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ABSTRACT 1 

Satellite rainfall products (SRPs) are becoming more accurate with ever increasing spatial and 2 

temporal resolution. This evolution can be beneficial for hydrological applications, providing new 3 

sources of information and allowing to drive models in ungauged areas. Despite the large availability of 4 

rainfall satellite data, their use in rainfall-runoff modelling is still very scarce, most likely due to 5 

measurement issues (bias, accuracy) and the hydrological community acceptability of satellite 6 

products. 7 

In this study, the real-time version (3B42-RT) of Tropical Rainfall Measurement Mission Multi-8 

satellite Precipitation Analysis, TMPA, and a new SRP based on the application of SM2RAIN 9 

algorithm (Brocca et al., 2014) to the ASCAT (Advanced SCATterometer) soil moisture product, 10 

SM2RASC, are used to drive a lumped hydrologic model over four basins in Italy during the 4-year 11 

period 2010-2013. 12 

The need of the recalibration of model parameter values for each SRP is highlighted, being an 13 

important precondition for their suitable use in flood modelling. Results shows that SRPs provided, in 14 

most of the cases, performance scores only slightly lower than those obtained by using observed data 15 

with a reduction of Nash-Sutcliffe efficiency (NS) less than 30% when using SM2RASC product while 16 

TMPA is characterized by a significant deterioration during the validation period 2012-2013. 17 

Moreover, the integration between observed and satellite rainfall data is investigated as well. 18 

Interestingly, the simple integration procedure here applied allows obtaining more accurate rainfall 19 

input datasets with respect to the use of ground observations only, for 3 out 4 basins. Indeed, discharge 20 

simulations improve when ground rainfall observations and SM2RASC product are integrated, with an 21 

increase of NS between 2 and 42% for the 3 basins in Central and Northern Italy. Overall, the study 22 
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highlights the feasibility of using SRPs in hydrological applications over the Mediterranean region with 23 

benefits in discharge simulations also in well gauged areas. 24 

KEYWORDS: Floods, rainfall, soil moisture, remote sensing, hydrological modelling. 25 

1. INTRODUCTION 26 

Floods are one of the most common and dangerous natural hazards, causing every year thousands 27 

of casualties and damage worldwide (Wake, 2013; Jongman et al., 2014). The main tool for assessing 28 

flood risk and reducing damages is represented by hydrologic early warning systems that allow to 29 

forecast flood events by using real time data obtained through ground monitoring networks (e.g., 30 

raingauges and radars, Artan et al., 2007). However, the use of such data, mainly rainfall, is affected by 31 

many issues: 1) the limited spatial representativeness of local measurements (Kidd et al., 2012), 2) the 32 

network density (Rudolf and Schneider, 2005) and 3) reflectivity issues related to meteorological 33 

radars. A way to overcome these issues may be the use of satellite-based rainfall products (SRPs) that 34 

nowadays are available on a global scale at ever increasing spatial/temporal resolution and accuracy. 35 

For remote areas, SRPs are the only source of information (Kidd and Levizzani, 2011). Despite the 36 

large availability of SRPs: e.g., the Tropical Rainfall Measurement Mission (TRMM) Multi-satellite 37 

Precipitation Analysis (TMPA) (Huffman et al., 2007); the Satellite Application Facility on Support to 38 

Operational Hydrology and Water Management (H-SAF, http://hsaf.meteoam.it, Mugnai et al., 2013); 39 

and the recent Global Precipitation Measurement (GPM) mission (http://pmm.nasa.gov/GPM, Hou et 40 

al., 2013); remotely sensed rainfall data are scarcely used in hydrological modelling. Reasons may be 41 

related to: 1) the inaccurate estimation of light rainfall that causes a general underestimation of the total 42 

precipitation amounts, 2) the spatial/temporal resolution, 3) the timeliness, which is often insufficient 43 

for operational purposes (Serrat-Capdevilla et al., 2013), and 4) the hydrological community 44 

acceptability of satellite products. Indeed, in the scientific literature, only a small number of studies 45 
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were carried out, mainly concerning the hydrological validation of SRPs trying to outline some 46 

guidelines for using satellite data as input for hydrological modelling. By way of example, Guetter et 47 

al. (1996) simulated stream flow over three basins in America. They forced a rainfall-runoff-routing 48 

model by using a 10-year synthetic satellite rainfall dataset and carried out three different runs: 1) the 49 

model was calibrated and validated with observed rainfall data; 2) the model was calibrated with 50 

observed rainfall data and then validated by using the synthetic satellite data; 3) the model was 51 

calibrated and validated with satellite data. They found an underestimation of the mean-areal 52 

precipitation and, hence, biased stream flow simulations when the model was calibrated with observed 53 

data and forced with the synthetic satellite dataset. They also found an increment of the errors as the 54 

basin area decreases. Artan et al. (2007) used the National Oceanic and Atmospheric Administration 55 

(NOAA) Climate Prediction Center (CPC) product for Famine Early Warning System (FEWS, Xie and 56 

Arkin, 1997) to drive a physically-based semi-distributed hydrologic model over four basins in Asia 57 

and Africa. They found that SRPs can be used to force a hydrologic model provided that the 58 

recalibration of the model parameter values is carried out. Harris et al. (2007) used TMPA 3B42 real 59 

time product to drive a hydrologic model over a catchment in Kentucky finding that a bias correction is 60 

needed before using real-time satellite data in flood forecasting. Stisen and Sandholt (2010) forced a 61 

distributed hydrologic model over the Senegal River Basin with different SRPs: TMPA 3B42 V6, 62 

Climate Prediction Center MORPHing technique (CMORPH, Joyce et al., 2004), CPC FEWS v.2, 63 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks 64 

(PERSIANN, Hsu et al., 1997) and a local product based on Cold Cloud Duration (CCD). They found 65 

that the SRPs need a bias correction because of the differences in the estimates of the analyzed 66 

products (e.g., the number of rainy days and the recorded intensity). However, Stisen and Sandholt 67 

(2010) stated that satellite data can be very useful due to their spatial and temporal continuity and 68 
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should be considered to drive hydrologic models, mainly in remote and ungauged areas. Thiemig et al. 69 

(2013) performed a hydrological validation considering TMPA 3B42 v6, CMORPH, PERSIANN, the 70 

reanalysis product by the European Centre for Medium-range Weather Forecasting (ECMWF) ERA-71 

Interim (Dee et al., 2011) and a local rainfall estimation calibrated over the African continent (NOAA 72 

CPC, 2002) over two basins in Africa. They pointed out that a model recalibration with each SRP and a 73 

bias correction are necessary in order to improve the stream flow simulations performance. To sum up, 74 

SRPs can be beneficially used for rainfall-runoff modelling but bias correction and model recalibration 75 

are required pre-processing steps. 76 

The objective of this study is twofold. First, we aim to explore the feasibility of using SRPs in a 77 

lumped hydrologic model (MISDc, - Brocca et al., 78 

2011b) over 4 basins in Italy with different sizes and physiographic characteristics. Specifically, TMPA 79 

3B42-RT and a new soil moisture (SM)-derived rainfall datasets obtained through the application of 80 

SM2RAIN algorithm (Brocca et al., 2013b; 2014) to ASCAT (Advanced SCATterometer) SM product 81 

are used in the analysis and the performances are compared with those obtained by using ground data 82 

during the 4-year period from 2010 to 2013. The analysis period is divided into a calibration (2010-83 

2011) and a validation period (2012-2013). Second, we aim to investigate the integration between 84 

observed and satellite-based rainfall estimates in order to obtain more accurate and reliable rainfall 85 

datasets able to improve flood simulation with respect to the use of ground observation only. 86 

2. MATERIALS AND METHODS 87 

2.1 Study areas 88 

Four basins throughout the Italian territory are considered in this analysis, specifically the Brenta, 89 

the Tanaro (Northern Italy), the Tiber (Center Italy) and the Volturno (Southern Italy) basins. The 90 
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elevation maps reported in Figure 1, and the main features listed in Table 1, highlight the differences 91 

between the basins: Tanaro is the biggest basin and is characterized by a mountainous area upstream 92 

and a large flood plain downstream. Brenta is the smallest one, mainly mountainous and it is 93 

characterized by the highest rainfall regime (see Table 1). These two first basins are characterized by 94 

mountainous areas where snow fall might occur during winter. Tiber basin is characterized by a quite 95 

large flood plain in the central area of the basin surrounded by hills and it has the lowest rainfall 96 

regime. Volturno basin is mainly flat with the presence of some low elevation mountains in the 97 

southern part of the basin. The basins are selected in four sectors of the Italian territory (North-Eastern, 98 

North-Western, Central and Southern Italy) in order to investigate different physiographic and climatic 99 

conditions. Moreover, basin selection is driven from the availability of good quality meteorological and 100 

discharge observations (based on the study by Massari et al., 2015), and from the suitability of the 101 

employed hydrological model, MISDc, as it does not incorporate a snow melting module. 102 

2.2 Rainfall products 103 

Ground-based rainfall, temperature and discharge data at hourly temporal resolution are provided 104 

by the Italian hydrometeorological network of the National Civil Protection Department. For a 105 

complete description of the observed dataset, the reader is referred to Massari et al. (2015). 106 

Specifically, the observed rainfall dataset is provided by the interpolation of more than 3000 raingauges 107 

throughout the Italian territory (Ciabatta et al., 2015b). 108 

The SRPs considered in this study are the TMPA 3B42-RT product (Huffman et al., 2007), 109 

hereinafter TMPA, and the dataset obtained by applying the SM2RAIN algorithm (Brocca et al., 110 

2013b; 2014) to the Advanced SCATterometer (ASCAT) SM data (Wagner et al., 2013), hereinafter 111 

SM2RASC. 112 
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The TMPA product combines rainfall estimates from various satellite sensors. The multi-satellite 113 

platform uses TRMM Microwave Imager (TMI), the Special Sensor Microwave Imager (SSM/I) 114 

onboard Defense Meteorological Satellite Program (DMSP) satellites, the Advanced Microwave 115 

Scanning Radiometer-Earth Observing System (AMSR-E) and the Advanced Microwave Sounding 116 

Unit-B (AMSU-B) onboard the National Oceanic and Atmospheric Administration (NOAA) satellites. 117 

In addition, the TMPA product also uses geostationary (GEO) satellite infra-red (IR) data, 118 

characterized by higher spatial and temporal resolution than the Microwave (MW) sensors, through a 119 

constellation of GEO satellites. The TMPA product is provided by the National Aeronautics and Space 120 

Administration (NASA, http://trmm.gsfc.nasa.gov/) with a temporal resolution of 3 hours and a spatial 121 

resolution of 0.25° for the ± 50° North-South latitude band. Although a gauged corrected TMPA 3B42 122 

product version is also available, in this study such product is not used in order to evaluate the 123 

feasibility of using SRPs in an operational framework, i.e., for real-time flood forecasting. 124 

The second dataset is obtained by the application of the SM2RAIN algorithm (Brocca et al., 125 

2013b, 2014; Ciabatta et al., 2015b) to the Surface Soil Moisture (SSM) product obtained from ASCAT 126 

(Wagner et al., 2013), a scatterometer operating at 5.3 GHz onboard MetOp A and B satellites. 127 

Specifically, the Water Retrieval Package (WARP) 5.51 product is used in this study to estimate 128 

rainfall from SM data. The product has a resolution of 25 km (resampled at 12.5 km, Wagner et al., 129 

2013) and is provided within the H-SAF project (http://hsaf.meteoam.it). For more details about 130 

SM2RAIN algorithm, the reader is referred to (Brocca et al., 2013b, 2014; Ciabatta et al., 2015b), 131 

while a first application using the algorithm SM2RAIN for flood prediction through in situ SM data can 132 

be found in Massari et al. (2014). In this study, the same SM2RAIN-derived product as considered in 133 

Ciabatta et al. (2015a; 2015b) is employed. 134 
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Both SRPs and the observed rainfall data are remapped over a grid with spacing of 12.5 km, using 135 

the nearest neighbour algorithm. As described in Ciabatta et al., (2015b), the selected spacing is a 136 

compromise between the resolution of the different rainfall datasets and it was found to not 137 

significantly affect the results. The one day cumulated rainfall at 00:00 UTC+1 for each analysed 138 

dataset is considered in this study. Although TMPA data are provided within a time window ± 90 139 

emaining data are released in local 140 

time, i.e. UTC +1. This allows to compare TMPA data with the other datasets with only 30 minutes of 141 

delay. 142 

In order to match the different temporal resolutions, the analysis is carried out at a daily time scale, 143 

and hence, the mean observed discharge, mean temperature and the accumulated rainfall during one 144 

day are computed and considered in the sequel. 145 

2.2.1 Bias correction 146 

In order to take into account the systematic errors due to the indirect measurement of rainfall by 147 

satellite sensors (Kucera et al., 2013), a bias correction is applied to each SRP. The applied correction 148 

allows to match the mean and the standard deviation of SRPs with the observed rainfall data. The 149 

correction applied in this study is expressed by: 150 

 obsobs
sat

satsat
corr P

PP
P  (1) 151 

where corrP  is the bias corrected SRP, satP  is the original SRP, satP  is the temporal mean of SRP, sat  152 

is the standard deviation of SRP, obsP  is the temporal mean of observed rainfall, and obs  is the 153 

standard deviation of observed rainfall. This formulation, originally applied by Draper et al. (2009) and 154 

Brocca et al. (2011a) to satellite SM data, is simple to implement in an operational framework and 155 

allows to correct the bias of SRPs. The correction is applied in the calibration period before the 156 
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computation of the mean areal rainfall. In the validation period, the same correction is applied without 157 

changing the correction coefficients. 158 

2.2.2 Mean areal rainfall 159 

The mean areal rainfall for each basin is obtained by considering the contribution of each pixel 160 

inside the basin by using the following equation: 161 

 
N

i tot

ii
A A

ap
P

1

 (2) 162 

where AP  is the mean areal rainfall amount, pi is the rainfall for the pixel i within a polygon of area ai 163 

that represents the portion of the basin area covered by the pixel i, and Atot is the total basin area. 164 

2.2.3 Integration scheme 165 

The integration of satellite and ground observed rainfall datasets is carried out by using the 166 

following nudging scheme: 167 

 )()()()(int tPtPKtPtP satobssat  (3) 168 

where t is the time, Pint is the integrated rainfall, Psat is the satellite rainfall, Pobs is the observed rainfall, 169 

and K is the weight factor that ranges between 0 and 1. For K=1, only the observed rainfall is 170 

considered, while for K=0 only the satellite products are used as input into the model. The K-values are 171 

obtained through calibration, by maximizing the Nash-Sutcliffe efficiency index (NS) between the 172 

observed and simulated discharge during the calibration period. 173 

To sum up, a total of 5 different rainfall datasets are used in this study: 174 

1. Observed rainfall (hereinafter OBS); 175 

2. Bias corrected SM2RAIN-derived rainfall dataset (SM2RASC); 176 

3. Bias corrected TMPA 3B42-RT (TMPA); 177 

4. Integrated rainfall dataset between OBS and SM2RASC (hereinafter SM2RASC+OBS); 178 
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5. Integrated rainfall dataset between OBS and TMPA (hereinafter TMPA+OBS). 179 

2.3 MISDc rainfall-runoff model 180 

The lumped version of the continuous and semi-distributed rainfall-runoff model MISDc (Figure 181 

2), proposed by Brocca et al. (2011b; 2013a) is adopted here. MISDc is a single layer model and it was 182 

specifically developed for flood forecasting purposes, as a consequence it may have limitations in 183 

reproducing accurately the low flow conditions which in turn may determine volume errors in the long-184 

term comparison between observed and simulated discharge. MISDc couples a routing module with a 185 

single layer soil water balance module (Brocca et al., 2008). Soil water balance is based on the 186 

following equation: 187 

 )()()]()([
)(

tgtetptp
dt

tdW
e  (4) 188 

where W(t) is the soil water content at time t, p(t), pe(t), e(t) and g(t) are the rainfall, effective rainfall, 189 

actual evapotranspiration and percolation rates, respectively. In Equation (4), e(t) is calculated as a 190 

linear function between the potential evaporation, that is estimated via the Blaney and Criddle relation 191 

modified by Doorembos and Pruitt, (1977), and the soil saturation. The non-linear relation proposed by 192 

Famiglietti and Wood (1994) is used for the computation of the percolation rate, g(t). The rainfall 193 

excess, pe(t), is calculated by using the well-known Soil Conservation Service Curve Number (SCS-194 

CN) method for estimation of losses incorporating the relationship between soil saturation and the 195 

parameter S (soil potential maximum retention) of the SCS-CN method as proposed by Brocca et al. 196 

(2009). Three different components contribute to generate discharge: the surface runoff, the saturation 197 

excess and the subsurface runoff component. The first two are summed and routed to the outlet by the 198 

Geomorphological Instantaneous Unit Hydrograph (GIUH). The subsurface runoff is transferred to the 199 

outlet section by a linear reservoir approach. For both routing schemes, the lag time is evaluated by the 200 
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relationship proposed by Melone et al. (2002). Full details on model equations are already given in 201 

Brocca et al. (2009; 2011) and, hence, are not repeated here. The MATLAB® code of the model is 202 

freely available at: http://hydrology.irpi.cnr.it/people/l.brocca. 203 

MISDc uses 8 parameters, i.e., the maximum soil water capacity, the pore size distribution index, 204 

the saturated hydraulic conductivity, the fraction of percolated water that generates baseflow, the lag-205 

area relationship coefficient, a correction parameter for the evapotranspiration, the initial abstraction 206 

coefficient of the SCS-CN method and the coefficient of the relationship relating SM to the initial 207 

condition of the SCS-CN method. As input data, the model needs continuous rainfall and temperature 208 

timeseries. The calibration step is carried out in MATLAB® environment by using a standard gradient-209 

based automatic optimization method (Bober, 2013) and the maximization of the Nash-Sutcliffe 210 

efficiency index is considered as objective function. 211 

2.4 Performance metrics 212 

The assessment of the model performances, driven by ground rainfall observations and SRPs, is 213 

carried out in terms of Nash-Sutcliffe efficiency (NS), correlation coefficient (R) and percentage 214 

volume error (Ev). NS is often used for hydrological modelling assessment and it ranges between -  215 

and 1. The closer the index is to 1, the better the performance is. NS index is defined as: 216 

 n

t
obsobs

n

t
simobs

QQ

QQ
NS

1

2

1

2

1  (6) 217 

where Qobs and Qsim are the observed and simulated discharge at time t, while obsQ  is the temporal 218 

mean of observed discharge. 219 

The percentage volume errors, Ev, is expressed by the following equation: 220 
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 100

1

11
n

t
obs

n

t
sim

n

t
obs

v

Q

QQ
E  (7) 221 

Positive Ev values indicate discharge underestimation while negative ones, an overestimation. The 222 

performance metrics are calculated during both the calibration and validation period, for each rainfall 223 

input dataset. 224 

For each basin, the most significant flood events are extracted in order to assess the capability of 225 

the considered rainfall datasets in reproducing the flood hydrograph, volume and peak at the event-226 

scale. The evaluation is carried out by considering the indexes described above, computed for each 227 

flood event, and by using the percentage error in peak discharge, expressed by the following equation: 228 

  
Q

QQ
E

obs

simobs
Qp max

maxmax  (8) 229 

A negative error highlights overestimation, while a positive value means underestimation. 230 

3. RESULTS AND DISCUSSIONS 231 

The hydrological validation of satellite rainfall datasets is described for both the calibration and the 232 

validation period, for each of the 5 rainfall datasets, and over the 4 selected basins considered in the 233 

study. 234 

3.1 Rainfall datasets comparison 235 

First, an intercomparison of rainfall datasets is carried out in order to evaluate the quality of input 236 

data used to drive MISDc model. This analysis is carried out by considering R and the root mean 237 

square error (RMSE) between the daily ground and the satellite mean areal rainfall during the 238 

calibration and the validation periods. Results, reported in Table 2, show a satisfactorily agreement 239 
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between the ground and satellite derived rainfall datasets. SM2RASC provides lower performance scores 240 

than TMPA: this is probably due to the algorithm calibration procedure, based on 5 days of 241 

accumulated rainfall (Ciabatta et al., 2015b). All the analysed datasets provide R values higher than 242 

0.48 and quite low RMSE values. The higher RMSE values over Brenta basin are due to the high 243 

rainfall regime and the presence of mountains that might affect the satellite retrievals accuracy. The 244 

obtained results are in line with those showed by Ciabatta et al. (2015b) who obtained median R values 245 

over the Italian territory equal to 0.44 and 0.59 for SM2RASC and TMPA, respectively, for 1 day of 246 

accumulated rainfall. Moreover, similar results are also obtained by Stampoulis and Anagnostou (2011) 247 

and Nikolopoulos et al. (2013) who evaluated the real-time TMPA product over Northern Italy. 248 

3.2 Discharge simulation with ground observed rainfall 249 

The performance scores obtained by forcing MISDc model with OBS are assessed in order to 250 

evaluate the model capability in reproducing observed discharges and are used as benchmark to 251 

highlight any increase (or deterioration) in model accuracy when using SRPs. 252 

Figure 3 shows the simulated discharge timeseries obtained by forcing MISDc with OBS data. As 253 

it can be seen, the model is able to reproduce the observed discharge well, showing NS values of 0.72, 254 

0.76, 0.77 and 0.86 during the calibration period (2010-2011) for Brenta, Tanaro, Tiber and Volturno 255 

basins, respectively. During the validation period (2012-2013), the simulations provide NS values of 256 

0.76, 0.68, 0.52 and 0.77 with only a slight deterioration of model performance. In terms of correlation, 257 

the model provides R values greater than 0.86 (0.77) during the calibration (validation) period. For 258 

what concerns the errors in volume, MISDc simulations provide Ev values lower than 23% in 259 

calibration and lower than 15% during the validation step. These not negligible errors in volume are 260 

partly due to the difficulties of the model in reproducing the low flows and to the objective function 261 

used for model calibration (maximization of NS) that is mainly addressed for the reproduction of high 262 
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flows. In addition, as it can be noticed by Figure 3, some discharge peaks are not correctly identified, 263 

as over Brenta basin during the calibration period and over Tanaro in 2011. These errors might be due 264 

to different causes, for example the inaccuracy of input observations and the modelling structure, to the 265 

effect of spatial variability that is neglected here, and to the daily time step used for the simulation that 266 

could be not fully appropriate for fast responding basins. Despite these limitations, MISDc confirms its 267 

good capability in simulating floods, also in different physiographic and climatic conditions in Italy, 268 

thus representing an useful tool for testing the potential added-value of SRPs for flood forecasting. All 269 

the performance scores obtained with each rainfall product, for the calibration and validation period, 270 

are summarized in Table 3. 271 

3.3 Discharge simulation with satellite rainfall products 272 

Before introducing the bias correction and recalibration steps into the workflow, discharge 273 

simulations are carried out by using the raw SRPs. By way of example, Figure 4 shows the observed 274 

and simulated hydrographs for Tanaro basin obtained by forcing MISDc with TMPA rainfall dataset 275 

without and with the application of the bias correction step. As it can be seen, if the model is forced 276 

with bias corrected data and after the recalibration, higher performances are obtained. Indeed, the 277 

obtained performance scores, before and after the bias correction and the model recalibration, increase 278 

from NS=0.40, R=0.71 and Ev=35%, to NS=0.53, R=0.77 and Ev=9%. Although the improvement is not 279 

so significant, the effect of the two pre-processing steps is evident. In most of the cases (results not 280 

shown for brevity) the simulations carried out by using corrected data provide higher performance 281 

scores than those obtained by using the raw data. Exceptions are found for the Brenta and Tanaro 282 

during the validation period for TMPA and for Brenta and Volturno during the calibration period for 283 

SM2RASC. These results may be due to the high variability of the rainfall regime from year to year 284 

which would need a dynamic correction of the bias or its more frequent recalibration. On this basis, the 285 
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correction of the bias is in general beneficial but may also provide additional uncertainties in case the 286 

rainfall presents a high non-stationary character. Moreover, it is obtained that after the recalibration, all 287 

the parameter values remained into a physically acceptable range of variation thus ensuring the 288 

consistency of the hydrological simulations. The small but consistent improvement in hydrological 289 

model performance after bias correction of TMPA product (and model recalibration) is also obtained 290 

by Artan et al. (2007) for two sub-basins of Mekong River in South Asia, Stisen and Sandhot (2010) 291 

for the Senegal River basin in West Africa, Tarnavsky et al. (2013) in Senegal and Tunisia, and Zhao et 292 

al. (2015) in the Weihe River basin in China. Therefore, due to the overall improved performances, in 293 

the following we show only results in which SRPs bias is corrected through ground observations and 294 

the model parameter values are recalibrated for each SRP (in the calibration period). 295 

The comparison between observed and simulated discharge obtained by using TMPA and 296 

SM2RASC as input is reported in Figure 5. Although a general agreement between observed and 297 

simulated discharge is recognizable, some peaks are not identified (mainly in the Brenta basin) or 298 

overestimated (Tanaro and Tiber basins) likely due to errors in the SRPs used here as input data. 299 

More specifically, when SM2RASC is used as input, a deterioration of the results with respect to 300 

those obtained by using OBS is found, with NS values of 0.63 (0.52) for Brenta, 0.60 (0.48) for Tanaro, 301 

0.66 (0.48) for Tiber and 0.63 (0.48) for Volturno during the period 2010-2011 (2012-2013). The lower 302 

scores are probably due to SM2RAIN algorithm limitations, i.e., underestimation of rainfall when the 303 

soil is close to saturation and to the presence of mountains and/or snow within the basin that affects the 304 

SM data quality (and, hence, of the SM2RAIN-derived rainfall). The first issue can be easily observed 305 

over the Tiber basin at the end of 2012, when a discharge peak of over 500 m3/s is not identified. The 306 

latter issue is evident over Brenta and Tanaro basins characterized by higher uncertainty in SM data 307 

and a general underestimation of river discharge. In terms of correlation coefficient, SM2RASC still 308 
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provides fair R values for all the analysed basins: during the calibration (validation) period R values 309 

greater than 0.73 (0.70) are obtained for the analysed basins. In terms of errors in volume, quite low Ev 310 

values are observed during the calibration (validation) period: -2% (-4%) for Brenta, 13% (10%) for 311 

Tanaro, 3% (-1%) for Tiber and -3% (-32%) for Volturno. The negative values, mainly obtained during 312 

the last two years of the analysis period, highlight an overestimation of discharge. 313 

When MISDc is forced with TMPA, lower NS values are obtained, even negative during the 314 

validation period. R values are greater than 0.60 (0.36) during the calibration (validation) period and an 315 

overall discharge underestimation is observed with Ev values lower than 6% and 36% in the calibration 316 

and validation period, respectively. It is likely that the lower performance scores are due to the 317 

accuracy of the TMPA product, which is highly affected by topographic issue and by the type and 318 

intensity of precipitation. Indeed, Ciabatta et al. (2015b) highlighted that TMPA product shows low 319 

performance in Southern Italy and in areas characterized by an intense rainfall regime (e.g., Brenta 320 

basin). Moreover, the low and even negative scores obtained during the validation period are likely due 321 

to the need of a more frequent correction of the bias in order to take into account its variability due also 322 

to the changes in the retrieval algorithms and measurement sensors (note that the TMPA product is 323 

based on measurements from a constellation of satellite sensors that are changing in time). A monthly 324 

analysis (not shown) was also carried out in order to investigate the reasons of the low performance of 325 

MISDc using TMPA during the validation period and by analysing both rainfall and discharge data. 326 

The analysis has shown that the performance in terms of rainfall reproduction (by using ground 327 

observations as benchmark) of TMPA during the validation period are highly variable (much more that 328 

in the calibration period), with some months in which the performance reaches very low values (e.g., 329 

R<0.2). Therefore, it appears that any error or performance reduction in rainfall estimation have a 330 

significant impact on the hydrological simulation and propagates forward in time for several months. 331 
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As a result, any short period in which rainfall estimates are less accurate produces remarkable errors in 332 

the simulation of discharge and it is the main reason for the observed low performance of TMPA in the 333 

validation period. 334 

In Italy, just a work by Nikolopoulos et al. (2013) evaluated the reliability of different SRPs for 335 

discharge simulation but their study was addressed to the simulation of only a limited number of flood 336 

events and not a continuous simulation such as we have performed here. The obtained performances 337 

are in agreement anyhow with those obtained by previous studies in different regions worldwide (Artan 338 

et al., 2007; Stisen and Sandhot, 2010; Zhao et al., 2015). We note also that the discharge simulation in 339 

Mediterranean areas is more complex than that one for large basins in Africa or South Asia that are 340 

characterized by a consistent and pronounced seasonal cycle and that are the basins in which most of 341 

the studies were carried out by employing SRPs (see Serrat-Capdevilla et al., 2013 for a review). 342 

Therefore, the results obtained here highlight that SRPs may be employed with some skill also in 343 

smaller basins of the Mediterranean region. 344 

3.4 Discharge simulation by using the integrated rainfall datasets 345 

The integration procedure between ground observed and satellite rainfall by using Equation (3) 346 

provides improvements in the performance scores, showing NS values most of the times (for 3 out 4 347 

basins) higher than those obtained by using observed rainfall, mainly for SM2RASC+OBS product (see 348 

bold numbers in Table 3). Table 4 reports K values obtained during the calibration period for each 349 

rainfall dataset. The simple integration scheme here proposed involves very high values of K, except 350 

for TMPA+OBS in the Tanaro basin that shows the lowest K value equal to 0.5. It should be noted that 351 

the high weight given to ground observations is expected due the high quality of ground observed 352 

rainfall datasets used in this analysis. As it can be noticed in Figure 6, the use of the integrated datasets 353 

into MISDc allows to obtain an accurate discharge simulation over the four analysed basins. It is worth 354 
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to notice that some of the discharge peaks are still not properly identified by the simulated discharge. 355 

This is not due to the SRPs quality, as the same events are also not well captured in the simulations 356 

carried out by using OBS as input (see Figure 3). Therefore, these errors have to be attributed to the 357 

reasons highlighted in Section 3.2 and specifically to the MISDc model deficiencies in representing the 358 

hydrological behaviour of the basins throughout the year. 359 

The integration between observed and satellite rainfall improves the model performance for all the 360 

basins except Volturno basin. Figure 7 shows the mostly positive percentage variations of NS values 361 

obtained by using OBS and the integrated products over the four basins, both during the calibration and 362 

validation period. During calibration, SM2RASC+OBS (TMPA+OBS) provides NS values greater than 363 

0.77 (0.75), while during validation NS values greater than 0.63 (0.36) are obtained. In terms of 364 

correlation, similar results are obtained. That is, SM2RASC+OBS provides R values higher than 0.88 365 

and 0.82 during calibration and validation, respectively, while TMPA+OBS dataset yields R higher 366 

than 0.87 and 0.73. The use of integrated rainfall datasets provides also a reduction of the error in 367 

volume, for all basins. 368 

3.5 Model performance for flood events 369 

The analysis of the performance has been carried out on a total of 43 flood events extracted from 370 

the analysed timeseries: 11 for Tanaro basin, 12 for Brenta basin, 10 for Tiber and Volturno basins. The 371 

events were extracted by selecting those characterized by a total rainfall of more than 20 mm. An event 372 

is distinguished from another if a total rainfall less than 1 mm occurred for at least 6 h. Specifically, the 373 

performance are assessed by considering the hydrographs obtained by forcing MISDc with the different 374 

rainfall datasets, and thus, no recalibration based on flood events is carried out. In Figure 8 the 375 

performance scores obtained for each flood event and basin are shown. It can be noticed that if MISDc 376 

is forced with OBS data, quite high NS values are obtained, except for Tiber basin which is 377 
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characterized by lower performance scores. These results are in agreement with those obtained by 378 

Brocca et al. (2011b) in Central Italy and by Massari et al. (2015) throughout the Italian territory who 379 

obtained NS values at the event-scale ranging between 0.50 and 0.95. If TMPA and SM2RASC datasets 380 

are used as input data, lower performance can be observed with an average reduction of NS equal to -381 

40% and -36% for TMPA and SM2RASC, respectively. More in details, TMPA provides the worst 382 

performance with several negative NS values over Tanaro and Brenta basins (e.g., event 8 for Tanaro 383 

and event 11 for Brenta). SM2RASC provides NS values comparable with those obtained by forcing 384 

MISDc with OBS over Tanaro, Brenta and Tiber basins, while NS is consistently lower for Volturno 385 

basin. The integrated products provide results comparable and sometimes higher than those obtained by 386 

using OBS, except for event 8 over Tanaro basin, where TMPA+OBS product yields a NS value of 387 

about -2. 388 

In terms of EQp, a general underestimation of peak discharge can be observed by using OBS as 389 

input data. Even in this case, the simulations over Tiber basin provide the worst performance scores, 390 

with an error of about 50% for events 3, 4, 6, 7, 8 and 9 and about -100% for event 7. TMPA product 391 

provides a general underestimation of the discharge peaks over Tanaro, Brenta and Tiber basins. 392 

SM2RASC is characterized by a general underestimation over all the four analysed basins, mainly for 393 

Tiber and Volturno basins. TMPA+OBS and SM2RASC+OBS products provide EQp values similar to 394 

those obtained if MISDc is driven with OBS and even lower error values (with respect to OBS) over 395 

Brenta basin. In terms of Ev, OBS data provide the best performance scores, mainly for Volturno basin. 396 

TMPA and SM2RASC products are characterized by a general underestimation for Tanaro, Brenta and 397 

Tiber basins while the simulations carried out for Volturno basin provide better results with respect to 398 

the other basins, except for event 10. 399 
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To sum up, in terms of median NS on all the selected flood events, the use of integrated products 400 

provides comparable results with those achieved by using OBS with the best performance obtained for 401 

Tiber River for SM2RASC+OBS (+54%) and Brenta basin by using TMPA+OBS (+14%) and worst 402 

ones obtained for Volturno with TMPA+OBS (-18%). In the remainder of the cases both 403 

SM2RASC+OBS and TMPA+OBS yields values close to OBS with better results obtained by 404 

SM2RASC+OBS. The poor results obtained for Volturno basin can be explained by the relatively high 405 

quality OBS data when they are used as input in MISDc. Similar results are obtained for EQp (Ev) with 406 

an error reduction of about 28% (38%) for Tiber basin by using SM2RASC+OBS and 43% (16%) for 407 

Brenta basin by using TMPA+OBS. 408 

If compared with the study by Massari et al. (2014), who forced a rainfall-runoff model over a 409 

small catchment in France by using an estimated rainfall product obtained by the application of 410 

SM2RAIN to in situ SM observations, a good agreement in the obtained results is observed. Indeed, 411 

Massari et al. (2014) found that the use of the SM2RAIN-derived rainfall provides reasonable results 412 

but lower than using traditional raingauge observations. However, accordingly our study, the 413 

integration of observed (from raingauge) and estimated rainfall (from SM2RAIN) provided the best 414 

performance with an increase in the mean NS equal to 38% (from 0.48 to 0.66). 415 

4. CONCLUSIONS 416 

Daily discharge simulation with the lumped MISDc model is carried out over four basins 417 

throughout the Italian territory and by using ground observed and satellite-derived rainfall data. The 418 

analysis produced satisfactory and promising results and highlighted the beneficial effects of using 419 

satellite rainfall products in flood modelling over the four analysed basins. Concerning the obtained 420 

results, the following conclusions can be drawn: 421 
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 MISDc hydrologic model is able to reproduce accurately discharges over 4 basins, 422 

characterized by different physiographic and climatic conditions, especially in high flow 423 

conditions. MISDc simulations forced by ground observed rainfall provide Nash-Sutcliffe 424 

efficiency values greater than 0.72 and 0.52 during the calibration and validation period (Table 425 

3 and Figure 3); 426 

 Satellite rainfall products can be employed for flood simulation, but bias correction and model 427 

parameters recalibration are needed before their use (Figure 4). The simulations have provided 428 

promising results in terms of Nash Sutcliffe efficiency, correlation coefficient and volume error, 429 

mainly during the calibration period (Table 3). However, this analysis has highlighted some 430 

contrasting results (as the negative NS values for TMPA in the validation period) that have to be 431 

assessed in further studies by analysing a longer period and by taking into account the year-to-432 

year variability of rainfall regimes; 433 

 SM2RASC performances confirm the good capability of SM2RAIN algorithm in estimating 434 

rainfall, allowing to apply successfully the method also for flood simulation. If MISDc is driven 435 

by SM2RASC data, even better performance scores than TMPA product are obtained (Figure 5); 436 

 Ground observed rainfall datasets may be affected by spatial representativeness issues and may 437 

lead to wrong discharge simulations: the simple integration scheme proposed in this study 438 

highlights the capability of satellite rainfall products to improve rainfall estimates. Although the 439 

improvements are not so evident, MISDc simulations driven by SM2RASC+OBS and 440 

TMPA+OBS provide performance scores, in most of the cases (3 out 4 basins), better than 441 

those obtained by using only the ground observed data. We expect that more advanced 442 

integration schemes may help to further enhance the results. 443 

 444 
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Notwithstanding the obtained results are related to the availability and reliability of ground 445 

observed data, this study provides promising results and represents one of the first attempts to integrate 446 

ground observed and satellite rainfall datasets for flood simulation, mainly in well gauged areas. More 447 

detailed analysis will be addressed in the future in order to better understand and improve the capability 448 

of SRPs in hydrological modelling, by using different bias correction formulations, a more 449 

sophisticated integrations scheme (e.g., data assimilations technique) and by selecting a larger number 450 

of study basins worldwide. The integration between SRPs without the use of ground observed rainfall 451 

data will be analysed as well. 452 

ACKNOWLEDGEMENTS 453 

The Italian Civil Protection Department is gratefully acknowledged for providing the observed 454 

data from the Italian monitoring network. Funding by EUMESAT through the ication 455 

Facility on Support to Operational Hydrology and Water Management (H-SAF  project is also 456 

gratefully acknowledged. 457 

REFERENCES 458 

Artan, G., Gadain, H., Smith, J.L., Asante, K., Bandaragoda, J., Verdin, J.P. (2007). Adequacy of 459 
satellite derived rainfall data for stream flow modeling. Nat. Hazards, 43, 167-185. 460 

Bober, W. (2013). Introduction to Numerical and Analytical Methods with MATLAB for Engineers 461 
and Scientists. CRC Press, Inc.: Boca Raton, FL, USA. 462 

Brocca, L., Melone, F., Moramarco, T. (2008). On the estimation of antecedent wetness conditions in 463 
rainfall-runoff modelling. Hydrological Processes, 22 (5), 629-642. 464 

Brocca, L., Melone, F., Moramarco, T., Singh, V.P. (2009). A continuous rainfall runoff model as a 465 
tool for the critical hydrological scenario assessment in natural channels. In: M. Taniguchi, W.C. 466 
Burnett, Y. Fukushima, M. Haigh, Y. Umezawa (Eds), From headwater to the ocean. 467 
Hydrological changes and managements, Taylor & Francis Group, London, 175-179. 468 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22 
 

Brocca L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W:, Matgen, 469 
P., Martinez.Fernandez, J., Llorens, P., Latron, J., Martin, C., Bittelli, M. (2011a). Soil moisture 470 
estimation through ASCAT and AMSR-E sensors: an intercomparison and validation study 471 
across Europe. Remote Sensing of Environment, 115, 3390-3408. 472 

Brocca, L., Melone, F., Moramarco, T. (2011b). Distributed rainfall-runoff modelling for flood 473 
frequency estimation and flood forecasting. Hydrological Processes, 25 (18), 2801-2813. 474 

Brocca, L., Liersch, S., Melone, F., Moramarco, T., Volk, M. (2013a). Application of a model-based 475 
rainfall-runoff database as efficient tool for flood risk management. Hydrology and Earth System 476 
Sciences, 17, 3159-3169. 477 

Brocca, L., Melone, F., Moramarco, T., Wagner, W. (2013b). A new method for rainfall estimation 478 
through soil moisture observations. Geophys. Res. Lett., 40(5), 853-858. 479 

Brocca, L., Ciabatta, L., Massari, C., Moramarco, T., Hahn, S., Hasenauer, S., Kidd, R., Dorigo, W., 480 
Wagner, W., Levizzani, V. (2014). Soil as a natural raingauge: estimating rainfall from global 481 
satellite soil moisture data. J. Geophys. Res., 119(9), 5128 5141. 482 

Ciabatta, L., Brocca, L., Moramarco T., Wagner, W. (2015a). Comparison of different satellite rainfall 483 
products over the Italian territory. Conference proceeding of XII International IAEG congress, 484 
Torino, 15-19 September. Engineering Geology For Society And Territory - Volume 3, 978-3-485 
319-09053-5, 326570_1_En (126). 486 

Ciabatta, L., Brocca, L., Massari, C., Moramarco, T., Puca, S., Rinollo, A., Gabellani, S., Wagner, W. 487 
(2015b). Integration of soil moisture and rainfall observations over the Italian territory. Journal of 488 
Hydrometeorology, 16(3), 1341-1355. 489 

Dee, D.P., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data 490 
assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597. 491 

Doorenbos J, Pruitt WO. 1977. Background and development of methods to predict reference crop 492 
evapotranspiration (ETo). In Crop Water Requirements. FAO Irrigation and Drainage Paper No. 493 
24, FAO: Rome; 108 119 (Appendix II). 494 

Draper, C., Walker, J. P., Steinle, P., De Jeu, R. A. M., & Holmes, T. R. H. (2009). An evaluation of 495 
AMSR-E derived soil moisture over Australia. Remote Sensing of Environment, 113(4), 703 710 496 

Famiglietti JS, Wood EF. (1994). Multiscale modeling of spatially variable water and energy balance 497 
processes. Water Resources Research, 11, 306-3078. 498 

Guetter, A.K, Georgakakos, K.P., Tsonis, A.A. (1996). Hydrologic applications of satellite data: 2. 499 
Flow simulation and water estimates. Journal of Geophysical Research, 101, 26527-26538. 500 

Harris, A., Rahman, S., Hossain, F., Yarborough, L., Bagtzoglou, A.C., Easson, G. (2007). Satellite-501 
based flood modeling using TRMM-based rainfall products. Sensors, 7, 3416-3427. 502 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

23 
 

Hou, A.Y., Kakar, R.K., Neeck, S., Azarbarzin, A.A., Kummerow, C.D., Kojima, M., Oki, R., 503 
Nakamura, K., Iguchi, T. (2013). The Global Precipitation Measurement (GPM) mission. Bull. 504 
Amer. Meteor. Soc., 95(5), 701-722. 505 

Hsu KL, Gao XG, Sorooshian S, Gupta HV. 1997. Precipitation estimation from remotely sensed 506 
information using artificial neural networks. Journal of Applied Meteorology, 36(9), 1176-1190. 507 

Huffman, G.J., R.F. Adler, D.T. Bolvin, G. Gu, E.J. Nelkin, K.P. Bowman, Y. Hong, E.F. Stocker, 508 
D.B. Wolff, 2007. The TRMM Multi-satellite Precipitation Analysis: Quasi-Global, Multi-Year, 509 
Combined-Sensor Precipitation Estimates at Fine Scale. J. Hydrometeor., 8(1), 38-55. 510 

Jongman, B., Hochrainer-Stigler, S., Feyen, L., Aerts, J.C., Mechler, R., Botzen, W.W.,  Bouwer, 511 
L.M., Pflug, G., Rojas, R., Ward, P.J. (2014). Increasing stress on disaster-risk finance due to 512 
large floods. Nature Climate Change, 4(4), 264-268.  513 

Joyce RJ, Janowiak JE, Arkin PA, Xie PP. 2004. CMORPH: A method that produces global 514 
precipitation estimates from passive microwave and infrared data at high spatial and temporal 515 
resolution. Journal of Hydrometeorology, 5(3), 487-503. 516 

Kidd, C., V. Levizzani, 2011. Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci., 15, 517 
1109-1116. 518 

Kidd, C., P. Bauer, J. Turk, G.J. Huffman, R. Joyce, K.L. Hsu, D. Braithwaite, 2012. Intercomparison 519 
of high-resolution precipitation products over the northwest Europe. J. Hydrometeorol., 13, 67-520 
83. 521 

Kucera, P.A., E.E. Ebert, F.J. Turk, V. Levizzani, D. Kirschbaum, F.J. Tapiador, A. Loew, M. Borsche, 522 
2013. Precipitation from space: Advancing earth system science. Bull. Amer. Meteor. Soc., 94, 523 
365-375. 524 

Massari, C., L. Brocca, T. Moramarco, Y. Tramblay, J-F. Didon Lescot. (2014). Potential of soil 525 
moisture observations in flood modelling: estimating initial conditions and correcting rainfall. 526 
Adv. Water Resour., 74, 44-53. 527 

Massari, C., Brocca, L., Ciabatta, L., Moramarco, T., Gabellani, S., Albergel, C., De Rosnay, P., Puca, 528 
S., Wagner, W. (2015). The use of H-SAF soil moisture products for operational hydrology: 529 
flood modelling over Italy. Hydrology, 2, 2-22. 530 

Melone, F., Corradini, C., Singh, V.P. (2002). Lag prediction in ungauged basins: an investigation 531 
through actual data of the upper Tiber River valley. Hydrological Processes, 16, 1085-1094. 532 

Mugnai, A., Casella, D., Cattani, E., Dietrich, S., Laviola, S., Levizzani, V., Panegrossi, G., Petracca, 533 
M., Sanò, P., Di Paola, F., Biron, D., De Leonibus, L., Melfi, D., Rosci, P., Vocino, A., Zauli, F., 534 
Pagliara, P., Puca, S., Rinollo, A., Milani, L., Porcù, F., Gattari, F. (2013). Precipitation products 535 
from the hydrology SAF, Nat. Hazards Earth Syst. Sci., 13, 1959-1981. 536 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24 
 

Nikolopoulos, E.I., Anagnostou, E.N., Borga, M. (2013). Using high-resolution satellite rainfall 537 
products to simulate a major flash flood event in northern Italy. Journal of Hydrometeorology, 538 
14(1), 171-185. 539 

Rudolf, B. and U. Schneider, 2005. Calculation of gridded precipitation data for the global land-surface 540 
using in-situ gauge observations. Proc. 2nd Workshop Int. Precipitation Working Group, 2005, 541 
231-247. 542 

Serrat-Capdevilla, A., Valdes, J.B., Stakhiw, E.Z. (2013). Water management applications for satellite 543 
precipitation products: synthesis and recommendations. Journal of the American Water 544 
Resources Association (JAWRA), 50(2), 509-525. 545 

Stampoulis, D., Anagnostou, E.N. (2011). Evaluation of global satellite rainfall products over 546 
continenatl Europe. J. Hydrometeor., 13, 588 603. 547 

Stisen, S., Sandholt, I. (2010). Evaluation of remote-sensing-based rainfall products though predictive 548 
capability in hydrological runoff modelling. Hydrological Processes, 24,879-891. 549 

Tarnavsky, E., Mulligan, M., Ouessar, M., Faye, A., Black, E. (2013). Dynamic Hydrological 550 
Modeling in Drylands with TRMM Based Rainfall. Remote Sensing, 5(12), 6691-6716. 551 

The NOAA Climate Prediction Center, N., 2002. African Rainfall Estimation Algorithm  Version 2.0. 552 

Thieming, V., Rojas, R., Zambrano-Bigiarini, M., De Roo, A. (2013). Hydrological evaluation of 553 
satellite-based rainfall estimates over the Volta and Baro-Akobo Basin. Journal of Hydrology, 554 
499, 324-338. 555 

Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer, S., Figa, J., de Rosnay, P., Jann, 556 
A., Schneider, S., Komma, J., Kubu, G., Brugger, K., Aubrecht, C., Zuger, J., Gangkofner, U., 557 
Kienberger, S., Brocca, L., Wang, Y., Bloeschl, G., Eitzinger, J., Steinnocher, K., Zeil, P., Rubel, 558 
F. (2013). The ASCAT Soil Moisture Product: A Review of its Specifications, Validation 559 
Results, and Emerging Applications. Meteorologische Zeitschrift, 22(1), 5-33. 560 

Wake B. (2013). Flooding costs. Nature Climate Change, 3, 778. 561 

Xie P, Arkin AP (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, 562 
satellite estimates, and numerical model outputs. Bull Am Meteorol Soc, 78(11), 2539-2558. 563 

Zhao, H., Yang, S., Wang, Z., Zhou, X., Luo, Y., Wu, L. (2015). Evaluating the suitability of TRMM 564 
satellite rainfall data for hydrological simulation using a distributed hydrological model in the 565 
Weihe River catchment in China. Journal of Geographical Sciences, 25(2), 177-195. 566 

  567 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

25 
 

FIGURES568

 569 

Figure 1  Geographical location and elevation of the a) Tanaro River basins, b) Brenta River basin, c) 570 
Tiber River basin and d) Volturno River basin (not in scale). 571 
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Figure 573 
2  Schematization of the MISDc rainfall-runoff model with the representation of the simulated 574 
hydrological processes. 575 
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 577 

Figure 3  Comparison of observed and simulated discharge obtained by forcing MISDc model with 578 
ground observed rainfall for Brenta (up-left), Tanaro (up-right), Tiber (bottom-left) and Volturno 579 
(bottom-right) basins, during the entire analysis period (2010-2013). 580 
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 582 

Figure 4  Observed and simulated hydrographs obtained by forcing MISDc model with TMPA data 583 
before (upper panel) and after (lower panel) bias correction and model recalibration. 584 
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 586 

Figure 5  Comparison of observed and simulated daily discharge obtained by forcing MISDc model 587 
with the two satellite rainfall products SM2RASC and TMPA for Brenta (up-left), Tanaro (up-right), 588 
Tiber (bottom-left) and Volturno (bottom-right) basins, during the entire analysis period (2010-2013). 589 
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 591 

Figure 6  Comparison of observed and simulated daily discharge obtained by forcing MISDc model 592 
with the two integrated rainfall products SM2RASC+OBS and TMPA +OBS for Brenta (up-left), 593 
Tanaro (up-right), Tiber (bottom-left) and Volturno (bottom-right) basins, during the entire analysis 594 
period (2010-2013). 595 

  596 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

31 
 

 597 

Figure 7  Nash-Sutcliffe efficiency index (NS) percentage variation obtained by forcing MISDc 598 
model with SM2RAIN derived rainfall (SM2RASC), TMPA 3B42-RT product (TMPA) and the 599 
integrated products between the observed and satellite rainfall data (SM2RASC+OBS and 600 
TMPA+OBS) during calibration (blue squares) and validation (green rumbles). The text boxes show 601 
the percentage variations in NS obtained for TMPA during the validation period that exceed the axis 602 
limit. 603 
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 605 

Figure 8  Performance scores obtained during the flood events simulations over the Tanaro (TA), 606 
Brenta (BR), Tiber (TI) and Volturno (VO) basins by forcing MISDc model with observed data (OBS, 607 
solid green line), SM2RAIN derived rainfall (SM2RASC, dashed red line), TMPA data (TMPA, dashed 608 
blue line), integrated product between SM2RASC and OBS data (SM2RASC+OBS, dashed black line) 609 

and integrated product between TMPA and OBS data (TMPA+OBS, dashed magenta line). Nash-610 
Sutcliffe efficiency index (NS, upper panel), percentage error in peak discharge (EQp, middle panel) and 611 
percentage error on direct runoff volume (Ev, bottom panel). In the upper panel graph, the y-axis is 612 
truncated to 0 for visualization purposes. 613 
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TABLES615

Table 1  Main characteristics of the investigated basins: gauging station, drainage area, Mean Annual 616 
Rainfall (MAR), Mean Annual Temperature (MAT), average elevation (in m a.s.l.) and average slope 617 
(in °). 618 

Basin Gauging station Area (km2) MAR (mm) MAT (°C) 
Average 
altitude  
(m a.s.l.) 

Average 
slope (°) 

Tanaro Asti S. Martino 3229.7 1125 8.94 1025 15.59 

Brenta Berzizza 1506.3 2123.8 7.04 1239 22.53 

Tiber Ponte Felcino 1879 967.76 13.22 518 10.76 

Volturno Solopaca 2578.8 1208.1 13.33 543 8.80 
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Table 2  Correlation coefficients (R) and Root Mean Square Error (RMSE) for the analysed satellite 621 
products (SM2RASC and TMPA) against observed rainfall during the calibration (CAL) and validation 622 
(VAL) periods. 623 

Basin 
SM2RASC TMPA 

CAL VAL CAL VAL 
R RMSE R RMSE R RMSE R RMSE 

Brenta 0.56 14.97 0.49 14.91 0.70 12.78 0.66 13.55 

Tanaro 0.60 7.56 0.48 6.96 0.79 5.94 0.69 6.52 

Tiber 0.54 7.00 0.49 7.66 0.71 5.73 0.83 9.25 

Volturno 0.63 6.10 0.60 5.80 0.64 6.07 0.63 5.78 

 624 
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Table 3  Nash-Sutcliffe efficiency (NS), correlation coefficient (R) and percentage volume error (Ev) 626 
obtained by forcing MISDc hydrologic model with observed, satellite (SM2RASC and TMPA) and 627 
integrated (SM2RASC+OBS and TMPA+OBS) rainfall data, during the calibration (2010-2011) and 628 
validation (2012-2013) periods. In bold font the best performance scores of each basin are reported 629 
while the scores are in italic font if better than those obtained with ground observed rainfall (OBS). The 630 
highest performance of the integrated SM2RASC+OBS product for Brenta, Tanaro and Tiber river 631 
basins is evident. 632 

Basin 
Calibration (2010-2011) Validation (2012-2013) 
NS R Ev (%) NS R Ev (%) 

OBS 
Brenta 0.72 0.86 6 0.76 0.88 4 
Tanaro 0.76 0.89 23 0.68 0.83 11 
Tiber 0.77 0.88 16 0.52 0.77 -15 

Volturno 0.86 0.93 14 0.77 0.88 5 

SM2RASC 

Brenta 0.63 0.73 -2 0.52 0.73 -4 
Tanaro 0.60 0.78 13 0.48 0.70 -10 
Tiber 0.66 0.81 3 0.48 0.70 -1 

Volturno 0.63 0.79 -3 0.48 0.72 -32 
TMPA 

Brenta 0.32 0.60 9 0.20 0.49 6 
Tanaro 0.76 0.89 19 -0.22 0.49 -4 
Tiber 0.53 0.73 16 -0.23 0.42 -27 

Volturno 0.37 0.61 6 0.07 0.36 36 

SM2RASC+OBS 

Brenta 0.78 0.89 1 0.79 0.88 -5 
Tanaro 0.78 0.89 21 0.71 0.85 9 
Tiber 0.81 0.90 10 0.74 0.86 -6 

Volturno 0.77 0.88 1 0.63 0.82 -34 
TMPA+OBS 

Brenta 0.77 0.88 3 0.74 0.87 -4 
Tanaro 0.79 0.90 20 0.47 0.73 3 
Tiber 0.77 0.88 17 0.36 0.81 -14 

Volturno 0.75 0.87 5 0.61 0.81 -26 
  633 
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Table 4  Integration coefficient (K) for the considered basins by using as model input the integrated 634 
products between the observed and satellite products (SM2RASC+OBS and TMPA+OBS). 635 

Basin SM2RASC+OBS TMPA+OBS 

Brenta 0.8 0.9 

Tanaro 0.8 0.5 

Tiber 0.7 0.9 

Volturno 0.8 0.9 
 636 

 637 




