought, as a result of erratic and below average rainfall
in the rainy seasons. Since agriculture is mostly dependent on
rainfall, a reduction in the levels of precipitation has a direct



Table 1
Land cover characteristics at the sites presented in Section 4 (WRI, 2007; Africover).

ID Latitude Longitude Land cover type

k1 0�000.00’’N 36�4600.00’’E Open shrub land (40–45% crown cover)

k2 0�6
0
0.00’’S 36�45

0
0.00’’E Rainfed herbaceous crop (clustered small fields with 35% crop intensity) with very sparse shrubs and trees

k3 0�32
0
0.51’’S 37�23

0
43.40’’E Scattered (in natural vegetation or other) rainfed herbaceous crop (field density 20–40%)

k4 0�32
0
48.06’’S 37�32

0
44.00’’E Scattered (in natural vegetation or other) rainfed herbaceous crop (field density 20–40%)

R1 2�2
0
3.53’’S 30�18

0
15.18’’E Combination of rainfed herbaceous crop, (40–60%) shrub plantation (20–40%) and natural vegetation

R2 1�54
0
27.278’’S 30�30

0
23.23’’E Combination of rainfed herbaceous crop, (20–40%) shrub plantation (40–60%) and natural vegetation

R3 2�5
0
24.06’’S 30�41

0
12.46’’E Combination of rainfed herbaceous crop, (20–40%) shrub plantation (40–60%) and natural vegetation

R4 2�9
0
11.518’’S 30�11

0
11.77’’E Combination of rainfed herbaceous crop, (20–40%) shrub plantation (40–60%) and natural vegetation

La 0�31
0
00.00’’N 35�10

0
60.00’’E Rain fed herbaceous crop

Lb 0�21
0
00.00’’N 35�24

0
60.00’’E Rain fed herbaceous crop

Lc 0�07
0
00.00’’N 35�20

0
00.00’’E Forest plantation
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impact on agricultural production. In general, the areas in Rwanda
that are most prone to drought are the Central, Eastern and
Southern regions of the country. From the end of 2005 to the
beginning of 2006, parts of eastern Africa, such as in Rwanda
FEWSN (2005a) and Kenya FEWSN (2005b) experienced droughts
(FEWSN, 2006a).

3. Data acquisition and processing

3.1. The SEVIRI sensor and data

The first MSG satellite, Meteosat-8, was launched on August 29,
2002 at 3.3 � West longitude at an altitude of 36,000 km. It became
operational on January 29, 2004, and has since then recorded
images of Europe, the North Atlantic and Africa with a temporal
sampling of 15 min. The SEVIRI sensor is its main payload,
equipped with 12 spectral channels, ranging from visible to far
infrared wavelengths.

SEVIRI provides data to the European Organisation for the
Exploitation of Meteorological Satellites (EUMETSAT) in Darm-
stadt, Germany. These data are processed and then uplinked to the
HOTBIRD-6 communication satellite in wavelet compressed
format. The International Institute for Geo-information Science
and Earth Observation (ITC), in the Netherlands, receives and
archives these data in compressed form on drivers accessible
through personal computers on the network. Level 1.5 data were
imported and converted into Ilwis raster data format using the
MSG Data Retriever (Maathuis et al., 2005) tool available at ITC,
with the aid of a Geospatial Data Abstraction Library (GDAL)-driver
that reads raw compressed MSG data and facilitates easy
geometric and radiometric calibrated data retrieval into formats
commonly used by remote sensing packages.

In this study, bands one (VIS 0.6) (red, 0.56–0.71 m m) and two
(VIS 0.8) (near infrared, 0.74–0.88m m), converted to reflectance
have been used to calculate the NDVI. We used images covering the
region during the crop season of September to December, for the
years 2005, 2006 and 2007, recorded between 06:00 UTC and
11:00 UTC, corresponding approximately to 08:00–09:00 to
13:00–14:00 local time, respectively.

The cloud mask product (CLM) distributed by EUMETSAT is
applied on each image. The NDVI values are calculated as in Eq. (1).
No atmospheric correction was carried out.

3.2. Precipitation data

In this study we use precipitation data from August to
November, 2005 to 2007, aggregated to 10-day period, to compare
our with results. These data were taken from stations closest to the
points selected for the drought analysis, i.e. respectively in Embu,
Kenya and in Kigali, Rwanda. From Embu meteo station, k1 is
located at approximately 93 km, k2 at 89 km, k3 at 7.5 km and k4 at
12 km. From Kigali meteo station, R1 is located approximately at
21 km, R2 at 42 km, R3 at 63 km and R4 at 23 km. Data for Embu
were retrieved from the National Climatic Data Centre (NCDC,
2009) and data for Kigali from the Rwandan Meteorological
Service. Precipitation data for Embu are incomplete in 2005 for the
1st, 2nd and 3rd dekad of August, and the 2nd dekad of November;
in 2006 for the 3rd dekad of August, the 2nd dekad of September,
the 2nd dekad of October and the 3rd dekad of November; and in
2007 for the 3rd dekad of October, and the 1st and 2nd dekad of
November; as data for one or more days within these 10-day
periods is missing. The data for the 2nd dekad of November have
not been included in the chart of Fig. 3.

3.3. Generation of the DV(t,s) time series

We first conducted an observation of diurnal variation of NDVI on
the 01st of July 2008 at three locations (L1, L2 and L3) (see Table 1) in
Kenya during a non-drought season. This particular day and these
particular locations were selected based on the fact that most cloud-
free scenes could be obtained. The NDVI was calculated at a 15-min
interval. We assumed the observations as shown in Fig. 3 are valid
for the eight study sites and as such considered a time window
between 06:00 and 11:00 UTC (09:00 and 14:00 local time) to avoid
including systematic low NDVI values. We then calculated the daily
maximum NDVI composite for each of the selected sites. These daily
NDVI composites were further used to generate the 4-day maximum
NDVI composites. We first generated a daily NDVI time series by
determining the maximum NDVI value from the available 15 min
images during a 5 h observation window between 06:00 and 11:00
UTC, from September to December. This provided one daily value for
these 4 months over a period of 3 years. To reduce the number of
missing values in this series, we determined 4-day maximum NDVI
composites, consisting in total of 90 values. Such a period of 4 days
was selected as it was the minimum set with the least missing NDVI
values. From the 4-day maximum values, we calculated the mean
over 2005–2007 for each period of 4 days (30 values from September
to December). To generate the DV(t,s) time series, we subtracted
these means from the 4-day composite time series. Finally, we
limited the series to the months of October and November in 2005,
2006 and 2007 (n ¼ 48, DV(t,s)).

3.4. Spatial modeling of vegetative drought

To model drought from vegetation condition, we use fuzzy sets
theory, thus accounting for the gradual transition between drought
and non-drought classes modeling. Fuzzy sets theory, introduced by
Zadeh (1984), provides a conceptual framework for solving
knowledge representation and classification in an ambiguous
environment. Elements of a fuzzy set can take values ranging from
0 to 1, unlike the traditionally used (Boolean) set whose elements
take either 0 or 1. This function allows us to quantify the gradual



Fig. 2. Drought membership function dfDg applied to DV.

Fig. 3. Within-day variation of NDVI on July 1, 2008 at three selected sites sa , sb and sc .
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evolution of vegetative drought at a location. Fuzzy sets theory has
been used and discussed in remote sensing studies of change
detection analysis (Metternicht, 1999, 2001) and to model vague
geographic entities (Fisher, 2000; Woodcock and Gopal, 2000;
Cheng et al., 2009).

The parameters of the transition width (TW), which should be
defined based on expert knowledge, were estimated arbitrarily in
this study to illustrate the function. The shape of the function was
selected on the basis of the following assumptions:

� Vegetation stress observed on DV(t,s) images is caused by
drought condition.
� Variation of intensity of vegetation stress reflects linearly the

variation of drought severity.
Fig. 4. (a) Drought membership variation at sites k1, k2, k3 and k4 (Embu region) from Oct

(Kigali region) from October to November 2005. (c) Difference of precipitation in Embu (

the years 2005–2007. (d) Difference of precipitation in Kigali (Rwanda) from August to N
� Under natural conditions, the severity of vegetative drought
evolves gradually in time.

Fig. 2 shows the shape of the membership function applied to
DV(t,s) values. Where TW is the transition width limited by its
lower limit a, and its upper limit b. DVmin is the overall minimum
DV calculated during the study period.

dðDÞ
1 8 x : x � a
b� x

b� a
8 x : a< x<b

0 otherwise

8>><
>>:

(3)
ober to November 2005. (b) Drought membership variation at sites R1, R2, R3 and R4

Kenya) from August to November 2005 with the mean precipitation calculated over

ovember 2005, with the mean precipitation calculated over the years 2005–2007.



Table 2
Fitted coefficients a and b for Eq. (4) at the different sites, for TW ¼ 0:1 and

TW ¼ 0:20. Included is the shift of the time where the fitted function takes the value

0.1.

Site a ¼ 0:10 a ¼ 0:20 Shift (days)

a b 10% a b 10%

k1 13.173 1.177 19.8 11.095 2.647 33.0 13.2

k2 3.144 5.681 18.9 5.376 4.963 28.4 9.5

k3 2.813 1.17 4.2 4.175 2.722 12.7 8.5

k4 3.714 1.402 6.4 4.771 2.631 14.1 7.7
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The one-sided trapezoidal drought membership function, dfDg
as we defined in (3), takes the value 1 (or certain drought) for
vegetation condition values below a and the value 0 (or certain
non-drought) for vegetation condition values above b, with a
gradual linear transition of drought membership values between 0
and 1, for vegetation condition values between a and b. The
function was applied to the time series of DV(t,s). A few pixel
locations in field crop areas of Kenya and Rwanda were extracted
and tracked over time. Results are presented and discussed
respectively in Sections 4 and 6.

4. Results

Fig. 3 shows the 15-min interval diurnal variation of NDVI at L1,
L2 and L3 on the 01st of July 2008. From the graph we observe an
increase of NDVI values in the morning between approximately
04:00 and 07:00 UTC (07:00 and 10:00 local time), followed by a
slow and gradual decline towards the evening.

Fig. 4(a) shows dfDg values calculated at sites k1 to k4 in Kenya,
for the period from October to November 2005, in a 4-day time
scale, and Fig. 4(b) shows dfDg values calculated at sites R1 to R4 in
Rwanda, for the same period. The parameters a ¼ �0:20 and b ¼ 0
were set for all sites. Fig. 4(c) and (d) are the precipitation
difference values for August to November 2005, from the mean
2005–2007. We see that for Embu the increase in drought
membership value coincides with less-than-average rainfall
conditions, while this is not the case for Rwanda. In Fig. 4(a),
we see for all sites a gradual increase of drought membership
values from the end of October 2005 and in Fig. 4(d) a less-than-
average amount of rainfall starting in the second dekad of
September. In Fig. 4(b) we see for all sites a sharp increase of
drought membership values from the beginning of October 2005,
and a sharp decrease from the end of October. Drought member-
ship values stay low to increase again sharply in mid-November.
Fig. 4(d) shows an more-than-average amount of rainfall starting
from the first dekad of September and a less-than-average amount
of rainfall starting at the first dekad of November.

5. Sensitivity analysis

An S-shaped analytical function model (4) is proposed to fit the
variation of drought membership values on time. This model
contains two parameters a and b, reflecting the halfway point and
the steepness of the function at that point, respectively. This
function was fitted to both the membership functions with TW ¼
0:10 (a ¼ �0:1 and b ¼ 0) and for those with TW ¼ 0:20 (a ¼ �0:1
and b ¼ 0) at the sites k1 to k4. Such a sensitivity analysis illustrates
how the variation (uncertainty) in the output of the model can be
apportioned quantitatively to the variation of input and para-
meters.

1

p
� arctan

date

b
� a

� �
þ 0:5 (4)

Results of the fitting are shown in Table 2. From this table we
consider a drought membership value of 0.1 as an early indicator
for drought. Table 2 shows that for this membership value at sites
k1 to k4, we observe a lag time on drought detection of
approximately 13, 9, 8 and 4 days respectively, when increasing
the TW from 0.10 to 0.20. A similar trend is observed for all other
values of k1 to k4. The difference is largest for site k1 where the
detection of drought by a membership function is late (13.173 days
after October 27th) and a change in one of the parameters of the
membership function has the largest effect. This is consistent the
slower and more gradual effect of drought in shrubland as
compared with cropland. While annual crops and grasses are the
first to be affected by drought, deeper rooting shrub and trees are
more resilient and remain green throughout considerable periods
of drought.

6. Discussion and conclusion

The study shows how to model drought indicators taking into
account uncertainties related to the class definition of a drought.
The shape of the drought membership distribution we obtained
therefore depends entirely on vegetation condition, as measured
from NDVI values. Further studies on combination of other
external factors such as rainfall occurrence, irrigation or soil
moisture conditions impacting vegetation condition will improve
the accuracy of the proposed drought model.

The major strengths and weaknesses of the proposed approach
pertain to both the generation of dfDgðt; sÞ time series reflecting
vegetation condition and the selection of the membership
function. Due to the short lifetime of operation of SEVIRI, the
time series mean values are computed for a limited period of 3
years, introducing errors in dfDgðt; sÞ values. The strength of the
use of a membership function compared to the traditional Boolean
function to model drought, is that the gradual evolution of
drought severity is taken into consideration. When vegetation
stress is caused by another phenomenon than drought, such as
human or animal induced stress, the changes of observed NDVI
vegetation values, hence drought values, are not gradual but
sharp. By using a membership function we might know when a
change is more likely caused by natural drought conditions or by
human activities. The approach that we used in this study to
quantify drought can be used to optimize drought detection and
remove false alarm. To do so we need to select the shape of the
function as well as parameters a and b, which require an a priori

knowledge of characteristics of vegetative drought at study sites.
In this study, the shape of the function of the drought membership
function and the parameters a and b have been chosen somewhat
arbitrarily to illustrate our approach. Further research is needed to
optimize the model.

A comparison with rainfall data was performed to assess the
validity of the drought signal obtained, as NDVI is a response
variable to rainfall. For Embu, increase in drought membership
value coincided with less-than-average rainfall conditions, as
expected, especially for the two locations (k3 and k4) closest to the
Embu meteo station. However, for sites in eastern Rwanda, this
was not the case. We suppose this could be caused by the large
distance between Kigali meteo station and the four observation
sites, or by the relied difference between Kigali, which is hilly and
near the central Plateau, and the south-eastern part of Rwanda,
which is flatter. As no rainfall data were available of areas closer to
the observation sites, this assumption could not be validated.

The high temporal resolution data from instruments such as
SEVIRI offers opportunities to address processes occurring in
plants such as duration and intensity of photosynthetic activity
and understanding of plant phenology which previously could not
be measured. The exploitation of these parameters can provide



C.M. Rulinda et al. / International Journal of Applied Earth Observation and Geoinformation 12S (2010) S63–S68S68
additional information which can be beneficial in the context of
drought monitoring; this is a potential area of investigation for
future studies. Fensholt et al. (2006) suggested that the NDVI bowl-
shaped curve observed from the variation of Meteosat-derived
NDVI in Senegal during the morning can infer canopy structure.
Bijker (2007) found similar results while observing diurnal NDVI
variation in the Netherlands, however suggesting this pattern to be
related to photosynthetic activity. From our observations during a
day with predominant clear sky (results not included in the paper)
we found similar bowl-shaped NDVI curves on selected sites in
Kenya. Future research may reveal whether taking such effects into
account leads to substantial improvement in drought modeling.
Fensholt et al. (2006) observed peak values occurring around 10.45
local time and our test sites in Kenya showed peak values of NDVI
at around 11 am local time (see Fig. 3). Future research in that area
may also reveal whether taking such effects into account leads to
substantial improvement in drought modeling.

A next step in drought modeling could also be an approach
focusing on spatial objects. To do so, objects have to be built from
collected images. Drought objects will be necessarily vague and
uncertain, likely showing large spatial within-object variation as
well. The method that we propose in this study may serve as a first
step into this direction. In fact, what we have done here for
individual pixels can also be done for a group of pixels. In principle,
these pixels could be combined by considering a series of images
into a 3-dimensional space-time drought object. Using an a-cut
equal to 0.1 or 0.5 may then delineate the final objects. We see this
as subsequent steps in this analysis.
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