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Abstract: Spatial information of the dominant species of submerged aquatic 14 

vegetation (SAV) is essential for restoration projects in eutrophic lakes, 15 

especially eutrophic Taihu Lake, China. Mapping the distribution of SAV 16 

species is very challenging and difficult using only multispectral satellite 17 

remote sensing. In this study, we proposed an approach to map the distribution 18 

of seven dominant species of SAV in Taihu Lake. Our approach involved 19 

information on the life histories of the seven SAV species and eight distribution 20 

maps of SAV from February to October. The life history information of the 21 

dominant SAV species was summarized from the literature and field surveys. 22 

Eight distribution maps of the SAV were extracted from eight 30 m HJ-CCD 23 

images from February to October in 2013 based on the classification tree 24 

models, and the overall classification accuracies for the SAV were greater than 25 

80%. Finally, the spatial distribution of the SAV species in Taihu in 2013 was 26 

mapped using multilayer erasing approach. Based on validation, the overall 27 

classification accuracy for the seven species was 68.4%, and kappa was 0.6306, 28 

which suggests that larger differences in life histories between species can 29 

produce higher identification accuracies. The classification results show that 30 

Potamogeton malaianus was the most widely distributed species in Taihu Lake, 31 

followed by Myriophyllum spicatum, Potamogeton maackianus, Potamogeton 32 

crispus, Elodea nuttallii, Ceratophyllum demersum and Vallisneria spiralis. 33 

The information is useful for planning shallow-water habitat restoration 34 

projects. 35 

Keywords: Submerged aquatic vegetation (SAV); Mapping; Dominant 36 

species; Remote sensing; Life history 37 
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1. Introduction  40 

Submerged aquatic vegetation (SAV) has important impacts on the 41 

physical, chemical and biological structure and function of aquatic 42 

ecosystems, particularly in shallow lakes (Barko et al., 1991; Gumbricht, 43 

1993; Hu et al., 2010). Studies indicated that shallow aquatic systems that 44 

are dominated by SAV often have better water quality (clarity, total 45 

suspended solid, pH, chlorophyll a (Chl-a), total phosphorus (TP) and yotal 46 

nitrogen (TN) than other systems (Luo et al., 2014), and SAV can cause 47 

aquatic ecosystems to shift from a turbid algae-dominated state to a clear-48 

water plant-dominated state (Folke et al., 2004; Soana et al., 2012), because 49 

it can inhibit the growth of algae, absorb the excessive nutrients, reduce 50 

water currents, accelerate the sedimentation of suspended materials, 51 

stabilize sediments and prevent them from re-suspending (Depew et al., 52 

2011; Hilt et al., 2006; Luo et al., 2014; Shuchman et al., 2013), In addition, 53 

it can provide food and shelter for wildlife, and habitat for spawning 54 

aquatic animals. 55 

In recent decades, as a consequence of rapid urbanization and human 56 

activities, most of the urban and suburban shallow lakes and rivers in China 57 

have experienced accelerating eutrophication followed by the loss or 58 

degradation of SAV due to high total suspended matter (TSM) 59 

concentration and low water transparency (Duan et al., 2012; Shi et al., 60 

2015). The restoration of SAV in phytoplankton-dominated lakes is crucial 61 

for transforming the turbid states of these shallow lakes (Dong et al., 2014; 62 

Hilt et al., 2006). In addition, studies have indicated that SAV can help 63 

inhibit the growth of phytoplankton by competing for nutrients and light 64 
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(Dong et al., 2014; Lombardo and Cooke, 2003). The re-establishment of 65 

SAV has been recognized as a valuable ecological engineering technique g 66 

for improving aquatic systems in China. Efficient SAV restoration planning 67 

requires reliable information about the physical habitat requirements of the 68 

species (Angradi et al., 2013). For SAV restoration projects, mapping the 69 

spatial distribution of the SAV species is important for acquiring the most 70 

suitable ecology and environment conditions for the growth of the 71 

dominant SAV species. Additionally, an accurate knowledge of the spatial 72 

distribution of dominant species of SAV is highly valuable to many 73 

scientific and management goals, including the improved parameterization 74 

of shallow lake ecosystem processes and models (Zhang et al., 2013). 75 

Surveying the distribution of SAV and species at a large scale is very 76 

labour intensive and time-consuming due to the restriction of working in 77 

the water environment. Satellite remote sensing techniques have become 78 

powerful and effective tools for mapping aquatic vegetation (Liu et al., 79 

2015; Ma et al., 2008; Zhao et al., 2013). For example, Zhao et al. (2013) 80 

and Luo et al. (2014) proposed methods for identifying of emergent, 81 

floating-leaved and submerged vegetation and mapping their distribution 82 

in Taihu Lake using Landsat TM and HJ-1A/1B CCD images, respectively. 83 

Robert et al. (2015) developed a satellite-based algorithm to map SAV and 84 

then successfully mapped the distribution of SAV in the Laurentian Great 85 

Lakes, Lakes Michigan and Ontario. Therefore, multispectral satellite 86 

remote sensing can be used to accurately map and identify emergent, 87 

floating-leaved and submerged vegetation in shallow coastal waters or 88 

lakes due to the large spectral difference among them.  89 

For identifying SAV species, a limited number of exploratory research 90 

programs have been conducted using hyperspectral remote sensing data. 91 

For example, Han and Rundquist (2003) studied the spectral responses of 92 

Ceratophyllum demersum at varying depths in both clear and algae-laden 93 
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water using a hyperspectral hand-held spectroradiometer. Pinnel et al. 94 

(2004) gathered airborne hyperspectral remote sensing data for the spectral 95 

discrimination of submerged vegetation in Southern Germany. Yuan and 96 

Zhang (2006) investigated the spectral characteristics of the SAV plant 97 

species Potamogeton crispus, Myriophyllum spicatum and Potamogeton 98 

malaianus with the same coverage and found that their red edge peaks and 99 

valleys are different. These studies suggested that there are tiny spectral 100 

differences among SAV species, and it is only possible to recognize them 101 

using hyperspectral remote sensing data with abundant spectral 102 

information.    103 

However, considering the cost and availability of hyperspectral 104 

satellite data, it is infeasible to use them to continuously monitor and 105 

identify SAV species. It appears to be impossible to map and identify SAV 106 

species using only multispectral satellite image because the spectral 107 

differences among the SAV species are tiny and therefore difficult to 108 

capture using broadband remote sensing data. Fortunately, different SAV 109 

species have different phonological characteristics and life histories, which 110 

has made it possible to map and identify SAV species using multiseasonal 111 

and multispectral satellite remote sensing data based on information on 112 

their life histories, and it has been proven to be effective to identify 113 

terrestrial vegetation types based on multi-temporal satellite remote 114 

sensing data (Leite et al., 2011; Liu et al., 2006; Murthy et al., 2003) and 115 

phenological information. However, the method has not been used and 116 

tested for mapping aquatic vegetation species. 117 

Therefore, in this study, using ArcGIS spatial analysis technology, we 118 

developed a multilayer erasing flow for mapping SAV species in Taihu 119 

Lake by combining their life history characteristics and multi-seasonal 120 

satellite remote sensing data. To our knowledge, it is the first study to map 121 

the dominant SAV species using satellite images. 122 
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2. Materials and methods 123 

2.1. Study area 124 

Taihu Lake (30°55′40″– 31°32′58″N, 119°52′32″– 120°36′10″E) is 125 

one of the five largest freshwater lakes in China and covers an area of 126 

approximately 2,338 km2. It is located at the core of the Yangtze Delta in 127 

the lower reaches of the Yangtze River in eastern China (Figure 1). Taihu 128 

Lake is a typical shallow lake with a maximum depth of less than 3 m and 129 

an average depth of 1.9 m. The western and central parts of Taihu Lake 130 

belong to the algal-dominated zone, where the waters are consistently 131 

extremely turbid with high total nitrogen (TN), total phosphorus (TP) 132 

contents and suspended matter concentration. Algal blooms occur 133 

frequently in the algal-dominated zone (Duan et al., 2015). The eastern of 134 

Taihu Lake, including Meiliang, Gonghu, Zhenhu, Guhuanghu, Xukou, 135 

Doangshan and Dongtaihu Bays, are covered with hydrophytes and 136 

therefore belonged to a macrophyte-dominated zone with much lower TN 137 

and TP content and higher water transparency than did those in the algal-138 

dominated zone (Luo et al., 2016). According to previous studies (Carr et 139 

al., 2010; Liu et al., 2015), no aquatic vegetation exists at water depth 140 

greater than 2.3 m in the Taihu Lake. Therefore, we exacted the region with 141 

water depths less than 2.3 m as the study area. Depth data was provided by 142 

Taihu Laboratory for Lake Ecosystem Research (Figure 1).  143 

There are four types of aquatic vegetation in the grass-type zone: 144 

emergent, free-floating, floating-leaving and submerged vegetation. 145 

Emergent and free-floating hydrophytes accounts for less than 5% of the 146 

total aquatic vegetation area and are mostly distributed in the littoral zone 147 

of Taihu Lake (Luo et al., 2014). In this study, we divided aquatic 148 

vegetation into floating-leaved and submerged vegetation. According to 149 

field survey and documentary records, there are approximately 17 SAV 150 



6 

 

species in Taihu Lake, but only seven species are dominant: Elodea 151 

nuttallii, Potamogeton crispus, Myriophyllum spicatum, Potamogeton 152 

maackianus, Ceratophyllum demersum and Vallisneria spiralis(Ma et al., 153 

2008; Qin, 2008; Ye et al., 2009). 154 

 155 

Figure 1. Location of Taihu Lake within China (depth data was provided by Taihu 156 

Laboratory for Lake Ecosystem Research) 157 

2.2. Field data collection 158 

Field surveys were conducted on 10-14 March, 22-24 May, 10–13 July, 159 

17–22 August and 23–26 September in 2013. A total of 604 ground-truth 160 

samples were collected for open water and aquatic vegetation (100 samples 161 

in March, 102 samples in May, 112 samples in July, 143 samples in August 162 

and 179 samples in September) in macrophyte-dominated zone of Taihu 163 
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Lake (Figure 1), including 405 submerged vegetation samples and 231 164 

floating-leaved vegetation samples. The aquatic vegetation sampling plots 165 

were limited to areas measuring at least 60 × 60 m (i.e., four pixels of an 166 

HJ-CCD image) and that had a relatively uniform distribution of 167 

vegetation. We used a portable GPS receiver with an accuracy of 3 m to 168 

record the centre coordinates of each sample and recorded the type and 169 

percent coverage of aquatic vegetation. We also used GPS to record the 170 

boundary extent of the representative floating-leaved and submerged 171 

aquatic vegetation sample regions to generate a polygon vector file. 172 

2.3. Remote sensing data collections and processing 173 

HJ-CCD images recorded from the HJ-1A/1B CCD cameras were 174 

acquired from the China Centre for Resources Satellite Data and 175 

Application (CRESDA). These cameras were onboard the HJ-1A and HJ-176 

1B satellites, which were launched by CRESDA on September 6, 2008. 177 

Their spectral ranges and spatial resolutions are similar to those of the first 178 

four bands of Landsat TM. The single CCD imagery width is 360 km, and 179 

the two satellites constellation provides a wider swath width (700 km) and 180 

a re-visit time of 48 h (two days). Its high re-visit cycle was of great 181 

importance for mapping the dominant SAV species in this study. 182 

In this study, eight cloud-free and sun glint free HJ-CCD images 183 

covering Taihu Lake and acquired on February 20, March 12, April 25, 184 

May 22, July 11, August 16, September 26 and October 28, 2013 were 185 

used, respectively. The ENVI software package was used to pre-process the 186 

remote sensing images. Radiometric corrections were made using coefficients 187 

from the metadata accompanying the images (e.g., gains and offsets). 188 

FLAASH uses a robust procedure to correct for atmospheric attenuation and 189 

adjacency effects (Module, 2009). Four key input parameters for the 190 

FLAASH module included: the mid-latitude atmosphere model, urban 191 
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aerosol model, atmosphere water vapour and visibility. Based on the location 192 

of the study area covered by the scenes and the satellite transit time, the first 193 

two parameters were easily determined. However, water vapour and visibility 194 

values may vary between the images, and these were determined by trial-and-195 

error until a typical spectral pattern of plants was observed (Pu et al., 2012). 196 

The HJ-CCD images were also geometrically corrected with a previously 197 

corrected Landsat TM image with a geometric accuracy of < 0.5 pixels. 198 

2.4. Life histories of dominant species of SAV in Taihu Lake 199 

There are seven dominant SAV species in Taihu Lake: Potamogeton 200 

crispus, Elodea nuttallii, Myriophyllum spicatum, Potamogeton 201 

maackianus, Ceratophyllum demersum, Vallisneria spiralis and 202 

Potamogeton malaianus. Using references and field surveys, the life 203 

histories of the seven dominant species are summarized in Figure 1. 204 

Detailed descriptions of the species are now discussed. 1) Potamogeton 205 

crispus can tolerate temperatures below 0°C and can survive over winter. 206 

It grows rapidly after March, reaches a maximum biomass in mid-May and 207 

then soon dies and becomes dormancy (Nichols and Shaw, 1986; Rogers 208 

and Breen, 1980). It regrows after November. 2) Elodea nuttallii tolerates 209 

temperature below 0°C and can survive over winter, forming a dense mat 210 

of vegetation just above the lake bottom (Oki, 1994). It grows rapidly after 211 

May, reaches a maximum biomass in early July, and then soon died and 212 

becomes dormancy. It regrows after September (Kunii, 1984). 3) 213 

Potamogeton maackianus cannot survive over winter. It begins to rapidly 214 

grow in early April and reaches a maximum biomass in July, grows slowly 215 

and gradually withers (Ni, 2001). 4) Myriophyllum spicatum cannot 216 

survive over winter. It grows rapidly from April to July and reaches its peak 217 

stage from early July to early August. It begins its dormancy from 218 

December to the following February (Nichols and Shaw, 1986). 5) 219 
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Ceratophyllum demersum cannot survive over winter and starts dormancy 220 

between December to following February. It grows rapidly from early June 221 

and reaches a maximum biomass from late August to early September, and 222 

then grows slowly and gradually withers (Best, 1977). 6) Vallisneria 223 

spiralis cannot survive over winter and is dormant from December to next 224 

February. It begins growing slowly from April and grows rapidly during 225 

July-September, after which is reaches maximum biomass during early 226 

October to mid-October. 7) Potamogeton malaianus has a similar life 227 

history, except for its peak stage. It reaches maximum biomass from late 228 

October to early November (Liu et al., 2007; Wiegleb and Kadono, 1989; 229 

Xiao et al., 2010). 230 

 231 

Figure 2. Life histories of seven SAV species in Taihu Lake 232 

Note: P.C.=Potamogeton crispus; E.N.=Elodea nuttallii; M.S.=Myriophyllum 233 

spicatum; P.Maa.=Potamogeton maackianus; C.D.=Ceratophyllum demersum; 234 

V.S.=Vallisneria spiralis; P. Mal.=Potamogeton malaianus; E=Early; M=Middle; 235 

L=Late. 236 

2.5 Methods 237 

2.5.1. Classification tree model for the extraction of SAV 238 

Classification tree (CT) analyses are based on the dichotomous 239 

partitioning of data at certain thresholds of the value of the explanatory 240 

variables, which determine the branch a particular sample will follow 241 

(Olshen and Stone, 1984). It is considered to be especially robust when 242 

E M L E M L E M L E M L E M L E M L E M L E M L E M L
P.C.
E.N.

P.Maa.
M.S.
C.D.
V.S.

P.Mal.

Germination stage

Peak stage Over-wintering stage

Slowly-growing stage Fast-growing stage

Mar Apr May Jun Jul Aug Sep Oct Nov
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used with a small sample size of remotely-sensed data (Tadjudin and 243 

Landgrebe, 1996). Luo et al., (2014) developed a classification tree for 244 

mapping floating-leaved and submerged vegetation in Taihu Lake. As 245 

shown in Fig. 3, in the classification tree, floating-leaved vegetation was 246 

first extracted from other types using the floating-leaved vegetation 247 

sensitive index (FVSI), and then the submerged vegetation sensitive index 248 

(SVSI) was used to distinguish between the SAV and water. The FVSI and 249 

SVSI were defined as: 250 

FVSI = PC2                                    Eq. (1)                                                  251 

where PC2 is the second principal component of the principal component 252 

transform. 253 

SVSI=TC1¬TC2                                Eq. (2)                                                                         254 

where TC1 and TC2 are, respectively, the first and second components of 255 

the tasseled cap transform, which are also called the brightness and 256 

greenness (Crist, 1985; Healey et al., 2005). 257 

 258 

Figure 3. Classification tree of identifying floating-leaved vegetation and submerged 259 

aquatic vegetation based on FVSI and SVSI, where a and b are the threshold of FVSI 260 

and SVSI 261 

In the classification tree, the thresholds, i.e., a and b, of FVSI and 262 

SVSI vary with images, because they can be influenced by aquatic 263 

vegetation conditions, environmental and physical conditions. For the 264 

image with the synchronously collected ground samples, the thresholds of 265 

FVSI and SVSI were determined and modified slightly based on field 266 
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survey points until the maximum classification precision was achieved. For 267 

the image without the synchronously collected ground samples, Luo et al. 268 

(2014) developed an effective algorithm to calculate the thresholds. In this 269 

study, the thresholds of FVSI and SVSI in the CT models for the image 270 

acquired on July 11 were obtained using the synchronously collected 271 

ground samples, whereas the thresholds for the images without 272 

synchronously collected ground samples were calculated according to the 273 

thresholds for the July 11 image using the algorithm developed by Luo et 274 

al. (2014) The algorithms can be expressed as: 275 

CTm_FVSI= k×CT_FVSI+h                             Eq. (3)                                                    276 

CTm_SVSI= p×CT_SVSI+q                             Eq. (4)                            277 

where CTm_FVSI and CTm_SVSI are the thresholds of FVSI and SVSI in 278 

the classification model, respectively, for the image acquired at time m in 279 

the absence of ground samples, which should be calculated, that is a and b 280 

in the classification tree in Figure 3; and CT_FVSI and CT_SVSI are the 281 

thresholds of FVSI and SVSI in the classification model, respectively, for 282 

the image of July 11. The CT _FVSI and CT _SVSI were obtained using the 283 

field survey data. For k and h, we first selected the same regions of interest 284 

(ROIs) with floating-leaved vegetation from the images at time m and July 285 

11, respectively. Secondly, two group FVSI values derived from the two 286 

ROIs were placed in descending order. Finally, the line fitting model was 287 

simulated using the two descending FVSI datasets, and the slope and 288 

intercept of the linear model were k and h, respectively. In a similar way, 289 

the line fitting model could be simulated by the two groups of SVSI in 290 

descending order, and then we can acquire p and q. See the work by Luo 291 

et al. (Luo et al., 2014) for the detailed test and validation of the algorithm. 292 

The thresholds and classification accuracies of SAV were assessed by the 293 

overall classification accuracy (OCA) (Luo et al., 2016; Luo et al., 2014).   294 
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2.5.2. Method for identifying dominant species of SAV 295 

Based on the life history information of the dominant SAV species, 296 

the dominant species were identified from the time-series SAV distribution 297 

maps using the erase tool in the analysis tool of ArcGIS. The erase tool is 298 

an important analysis tool in ArcGIS. As shown in Figure 4, erase creates 299 

a new feature class by overlaying two sets of features. The erase features 300 

polygons that define the erasing area. The input features or portions of 301 

input features that overlap the erase features are not written to the output 302 

feature class. The input features can be points, lines or polygons, but the 303 

erase features must be polygons. The output features will be of the same 304 

geometry type as the input Features. Input features or portions of input 305 

features that do not overlap erase features are written to the output feature 306 

class.  307 

 308 

Figure 4. Schematic diagram of erase tool (from ArcGIS desktop help) 309 

Figure 5 shows the flow chart and methods that were used to identify 310 

the dominant SAV species. As shown in Figure 5, Layers 2, 3, 5, 7, 8, 9 and 311 

10 are the SAV spatial distribution maps derived from the images of 312 

February 20, March 12, May 22, July 11, August 16, September 26 and 313 

October 28 based on the classification tree models. The methods were 314 

developed according to the following general principles. 1) The dominant 315 

species were extracted successively according to the time order of the 316 

maximum biomass from January to December, and thus, Potamogeton 317 

crispus, Elodea nuttallii, Myriophyllum spicatum, Potamogeton 318 
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maackianus, Ceratophyllum demersum, Vallisneria spiralis and 319 

Potamogeton malaianuswere extracted in sequence. 2) the Erase tool in 320 

ArcGIS was used to extract the species. The input layer and erase feature 321 

are SAV layers extracted from the images using the corresponding 322 

classification tree models. To obtain the distribution layer of a species layer, 323 

the input layer was derived from the image during the fast-growing and 324 

peak stages of the species, and the erase feature was derived from the image 325 

between the germination and slow growth stages of the species. Because 326 

the species has the highest coverage and was the closest to water surface in 327 

their fast-growing and peak stages, during which they can be readily 328 

captured by remote sensing. In the germination and slow growth stages, 329 

the species’ canopies are not close to the water surface and coverage are 330 

low; in these stages, very little species information can be captured by 331 

remote sensing, especially in high suspended shallow lakes. 332 

Therefore, based on the life histories of the seven SAV species, the 333 

detailed steps for extracting the seven species are as follows: 1) extraction 334 

of Potamogeton crispus. From February to March, Potamogeton crispus 335 

and Elodea nuttallii are in the fast-growing stage, and in the germination 336 

stage in July, they are the main dominant species in Taihu. The SAV layers 337 

derived from March and April were merged, and then the merged layer was 338 

used as the input layer, the SAV layers from July were used as the erase 339 

feature, and therefore the output layer was the distribution layer of 340 

potamogeton crispus; (2) extraction of Elodea nuttallii. The SAV layers 341 

derived from February and March were merged, the merged layer was used 342 

as the input layer, Potamogeton crispus layer was used as the erase feature, 343 

and therefore the output layer was the distribution layer of Elodea nuttallii; 344 

(3) extraction of Potamogeton maackianus. Potamogeton maackianus is in 345 

the fast-growing stage in May and in the slowly-growing stage in March. 346 

Therefore the SAV layer in May was used as the input layer; the SAV layer 347 
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in March and Potamogeton crispus and Elodea nuttallii layers were 348 

merged, the merged layer was used as the erase feature, and the output layer 349 

was the distribution layer of Potamogeton maackianus; (4) extraction of 350 

Myriophyllum spicatum. This species is in its peak stage in July and in the 351 

slowly-growing stage in October. The SAV layer in July was used as the 352 

input layer; the SAV layer in October and the layers of Potamogeton 353 

crispus and Elodea nuttallii and Potamogeton maackianus were merged, 354 

the merged layer was used as the erase feature, and the output layer was 355 

the distribution layer of Myriophyllum spicatum; (5) extraction of 356 

Ceratophyllum demersum. This species is in its fast-growing stage in 357 

August and in the slowly-growing stage in late-October. The SAV layer in 358 

August was used as the input layer, the SAV layer in late-October and the 359 

layers of Potamogeton crispus, Elodea nuttallii, Potamogeton maackianus 360 

and Myriophyllum spicatum were merged, the merged layer was used as 361 

the erase feature; and the output layer was the distribution layer of 362 

Ceratophyllum demersum; (6) extraction of Vallisneria spiralis. This 363 

species is in its fast-growing stage in September and in the slowly-growing 364 

stage in late-October. The SAV layer in August was used as the input layer, 365 

the SAV layer in late-October and the layers of Potamogeton crispus, 366 

Elodea nuttallii, Potamogeton maackianus, Myriophyllum spicatum and 367 

Ceratophyllum demersum were merged, the merged layer was used as the 368 

erase feature, and the output layer was the distribution layer of Vallisneria 369 

spiralis; (7) extraction of Potamogeton malaianus. All of the SAV layers 370 

from February, March, April, May, July, August, September and October 371 

were merged, the merged layer was used as the input layer, the 372 

classification layers of the other six species were merged, the merged layer 373 

was used as the erase feature, and the output layer was the distribution layer 374 

of Potamogeton malaianus. 375 
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 376 

Figure 5. Flow chart for identifying seven SAV species 377 

Note: Layer 2, 3, 4, 5, 7, 8, 9, 10 are the SAV distribution maps were derived from the 378 

image of February 20, March 12, April 25, May 22, July 11, August 16, September 26 379 

and October 28,2013 using classification tree models. 380 

 381 

According to Figure 5, the spatial distribution of the seven SAV 382 

species in 2013 can be mapped in shallow lakes. Classification accuracies 383 

of dominant SAV species were assessed by producer’s accuracy (PA), 384 

user’s accuracy (UA), overall accuracy (OA) and Kappa (Congalton et al., 385 

1983). Meanwhile, to analyse the dominant species in different seasons, 386 

we merged the SAV layers from 20 February, 12 March and 25 April 2013 387 

as the SAV distribution layer in the spring. By combining the spatial 388 

distribution map of the seven species in 2013 and the SAV distribution 389 

layer in the spring, the spatial distribution map of the dominant species in 390 

the spring can be obtained. The SAV layers from 22 May and 11 July 2013 391 

were merged as the SAV distribution layer in the summer, and the SAV 392 

layers from 16 August, 26 September and 28 October 2013 were merged 393 
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as the SAV distribution layer in the autumn. In the same way, the spatial 394 

distribution maps of the dominant species in the summer and autumn were 395 

built.  396 

3. Results 397 

3.1. Identification of aquatic vegetation 398 

Using Eqs. (1) and (2), FVSI and SVSI were derived from the image 399 

of July 11, 2013. Then, the FVSI and SVSI values of the samples collected 400 

from 11-13 July 2013 were obtained. Based on the FVSI and SVSI values 401 

of the different types, the histograph was obtained, and then the optimal 402 

thresholds of FVSI and SVSI were quantitatively determined. As shown in 403 

Figure 6, the floating-leaved vegetation could be identified from the other 404 

two types when FVSI≤–0.035, and then the threshold (SVSI=0.192) could 405 

be used to distinguish the submerged aquatic vegetation from the water. 406 

Using the optimal thresholds and classification tree, the floating-leaved 407 

vegetation and submerged aquatic vegetation on 11 July 2013 were 408 

mapped (Figure 7).  409 

 410 

Figure 6. Histogram of FVSI and SVSI from different types 411 



17 

 

 412 

Figure 7. Spatial distribution map of aquatic vegetation on July 11, 2013 413 

Next, based on the threshold of FVSI and SVSI for July 11, 2013, we 414 

calculated all of the thresholds of FVSI and SVSI for the other images 415 

using the algorithms (Eqs. (3) and (4)) (Table 1). The classification results 416 

for March 12, May 13, July 13, August 16, September 26 and October 28 417 

were validated using the corresponding ground samples. The results show 418 

that the overall classification accuracies were higher than 80%, and that 419 

83% of the misclassified samples had a coverage < 20 %, and therefore 420 

might be difficult to identify SAV with a coverage < 20% using satellite 421 

images with resolutions of 30 m. 422 

Table 1. Thresholds of FVSI and SVSI in classification trees. a and b are the 423 

thresholds of FVSI and SVSI, respectively. OA = Overall accuracy. 424 

Date a b OA (%) Date a b OA (%) 

20-Feb-13 -0.055  0.337  — 11-Jul-13 -0.035  0.192  82.1 

12-Mar-13 -0.055  0.318  88.7 16-Aug-13 -0.075  0.129  85.7 

25-Apr-13 -0.025  0.194  — 26-Sep-13 -0.063  0.174  84.4 

22-May-13 -0.035  -0.200  85.9 28-Oct-13 -0.038  0.160  — 

Eight classification trees for the eight images were established, and 425 

therefore eight SAV distribution layers were obtained (Figure 8). As shown 426 
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in Figure 8, the SAV was distributed mainly in the eastern bays of Taihu 427 

Lake. In February and March, there was a small amount of SAV in 428 

Meiliang and Dongtaihu Bays. From April to May, SAV existed mainly in 429 

Xukou, Dongshan and Dongtaihu Bays. The SAV distribution area 430 

gradually increased in Xukou and Dongtaihu Bays from July to October. 431 

 432 

Figure 8. Spatial distribution maps of SAV with different times in 2013 in Taihu Lake 433 

Note: Layer I is the distribution map of SAV in 2013 by merging the SAV layers of February 434 

20, March 12, April 25, May 22, July 11, August 16, September 26, October 28. 435 

Figure 9 shows that the area covered by SAV increased from 60.27 436 

km2 in February to 163.49 km2 in September. From February 20 to October 437 
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28, the region covered by SAV in every bay changed with time because of 438 

the different life histories of the different SAV species (Figure 9). 439 

Altogether, the total area covered by SAV was 291.02 km2 in 2013. 440 

 441 

Figure 9. Distribution areas of SAV from different times in 2013 442 

3.2. Mapping dominant species of SAV 443 

Based on the eight distribution maps of SAV in 2013 and the method 444 

for identifying the dominant species of SAV shown in Figure 8, the 445 

classification map with seven dominant SAV species in 2013 was obtained 446 

and is shown in Figure 10. 447 

The accuracy of the classification map was assessed using an error 448 

matrix (Table 2). The overall accuracy was 68.4%, and kappa was 0.6306. 449 

Potamogeton crispus and Elodea nuttallii have distinct life histories with 450 

other species, and they therefore had high classification accuracies with PA 451 

of 75.5% and 70.2%, and UA of 78.4% and 74.1%, respectively. However, 452 

there were large misclassifications between Potamogeton crispus and 453 

Elodea nuttallii due to their similar life histories. Potamogeton malaianus 454 

and Potamogeton maackianus exhibited classification accuracies greater 455 

than 68%, followed by Myriophyllum spicatum and Vallisneria spirali. 456 

Ceratophyllum demersum had the lowest classification accuracy with PA 457 

of 62.7% and UA of 60.4%, respectively, due to its small proportion in 458 
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Taihu Lake and inconspicuous life history. Due to their similar life 459 

histories, there were large misclassification between Potamogeton 460 

malaianus and Vallisneria spirali, between Myriophyllum spicatum and 461 

Potamogeton maackianus. 462 

Table 2. Accuracy assessment of classification results for seven SAV species, PA = % 463 

Producer’s accuracy; UA = % User’s accuracy. 464 

  Predicted 

  Species P.C. E.N. P.Maa. M.S. C.D. V.S. P.Mal. Total PA 

M
ea

su
re

d 

P.C. 40 5 2 1 2 1 2 53 75.5  

E.N. 6 40 2 3 3 2 1 57 70.2  

P.Maa. 2 1 42 6 4 2 4 61 68.9  

M.S. 0 2 6 43 5 4 4 64 67.2  

C.D. 0 3 3 6 32 4 3 51 62.7  

V.S. 2 1 2 3 4 34 6 52 65.4  

P.Mal. 1 2 4 4 3 7 46 67 68.7  

  Total 51 54 61 66 53 54 66 405   

 UA  78.4  74.1  68.9  65.2  60.4  63.0  69.7    

 Overall accuracy= 68.4%;  Kappa= 0.6306 
Note: P.C. = Potamogeton crispus; E.N. = Elodea nuttallii; M.S.= Myriophyllum 465 

spicatum; P.Maa. = Potamogeton maackianus; C.D.= Ceratophyllum demersum; 466 

V.S.= Vallisneria spiralis; P. Mal.= Potamogeton malaianus. 467 

As shown in Figures 10 and 11, Potamogeton malaianus was the most 468 

widely distributed species in Taihu Lake and constituted 28.3% of the total 469 

SAV. Myriophyllum spicatum was the second most widely distributed 470 

species, with a percentage of 16.6% of the total SAV, and was distributed 471 

in Gonghu, Xukou, Dongtaihu Bays and the east coast of Xishan island. 472 

Potamogeton maackianus accounted for 15.1% of the total SAV and was 473 

mainly distributed in Xukou and Dongshan Bays. Potamogeton crispus 474 

was mainly distributed in Meiliang Bay in the form of single dominant 475 

species and Dongtaihu Bay in the form of accompanying species, and it 476 

constituted 15.8% of the total SAV. Elodea nuttallii was mainly distributed 477 

in Dongtaihu Bay, and constituted 8.9% of the total SAV. Ceratophyllum 478 

demersum and vallisneria spiralis accounted for 8.0% and 7.1% of the total 479 

SAV, respectively. Ceratophyllum demersum was scattered in the bays 480 
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with the exception of Meiliang and Guanghu Bays and Vallisneria spiralis 481 

was mainly distributed in Dontaihu Bay. 482 

 483 

Figure 10. Distribution map of seven SAV species in 2013 in Taihu Lake 484 

 485 

Figure 11. Distribution area of seven SAV species in 2013 in Taihu Lake 486 
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Note: P.C.=Potamogeton crispus; E.N.= elodea nuttallii; M.S. = Myriophyllum spicatum; 487 

P.Maa.=Potamogeton maackianus; C.D.=Ceratophyllum demersum; V.S.=Vallisneria spiralis; 488 

P. Mal.=Potamogeton malaianus. 489 

Figure 12 shows the spatial distribution of the dominant SAV species 490 

in spring, summer and autumn. The distribution area of seven species 491 

changed with the seasons. In the spring, the dominant SAV species were 492 

Potamogeton crispus, Elodea nuttallii and Potamogeton maackianus, and 493 

they were mainly distributed in Meiliang, Xukou and Dongtaihu Bays. In 494 

the summer, Myriophyllum spicatum, Potamogeton maackianus and 495 

Potamogeton malaianus were primary dominant species. In the autumn, 496 

Potamogeton malaianus was covered the largest area and and was the most 497 

widely distributed species, followed by Potamogeton maackianus, Elodea 498 

nuttallii, Myriophyllum spicatum, the remaining species. The distribution 499 

rule of the species with seasons is consistent with their life histories, which 500 

was further evidence that the method proposed was reliable. As shown in 501 

Figure 13, the area covered by SAV was largest in the autumn (212.9 km2), 502 

followed by summer (153.5 km2) and spring (122.1km2) 503 

 504 

Figure 12. Distribution map of seven SAV species in Spring (A), Summer (B) and 505 
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Winter (C) of 2013 in Taihu Lake 506 

 507 

Figure 13. Distribution area dynamics of seven SAV species with seasons in 2013 in 508 

Taihu Lake 509 

Note: P.C.=Potamogeton crispus; E.N.=Elodea nuttallii; M.S.= Myriophyllum spicatum; 510 

P.Maa.=Potamogeton maackianus; C.D. = Ceratophyllum demersum; V.S. = Vallisneria 511 

spiralis; P. Mal.= Potamogeton malaianus. 512 

4. Discussion 513 

4.1. Uncertainties, errors and accuracies of classification 514 

Mapping studies of aquatic vegetation have been conducted in 515 

shallow lake. For example, Ma et al. (2008), Zhao et al (2013) and Luo et 516 

al. (2014) proposed different classification methods to map the distribution 517 

of emergent, floating-leaved and submerged vegetation in eutrophic Taihu 518 

lakes based on moderate resolution images and achieved classification 519 

accuracies greater than 80%. However, mapping SAV species is quite 520 

challenging because of the limitations of remote sensing and the 521 

complexity of the aquatic environment.  522 

Fortunately, different SAV species have different phenological 523 

characters and life histories. Therefore, based on multi-temporal remote 524 

sensing images and the life histories of SAV species, we have proposed a 525 

method for mapping and identifying SAV species, but the overall accuracy 526 
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was only 68.4% (Table 2) due to many uncertainties. The uncertainties that 527 

affect the classification accuracy can be summarized as follows: 1) the 528 

limited of the resolution of remote sensing data. On the one hand, spatial 529 

resolution can affect classification accuracy because of mixed pixels. 530 

Lower spatial resolution can cause more serious mixed pixel phenomena 531 

and thus result in larger deviations between the classification and the 532 

measured results. On the other hand, the spectral resolution of remote 533 

sensing data also directly affects the SAV species mapping accuracy. Figure 534 

14 showed band reflectance of seven SAV species exacted from HJ-CCD 535 

image of July 11, 2013. The result showed that it is difficult to classify 536 

seven SAV species only using multispectral image. Meanwhile, we also 537 

acquired their corresponding situ spectral measurements on July 13, 2013 538 

(Figure 14). It is indicated that there are large differences between the SAV 539 

species. Thus, it is possible to classify some species by hyperspectral data. 540 

Meanwhile, the studies also suggested that there are tiny spectral 541 

differences between SAV species (Han and Rundquist, 2003; Yuan and 542 

Zhang, 2006), and only hyperspectral remote sensing data could capture 543 

the differences and to then identify SAV species. Therefore, to reduce and 544 

eliminate these uncertainties, the resolution of remote sensing data, 545 

including spatial resolution and spectral resolutions, must be improved. In 546 

future, with the constantly emerging of the hyperspectral sensors, 547 

combining our approach, classification accuracies of SAV species would 548 

be expected to be further improved. 2) Uncertainty in the aquatic 549 

environment. Taihu Lake has experienced significant pollution with high 550 

suspension, TN and TP contents, low water transparency, which have 551 

caused serious eutrophication and frequent algal blooms. In such a 552 

complex aquatic environment, the depth of SAV species from the surface 553 

of the water has a significant influence on the classification accuracy. A 554 

larger depth can lead to a lower spectral signal-noise ratio and therefore a 555 
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lower classification accuracy. For example, Ceratophyllum demersum 556 

grows at a greater depth from the water surface than other species in even 557 

its fast-growing and peak stages, and therefore had the lowest classification 558 

accuracy( 62.7%). 3) Similar life histories of SAV species. Based on the 559 

differences of their life histories, we developed the method for mapping 560 

SAV species. Therefore, larger differences of life histories between them 561 

can produce higher identification accuracies and vice versa. For example, 562 

Potamogeton crispus had the highest classification accuracy because it has 563 

a distinctly different phenology than the other species. Myriophyllum 564 

spicatum and potamogeton maackianus tended to be misclassified because 565 

of their similar life histories. Fortunately, as shown in figure 15, there are 566 

significant differences in the red edge and near-infrared region between 567 

these species. So it may be a feasible method for reducing the uncertainty 568 

and improving their classification accuracies by using hyperspectral data 569 

on the basis of our classification results, which would be carried out in our 570 

future research. 571 

 572 

Figure 14. Band reflectance of seven SAV species from HJ-CCD image of July 11, 573 

2013 574 
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 575 

Figure 15. Situ spectral measurements of SAV species on July 13, 2013 576 

4.2. Management and application 577 

Shallow lakes are among the most complex aquatic systems and are 578 

known to switch between two stable states: a macrophyte-dominated clear-579 

water state and a phytoplankton-dominated turbid state (Scheffer and van 580 

Nes, 2007). Taihu is a typical large, shallow lake, both macrophyte-581 

dominated and phytoplankton-dominated areas exist simultaneously (Liu 582 

et al., 2015). However, in recent years, algal blooms have gradually 583 

extended its coverage and persisted over longer durations in Taihu Lake. 584 

The eutrophication of shallow lakes is characterized by the disappearance 585 

of diverse SAV and the dominance of phytoplankton, because SAV and 586 

phytoplankton compete for nutrients and light (Dong et al., 2014). Studies 587 

have indicated that reasonable distribution of diverse SAV can cause 588 

aquatic ecosystems to shift from a turbid algae-dominated state to a clear-589 

water plant-dominated state (Depew et al., 2011; Dong et al., 2014; Hilt et 590 

al., 2006). Therefore, the restoration of SAV is an effective method for 591 

relieving eutrophication in shallow lakes. Knowing and extracting the 592 

physical habitat requirements of the SAV species from their existing 593 

habitats is quite crucial for efficient SAV restoration planning. The 594 
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interpretation of satellite remote sensing data is the most effective method 595 

for mapping the existing habitats of SAV species across an entire lake. In 596 

this study, SAV species in Taihu Lake were mapped by combining the 597 

characteristics of their life histories and multi-temporal satellite remote 598 

sensing data. Although the overall accuracy was only 68.4%, the most 599 

suitable ecology and environment conditions and characteristics of the 600 

SAV species can be derived from the mapping results. Meanwhile, future 601 

work will focus on developing knowledge bases of different SAV species 602 

that contains their most suitable ecologies and environment conditions 603 

according to their distribution characteristics for guiding SAV restoration 604 

work. It is also important determine the historical succession and assess 605 

health status and the paludification process of Taihu Lake, based on the the 606 

method proposed by this study. 607 

5. Conclusion 608 

Mapping SAV species can capture their most suitable ecology and 609 

environment characteristics, which is extremely useful in restoration and 610 

management of eutrophic shallow lakes. In this study, the life histories of 611 

seven SAV species in Taihu Lake were summarized based on field 612 

observations and the literature, and then a multilayer erasing approach for 613 

mapping the SAV species mapping was developed based on the life 614 

histories of SAV species and multi-temporal satellite remote sensing 615 

imagery. Using this approach, the SAV species were mapped in Taihu Lake 616 

with an overall accuracy of 68.4% and a kappa coefficient of 0.6306. 617 

Potamogeton crispus had the highest classification accuracy (PA =75.5% 618 

and UA=78.4%), followed by elodea nuttallii (PA=70.2% and UA=74.1%), 619 

potamogeton maackianus (PA =68.9% and UA=68.9% ), potamogeton 620 

malaianus (PA =68.7% and UA=65.2%), myriophyllum spicatum (PA 621 

=62.7% and UA=60.4%), potamogeton maackianus (PA =65.4% and 622 
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UA=63%) and ceratophyllum demersum (PA =62.7% and UA=69.7%). 623 

Potamogeton malaianus was the most widely distributed species, 624 

followed by Myriophyllum spicatum, Potamogeton maackianus, 625 

Potamogeton crispus, Elodea nuttallii, Ceratophyllum demersum and 626 

Vallisneria spiralis. The distribution area of the seven species changed with 627 

the seasons due to their phenological differences. The area covered by SAV 628 

was largest in the autumn (212.9 km2), followed by summer (153.5 km2) 629 

and spring (122.1km2).  630 

The classification method presented, which is based on multi-631 

temporal satellite images and life histories, is a novel and effective means 632 

for identifying SAV species. The classification results should be very 633 

helpful for aquatic ecosystem recovery and lake management. 634 
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