
International journal of Applied Earth Observation and Geoinformation 43 (2015) 119-131 

Contents lists available at ScienceDirect 

International journal of Applied Earth Observation and 
Geoinforma tion 

ELSEVIER journal homepage: www.elsevier.com/locate/jag 

The imprint of plants on ecosystem functioning: A data-driven 
approach 

®crossMark 

Talie Musavia•*, Miguel D. Mahechaa,b, Mirco Migliavaccaa, Markus Reichsteina,b, 

Martine janet van de Wegc, Peter M. van Bodegom d, Michael Bahn e, Christian Wirth b,f, 

Peter B. Reichg,h, Franziska Schrodta,b,jens Kattgea,b 

a Max Planck Institute for Biogeochemistry, 07745 ]en a, Germany 
b German Centre for Integrative Biodiversity Research (iDiv) Halle-]ena-Lelpzig, 04103 Leipzig, Germany 
c SIMBIOS, Abertay University of Dundee, Dundee DD1 1 HG, Scotland, UK 
d Institute of Environmental Sciences (CML), University Lei den. 2333CC Lei den, The Netherlands 
• Institute of Ecology, University of Innsbruck, 6020 Innsbruck. Austria 
r Systematic Botany and Functional Biodiversity Research, Institute of Biology, University of Leipzig, 04103 Leipzig, Germany 
g Department of Forest Resources, University of Minnesota, St Paul. Minnesota 55108, USA 
h Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, 2751 New South Wales, Australia 

ARTICLE INFO 

Article history: 
Received 31 October 2014 
Accepted 12 May 2015 
Available online 2 july 2015 

Keywords: 
Biosphere-atmosphere interactions 
Biogeochemical fluxes 
Scaling 
Ecosystem functional properties 
Plant traits 
Remote sensing 

1. Introduction 

ABSTRACT 

Terrestrial ecosystems strongly determine the exchange of carbon, water and energy between the 
biosphere and atmosphere. These exchanges are influenced by environmental conditions (e.g., local 
meteorology, soils), but generally mediated by organisms. Often, mathematical descriptions of these 
processes are implemented in terrestrial biosphere models. Model implementations of this kind should 
be evaluated by empirical analyses of relationships between observed patterns of ecosystem function­
ing, vegetation structure, plant traits, and environmental conditions. However, the question of how to 
describe the imprint of plants on ecosystem functioning based on observations has not yet been systemat­
ically investigated. One approach might be to identify and quantify functional attributes or responsiveness 
of ecosystems (often very short-term in nature) that contribute to the long-term (i.e., annual but also 
seasonal or daily) metrics commonly in use. Here we define these patterns as "ecosystem functional prop­
erties", or EFPs. Such as the ecosystem capacity of carbon assimilation or the maximum light use efficiency 
of an ecosystem. While EFPs should be directly derivable from flux measurements at the ecosystem level, 
we posit that these inherently include the influence of specific plant traits and their local heterogeneity. 
We present different options of upscaling in situ measured plant traits to the ecosystem level (ecosystem 
vegetation properties - EVPs) and provide examples of empirical analyses on plants' imprint on ecosys­
tem functioning by combining in situ measured plant traits and ecosystem flux measurements. Finally, 
we discuss how recent advances in remote sensing contribute to this framework. 

© 2015 Elsevier B.V. All rights reserved. 

The structure and functioning of terrestrial ecosystems are 
formed by environmental (e.g., climatic and edaphic) constraints, as 
well as the legacy of ecosystem development. Historical processes 
such as evolution, migration, and disturbances are encoded in the 
community structure of biota (i.e., plant or soil organism communi­
ties, their horizontal and vertical structure and temporal dynamics). 
In turn, the biotic structure shapes the biogeochemical functioning 
of ecosystems, i.e., nutrient turnover, water cycling, and carbon 
storage potential amongst others (Field et al., 1992; Friend and 

Cox 1995; Schlesinger 1997; Chapin et al., 1998). To put it in other 
words: responses of biogeochemical processes to environmental 
conditions are modulated by the local properties of organismic 
communities (Field et al., 1992). The interacting effects of organ­
ismic responses and biophysics at the ecosystem level ultimately 
shape ecosystem feedbacks to the climate system as manifested 
in the exchange of energy and greenhouse gases and cycling of 
chemical compounds (Bonan, 2008). 

Commonly used terrestrial biosphere models implement 
biogeochemical and biophysical processes according to our 
understanding derived, in large part, from plant organ level obser­
vations, and use parameters that are often based on observable 
plant traits. Plant traits are measurable features at the individual 
organ or organism level such as morphological, anatomical, phys-* Corresponding author. Tel.: +49 3641576296. 

http: //dx.doi.org/1 0.1 016/j.jag.201 5.05.009 
0303-2434/© 2015 Elsevier B.V. All rights reserved. 
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Definitions used throughout the manuscript 

Ecosystem functional property (EFP) Indicators of ecosys­
tem functional state. Quantities that characterize 
ecosystem processes and responses in an integrated 
and comparable manner (Reichstein et al. 2014). 

Ecosystem vegetation property (EVP) Indicators, character­
izing the properties of the vegetation in the context 
of an ecosystem. 

Eddy covariance (EC) A micrometeorological method to 
measure exchanges of heat, mass, and momentum 
between a surface and the overlying atmosphere 
(Baldocchi et al., 2001 ), based on the covariance 
between turbulent fluctuations of the vertical wind 
and the scalar fluctuation, of the quantity of trace 
gases of interest (Baldocchi et al., 1988; Foken and 
Wichura, 1996; Aubinet et al., 2000; Baldocchi, 
2008). 

Ecosystem flux The exchange of matter and energy between 
an ecosystem and the atmosphere per unit time 
measured with the eddy covariance technique 
(Luyssaert eta!., 2009; Reshef et al., 2011 ). 

FLUXNET A network of regional networks, which coordi­
nates regional and global analysis of observations 
from EC tower sites. (http://fluxnet.ornl.gov/). 

TRY A network of vegetation scientists, which provides 
a global archive of plant traits (http:ffwww.try-db. 
org). 

Plant functional type (PFT) Plant functional type is a term 
that groups plants according to a limited number of 
plant attributes of life form, phylogeny, or morphol­
ogy (Box, 1996). 

iological or phenological traits (Violle et al., 2007). Measurements 
of plant traits· have frequently been used for model develop­
ment and parameterization, such as leaf carboxylation capacity 
(Vcmax). maximum C02 assimilation rates (Amax). and nitrogen con­
tent per leaf area (e.g., White et a!., 2000; Kattge et a!., 2009; 
Gallet al., 2012). However, the representation of plant biodiver­
sity in common terrestrial biosphere models is very limited and 
rarely goes beyond differentiating ten to fifteen (depending on the 
model) plant functional types (PFTs ). This approach largely ignores 
variability of characteristics within individual PFTs (but see van 
Bodegom et a!., 2012; Reich et a!., 2014; Reichstein et a!., 2014). 
The increasing availability of relevant information on plant traits 
offers unprecedented opportunities for introducing more detailed 
functional diversity in global models of the terrestrial biosphere 
(Brovkin eta!., 2012; van Bodegom eta!., 2012; Wang et al., 2012; 
Pavlick et al., 2013; Verheijen et al., 2013). Functional diversity is 
defined herein as the variability within and among locations of 
both the trait mean and trait variance due to differences among 
organs, individuals, or species; or through time. Models that explic­
itly represent functional diversity will provide even more detailed 
predictions of plants' imprint on ecosystem processes (Scheiter 
et al., 2013). 

Advancing model structures should be accompanied by devel­
oping a sound independent model-benchmarking system (Luo 
et al., 2012). However, even if the next generation of models 
integrate trait diversity and their effects on biogeochemical and 
biogeophysical processes (Reu et al., 2011; Scheiter et al., 2013; 
Pavlick et al., 2013), we anticipate that the biodiversity feedbacks 
will be particularly difficult to evaluate. We therefore assume that 
independent empirical analyses on the linkage of plant traits to 
emergent ecosystem scale properties will be needed and should 

remain independent from the model assumptions. Therefore, moti­
vation for data driven, empirical analyses of plant characteristics in 
combination with ecosystem level exchanges of carbon, water, and 
energy are twofold. 

First, the identification of robust empirically derived biodiver­
sity effects on ecosystem functioning can become valuable for 
model benchmarking, and allow for testing whether the assumed 
relationships between plant traits and ecosystem functions in mod­
els are comparable to those observed (e.g., Luo et al., 2012). Second, 
it is important to identify key characteristics of plants that influ­
ence ecosystem functions, which might not have been considered 
yet. These are beneficial, both to facilitate a better understanding 
of the sensitivity of ecosystem exchanges of matter and energy to 
long-term environmental changes (including feedbacks to vegeta­
tion, soil and climate), while also being applicable to quantifying 
and understanding ecosystem services that are linked to ecosystem 
functions and processes (de Bello et al., 2010). Soil biota also has 
an important role in ecosystem processes (Neher 1999; Wall and 
Moore, 1999). However, information about soil biota is difficult to 
access via in situ measurements and hardly available via remote 
sensing (hereafter RS, but see Fisher et al., submitted), hence here 
we focus on plants. 

The topic of how plants influence ecosystem functioning and 
how to predict ecosystem functions from 'effect traits' (sensu 
Lavorel and Garnier, 2002) has been discussed for several decades 
in the literature and is sometimes considered a "holy grail" in ecol­
ogy (Grime 1979; Southwood 1988; Chapin eta!., 2000; Lavorel and 
Garnier, 2002). Conceptual studies in this direction usually empha­
size the relationships existing between plant traits and ecosystem 
processes or functions, but often are not explicit about the ecosys­
tem functions and processes, nor how they could be estimated 
from ecosystem level observations and ultimately linked with 
plant traits. Moreover, in these literatures, the ecosystem func­
tions are heavily dominated by snap-shot or annually integrated 
measurements of state variables or component processes, such as 
net primary production (NPP), leaf area index (LA!), or standing 
biomass, which are integrated over numerous component pro­
cesses (see Hooper et al., 2005). Standing biomass, as an example, 
is the result of the physiological balance of the fluxes of photosyn­
thesis and respiration, carbon allocation, organ-level growth and 
mortality, and biotic and abiotic losses, such as herbivory and storm 
breakage respectively. Trait influences on these component pro­
cesses - typically fluxes of matter and energy - may be strong, 
but may remain hidden when relating traits to only state vari­
ables. A group of plant traits might influence changes of standing 
biomass, but it is also important to understand their influence on 
the processes resulting in the standing biomass. To overcome such 
limitations, we propose to link plant traits with essential features 
of ecosystem functioning, which can be derived from observations 
of ecosystem energy and matter fluxes - the direct result of rele­
vant ecosystem processes like e.g., photosynthesis, respiration, or 
evapotranspiration. 

In this conceptual paper, we highlight opportunities - so far 
not fully explored in ecology - arising by consolidating infor­
mation on plant species characteristics (in situ and remotely 
sensed) and ecosystem fluxes at local to global scale. First, we 
introduce a conceptual framework that defines ecosystem func­
tional properties (EFPs) as variables of ecosystem functioning 
that include physiological processes and their responses to the 
environment (Section 2). Then, we introduce top-down (Sec­
tion 3.1) and bottom-up (Section 3.2 and 3.3) scaling approaches 
to match the temporal and spatial scales of observed plant 
traits and EFPs. In th~ final part, we will discuss how remotely 
sensed information can be effectively used in this context 
(Section 4). Overall, we will propose pathways to empirically 
analyze the intrinsic biotic controls of terrestrial ecosystems and 
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Fig. 1. Concept for mapping plant traits via ecosystem functional properties onto 
ecosystem fluxes, separating slow and fast changing environmental conditions. The 
concept is based on the hypothesis that plant traits adapt to long term, slowly 
changing environmental conditions, like seasonal or annual mean or extreme condi­
tions. Together with vegetation quantity(e.g., biomass or LAl) plant traits determine 
ecosystem functional properties (EFPs). Fast changing environmental conditions, 
like diurnal or seasonal variation, determine ecosystem fluxes of matter and energy 
via the EFPs. Ecosystem fluxes determine changes of vegetation quantity, and may 
feedback on long term environmental conditions. We propose that the concept can 
be generalized, replacing vegetation quantity and plant traits by organisms quantity 
and organisms traits. 

its effect on ecosystem functioning. We expect these new path­
ways to contribute to our understanding of which plant traits or 
plant trait combinations control spatiotemporal variations of func­
tions occurring at the ecosystem scale, in interaction with climate 
and environmental factors. 

2. The imprint of plants on ecosystem functioning: a 
conceptual basis for a data driven approach 

Ecosystem functional properties (hereafter EFPs) should cap­
ture process attributes or responsiveness of ecosystems (often 
very short-term in nature) that contribute to the long-term (i.e., 
annual but also seasonal or daily) metrics commonly in use. 
Reichstein et a!. (2014) defined EFPs "as quantities that charac­
terize ecosystem processes and responses in an integrated and 
comparable manner" (page 13698). Thus EFPs are both concep­
tual in nature and quantifiable from ecosystem processes, and 
are analogous to ecophysiological leaf-level characteristics or 
relate to physical and ecohydrological characteristics important 
for land surface-atmosphere interactions (Reichstein eta!., 2014). 
Following this definition, EFPs should provide relevant process 
characteristics, for instance maximum flux rate, flux rates under 
standardized environmental conditions (base rate), or the slope of 
changing rates given changes in environmental drivers (e.g., light 
response or temperature responses; sensitivities), or the fraction of 
such characteristics. EFPs can consequently be used to character­
ize variations in key processes, like photosynthesis, respiration, or 
evapotranspiration, or their relationship, like water use efficiency 
of photosynthesis (the amount of carbon gained by water tran­
spired). As they characterize specific ecosystem processes, EFPs can 
be derived from observable ecosystem fluxes (the observable com­
ponents of the processes), from the quantity (e.g., abundance) and 
characteristics (plant traits) of the organisms (the operators of the 
processes), or potentially inferred via RS at ecosystem level (Fig. 1 ). 
In general terms, EFPs can be understood as empirically derived 
equivalents at the ecosystem scale to parameters (at ecosystem 
scale) in terrestrial biosphere models. In relation to aggregated 
plant trait observations, EFPs thus enable us to examine the influ-
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Fig. 2. The number of FLUXNET sites with traits in TRY. Bottom: Number of sites 
with available flux data in the FLUXNET La Thuile database. The second bar provides 
the number of sites with information of dominant plant species available in the 
FLUXNET ancillary database. The arrow indicates that we could use plant traits at 
the sites only by knowing which species exist at these sites. The remaining numbers 
on each bar are showing the number of FLUXNET sites for which the plant trait on 
the left side is available from TRY database for at least one of the site-species. (Traits 
from Table 1 are shown here). 

ence of biotic and abiotic controls on the various components of 
the processes (Fig. 1 ). 

So far, empirical analyses of the relationships between plant 
traits and ecosystem functions have been primarily limited to 
ecosystems or regional scales (Pierce et a!., 1994; Kergoat et al., 
2008; Ollinger eta!., 2008; Cleveland eta!., 2011; Reich 2012), or to 
whatever is available from the literature (e.g., Green eta!., 2003). 
This is, in part, due to limited measures in biomes, but also because 
the relevant data (e.g., plant traits and ecosystem level fluxes) were 
not always measured simultaneously and have largely not been 
curated via central repositories. Nowadays, more data for primary 
ecosystem functions and organism traits are becoming available 
through RS data and initiatives like FLUXNET (the global network of 
ecosystem level observations of carbon, water, and energy fluxes on 
terrestrial ecosystems, Baldocchi, 2008) and TRY (a global archive 
of plant traits, Kattge et a!., 2011 ). A first intersection of the plant 
species data from FLUXNET and TRY shows that, for more than 100 
sites belonging to FLUXNET, we can gather information on a specific 
plant trait (e.g., specific leaf area, SLA) of the dominant species at the 
sites from TRY (Fig. 2). Moreover, the data reported in FLUXNET and 
TRY cover a variety of climatic conditions, as shown Fig. 3, which 
makes these empirical analyses possible at a global scale. 

Ground-based measurements of plant traits are commonly con­
ducted in ecological studies, but are usually limited in space and 
in time because of resource constraints (i.e., laborious and time 
consuming measurements). Moreover, plant traits are usually mea­
sured at the leaf or plant level, so in order for them to represent the 
vegetation of an ecosystem, they need to be upscaled to ecosys­
tem vegetation properties (hereafter referred to as EVP). Here we 
introduce potential upscaling schemes for in situ measured plant 
traits to provide the information about biotic controls correspond­
ing to EFPs (see Section 3.2). The developments in the field of RS 
over the last few decades allows us to retrieve plant traits, which 
in most cases are integrated at the ecosystem level (EVP) and in 
some cases continuous in time (Homolova eta!., 2013). This is par­
ticularly important where the temporal variability of plant traits 
is relevant. In addition EFPs can as well be retrieved from RS (see 
Section 4). 

3. Matching scales 

3.1. Top-down 

One of the challenges of the proposed methodology is that 
ecosystem fluxes measured with eddy covariance techniques are 
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Fig. 3. The distribution of (a) FLUXNET sites, (b) measurement locations from TRY 
(of various plant traits) in climate space spanned by mean annual temperature and 
mean annual precipitation. Kernel density estimation was used to show the density 
of land surface pixels at O.SO x 0.5' resolution for the two variables. 

not directly comparable with plant traits because they do not vary 
at the same time scale. To grasp the relationship between plant 
traits, fluxes, environmental drivers (climate) and soil pools we 
need to carefully consider the time-scale. 

While many plant traits (e.g., leaf mass per leaf area (LMA), gram 
leaf nitrogen to 100 gram leaf mass (%N)) typically vary mostly at 
weekly, seasonal, or longer time scales (Ma et al., 201 0), ecosys­
tem fluxes measure short-term responses ( <1 h) but respond to 
meteorological and environmental conditions at time scales rang­
ing from minutes to seasonal, interannual, and longer and can be 
integrated at those time scales (Richardson et al., 2007; Stoy et al., 
2009). Meteorological drivers such as temperature, precipitation, 
solar radiation, and snow-cover explain a substantial part of the 
temporal (in particular daily to seasonal) and spatial variability 
of observed fluxes (e.g., Dunn et al., 2007; Urbanski et al., 2007). 
On longer time scales (seasonal, annual) fluxes might lag behind 
the meteorological factors (Stoy et al., 2009; see also Ogle et al., 
2015 for memory effect in ecosystem processes) and for time scales 
longer than two weeks, fluxes of net ecosystem exchange (NEE) 
and gross primary production (GPP) are relatively less variable 
than the meteorological factors (Stoy et al., 2009). This has been 
attributed to the fact that fluxes are processed by plants, with plant 
traits changing on longer time scales (e.g., Ordonez et al., 2009; 
van Ommen Kloeke eta!., 2012; Verheijen eta!., 2013).At seasonal 
and inter-annual scales, it therefore becomes more complicated to 
attribute multi-scale variability in ecosystem-atmosphere fluxes 
to hydrometeorological conditions only (Mahecha et al., 2007, 
2010; Stoy et a!., 2009; Reich, 2010). Thus, in addition to the 
dominant control of plants and pools on spatial variability of 
fluxes (e.g., between flux tower variability, e.g., Reichstein eta!., 
2003), they can possibly also influence the temporal variability of 
fluxes. 

While fluxes of physiological properties such as NEE, GPP, 
ecosystem respiration, or evapotranspiration are measured with 
eddy covariance techniques and are readily available in half-hourly 
time scales, we can use them to derive EFPs that vary over longer 
time scales (Reichstein et a!., 2014), comparable to plant traits. 
Proposed EFPs in Table 1 can be considered as an integrator of 
ecosystem functioning less variable in time than the fluxes them­
selves. By using the concept of EFPs, it is possible to eliminate 

the high temporal flux variations related to the short term cli­
mate variability (e.g., temperature and global radiation) and to 
standardize for environmental conditions. This approach to con­
trol for short-term variation of environmental conditions would be 
in analogy to suggestions for standardized trait measurements (e.g., 
Grime 1988; Cornelissen et al., 2003a; Perez-Harguindeguy et al., 
2013). 

An example for an EFP is optimum light use efficiency (LUE) 
derived from GPP and normalized by the fraction of absorbed pho­
tosynthetic active radiation (fpAR) (Kergoat et al., 2008). LUE is 
correlated to mean annual temperature at FLUXNET sites, but the 
correlation fades when this EFP is compared with the tempera­
ture corresponding to the time when the GPP flux was retained 
to compute LUE (Kergoat et al., 2008), because physiological char­
acteristics of the EFP (here LUE) cancel short-term environmental 
variability. This kind of behavior is expected for other EFPs as well 
(Table 1 ). Therefore, EFPs provide empirical estimates oflong-term 
changes of ecosystem functional states, and allow the link with 
plant traits and the comparison across sites. 

Another example for an EFP is the photosynthetic capacity of 
an ecosystem, which is the potential maximum photosynthesis of 
the ecosystem over a given period. We suggest the use of GPPl 000, 
which is the GPP or assimilated C02 of the ecosystem at 1000 W/m2 

of global incoming radiation (Rg) (e.g., Ruimy et al., 1995; Falge 
et al., 2001 ). GPP1 000 can be derived by fitting non-rectangular 
hyperbolic light response curves (e.g., Gilmanov eta!., 2003) using 
half-hourly GPP values and Rg data. Quantified on an annual basis 
(i.e., 90th percentile of the GPP1000 - to exclude outliers), this 
EFP characterizes the photosynthetic capacity of an ecosystem 
(comparable to Amax at leaf scale), which typically occurs at the 
peak of the growing season, with favorable temperatures and the 
absence of severe water stress, while it ignores the diurnal and 
seasonal variability of the fluxes related to irradiance and other 
environmental conditions. It enables analyses of the inter-annual 
variability of the photosynthetic capacity and facilitates compar­
isons across sites. GPP1000 can as well be characterized at shorter 
time scales, e.g., seasonally, which would then allow monitoring 
seasonal variation of the ecosystem functional state. However, the 
seasonal variation of environmental properties- temperatures may 
be unfavorable, water may be limiting- complicates these analy­
ses. 

A third example is water use efficiency (WUE, the ratio between 
GPP and evapotranspiration) that can be considered as an EFP that 
links carbon and water cycling. However, WUE instantaneously 
declines with water vapor pressure deficit(VPD) in the atmosphere; 
therefore inherent or intrinsic WUE- standardized for VPD- would 
be a more appropriate EFP (e.g., Beer et a!., 2009). But still the 
exact form of the influence of VPD remains unclear, because VPD 
influences leaf parameters such as stomatal conductance (Mott and 
Parkhurst, 1991; Buckley, 2005; Shope eta!., 2008) and photosyn­
thetic carbon uptake (Shirke and Pathre, 2004), differently. 

We have provided examples of how EFPs can be derived 
from observed ecosystem fluxes to provide empirical estimates 
of ecosystem functional states. EFPs facilitate monitoring of sea­
sonal to long-term changes of ecosystem functional states and 
allow comparisons across sites. EFPs provide the opportunity to 
link ecosystem functional states to information of the state of the 
biota, e.g., via plant traits. However, we also point out that one 
has to critically examine whether an EFP is indeed independent of 
short-term environmental fluctuations. In Table 1 we provide fur­
ther examples of EFPs and from which data streams they can be 
derived. 

In the following section we introduce in situ plant trait mea­
surements, and describe how they can be used to derive vegetation 
properties at the ecosystem level (EVPs) and be directly comparable 
to EFPs. 



T. Musavi et at. I International journal of Applied Earth Observation and Geoinformation 43 (2015) 119-131 123 

Table 1 
List of possible ecosystem functional properties (EFPs) that can be derived from eddy covariance fluxes, with related plant traits and stand characteristics that can be 
potentially used for deriving the EVPs. 

Processes 

Photosynthesis 

Respiration 

Evapotranspiration 

Biophysical properties 

Ecosystem functional properties (EFPs) 

Ecosystem photosynthetic capacity 
(GPP1000max) 

Potential light use efficiency (LUEmaxl 

Nitrogen use efficiency (NUE) 

Normalized GPP' 

Carbon use efficiency (CUE) 

Basal ecosystem respiration (Rb): 
1) Rb at day of Max GPP1 000 
2) Median of seasonal Rb 
3) Maximum seasonal Rb 
Sensitivity of Rb to GPP (Rb/GPP) 

Maximum ecosystem evapotranspiration 
(ETmax) 

Inherent water use efficiency 
(WUE;n) 

Intrinsic water use efficiency 
(WUE'i) 

Energy use efficency 

Minimum seasonal Albedo 

3.2. Upscaling of in situ measured traits 

Description 

Maximum ecosystem photosynthesis (e.g., 
GPP) standardized for light saturation, e.g., at 
light intensity of 1000 W/m2 (see Paige et al., 
2001; Gilmanov et al., 2003). 
Maximum ratio between GPP and absorbed 
photosynthetic active radiation (APAR) at 
growing season (see Monteith, 1972; Kergoat 
et al., 2008). 
Maximum GPP1000 divided by leaf nitrogen 
content 

Gpp' GPP fPARc cos( o~o K t t 1 = max 1'PAlf cos Bs ergoa e a , 
(2008) 
1) Biomass production divided by GPP 
2) NPP to GPP ratio (DeLucia et al., 2007). 
3) 1-Rb/GPP (Mahecha et al., 2010). 
Maximum or median of ecosystem respiration 
(Reco) at a reference temperature (15C) and at 
the time period of no water limitations (Lloyd 
and Taylor, 1994; Reichstein and Beer, 2008). 
Slope of the relationship between Rb and GPP 
Mahecha et al. (2010) 

Maximum of the seasonal ET measured 

Slope of the relationship between GPP*VPD 
and ET Beer et al. (2009) 

Seasonal GPP divided by surface conductance 
(Gs) 
GPP/Gs Beer et al. (2009) 

GPP10oo/(LE +H) at the peak of the growing 
season or 90th percentile GPP/(LE +H) at the 
peak of the growing season See also Reichstein 
et al. (2014) 
Albedo at the peak of the growing season 
Cescatti et al. (2012) 

Plant traits/stand characteristics 

Leaf photosynthetic capacity (Am ax; Vcmaxl: 
leaf nitrogen content per leaf area or dry mass 
(N;ear): leaf mass per area (LMA); N:P ratios 
LAI; Species abundance 
Amax: VCmax: N;ear: LMA; plant height; leaf size; 
N:P ratios 
LAI; Species abundance; Canopy structure 

Amax: VCmax: N;eaf• LMA; Nplant: wood density; 
N:P ratios 
LA!; Biomass; Species abundance 
Amax: VCmax: Nlear: LMA; N:P ratios 
LA!; Biomass; Species abundance 

Amax: VCmax: N;eaf, LMA; wood density 
LA!; Biomass; Species abundance 

N;ear: LMA; LDMC; RDMC; wood density 

LA!; Biomass (above and belowground) 
N;ear: LMA; LDMC; RDMC; wood density 
LA!; Biomass (above and belowground) 

Maximum stomatal conductance (gsmaxl: 
sapwood area; wood density 
LA!; Tree diameter at breast height (DBH) 
gsmax: N;ear: LMA; sapwood area; Amax/gs, 
d13C 
LAI 
gsmax: N;ear: LMA; sapwood area; Amax/gs: 
d13C 
LA! 

Amax: VCmax: N;ear: LMA; Nplant: wood density; 
gsmax 
LAI; Canopy structure; Biomass 

Leaf morphology (shape and size); N;ear 
LAI 

Plant traits are traditionally measured in situ and more recently 
also sensed remotely. In situ measurements of plant traits are 
performed on plant or plant organ level and need to be upscaled 
to the ecosystem level (EVPs) to correspond to EFPs (Fig. 4). Thus 
far, upscaling of plant traits to canopy or ecosystem level has been 
done mainly by weighting traits by abundance of species, allome­
try, or biomass (e.g., Garnier eta!., 2004). These approaches make 
sense if the effects of the traits of individual plants are additive, 
like using the number of individuals to upscale individual biomass 
to community·biomass (Violle eta!., 2007). This strategy is also 
useful for upscaling plant traits such as traits based on concentra­
tion e.g., grams of nitrogen or phosphorous per leaf mass. But the 
functionality of traits does not always scale with the quantity (e.g., 
abundance) of organism. For example, while photosynthesis scales 
with the nitrogen content of leaves (Givnish, 1986), it also depends 
on the position of the leaves (or organ) in the canopy, which deter­
mines the ability of the leaf to capture light. Plant productivity per 
unit nutrient in the whole biomass is another example for the rel­
evance of vegetation structure: it decreases with increasing total 
biomass due to shading within the canopy and allocation of nitro­
gen to photosynthetically inactive tissues (Kerkhoff and Enquist, 
2006). 

External drivers (climate) 
diurnal variation 

An alternative upscaling approach accounting for light absorp­
tion along the canopy employs involving LA! and plant height: 

Ecosystem at the tower 
site 
Variable at seasonal I 
annual time scale 

Fig. 4. Top-down and bottom up approaches to determine flux-based ecosystem 
functional properties (EFP) and trait-based ecosystem vegetation properties (EVPs). 
To link plant traits measured at the level of individual plants to EFPs, one first needs 
to upscale plant traits to ecosystem level. 

assuming leaves at th~ top of the canopy contribute most to 
C02 assimilation as they receive most of the radiation (Field and 
Mooney, 1986). Therefore, a canopy strata-weighted measure is 
needed, as the comparatively larger .contribution of species located 
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towards the top of a canopy for carbon fixation or GPP needs to 
be accounted for. To include this strata-weighting when upscal­
ing from plant to EVP, we propose to first weigh each species by 
its respective abundance plus the amount of radiation it receives 
using its relative height, thus discriminating for over/understory 
species. We use the Lambert-Beer law of extinction and implement 
the relative height (from 0 to 1) of the speCies: 

Ws =As X ek(1-Hs)for s = 1' 2, 3, ... , n (1) 

where W5 is the relative contribution (weight) of each species to the 
ecosystem trait, As is the abundance of the species, Hs is the relative 
height of the species, and k is the light extinction coefficient (Jones, 
2014). 

Given a number n of species in the ecosystem the value of the 
upscaled trait to ecosystem level (EVP) is computed as follow: 

EVP =LA! x I:~=1 Traits x Ws (2) 

where LA! corresponds to the LA! of the ecosystem (m2 leaf/m2 

ground) and Traits is the specific trait measured for a given species 
measured on leaf area basis. The resulting EVP will be at ecosystem 
scale and the unit will be per ground area. For example, by using 
Eqs. (1) and (2) it is possible to scale-up the nitrogen (N) content per 
leaf area (g/m2 ) to theN concentration per ground area, the latter 
being the EVP, which can then be linked to the corresponding EFPs 
such as GPP1000 or LUE. 

The advantage of this method of weighting traits by vertical 
structure rather by abundance is that it considers vegetation struc­
ture (i.e., plant height and LA!) and therefore incorporates the 
differences of plant species contributions to processes like ecosys­
tem photosynthesis. Compared to abundance weighted means, 
a disadvantage of this more explicit approach is the need for 
additional data and that the additional parameters add more uncer­
tainty. 

Plant traits and the amount of vegetation, e.g., LA! or plant 
biomass, bear complementary information to explain ecosystem 
functioning (Fig. 3 ).As such, RS data of vegetation have the potential 
to benefit the framework. For example Reich (2012) showed that 
aboveground net primary production was well explained by LA! 
(which can increasingly be retrieved from RS, although it was not 
in that study) together with canopy N concentration (N%) derived 
from in situ measured leaf nitrogen concentration and species 
abundance. This approach preserves the structural and physio­
logical differences of individual organisms or species within the 
ecosystem, and facilitates an analysis of the biodiversity imprint 
on ecosystem function. 

While there is considerable intraspecific variation of plant traits, 
across large geographic scales, most of the trait variations are 
observed between species (Kattge et al., 2011; Violle et al., 2012; 
Albert, 2015). Therefore one outstanding question is whether data 
available from large integrated databases such as TRY can be used 
to characterize the trait of plant species occurring at specific sites 
(e.g., FLUXNET sites). To address this question, here we compare 
leaf nitrogen content per dry mass (N%) reported in the FLUXNET 
ancillary database for each site with N% derived from the TRY 
database (Fig. 5, Supplementary 1 ). The N% from the two different 
sources is highly correlated (r= 0.72) and follows a 1:1 relationship. 
This result is in agreement with growing evidence from indepen­
dent results of similar studies (e.g., Cordlandwehr et al., 2013; 
Kazakou et al., 2014). This is encouraging, as it makes it possible 
to use general plant trait databases for a first inspection on trait 
influences on EFPs. 

We furthermore tested if the correlation between an EFP derived 
from ecosystem fluxes and an EVP obtained by using information 
from TRY is similar to the one derived from traits measured at 
the sites. To this end, we provide an example correlating opti­
mum daily LUE and canopy normalized GPP (r:eported as gross 
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Fig. 5. Comparison of leaf nitrogen content per leaf dry mass (N%) reported in the 
FLUXNET ancillary database (N%- FLUXNETsites) and up-scaled using species mean 
trait values from the TRY database and species abundance from the FLUXNET ancil­
lary database (N%- TRY). In case of more than one value reported in the FLUXNET 
ancillary database, we used the average N%. N% - TRY is based on species averaged 
values from the TRY database that were used for species at the sites. This values are 
then weighted by the abundance of the species (Table 1 in Supplementary). Slope 
and intercept were estimated by a reduced major axis (RMA) regression (R =0.72). 

ecosystem exchange, GEE in Kergoat et al., 2008, see Table 1) 
with canopy N%. LUE and canopy normalized GPP are derived 
from eddy covariance fluxes from FLUXNET sites, including differ­
ent PFTs. First we collected species composition and abundance 
at these sites from FLUXNET ancillary database and compared it 
with information from the literature (Supplementary 1 ). Then, for 
every species at the site, species-averaged N% was derived from 
TRY. Then canopy N% was estimated by abundance weighted mean 
of N% at each site. Canopy N% as the EVPs of the sites were then 
compared to the two EFPs (LUE and canopy normalized GPP). The 
results reported in Fig. 6 for LUE and canopy normalized GPP are 
comparable to the ones reported in Kergoat et al. (2008), indi­
cating that is possible to use the species-averaged information 
reported in TRY to predict EFPs derived from specific sites. The 
results of Fig. 6 are even stronger considering that no filters based 
on climate or environmental conditions were applied to derive 
the average N% for each species. From Figs. 5 and 6, we con­
clude that strong patterns of plants' imprint on ecosystem function 
are likely similarly represented when using trait data from global 
databases. 

3.3. Spatial extrapolation of in situ measured traits 

Upscaling plant traits to continental or global scale will pro­
vide the possibility to study them directly in relation to remote 
sensed EFPs (see Section 4) available on global scales and EFPs 
derived from fluxes that are upscaled to global maps (Jung et al., 
2011 ). One option to upscale plant traits measured in situ to global 
scales is to link the trait data with species distribution maps. One 
application of this approach produced trait maps across North and 
South America (Swen~on et al., 2012). However, this technique 
faces two major issues: the heavily reliance on high quality species 
distribution data, which is not available for most of the world, 
and the issues related to species .distribution models (SDM). For 
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Fig. 6. Optimum daily light-use-efficiency (LUE, mol/mol) and canopy normalized photosynthesis (GPP', ~J-mols-1 m-2 ) versus leaf nitrogen content per dry mass (N, %). 
LUE and GPP' are reported by Kergoat et al. (2008) for a range of eddy covariance sites with different dominant plant functional types (see labels). Leaf nitrogen contrnt 
(N) is based on abundance weighted species mean trait values from the TRY database and species abundance from the FLUXNET ancillary database. The variance explained 
by N% are R2 =0.41 (n =28, p< 0.001, intercept= 0.005 ±0.003, slope=0.01 ±0.002) and R2 =0.38 (n =32, p<0.001, intercept= 10.3 ±3.7, slope= 11.1 ±2.5) for LUE and GPP', 
respectively. 

example, Henderson et al. (2014) tested the effect of using single 
species or multivariate modeling approaches on species distribu­
tions and found that the multivariate approach outperformed the 
single species approach by a large margin. The second issue is the 
assumption that species distributions are, on the one hand, in equi­
librium with the environment of the respective organisms and that 
the traits, which are linked with species distribution data, on the 
other hand, reflect the whole of the species' trait spectrum. Trait 
values are known to be highly variable depending on the envi­
ronmental conditions (Niinemets et al., 2015) with e.g., "tree-like" 
plant species reaching a much higher maximal height in warm, 
moist climates, than in cold and dry climates where they get a 
more "shrub-like" appearance with associated traits. However, as 
we have shown above, across PITs and across large environmental 
gradients, the impact of intra-specific trait variability seems to be 
dominated by species turnover (Fig. 5, Cordlandwehr et al., 2013; 
Kazakou et al., 2014). 

Another approach to avoid the use of species distribution data 
is to take advantage of the correlation between traits and environ­
mental conditions and take the direct way. This is illustrated by van 
Bodegom et al. (2014) who produced global maps of some key traits 
using trait-environment relationships derived from linking climate 
and soil variables with community weighted mean trait values. 

If a sufficient amount of in situ measured trait data is avail­
able, a third approach would be using interpolation techniques, for 
example Kriging or Gaussian process regression - an interpolation 
technique where Gaussian processes are taking into account prior 
covariance (e.g., trait-environment relationships) to model inter­
polated values. So far, this technique has been mainly applied in 
geosciences but rarely within macroecology (but see Hernandez­
Stefanoni and Ponce-Hernandez, 2006; Henderson et al., 2014 for 
some examples). 

4. Remote sensing of plant traits and EFPs 

As discussed in Section 3 RS observations provide information 
about vegetation structural components, like LA! or vegetation 
biomass. In addition, RS observations in the visible to near­
infrared region of the electromagnetic spectrum have great utility 
to gather information about plant traits atthe ecosystem level- EVP 

(Homolova et al., 2013 ), plant physiological conditions, and in some 
cases direct information on functional aspects of the ecosystem 
(Hilker et al., 2008), i.e., on EFPs. The possibilities offered by new 
remote sensing techniques allowed several authors to develop new 
concept of optically distinguishable PITs ("optical type" according 
to Ustin and Gam on (201 0)) and to directly estimate EVPs beyond 
the concept of PITs. Moreover, remote sensing could be a way to 
address the scaling approach to derive EVPs or better integrate 
in situ plant traits measurements (Asner et al., 2015). This would 
allow a more direct link between EFPs and EVP derived from remote 
sensing information (e.g., Ustin and Gamon, 2010). This informa­
tion can be obtained at different spatial and temporal scales by 
using satellite products, airborne platforms withhyperspectral sen­
sors, or by measuring them in the proximity of the surface (usually 
referred to as near-surface RS or proximal sensing) (Ustin et al., 
2004; Gamon et al., 2006; Balzarolo et al., 2011). To explore the 
possibility of linking traits scaled at the ecosystem level to eddy 
covariance flux data and eventually EFPs, near surface RS and air­
borne hyperspectral data are most suited. In the Table 2 we list 
some literature examples of how plant traits, vegetation structural 
properties, and EFPs relevant for the proposed framework have 
been successfully retrieved. 

Retrieval of plant traits from RS is well reported in the litera­
ture (for a review see Homolova et al., 2013). Yet obtaining plant 
traits time series or maps usable to predict EFPs from RS data is 
not straightforward. Plant traits and canopy properties that can be 
derived from RS data are mainly those that describe a relationship 
and interaction between absorbed/reflected light and vegetation 
structure/function (Roelofsen et a!., 2014), i.e., structural traits 
affecting light scattering (e.g., Ustin, 2013 ). For instance, variations 
in foliar photosynthetic pigments affect mainly the spectrum in the 
visible region ( 400-700 nm), variations in leaf structure affect the 
near infrared region (700-1300 nm), while variations in water con­
tent and protein content (as well as other nutrients such asP) affect 
the shortwave infrared region (1300-2500 nm) (e.g., Mutangao and 
Kumar, 2007; Ramoelo eta!., 2013 ). Therefore, the typology of plant 
traits and EVPs that can be retrieved via RS depends primarily on 
the spectral characteristics and resolution of the sensors. 

One of the main criticisms in the use of RS information for 
the proposed approach is that scaling RS information from leaf 
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Table2 
List of plant traits, canopy structure, and EFPs that can be retrieved from RS at leaf and canopy ecosystem scale. Methods of estimation and associated references are also 
reported. 

Scale 

Leaf Canopy/Ecosystem 

Method Reference Method Reference 

Plant traits SLAorLMA Inversion RTM (Colombo et al., 2008; 
Asner et al., 2011) 

Inversion RTM (Asner et al., 2011) 

VCmax Inversion RTM (Hobourg et al., 2013) Combination RTM and 
SIF data; 

(Zhang et al., 2014) 

Empirical regressions (Martin et al., 2008; 
Ollinger et al., 2008) 

Inversion RTM; 
Empirical regressions 

(Hobourg eta!., 2013) 
(Martinet al., 2008; 
Ollinger et al., 2008; 
Fava et al., 2009) 
(e.g., zarco-Tejada Inversion RTM and (e.g., Zarco-Tejada Inversion RTM and 

relationship with Chi a 
and b 

relationship with Chi a et al., 2004) et al., 2004) 

Vegetation structural 
properties 

EFP 

Pigment Content 
(e.g., Chlorophyll a and b) 

Gsmax 

Leaf dry matter (LDM) 

LA! 

Canopy Height 
Biomass 

ReCOrref 

LUE 

Albedo 

and b 
Inversion Radiative 
Transfer Model 
Empirical models 

Empirical methods 

to ecosystem level and vice versa is still challenging (Malenovsky 
eta!., 2013 ). At the leaf level, a variety of RS techniques and sensors 
has been largely applied to monitor key plant traits such as leaf 
chlorophyll a and b content (Gitelson et al., 2005; Dash and Curran, 
2007; Houborg and Boegh, 2008), relative extractable water con­
tent in leaves (Colombo eta!., 2008) and nutrient concentrations, 
in particular foliar nitrogen content (e.g., Zarco-Tejada eta!., 2004). 
But at the ecosystem level, there are several confounding factors in 
addition to uncertainties related to the sensors used (e.g., spectral 
resolution). Several confounding factors that influence the upscaled 
results of the leaf level reflectance include: contamination of the 
signal by aerosols and clouds (in particular for airborne and satel­
lite data), and the canopy structure and soil which affects accuracy 
of the retrieval of traits (e.g., le Maire eta!., 2008; Knyazikhin et al., 
2012). Thus, a key challenge is the separation of the leaf contribu­
tion associated with changes in plant traits (or a correlated variable) 
from those by canopy structure (Houborg eta!. 2013). The main 
techniques currently used to upscale and downscale RS information 
from the leaf to the ecosystem level are physically based radia­
tive transfer models, spectral mixing and unmixing techniques, and 
data fusion (Malenovsky et al., 2007). 

Radiative transfer models based on coupled leaf optics and 
canopy reflectance models are often used in inverse mode to 
estimate plant traits and canopy biochemistry (e.g., pigments, 
foliar N content) at ecosystem level from the reflectance observed 
with spectrometers or airborne/satellite platforms (Baret and Buis, 
2008; jacquemoud eta!., 2009; Knyazikhin eta!., 2012; Ustin, 2013 ). 
One typical example is the estimation of chlorophyll a and b, done 

(Houborg and Boegh, 
2008) 
(Gitelson, 2011) 

(Kokaly et al., 2009) 

Inversion radiative 
transfer model 
Empirical models 
Empirical models and 
infrared thermography 
Empirical methods 

Empirical Models 

Inversion RTM 

LiDAR 
LiDAR and RADAR 

Empirical modeling 
(optical remote sensing 
and land surface 
temperature) 
Hyperspectral remote 
sensing 
SIF 

RTM 

(Hobourg and Boegh, 
2008) 
(Hunt et al., 2013) 
Uones eta!., 2002) 

(Kokaly et al., 2009) 

(Wardley and Curran, 
1984; Zhang et al., 
2014) 
(Meroni et al., 2004; 
Pinty et al., 2011) 
(Kaartinen eta!., 2012) 
(Tsui et al., 2013) 

Uagermeyr et al., 2014) 

(Hilker et al., 2008; 
Garbulsky et al., 2014) 
(Porcar-Castel et al., 
2014) 
(Roman et al., 2009; 
Cescatti et al., 2012) 

by inverting leaf optical properties model (e.g., jacquemoud and 
Baret, 1990) coupled with canopy directional reflectance models 
while accounting for canopy structure (e.g. the Scattering by Arbi­
trary Inclined Leaves model, SAILH). Despite their potential, the 
estimation of traits from radiative transfer models is not trivial, 
as it requires a heavy parameterization of the canopy structure 
characteristics. Moreover, the inverse problem is often ill-posed 
or prone to equifinality (e.g., Combal eta!. 2003), hampering the 
correct estimation of the parameters (e.g., plant traits). 

Empirical methods are also often used instead of radiative 
transfer models. These methods rely on the parameterization of a 
regression model between in situ plant traits observations and (1) 
reflectance in a portion of the electromagnetic spectrum sensitive 
to variations of the targeted trait, or (2) an arithmetic combination 
of different portions of the spectrum (i.e., vegetation indices) (e.g., 
Colombo et al., 2008; Chen et al., 2010). Empirical models can be 
built directly for canopy scale, or at the leaflevel and upscaled to the 
canopy level. However, these methods are quite often site-specific 
and sampling condition dependent, sensor-specific (in particular 
dependent on the spectral resolution), might change in space and 
time, and the retrieval ofleaf canopy traits is often hampered by the 
difficulty in decoupling the contributions of the targeted trait and 
LA! (e.g., Gobron et al. 1997; Colombo et al., 2008). Moreover, empir­
ical methods have demonstrated to have less predictive power in 
many cases compared to radiative transfer and physically based 
models (Malenovsl<yet al., 2013). 

Many plant traits have been successfully estimated using RS 
data, such as canopy and leaf N%, and chlorophyll a and b content. 
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Yet the estimation of some relevant key traits is still problematic. 
For instance, White et al. (2000) emphasize that leaf mass per leaf 
area (LMA, the inverse of SLA) is one of the key parameters to 
accurately simulate the temporal variability of GPP and NPP with 
terrestrial biosphere models. However, the estimation ofLMA from 
RS is far from precise. Homolova et al. (2013) reviewed the litera­
ture and reported an average relative RMSEof 45.0% (1sd 30.0%) for 
theLMA retrieval, regardless of the method used for the estimation. 
One of the main problems is that LMA estimations are sensitive to 
variations in the portion of the spectrum that is also affected by 
water absorption which can act as a confounding factor (e.g., Asner 
et al., 2011 ). 

RS applications to estimate EFPs directly have not yet been fully 
explored. Albedo is one of the key EFPs (Table 1 ), and its variabil­
ity in time and space can be globally retrieved through the use 
of near-surface and RS products. Nevertheless, current approaches 
for measuring in situ albedo are not adequate to describe mixed 
or highly heterogeneous landscapes such as mixed forests, open 
shrublands, savannas, and croplands (Cescatti et a!., 2012). Also 
EFPs related to photosynthesis (e.g., LUE, Table 1) might be inferred 
by RS measurements such as sun-induced chlorophyll fluorescence 
(SIF, Porcar-Castell et a!., 2014) and photochemical reflectance 
index (PRI) (Gamon eta!., 1992), which have proven to be valu­
able methods for the direct assessment of plant photosynthesis, 
from the ecosystem scale (Meroni et al., 2009; Damm et al., 2010) 
to regional and global scale (e.g., Guanter et al., 2014). These mea­
surements can in principle be used to directly estimate ecosystem 
LUE (Garbulsky eta!., 2014), ecosystem maximum carboxylation 
rate (Vcmax) via empirical relationships (Houborg et al., 2013), or 
by inverting radiative transfer models simulating SIF, such as Soil 
Canopy Observation Photosynthesis Energy balance model- SCOPE 
(e.g., van der To! et al. 2009; Zhang et al., 2014). Nevertheless, the 
estimation of these EFPs from time series of SIF or PRI is not a 
trivial task given the series of confounding factors that affect the 
signal at canopy and ecosystem scale, in particular the algorithm 
retrieval for SIF (e.g., Meroni et al., 2009 ), variation of LA! and direc­
tional effects ( e·.g., Garbulsky et al., 2014 ), and also the mechanistic 
understanding of the link between SIF and photosynthesis at the 
seasonal scale (Porcar-Castell et al., 2014). Still, it seems promis­
ing to infer direct information on parameters related to EFPs using 
RS. 

5. Conclusions 

We propose a pathway to empirically analyze the intrinsic biotic 
controls of terrestrial ecosystem functioning based on the concep­
tualization of ecosystem functional properties (EFPs) as indicators 
of ecosystem functional state. Since the variability of EFPs can 
only partly be explained by environmental drivers, we expect that 
biotic controls, represented by plant abundance and traits, mea­
sured in situ or via RS (ecosystem vegetation properties, EVPs) 
will explain an additional important component of the variation in 
ecosystem functioning. We provide examples how EFPs and biotic 
correspondents (here EVPs) can be derived from ecosystem fluxes, 
RS, and plant traits considering information on canopy structure. 
However, further work is necessary to test how to best derive EFPs, 
link these to EVPs, and assess the uncertainties associated to the dif­
ferent methods. We anticipate our framework will encourage the 
combination of ecosystem flux studies with EFPs, RS, and in situ 
observed plant traits (as EVPs), with the final goal to increase our 
understanding of how environmental drivers shape ecosystems 
and vice versa. The outcome of such empirical studies will com­
plement complex predictive terrestrial biosphere models and help 
to better predict long term trajectories of ecosystem functioning 
and ecosystem services under climate change. 
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