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ABSTRACT

Satellite rainfall products (SRPs) are becoming more accurate with ever increasing spatial and
temporal resolution. This evolution can be beneficial for hydrological applications, providing new
sources of information and allowing to drive models in ungauged areas. Despite the large availability of
rainfall satellite data, their use in rainfall-runoff modelling is still very scarce, most likely due to
measurement issues (bias, accuracy) and the hydrological community acceptability of satellite
products.

In this study, the real-time version (3B42-RT) of Tropical Rainfall Measurement Mission Multi-
satellite Precipitation Analysis, TMPA, and a new SRP based on the application of SM2RAIN

algorithm (Brocca et al., 2014) to the ASCAT (Advanced SCATterometer) soil moisture product,

SM2Rsc, are used to drive a lumped hydrologic model over four basins in Italy during the 4-year
period 2010-2013.

The need of the recalibration of model parameter values for each SRP is highlighted, being an
important precondition for their suitable use in flood modelling. Results shows that SRPs provided, in
most of the cases, performance scores only slightly lower than those obtained by using observed data
with a reduction of Nash-Sutcliffe efficiency (NS) less than 30% when using SM2Ras¢ product while
TMPA is characterized by a significant deterioration during the validation period 2012-2013.
Moreover, the integration between observed and satellite rainfall data is investigated as well.
Interestingly, the simple integration procedure here applied allows obtaining more accurate rainfall
input datasets with respect to the use of ground observations only, for 3 out 4 basins. Indeed, discharge
simulations improve when ground rainfall observations and SM2Rxgc product are integrated, with an

increase of NS between 2 and 42% for the 3 basins in Central and Northern Italy. Overall, the study



=
NP ORg © o0 Uy W N =
N ~ (O8]

I
U1 R W
=)

17

=
~J

=
K{e
(0]

N
(@)

229
22

2
520
25
281
27
289
29
30
383
32

334
34

3
335
37

386

39
4
127
42
438
44

439

40

47
440
49
51
51
52
542
54
5%3
56
57
5t
59
6a@s
61
62
63
64
65

highlights the feasibility of using SRPs in hydrological applications over the Mediterranean region with
benefits in discharge simulations also in well gauged areas.

KEYWORDS: Floods, rainfall, soil moisture, remote sensing, hydrological modelling.

1. INTRODUCTION
Floods are one of the most common and dangerous natural hazards, causing every year thousands

of casualties and damage worldwide (Wake, 2013; Jongman et al., 2014). The main tool for assessing

flood risk and reducing damages is represented by hydrologic early warning systems that allow to
forecast flood events by using real time data obtained through ground monitoring networks (e.g.,

raingauges and radars, Artan et al., 2007). However, the use of such data, mainly rainfall, is affected by

many issues: 1) the limited spatial representativeness of local measurements (Kidd et al., 2012), 2) the

network density (Rudolf and Schneider, 2005) and 3) reflectivity issues related to meteorological

radars. A way to overcome these issues may be the use of satellite-based rainfall products (SRPs) that
nowadays are available on a global scale at ever increasing spatial/temporal resolution and accuracy.

For remote areas, SRPs are the only source of information (Kidd and Levizzani, 2011). Despite the

large availability of SRPs: e.g., the Tropical Rainfall Measurement Mission (TRMM) Multi-satellite

Precipitation Analysis (TMPA) (Huffman et al., 2007); the Satellite Application Facility on Support to

Operational Hydrology and Water Management (H-SAF, http://hsaf.meteoam.it, Mugnai et al., 2013);

and the recent Global Precipitation Measurement (GPM) mission (http://pmm.nasa.gov/GPM, Hou et

al., 2013); remotely sensed rainfall data are scarcely used in hydrological modelling. Reasons may be
related to: 1) the inaccurate estimation of light rainfall that causes a general underestimation of the total
precipitation amounts, 2) the spatial/temporal resolution, 3) the timeliness, which is often insufficient

for operational purposes (Serrat-Capdevilla et al., 2013), and 4) the hydrological community

acceptability of satellite products. Indeed, in the scientific literature, only a small number of studies
2
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were carried out, mainly concerning the hydrological validation of SRPs trying to outline some
guidelines for using satellite data as input for hydrological modelling. By way of example, Guetter et
al. (1996) simulated stream flow over three basins in America. They forced a rainfall-runoff-routing
model by using a 10-year synthetic satellite rainfall dataset and carried out three different runs: 1) the
model was calibrated and validated with observed rainfall data; 2) the model was calibrated with
observed rainfall data and then validated by using the synthetic satellite data; 3) the model was
calibrated and validated with satellite data. They found an underestimation of the mean-areal
precipitation and, hence, biased stream flow simulations when the model was calibrated with observed
data and forced with the synthetic satellite dataset. They also found an increment of the errors as the

basin area decreases. Artan et al. (2007) used the National Oceanic and Atmospheric Administration

(NOAA) Climate Prediction Center (CPC) product for Famine Early Warning System (FEWS, Xie and

Arkin, 1997) to drive a physically-based semi-distributed hydrologic model over four basins in Asia

and Africa. They found that SRPs can be used to force a hydrologic model provided that the

recalibration of the model parameter values is carried out. Harris et al. (2007) used TMPA 3B42 real

time product to drive a hydrologic model over a catchment in Kentucky finding that a bias correction is

needed before using real-time satellite data in flood forecasting. Stisen and Sandholt (2010) forced a

distributed hydrologic model over the Senegal River Basin with different SRPs: TMPA 3B42 V6,

Climate Prediction Center MORPHing technique (CMORPH, Joyce et al., 2004), CPC FEWS v.2,

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks

(PERSIANN, Hsu et al., 1997) and a local product based on Cold Cloud Duration (CCD). They found

that the SRPs need a bias correction because of the differences in the estimates of the analyzed

products (e.g., the number of rainy days and the recorded intensity). However, Stisen and Sandholt

(2010) stated that satellite data can be very useful due to their spatial and temporal continuity and
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should be considered to drive hydrologic models, mainly in remote and ungauged areas. Thiemig et al.
(2013) performed a hydrological validation considering TMPA 3B42 v6, CMORPH, PERSIANN, the
reanalysis product by the European Centre for Medium-range Weather Forecasting (ECMWF) ERA-

Interim (Dee et al., 2011) and a local rainfall estimation calibrated over the African continent (NOAA

CPC, 2002) over two basins in Africa. They pointed out that a model recalibration with each SRP and a

bias correction are necessary in order to improve the stream flow simulations performance. To sum up,
SRPs can be beneficially used for rainfall-runoff modelling but bias correction and model recalibration
are required pre-processing steps.

The objective of this study is twofold. First, we aim to explore the feasibility of using SRPs in a

lumped hydrologic model (MISDc, “Modello Idrologico Semi-Distribuito in continuo”, Brocca et al.

2011b) over 4 basins in Italy with different sizes and physiographic characteristics. Specifically, TMPA
3B42-RT and a new soil moisture (SM)-derived rainfall datasets obtained through the application of

SM2RAIN algorithm (Brocca et al., 2013b; 2014) to ASCAT (Advanced SCATterometer) SM product

are used in the analysis and the performances are compared with those obtained by using ground data
during the 4-year period from 2010 to 2013. The analysis period is divided into a calibration (2010-
2011) and a validation period (2012-2013). Second, we aim to investigate the integration between
observed and satellite-based rainfall estimates in order to obtain more accurate and reliable rainfall

datasets able to improve flood simulation with respect to the use of ground observation only.

2. MATERIALS AND METHODS

2.1 Study areas
Four basins throughout the Italian territory are considered in this analysis, specifically the Brenta,

the Tanaro (Northern Italy), the Tiber (Center Italy) and the Volturno (Southern Italy) basins. The

4
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elevation maps reported in Figure 1, and the main features listed in Table 1, highlight the differences
between the basins: Tanaro is the biggest basin and is characterized by a mountainous area upstream
and a large flood plain downstream. Brenta is the smallest one, mainly mountainous and it is
characterized by the highest rainfall regime (see Table I). These two first basins are characterized by
mountainous areas where snow fall might occur during winter. Tiber basin is characterized by a quite
large flood plain in the central area of the basin surrounded by hills and it has the lowest rainfall
regime. Volturno basin is mainly flat with the presence of some low elevation mountains in the
southern part of the basin. The basins are selected in four sectors of the Italian territory (North-Eastern,
North-Western, Central and Southern Italy) in order to investigate different physiographic and climatic
conditions. Moreover, basin selection is driven from the availability of good quality meteorological and

discharge observations (based on the study by Massari et al., 2015), and from the suitability of the

employed hydrological model, MISDc, as it does not incorporate a snow melting module.

2.2 Rainfall products
Ground-based rainfall, temperature and discharge data at hourly temporal resolution are provided

by the Italian hydrometeorological network of the National Civil Protection Department. For a

complete description of the observed dataset, the reader is referred to Massari et al. (2015).
Specifically, the observed rainfall dataset is provided by the interpolation of more than 3000 raingauges

throughout the Italian territory (Ciabatta et al., 2015b).

The SRPs considered in this study are the TMPA 3B42-RT product (Huffman et al., 2007),

hereinafter TMPA, and the dataset obtained by applying the SM2RAIN algorithm (Brocca et al.

2013b; 2014) to the Advanced SCATterometer (ASCAT) SM data (Wagner et al., 2013), hereinafter

SM2Rsc.



35
126
7
39
40
428

42
429
44
45
430
47

431
49
132
52
433
54

e

57
58
59
60
61
62
63
64
65

The TMPA product combines rainfall estimates from various satellite sensors. The multi-satellite
platform uses TRMM Microwave Imager (TMI), the Special Sensor Microwave Imager (SSM/I)
onboard Defense Meteorological Satellite Program (DMSP) satellites, the Advanced Microwave
Scanning Radiometer-Earth Observing System (AMSR-E) and the Advanced Microwave Sounding
Unit-B (AMSU-B) onboard the National Oceanic and Atmospheric Administration (NOAA) satellites.
In addition, the TMPA product also uses geostationary (GEO) satellite infra-red (IR) data,
characterized by higher spatial and temporal resolution than the Microwave (MW) sensors, through a
constellation of GEO satellites. The TMPA product is provided by the National Aeronautics and Space

Administration (NASA, http://trmm.gsfc.nasa.gov/) with a temporal resolution of 3 hours and a spatial

resolution of 0.25° for the + 50° North-South latitude band. Although a gauged corrected TMPA 3B42
product version is also available, in this study such product is not used in order to evaluate the
feasibility of using SRPs in an operational framework, i.e., for real-time flood forecasting.

The second dataset is obtained by the application of the SM2RAIN algorithm (Brocca et al.

2013b, 2014; Ciabatta et al., 2015b) to the Surface Soil Moisture (SSM) product obtained from ASCAT

(Wagner et al., 2013), a scatterometer operating at 5.3 GHz onboard MetOp A and B satellites.

Specifically, the Water Retrieval Package (WARP) 5.51 product is used in this study to estimate
rainfall from SM data. The product has a resolution of 25 km (resampled at 12.5 km, Wagner et al.,

2013) and is provided within the H-SAF project (http://hsaf.meteoam.it). For more details about

SM2RAIN algorithm, the reader is referred to (Brocca et al., 2013b, 2014; Ciabatta et al., 2015b),

while a first application using the algorithm SM2RAIN for flood prediction through in situ SM data can

be found in Massari et al. (2014). In this study, the same SM2RAIN-derived product as considered in

Ciabatta et al. (2015a; 2015b) is employed.
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Both SRPs and the observed rainfall data are remapped over a grid with spacing of 12.5 km, using

the nearest neighbour algorithm. As described in Ciabatta et al., (2015b), the selected spacing is a

compromise between the resolution of the different rainfall datasets and it was found to not
significantly affect the results. The one day cumulated rainfall at 00:00 UTC+1 for each analysed
dataset is considered in this study. Although TMPA data are provided within a time window + 90
minutes from the nominal time (0000,0300,...,2100 UTC), all the remaining data are released in local
time, i.e. UTC +1. This allows to compare TMPA data with the other datasets with only 30 minutes of
delay.

In order to match the different temporal resolutions, the analysis is carried out at a daily time scale,
and hence, the mean observed discharge, mean temperature and the accumulated rainfall during one

day are computed and considered in the sequel.

2.2.1 Bias correction
In order to take into account the systematic errors due to the indirect measurement of rainfall by

satellite sensors (Kucera et al., 2013), a bias correction is applied to each SRP. The applied correction

allows to match the mean and the standard deviation of SRPs with the observed rainfall data. The

correction applied in this study is expressed by:

o

sa

P, {i}w_ (1)

where P_ . 1is the bias corrected SRP, P, is the original SRP, E is the temporal mean of SRP, o,

corr sat

is the standard deviation of SRP, P, is the temporal mean of observed rainfall, and o is the

obs obs

standard deviation of observed rainfall. This formulation, originally applied by Draper et al. (2009) and

Brocca et al. (2011a) to satellite SM data, is simple to implement in an operational framework and

allows to correct the bias of SRPs. The correction is applied in the calibration period before the
7
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computation of the mean areal rainfall. In the validation period, the same correction is applied without

changing the correction coefficients.

2.2.2 Mean areal rainfall
The mean areal rainfall for each basin is obtained by considering the contribution of each pixel
inside the basin by using the following equation:
P =3 2l @
1 A
where P, is the mean areal rainfall amount, p; is the rainfall for the pixel i within a polygon of area q;

that represents the portion of the basin area covered by the pixel i, and 4, is the total basin area.

223 Integration scheme
The integration of satellite and ground observed rainfall datasets is carried out by using the
following nudging scheme:

P, (0) =P, () +K[P,,(t) = P.,,(1)] 3)
where ¢ is the time, P;, is the integrated rainfall, Py, is the satellite rainfall, P, is the observed rainfall,
and K is the weight factor that ranges between 0 and 1. For K=I, only the observed rainfall is
considered, while for K=0 only the satellite products are used as input into the model. The K-values are
obtained through calibration, by maximizing the Nash-Sutcliffe efficiency index (NS) between the
observed and simulated discharge during the calibration period.

To sum up, a total of 5 different rainfall datasets are used in this study:
1. Observed rainfall (hereinafter OBS);

2. Bias corrected SM2RAIN-derived rainfall dataset (SM2Rasc);

3. Bias corrected TMPA 3B42-RT (TMPA);

4. Integrated rainfall dataset between OBS and SM2R ssc (hereinafter SM2R zsc+OBS);
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5. Integrated rainfall dataset between OBS and TMPA (hereinafter TMPA+OBS).

2.3 MISDc rainfall-runoff model
The lumped version of the continuous and semi-distributed rainfall-runoff model MISDc (Figure

2), proposed by Brocca et al. (2011b; 2013a) is adopted here. MISDc is a single layer model and it was

specifically developed for flood forecasting purposes, as a consequence it may have limitations in
reproducing accurately the low flow conditions which in turn may determine volume errors in the long-
term comparison between observed and simulated discharge. MISDc couples a routing module with a

single layer soil water balance module (Brocca et al., 2008). Soil water balance is based on the

following equation:

dw (1)
— CLeO-p]-e)) =g (4)
where W(t) is the soil water content at time ¢, p(?), p.(?), e(t) and g(?) are the rainfall, effective rainfall,
actual evapotranspiration and percolation rates, respectively. In Equation (4), e(t) is calculated as a

linear function between the potential evaporation, that is estimated via the Blaney and Criddle relation

modified by Doorembos and Pruitt, (1977), and the soil saturation. The non-linear relation proposed by

Famiglietti and Wood (1994) is used for the computation of the percolation rate, g(z). The rainfall

excess, p.(t), is calculated by using the well-known Soil Conservation Service—Curve Number (SCS-
CN) method for estimation of losses incorporating the relationship between soil saturation and the
parameter S (soil potential maximum retention) of the SCS-CN method as proposed by Brocca et al.
(2009). Three different components contribute to generate discharge: the surface runoff, the saturation
excess and the subsurface runoff component. The first two are summed and routed to the outlet by the
Geomorphological Instantaneous Unit Hydrograph (GIUH). The subsurface runoff is transferred to the

outlet section by a linear reservoir approach. For both routing schemes, the lag time is evaluated by the
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relationship proposed by Melone et al. (2002). Full details on model equations are already given in

Brocca et al. (2009; 2011) and, hence, are not repeated here. The MATLAB® code of the model is

freely available at: http://hydrology.irpi.cnr.it/people/l.brocca.

MISDc uses 8 parameters, i.e., the maximum soil water capacity, the pore size distribution index,
the saturated hydraulic conductivity, the fraction of percolated water that generates baseflow, the lag-
area relationship coefficient, a correction parameter for the evapotranspiration, the initial abstraction
coefficient of the SCS-CN method and the coefficient of the relationship relating SM to the initial
condition of the SCS-CN method. As input data, the model needs continuous rainfall and temperature
timeseries. The calibration step is carried out in MATLAB® environment by using a standard gradient-

based automatic optimization method (Bober, 2013) and the maximization of the Nash-Sutcliffe

efficiency index is considered as objective function.

2.4 Performance metrics

The assessment of the model performances, driven by ground rainfall observations and SRPs, is
carried out in terms of Nash-Sutcliffe efficiency (NS), correlation coefficient (R) and percentage
volume error (E,). NS is often used for hydrological modelling assessment and it ranges between -
and 1. The closer the index is to 1, the better the performance is. NS index is defined as:

> Q=0 )

NS =1--! (6)

Z (Qobs - Z)Z

t=1

where Qs and Oy are the observed and simulated discharge at time ¢, while O, is the temporal

mean of observed discharge.

The percentage volume errors, E,, is expressed by the following equation:

10



I51
38
39
232
41

233
43

46
47

235
49

52
237
54

57
239
59
60
61
62
63
64
65

n

Zngs_ Qsim
E, == =100 (7)

v n
Z Qubs
t=1

Positive E, values indicate discharge underestimation while negative ones, an overestimation. The
performance metrics are calculated during both the calibration and validation period, for each rainfall
input dataset.

For each basin, the most significant flood events are extracted in order to assess the capability of
the considered rainfall datasets in reproducing the flood hydrograph, volume and peak at the event-
scale. The evaluation is carried out by considering the indexes described above, computed for each

flood event, and by using the percentage error in peak discharge, expressed by the following equation:

mx(Q)-m(Q ) @®)

obs

EQ/’

A negative error highlights overestimation, while a positive value means underestimation.

3. RESULTS AND DISCUSSIONS
The hydrological validation of satellite rainfall datasets is described for both the calibration and the
validation period, for each of the 5 rainfall datasets, and over the 4 selected basins considered in the

study.

3.1 Rainfall datasets comparison

First, an intercomparison of rainfall datasets is carried out in order to evaluate the quality of input
data used to drive MISDc model. This analysis is carried out by considering R and the root mean
square error (RMSE) between the daily ground and the satellite mean areal rainfall during the

calibration and the validation periods. Results, reported in 7Table 2, show a satisfactorily agreement

11
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between the ground and satellite derived rainfall datasets. SM2R zs¢ provides lower performance scores
than TMPA: this is probably due to the algorithm calibration procedure, based on 5 days of

accumulated rainfall (Ciabatta et al., 2015b). All the analysed datasets provide R values higher than

0.48 and quite low RMSE values. The higher RMSE values over Brenta basin are due to the high
rainfall regime and the presence of mountains that might affect the satellite retrievals accuracy. The

obtained results are in line with those showed by Ciabatta et al. (2015b) who obtained median R values

over the Italian territory equal to 0.44 and 0.59 for SM2Rasc and TMPA, respectively, for 1 day of

accumulated rainfall. Moreover, similar results are also obtained by Stampoulis and Anagnostou (2011)

and Nikolopoulos et al. (2013) who evaluated the real-time TMPA product over Northern Italy.

3.2 Discharge simulation with ground observed rainfall

The performance scores obtained by forcing MISDc model with OBS are assessed in order to
evaluate the model capability in reproducing observed discharges and are used as benchmark to
highlight any increase (or deterioration) in model accuracy when using SRPs.

Figure 3 shows the simulated discharge timeseries obtained by forcing MISDc with OBS data. As
it can be seen, the model is able to reproduce the observed discharge well, showing NS values of 0.72,
0.76, 0.77 and 0.86 during the calibration period (2010-2011) for Brenta, Tanaro, Tiber and Volturno
basins, respectively. During the validation period (2012-2013), the simulations provide NS values of
0.76, 0.68, 0.52 and 0.77 with only a slight deterioration of model performance. In terms of correlation,
the model provides R values greater than 0.86 (0.77) during the calibration (validation) period. For
what concerns the errors in volume, MISDc simulations provide E, values lower than 23% in
calibration and lower than 15% during the validation step. These not negligible errors in volume are
partly due to the difficulties of the model in reproducing the low flows and to the objective function

used for model calibration (maximization of NS) that is mainly addressed for the reproduction of high

12
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flows. In addition, as it can be noticed by Figure 3, some discharge peaks are not correctly identified,
as over Brenta basin during the calibration period and over Tanaro in 2011. These errors might be due
to different causes, for example the inaccuracy of input observations and the modelling structure, to the
effect of spatial variability that is neglected here, and to the daily time step used for the simulation that
could be not fully appropriate for fast responding basins. Despite these limitations, MISDc confirms its
good capability in simulating floods, also in different physiographic and climatic conditions in Italy,
thus representing an useful tool for testing the potential added-value of SRPs for flood forecasting. All
the performance scores obtained with each rainfall product, for the calibration and validation period,

are summarized in Table 3.

3.3 Discharge simulation with satellite rainfall products

Before introducing the bias correction and recalibration steps into the workflow, discharge
simulations are carried out by using the raw SRPs. By way of example, Figure 4 shows the observed
and simulated hydrographs for Tanaro basin obtained by forcing MISDc with TMPA rainfall dataset
without and with the application of the bias correction step. As it can be seen, if the model is forced
with bias corrected data and after the recalibration, higher performances are obtained. Indeed, the
obtained performance scores, before and after the bias correction and the model recalibration, increase
from NS=0.40, R=0.71 and E,=35%, to NS=0.53, R=0.77 and E,=9%. Although the improvement is not
so significant, the effect of the two pre-processing steps is evident. In most of the cases (results not
shown for brevity) the simulations carried out by using corrected data provide higher performance
scores than those obtained by using the raw data. Exceptions are found for the Brenta and Tanaro
during the validation period for TMPA and for Brenta and Volturno during the calibration period for
SM2Rsc. These results may be due to the high variability of the rainfall regime from year to year

which would need a dynamic correction of the bias or its more frequent recalibration. On this basis, the

13
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correction of the bias is in general beneficial but may also provide additional uncertainties in case the
rainfall presents a high non-stationary character. Moreover, it is obtained that after the recalibration, all
the parameter values remained into a physically acceptable range of variation thus ensuring the
consistency of the hydrological simulations. The small but consistent improvement in hydrological
model performance after bias correction of TMPA product (and model recalibration) is also obtained

by Artan et al. (2007) for two sub-basins of Mekong River in South Asia, Stisen and Sandhot (2010)

for the Senegal River basin in West Africa, Tarnavsky et al. (2013) in Senegal and Tunisia, and Zhao et

al. (2015) in the Weihe River basin in China. Therefore, due to the overall improved performances, in
the following we show only results in which SRPs bias is corrected through ground observations and
the model parameter values are recalibrated for each SRP (in the calibration period).

The comparison between observed and simulated discharge obtained by using TMPA and
SM2Rsc as input is reported in Figure 5. Although a general agreement between observed and
simulated discharge is recognizable, some peaks are not identified (mainly in the Brenta basin) or
overestimated (Tanaro and Tiber basins) likely due to errors in the SRPs used here as input data.

More specifically, when SM2Rssc is used as input, a deterioration of the results with respect to
those obtained by using OBS is found, with NS values of 0.63 (0.52) for Brenta, 0.60 (0.48) for Tanaro,
0.66 (0.48) for Tiber and 0.63 (0.48) for Volturno during the period 2010-2011 (2012-2013). The lower
scores are probably due to SM2RAIN algorithm limitations, i.e., underestimation of rainfall when the
soil is close to saturation and to the presence of mountains and/or snow within the basin that affects the
SM data quality (and, hence, of the SM2RAIN-derived rainfall). The first issue can be easily observed
over the Tiber basin at the end of 2012, when a discharge peak of over 500 m’/s is not identified. The
latter issue is evident over Brenta and Tanaro basins characterized by higher uncertainty in SM data

and a general underestimation of river discharge. In terms of correlation coefficient, SM2R sgc still
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provides fair R values for all the analysed basins: during the calibration (validation) period R values
greater than 0.73 (0.70) are obtained for the analysed basins. In terms of errors in volume, quite low E,
values are observed during the calibration (validation) period: -2% (-4%) for Brenta, 13% (10%) for
Tanaro, 3% (-1%) for Tiber and -3% (-32%) for Volturno. The negative values, mainly obtained during
the last two years of the analysis period, highlight an overestimation of discharge.

When MISDc is forced with TMPA, lower NS values are obtained, even negative during the
validation period. R values are greater than 0.60 (0.36) during the calibration (validation) period and an
overall discharge underestimation is observed with E, values lower than 6% and 36% in the calibration
and validation period, respectively. It is likely that the lower performance scores are due to the
accuracy of the TMPA product, which is highly affected by topographic issue and by the type and

intensity of precipitation. Indeed, Ciabatta et al. (2015b) highlighted that TMPA product shows low

performance in Southern Italy and in areas characterized by an intense rainfall regime (e.g., Brenta
basin). Moreover, the low and even negative scores obtained during the validation period are likely due
to the need of a more frequent correction of the bias in order to take into account its variability due also
to the changes in the retrieval algorithms and measurement sensors (note that the TMPA product is
based on measurements from a constellation of satellite sensors that are changing in time). A monthly
analysis (not shown) was also carried out in order to investigate the reasons of the low performance of
MISDc using TMPA during the validation period and by analysing both rainfall and discharge data.
The analysis has shown that the performance in terms of rainfall reproduction (by using ground
observations as benchmark) of TMPA during the validation period are highly variable (much more that
in the calibration period), with some months in which the performance reaches very low values (e.g.,
R<0.2). Therefore, it appears that any error or performance reduction in rainfall estimation have a

significant impact on the hydrological simulation and propagates forward in time for several months.
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As a result, any short period in which rainfall estimates are less accurate produces remarkable errors in
the simulation of discharge and it is the main reason for the observed low performance of TMPA in the
validation period.

In Italy, just a work by Nikolopoulos et al. (2013) evaluated the reliability of different SRPs for

discharge simulation but their study was addressed to the simulation of only a limited number of flood
events and not a continuous simulation such as we have performed here. The obtained performances
are in agreement anyhow with those obtained by previous studies in different regions worldwide (Artan

et al., 2007; Stisen and Sandhot, 2010; Zhao et al., 2015). We note also that the discharge simulation in

Mediterranean areas is more complex than that one for large basins in Africa or South Asia that are
characterized by a consistent and pronounced seasonal cycle and that are the basins in which most of

the studies were carried out by employing SRPs (see Serrat-Capdevilla et al., 2013 for a review).

Therefore, the results obtained here highlight that SRPs may be employed with some skill also in

smaller basins of the Mediterranean region.

3.4 Discharge simulation by using the integrated rainfall datasets

The integration procedure between ground observed and satellite rainfall by using Equation (3)
provides improvements in the performance scores, showing NS values most of the times (for 3 out 4
basins) higher than those obtained by using observed rainfall, mainly for SM2R 4s¢+OBS product (see
bold numbers in Table 3). Table 4 reports K values obtained during the calibration period for each
rainfall dataset. The simple integration scheme here proposed involves very high values of K, except
for TMPA+OBS in the Tanaro basin that shows the lowest K value equal to 0.5. It should be noted that
the high weight given to ground observations is expected due the high quality of ground observed
rainfall datasets used in this analysis. As it can be noticed in Figure 6, the use of the integrated datasets

into MISDc allows to obtain an accurate discharge simulation over the four analysed basins. It is worth
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to notice that some of the discharge peaks are still not properly identified by the simulated discharge.
This is not due to the SRPs quality, as the same events are also not well captured in the simulations
carried out by using OBS as input (see Figure 3). Therefore, these errors have to be attributed to the
reasons highlighted in Section 3.2 and specifically to the MISDc model deficiencies in representing the
hydrological behaviour of the basins throughout the year.

The integration between observed and satellite rainfall improves the model performance for all the
basins except Volturno basin. Figure 7 shows the mostly positive percentage variations of NS values
obtained by using OBS and the integrated products over the four basins, both during the calibration and
validation period. During calibration, SM2RASC+OBS (TMPA+OBS) provides NS values greater than
0.77 (0.75), while during validation NS values greater than 0.63 (0.36) are obtained. In terms of
correlation, similar results are obtained. That is, SM2R s5c+OBS provides R values higher than 0.88
and 0.82 during calibration and validation, respectively, while TMPA+OBS dataset yields R higher
than 0.87 and 0.73. The use of integrated rainfall datasets provides also a reduction of the error in

volume, for all basins.

3.5 Model performance for flood events

The analysis of the performance has been carried out on a total of 43 flood events extracted from
the analysed timeseries: 11 for Tanaro basin, 12 for Brenta basin, 10 for Tiber and Volturno basins. The
events were extracted by selecting those characterized by a total rainfall of more than 20 mm. An event
is distinguished from another if a total rainfall less than 1 mm occurred for at least 6 h. Specifically, the
performance are assessed by considering the hydrographs obtained by forcing MISDc with the different
rainfall datasets, and thus, no recalibration based on flood events is carried out. In Figure 8 the
performance scores obtained for each flood event and basin are shown. It can be noticed that if MISDc

is forced with OBS data, quite high NS values are obtained, except for Tiber basin which is
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characterized by lower performance scores. These results are in agreement with those obtained by

Brocca et al. (2011b) in Central Italy and by Massari et al. (2015) throughout the Italian territory who

obtained NS values at the event-scale ranging between 0.50 and 0.95. If TMPA and SM2R ssc datasets
are used as input data, lower performance can be observed with an average reduction of NS equal to -
40% and -36% for TMPA and SM2Rsc, respectively. More in details, TMPA provides the worst
performance with several negative NS values over Tanaro and Brenta basins (e.g., event 8 for Tanaro
and event 11 for Brenta). SM2Rsc provides NS values comparable with those obtained by forcing
MISDc with OBS over Tanaro, Brenta and Tiber basins, while NS is consistently lower for Volturno
basin. The integrated products provide results comparable and sometimes higher than those obtained by
using OBS, except for event 8 over Tanaro basin, where TMPA+OBS product yields a NS value of
about -2.

In terms of Eyp,, a general underestimation of peak discharge can be observed by using OBS as
input data. Even in this case, the simulations over Tiber basin provide the worst performance scores,
with an error of about 50% for events 3, 4, 6, 7, 8 and 9 and about -100% for event 7. TMPA product
provides a general underestimation of the discharge peaks over Tanaro, Brenta and Tiber basins.
SM2Rsc is characterized by a general underestimation over all the four analysed basins, mainly for
Tiber and Volturno basins. TMPA+OBS and SM2Rasc+OBS products provide Eg, values similar to
those obtained if MISDc is driven with OBS and even lower error values (with respect to OBS) over
Brenta basin. In terms of E,, OBS data provide the best performance scores, mainly for Volturno basin.
TMPA and SM2Rasc products are characterized by a general underestimation for Tanaro, Brenta and
Tiber basins while the simulations carried out for Volturno basin provide better results with respect to

the other basins, except for event 10.
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To sum up, in terms of median NS on all the selected flood events, the use of integrated products
provides comparable results with those achieved by using OBS with the best performance obtained for
Tiber River for SM2Rsc+OBS (+54%) and Brenta basin by using TMPA+OBS (+14%) and worst
ones obtained for Volturno with TMPA+OBS (-18%). In the remainder of the cases both
SM2RasctOBS and TMPA+OBS yields values close to OBS with better results obtained by
SM2R 4sct+OBS. The poor results obtained for Volturno basin can be explained by the relatively high
quality OBS data when they are used as input in MISDc. Similar results are obtained for Eg, (£,) with
an error reduction of about 28% (38%) for Tiber basin by using SM2Rsc+OBS and 43% (16%) for
Brenta basin by using TMPA+OBS.

If compared with the study by Massari et al. (2014), who forced a rainfall-runoff model over a

small catchment in France by using an estimated rainfall product obtained by the application of
SM2RAIN to in situ SM observations, a good agreement in the obtained results is observed. Indeed,

Massari et al. (2014) found that the use of the SM2RAIN-derived rainfall provides reasonable results

but lower than using traditional raingauge observations. However, accordingly our study, the
integration of observed (from raingauge) and estimated rainfall (from SM2RAIN) provided the best

performance with an increase in the mean NS equal to 38% (from 0.48 to 0.66).

4. CONCLUSIONS

Daily discharge simulation with the lumped MISDc model is carried out over four basins
throughout the Italian territory and by using ground observed and satellite-derived rainfall data. The
analysis produced satisfactory and promising results and highlighted the beneficial effects of using
satellite rainfall products in flood modelling over the four analysed basins. Concerning the obtained

results, the following conclusions can be drawn:
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MISDc hydrologic model is able to reproduce accurately discharges over 4 basins,
characterized by different physiographic and climatic conditions, especially in high flow
conditions. MISDc simulations forced by ground observed rainfall provide Nash-Sutcliffe
efficiency values greater than 0.72 and 0.52 during the calibration and validation period (7able
3 and Figure 3);

Satellite rainfall products can be employed for flood simulation, but bias correction and model
parameters recalibration are needed before their use (Figure 4). The simulations have provided
promising results in terms of Nash Sutcliffe efficiency, correlation coefficient and volume error,
mainly during the calibration period (7able 3). However, this analysis has highlighted some
contrasting results (as the negative NS values for TMPA in the validation period) that have to be
assessed in further studies by analysing a longer period and by taking into account the year-to-
year variability of rainfall regimes;

SM2Rsc performances confirm the good capability of SM2RAIN algorithm in estimating
rainfall, allowing to apply successfully the method also for flood simulation. If MISDc is driven
by SM2R ssc data, even better performance scores than TMPA product are obtained (Figure 5);
Ground observed rainfall datasets may be affected by spatial representativeness issues and may
lead to wrong discharge simulations: the simple integration scheme proposed in this study
highlights the capability of satellite rainfall products to improve rainfall estimates. Although the
improvements are not so evident, MISDc simulations driven by SM2Rsc+OBS and
TMPA+OBS provide performance scores, in most of the cases (3 out 4 basins), better than
those obtained by using only the ground observed data. We expect that more advanced

integration schemes may help to further enhance the results.
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Notwithstanding the obtained results are related to the availability and reliability of ground
observed data, this study provides promising results and represents one of the first attempts to integrate
ground observed and satellite rainfall datasets for flood simulation, mainly in well gauged areas. More
detailed analysis will be addressed in the future in order to better understand and improve the capability
of SRPs in hydrological modelling, by using different bias correction formulations, a more
sophisticated integrations scheme (e.g., data assimilations technique) and by selecting a larger number
of study basins worldwide. The integration between SRPs without the use of ground observed rainfall

data will be analysed as well.
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Figure 1 — Geographical location and elevation of the a) Tanaro River basins, b) Brenta River basin, c)
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Y OY U1 OO U1 O U1 U1 U1 OOl DD D DD DD D WWwWwwww w
PO WU WNREFE OWOWJO U WNRE OWOOJo U N
[\

25

o O O)Y O
g w N



O JoyUdbd WM

NNNMNNMNNRERFRRRRRPRR R
B WNERF OWOWIo U d WN - O W

2

&

)
ey
W

O OYOYOYOYOY Ul Ul U1 U1 U1 U1 U1 U1 OT U B DD DD DD DD WWwWwwwwww
O WNDEFP OWOWOJOUdd WNEFE OWOW-JOUd WNEFE OWOWJo U dx WN

(o)

SOIL WATER BALANCE MODEL

RUNOFF ROUTING jj TOTAL DISCHARGE

e(t):
evapotranspiration (t):
A e rainfall
r(t):
surface runoff
e —

s(t):

.

‘L percolation runoff

saturation excess

a(t): subsurface

O surface runofi
O baseflow
hs . rainfall
GIUH
1
0.3
0.6
0.4
0.2 Q(t):
o Total Discharge
>

saturation degree @

0.2 8l

0
::i;:ear reservoir -} | U 1y
LK KK

5 307172005

Figure

2 — Schematization of the MISDc rainfall-runoff model with the representation of the simulated

hydrological processes.

26



O JoyUdbd WM

Brenta

600

500

7 400
o

E 200+

200}

100

2010

1000+

Q [m3/s]

2010

2012

3000

Tanaro

2500

2000

1500+

1000

500+

L)

2012

2014

800+

600+

400

200

2%10

Volturno

2012

——Cbserved _

---8imulated

Figure 3 — Comparison of observed and simulated discharge obtained by forcing MISDc model with

ground observed rainfall for Brenta (up-left), Tanaro (up-right), Tiber (bottom-left) and Volturno

(bottom-right) basins, during the entire analysis period (2010-2013).

27



O JoyUdbd WM

S I S S N S e e N e e e e
O WNHF O WO U WN R O W

S
[\

2

OO U UITUIOIOTOTOT 00T 0T B DR DD DD DWW WwWWwww w
GO WNEFPFOWOWOJOHUPDd WNDREFPOWOOLOJOoOUd WNE O WOLJo U bW [
W AN

Tanaro Basin - TMPA as input - no recalibration - no bias correction - NS=0.402 - EV=O.345 -R=0.713
3000 T T T

2500(~ ~ ! .

2000~ | , —

o
o o
0
o o

Discharge [m>/s]

[9,]

o

o
[

2%10 2011 2012 2013 2014

Tanaro Basin - TMPA as input - recalibration - bias corrected - N§=0.530 - EV=0.093 - R=0.774

3000 T T T
Observed
2500 —Simulated
@
©” 2000 | —

Discharge [m
S o
o o
(=] o

(9]

o

o
[

o NI

o ‘ 2011 — 2012 2013 2014

Figure 4 — Observed and simulated hydrographs obtained by forcing MISDc model with TMPA data
before (upper panel) and after (lower panel) bias correction and model recalibration.
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Figure 5 — Comparison of observed and simulated daily discharge obtained by forcing MISDc¢ model
with the two satellite rainfall products SM2RASC and TMPA for Brenta (up-left), Tanaro (up-right),
Tiber (bottom-left) and Volturno (bottom-right) basins, during the entire analysis period (2010-2013).
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Figure 6 — Comparison of observed and simulated daily discharge obtained by forcing MISDc model
with the two integrated rainfall products SM2RASC+OBS and TMPA +OBS for Brenta (up-left),
Tanaro (up-right), Tiber (bottom-left) and Volturno (bottom-right) basins, during the entire analysis
period (2010-2013).
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Figure 7 — Nash-Sutcliffe efficiency index (NS) percentage variation obtained by forcing MISDc
model with SM2RAIN derived rainfall (SM2RASC), TMPA 3B42-RT product (TMPA) and the
integrated products between the observed and satellite rainfall data (SM2RASC+OBS and
TMPA+OBS) during calibration (blue squares) and validation (green rumbles). The text boxes show
the percentage variations in NS obtained for TMPA during the validation period that exceed the axis
limit.
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Figure 8 — Performance

scores obtained during the flood events simulations over the Tanaro (TA),

Brenta (BR), Tiber (TI) and Volturno (VO) basins by forcing MISDc model with observed data (OBS,
solid green line), SM2RAIN derived rainfall (SM2R ssc, dashed red line), TMPA data (TMPA, dashed
blue line), integrated product between SM2Rasc and OBS data (SM2Rasc+OBS, dashed black line)
and integrated product between TMPA and OBS data (TMPA+OBS, dashed magenta line). Nash-
Sutcliffe efficiency index (NVS, upper panel), percentage error in peak discharge (£¢,, middle panel) and

percentage error on direct runoff volume (£,, bottom panel). In the upper panel graph, the y-axis is

truncated to O for visualization purposes.
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TABLES

Table 1 — Main characteristics of the investigated basins: gauging station, drainage area, Mean Annual
Rainfall (MAR), Mean Annual Temperature (MAT), average elevation (in m a.s.l.) and average slope

(in ©).
Average Average
Basin Gauging station Area (km’) MAR (mm) MAT (°C) altitude go
slope (°)
(m a.s.l.)
Tanaro Asti S. Martino 3229.7 1125 8.94 1025 15.59
Brenta Berzizza 1506.3 2123.8 7.04 1239 22.53
Tiber Ponte Felcino 1879 967.76 13.22 518 10.76
Volturno Solopaca 2578.8 1208.1 13.33 543 8.80
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Table 2 — Correlation coefficients (R) and Root Mean Square Error (RMSE) for the analysed satellite
products (SM2Rasc and TMPA) against observed rainfall during the calibration (CAL) and validation

(VAL) periods.

Basin

Brenta
Tanaro

Tiber

SM2Rxsc TMPA
CAL VAL CAL VAL
R RMSE R RMSE R RMSE R RMSE
0.56 1497 049 1491 0.70 12.78 0.66 13.55
0.60 756 048 696 079 594 0.69 6.52
054 7.00 049 7.66 071 573 083 9.25
6.10 0.60 580 064 607 063 578

Volturno 0.63
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Table 3 — Nash-Sutcliffe efficiency (NS), correlation coefficient (R) and percentage volume error (£,)
obtained by forcing MISDc hydrologic model with observed, satellite (SM2Rasc and TMPA) and
integrated (SM2Rsc+OBS and TMPA+OBS) rainfall data, during the calibration (2010-2011) and
validation (2012-2013) periods. In bold font the best performance scores of each basin are reported

while the scores are in italic font if better than those obtained with ground observed rainfall (OBS). The

highest performance of the integrated SM2Rsc+OBS product for Brenta, Tanaro and Tiber river

basins is evident.

Calibration (2010-2011)

Validation (2012-2013)

Basin NS R E (% NS R E (%)
OBS
Brenta 0.72 0.86 6 0.76 0.88 4
Tanaro 0.76 0.89 23 0.68 0.83 11
Tiber 0.77 0.88 16 0.52 0.77 -15
Volturno 0.86 0.93 14 0.77 0.88 5
SM2Rssc
Brenta 0.63 0.73 -2 0.52 0.73 -4
Tanaro 0.60 0.78 13 0.48 0.70 -10
Tiber 0.66 0.81 3 0.48 0.70 -1
Volturno 0.63 0.79 -3 0.48 0.72 -32
TMPA
Brenta 0.32 0.60 9 0.20 0.49 6
Tanaro 0.76 0.89 19 -0.22 0.49 -4
Tiber 0.53 0.73 16 -0.23 0.42 -27
Volturno 0.37 0.61 (0] 0.07 0.36 36
SM2RAsctOBS
Brenta 0.78 0.89 1 0.79 0.88 -5
Tanaro 0.78 0.89 21 0.71 0.85 9
Tiber 0.81 0.90 10 0.74 0.86 -6
Volturno 0.77 0.88 1 0.63 0.82 -34
TMPA+OBS
Brenta 0.77 0.88 3 0.74 0.87 -4
Tanaro 0.79 0.90 20 0.47 0.73 3
Tiber 0.77 0.88 17 0.36 0.81 -14
Volturno 0.75 0.87 5 0.61 0.81 -26
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Table 4 — Integration coefficient (K) for the considered basins by using as model input the integrated
products between the observed and satellite products (SM2RASC+OBS and TMPA+OBS).

Basin SM2RsctOBS TMPA+OBS

Brenta 0.8 0.9
Tanaro 0.8 0.5
Tiber 0.7 0.9
Volturno 0.8 0.9
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