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Abstract 23 

Traditionally, forest-stand delineation has been assessed based on orthophotography. 24 

The application of LiDAR has improved forest management by providing high-spatial-25 

resolution data on the vertical structure of the forest. The aim of this study was to 26 

develop and test a semi-automated algorithm for stands delineation in a plantation of 27 

Pinus sylvestris L. using LiDAR data. Three specific objectives were evaluated, i) to 28 

assess two complementary LiDAR metrics, Assmann dominant height and basal area, 29 

for the characterization of the structure of P. sylvestris Mediterranean forests based on 30 

object-oriented segmentation, ii) to evaluate the influence of the LiDAR pulse density 31 

on forest-stand delineation accuracy, and iii) to investigate the algorithms´ effectiveness 32 

in the delineation of P. sylvestris stands for map prediction of Assmann dominant height 33 

and basal area. Our results show that it is possible to generate accurate P. sylvestris 34 

forest-stand segmentations using multiresolution or mean shift segmentation methods, 35 

even with low-pulse-density LiDAR - which is an important economic advantage for 36 

forest management. However, eCognition multiresolution methods provided better 37 

results than the OTB (Orfeo Tool Box) for stand delineation based on dominant height 38 

and basal area estimations. Furthermore, the influence of pulse density on the results 39 

was not statistically significant in the basal area calculations. However, there was a 40 

significant effect of pulse density on Assmann dominant height [F2, 9595 = 5.69, p = 41 

0.003].for low pulse density. We propose that the approach shown here should be 42 

considered for stand delineation in other large Pinus plantations in Mediterranean 43 

regions with similar characteristics. 44 

Key words 45 

LiDAR, pulse density, mean shift segmentation, multiresolution segmentation, forest-46 

stand delineation, automatic stand delineation.47 
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 48 

Introduction 49 

In forest management, a stand defines an area occupied by a group of trees that is 50 

homogeneous - in terms of species composition, size, age, arrangement, and condition - 51 

and distinguishable from other growth forms on adjoining areas (O'Hara and Nagel, 52 

2013). Precise stand delineation is needed to manage different uses of the forested area 53 

and its expected ecological and economic benefits and revenue. Moreover, strategic 54 

decisions, such as when, where, or how to apply a particular silvicultural treatment, are 55 

taken at stand level (Dechesne et al., 2016).  56 

Forest-stand delineation traditionally has been assessed based on orthophotography 57 

(Burnett and Blaschke, 2003). However, the combination of field forest inventory and 58 

remote sensing data in cartographic and silvicultural stand delineation is becoming more 59 

common (McRoberts et al., 2014). Satellite imagery (e.g. SPOT, IKONOS, or 60 

QuickBird) or Color-Infrared (CIR) images (Leckie et al., 2003; Pekkarinen, 2004) and 61 

Light Detection And Ranging (LiDAR) data (Bouvier et al., 2015) are currently used in 62 

this process. 63 

Additionally, the uncertainty introduced by traditional methods of stand delineation has 64 

been tackled by automatic algorithms based on image segmentation methods (Radoux 65 

and Defourny, 2007). These techniques run an algorithm which generates partitions of 66 

the image with similar properties (Blaschke et al., 2014). Most of the segmentation 67 

techniques are based on statistical methods (Webb, 2003), where object classes are 68 

represented by probability density functions. Those functions are defined over a 69 

predetermined attribute space using methods based on machine learning (Chi and Ersoy, 70 

2005; Zhong et al., 2008), directed towards the learning of complex relationships among 71 
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sample patterns, and structural methods (Centeno et al., 2003; Sagerer and Niemann, 72 

2013) based on spatial patterns (Costa et al., 2010).  73 

The application of LiDAR provides high-spatial-resolution data on the vertical structure 74 

of the forest (Wu et al., 2013) and it has been used to make precise measurements of 75 

forest inventory attributes (e.g., to estimate biomass, timber volume, basal area, stem 76 

number, mean diameter, or dominant height) (Næsset, 2002) in order to improve forest 77 

management (Ruiz et al., 2014). With the introduction of LiDAR into forest inventory 78 

assessment, an increasing number of studies have involved stand segmentation detection 79 

(Bouvier et al., 2015). Through time, these studies have shown increased analytical 80 

complexity, increased accuracy of results, and a focus on the use of LiDAR data alone. 81 

However, the specification of the fieldwork, sensor, and flight parameters for laser data 82 

acquisition must be optimized to develop accurate forest inventories and mapping 83 

(Magnussen et al., 2012). The LiDAR data acquisition specifications, such as scan 84 

angle, pulse density, footprint size, and scan pattern, influence directly the ability to 85 

derive information on the forest structure. However, such attributes must be decided 86 

before the forest survey (Ruiz et al., 2014). Among these parameters, the LiDAR data 87 

pulse density is one of the most significant with regard to accurate estimation of forest-88 

stand attributes (Magnusson et al., 2007).  89 

In Mediterranean pine forests, canopy cover metrics are the forest management priority 90 

variables (e.g., stem number, diameter, basal area, or dominant height). However, in 91 

addition to yield metrics (Lopatin et al., 2015; Martín-Alcón et al., 2015), other metrics 92 

such as horizontal canopy heterogeneity, open canopy forest, and stand patterns must be 93 

taken into account to assess silvicultural alternatives. To overcome these drawbacks, the 94 

selection of LiDAR acquisition parameters (e.g., pulse number) and meaningful metrics 95 

to describe stand structure, as well as delimitation stand segmentation techniques, could 96 
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help to develop models for specific Pinus Mediterranean forests. Therefore, the 97 

objective of this study was to develop and test a semi-automated algorithm for stands 98 

delineation in a plantation of Pinus sylvestris L. using LiDAR data. Three specific 99 

objectives were identified, i) to assess two complementary LiDAR metrics, Assmann 100 

dominant height and basal area, for characterizion of the structure of P. sylvestris 101 

Mediterranean forests based on object-oriented segmentation (e.g. eCognition software 102 

and Orpheo ToolBox software), ii) to evaluate the influence of the LiDAR pulse density 103 

on forest stand delineation accuracy, and iii) to investigate the algorithms´ effectiveness 104 

with regard to delineation of P. sylvestris stands, by evaluating its performance in map 105 

prediction of Assmann dominant height and basal area. 106 

Materials and Methods 107 

Study area 108 

The study area is located in “Sierra de Los Filabres” (37°13’20’’ N, 2°35’40’’ W, 109 

between 1600 and 2186 m.a.s.l.), hereafter abbreviated as Filabres, south-eastern Spain 110 

(Fig. S1, Supporting Material). The forest under study is a 40-year-old Pinus sylvestris 111 

(hereafter Scots pine) plantation covering 409 ha, established using subsoiling as ground 112 

preparation between 1970 and 1976. The planting density was 2000 trees ha-1 and the 113 

current density ranges between 342 and 1473 trees ha-1. The basal area ranges from 114 

11.05 to 47.31 m2 ha-1 (Table S1, Supporting material). Overall, the area experiences 115 

typical semi-arid Mediterranean climate conditions with annual precipitation shifting 116 

between 300 and 400 mm, with an average of 330 mm. Moderately mild temperatures, 117 

with an average over the whole year of 13.1°C, have been reported during the 1940-118 

2007 period, reaching a maximum of 32°C in summer and a minimum of -8ºC in winter. 119 

The soils have developed on schists and quartzites and have loam and silty loam 120 

textures (average composition: 30–35% sand, 40–45% silt, 15–20% clay). The soil 121 
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depth is 45–150 cm and the available soil water content is between 100 and 150 mm. 122 

The soil information was obtained from soil cartography at a scale of 1:100000 (Alias 123 

and Martinez Sanchez, 1988). The dominant soils are xerorthents regosols and the 124 

topography is characterized by steep slopes (>35%)  125 

Field data 126 

The forest survey was carried out in August 2014 using Field-Map instrumentation 127 

(http://www.fieldmap.cz/): 27 field plots of 11 m radius were established using a 128 

systematic, stratified sampling design. In each plot, we measured the diameter at breast 129 

height (DBH; 1.3 m above ground level) and the total height of all trees with DBH ≥ 10 130 

cm. Two measurements, with a precision to the nearest millimeter, of DBH were made 131 

at right angles with a tree caliper (Masser BT Caliper) and the arithmetic mean was 132 

recorded. The total height was measured using a rangefinder and inclinometer (Laser 133 

Technology ForestPro Laser), with a precision to the nearest centimeter. The structure 134 

and silvicultural conditions were defined using the following stand parameters: number 135 

of trees per hectare (N), basal area per hectare (G), mean arithmetic diameter (dm) and 136 

basal area median diameter (dg), mean arithmetic heights (Hm), and Assmann dominant 137 

height (Ho ) (Assmann, 1970) (Table S1, Supporting material).  138 

LiDAR data and processing 139 

The LiDAR data were acquired on April 10, 2013 by the company Heliografics 140 

Fotogrametria S.L. (Alicante, Spain), using an ALS50-II laser scanner (Leica-141 

Geosystems AG, Heerbrugg, Switzerland) with a laser repetition rate of 158.2 kHz, a 142 

scan frequency of 100 Hz, illuminated footprint diameter of 0.32 cm, and an FOV of 12 143 

degrees. The field was scanned by plane from a flight altitude of 3300 m.a.s.l. The ALS 144 

data were acquired with a point density of 10.5 points/m2. They were geo-referenced in 145 

the European Terrestrial Reference System 1989 (ETRS89) coordinate system. The 146 
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planimetric coordinates (x and y) and ellipsoidal height values were computed for all 147 

echoes. The time gap between the LiDAR data acquisition and the field data collection 148 

is considered insignificant according to the annual height and diameter growth in the 149 

study area (Sánchez-Salguero et al., 2012). 150 

For this study, three diferent point densities were achieved, based on a random selection 151 

of LiDAR pulses in a grid cell of 1 m2, and were used in the segmentation process: 10.5, 152 

4, and 0.5 pulses m-2 (density). The forest-stand homegenity and geographic distribution 153 

make this statistic robust and informative. The minimun density, 0.5 pulses m-2, exceeds 154 

the minimum necessary to create the 3-m DEM required under the proposed USGS 155 

specifications  (USGS, National Spatial Program, 2009).  156 

Recommendations mentioned in Ruiz et al. (2014) were followed to avoid the influence 157 

of the Digital Terrain Model (DTM) on the final results. Therefore, separate filtering 158 

processes for the three point clouds were produced, using an adapted algorithm from 159 

Kraus and Pfeifer (1998), based on linear prediction. Next, these filtered returns were 160 

used to generate DTMs with a spacing grid of 1, 2, and 5 m, respectively, for the pulse 161 

densities mentioned above (10.5, 4, and 0.5 pulses m-2) (Anderson et al., 2006). In this 162 

way, equal conditions for obtaining models are guaranteed, so that point clouds of 163 

different pulse densities from different flight planning settings could be mock. 164 

Next, the elevation values for the LiDAR data returns were normalized using the ground 165 

surface model calculated above. We computed LiDAR metrics to support regression, 166 

based on previous research by Næsset (2002). Metrics were calculated using FUSION 167 

LIDAR Toolkit (McGaughey, 2014). In this study, a total of 43 metrics were extracted 168 

from LiDAR pulses using the gridmeetric command. The metric were calculated from 169 

the height distribution of laser returns and they were used as regressors in the statistical 170 

analyses. To obtain a complete explanation of the FUSION tools, see McGaughey 171 
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(2014). The summary of the LiDAR metrics, with their corresponding descriptions, is 172 

shown in Table S2, Supporting material. 173 

LiDAR data modeling 174 

We built predictive models with the forest structural attributes and metrics obtained 175 

from the LiDAR data within each field plot. We computed multiple linear, power, and 176 

exponential regressions corresponding to all possible combinations. Linearized 177 

transformations were performed for the power and exponential regressions. Models 178 

were evaluated following the criteria: (a) statistical significance (p value<0.05), (b) 179 

minimum root-mean-squared error (RMSE), (c) minimum bias, (d) homoscedasticity, 180 

performing a Breusch-Pagan test (Herwartz, 2006), and normal distribution of residuals, 181 

verified with a Shapiro-Wilk test (Mohd Razali and Wah Yap, 2011), (e) parsimony 182 

principle, (f) non-collinearity, when more than one variable were selected, and (g) 183 

agreement with current biological knowledge (Vandekerckhove et al., 2014).  184 

Specifically, in points (e) and (f), the variables included in the model were selected 185 

through an exhaustive search using the Bayesian information criterion (BIC) method, 186 

which performs all possible subset regressions and lists the models in ascending order 187 

of BIC. The models with the lowest BIC were selected. In addition, multicollinearity 188 

among the explanatory variables was verified with the condition index (Belsley, 1991). 189 

All the variables selected in the models had a condition index lower than 30 and a p-190 

value of less than 5%. The accuracy of the models was assessed by performing a leave-191 

one-out cross-validation. The resulting models were applied to the whole extent of the 192 

study area. For each model, LiDAR-based metrics were extracted from the whole point 193 

clouds, using a pixel size equivalent to the field plot size, with FUSION (McGaughey, 194 

2014).  195 
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R software (R Core Team, 2015) and the leaps package (Thomas Lumley using Fortran 196 

code by Alan Miller, 2009) for variable selection were the tools employed. 197 

Segmentation methods applied for stand delineation 198 

Stands were segmented using two different algorithms that differed in their complexity. 199 

The first one was based on multiresolution segmentation using eCognition software 200 

(Trimble, 2007), involving a more complex method; the second one was based on mean 201 

shift segmentation using Orpheo ToolBox software (OTB) (CNES, 2013) for QGIS 202 

(QGIS Development Team, 2009) (Fig. 1), as a less complex approximation to compare 203 

with the eCognition results. Both algorithms used basal area per hectare (G) and 204 

Assmann dominant height (Ho) as silvicultural variables to identify and group LiDAR 205 

data into a single stand. These structural variables were chosen based on our knowledge 206 

of the forest in our study areas.  207 

The multiresolution segmentation approach was applied as explained in Hamilton et al. 208 

(2007), using an optimization procedure which locally minimizes the average 209 

heterogeneity of image objects for a given resolution. Using multiresolution 210 

segmentation, scale parameter determines the average size of the image objects, and 211 

shape and form are determined by the input image layers which weights determine the 212 

homogeneity (Hamilton et al., 2007). Segmentations for different scale parameters were 213 

tested from a minimum value of two to an increasing number of parameters, until one 214 

unique object resulted. 215 

The second segmentation methodology used Orpheo ToolBox software (OTB), a non-216 

parametric density estimator based on Parzen window (Babich and Camps, 1996). It is 217 

an adaptive gradient ascent method that works by discovering local maxima in the 218 

feature-space, by moving the window towards them incrementally. With the local 219 

maxima detected, the data points can be grouped into clusters (Wu et al., 2013). Three 220 
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parameters must be set: (1) the spatial radius, to define the neighborhood, (2) the range 221 

radius, to define the interval in the spectral space, and (3) the minimum size of the 222 

regions to keep after clustering. 223 

Validation of the segmentation method and stand map analysis 224 

The validation of an image segmentation is still a hard task (Haralick and Shapiro, 225 

1985). An accurate segmentation is one which homogenizes regions according to a 226 

specific characteristic and, at the same time, differentiates adjacent regions according to 227 

the same characteristic (Haralick and Shapiro, 1985). Thus, segmentation should be 228 

intra-region uniform and inter-region heterogeneous. From the statistics available to 229 

validate image segmentation, Global Score - as defined in Johnson and Xie (2011) - has 230 

been selected due to its simplicity of calculation and of understanding and its good 231 

results. 232 

Johnson and Xie (2011) suggested that the global intra-segment goodness measure 233 

should be assessed as a variance weighted by each segment area on which each variance 234 

is calculated divided by the total area: (Equation 1). 235 

         (1) 236 

Where  is the variance and  is the area of the segment i. Segments with low 237 

variance should be relatively homogeneous. A weighted variance was used so that large 238 

segments had more impact on the global calculations than small ones. 239 

As an inter-segment global goodness measure, Moran’s Index (Moran, 1950) was used. 240 

This is a measure of the spatial autocorrelation within the data and indicates the 241 

statistical separation between equal spatial objects (Kim et al., 2008) (Equation 2). The 242 

values of MI range from -1, indicating low spatial correlation and perfect dispersion, 243 

which is desirable to the resulting segmentation, to +1, representing perfect correlation. 244 

A value of zero indicates a random spatial pattern (Cliff and Ord, 1981). 245 
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      (2) 246 

Where n is the total number of regions,  is a measure of the spatial proximity,  is 247 

the mean spectral value of region i, and  is the mean spectral value of the image. Each 248 

weighted  is a measure of the spatial adjacent regions.  249 

In order to compare MI and the weighted variance, they were both normalized 250 

(Equation 3). 251 

        (3) 252 

Where  and  are the minimum and maximum values of weighted variance or 253 

MI from all the calculations computed for every layer. Normalized values range 254 

between 0 and 1. 255 

Finally, the Global Score is defined as the sum of the normalized weighted variance and 256 

the normalized MI (Equation 4). 257 

        (4) 258 

Where  is the normalized weighted variance and  the normalized MI. 259 

Therefore, in segmentation results, GS will range between 0 and 2, the closer to zero the 260 

better; that is, with a low weighted variance as a measure of intra-segment heterogeneity 261 

and a low MI value as a measure of inter-segment homogeneity. As there was more than 262 

one layer in the image, the GS values were averaged by the number of bands (Johnson 263 

and Xie, 2011). 264 

Results 265 

Assmann dominant height and basal area modeling 266 

The stand Ho and BA models based on regression methods provided R2 values that 267 

ranged from 0.81 to 0.97 (Table 1), with a root-mean-squared error of the cross 268 

validation (RMSECV) below 1 m for dominant height and 6 m2 ha-1 for basal area. The 269 
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models showed low values of bias in all cases, with consistency of the prediction 270 

models. In all cases, the exponential and power function models performed significantly 271 

better than the linear ones. 272 

Values of R2 greater than 0.95 and an MAE value of 0.40 m were obtained for Ho using 273 

exponential models, with an RMSECV between 0.53 m (10 pulses m-2), and 0.76 m (0.5 274 

pulses m-2) (Table 1). The basal area models had trends similar to those of the dominant 275 

height models, with R2 values higher than 0.84 and low values of RMSECV for the 276 

exponential model (3.99 m for 10 pulses m-2; 5.05 m for 4 pulses m-2; and 2.90 m for 277 

0.5 pulses m-2) (Table 1).  278 

Following the independent variable data selection, the models using height variables 279 

(i.e., ElevP99, ElevCURT mean CUBE, and ElevP90 for Ho; and ElevP50, ElevMAD 280 

mode CUBE, and Elev mean for G), together with a descriptor for the density of the 281 

forest canopy (CanopyReliefRatio), were the most successful models (Fig. S2, 282 

Supporting Material).  283 

Figure 2 presents the scatter plots of the best estimates of Ho and BA for the selected 284 

regression model versus the LiDAR values for the densities 10, 4, and 0.5 pulses m-2. 285 

The predicted Ho was in near perfect agreement with the observed measurements, the R2 286 

value (> 0.95) being higher than that of the regression between the modeled and 287 

observed G (> 0.84).  288 

eCognition multiresolution and OTB mean shift segmentation  289 

The response of Multiresolution Segmentation to forest-stand delineation, described by 290 

the number of segments created, varied with the scale parameter (Tables 2 and 3). Using 291 

the eCognition segmentation algorithm, a total of 1628 segments or stands were 292 

delineated with a scale parameter of 2 (Moran´s Index MInorm = 0.98 for Ho and MInorm 293 

= 1.00 for G; average stand area = 0.25 ha), of which 11 were classified at the 36 scale 294 
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(MInorm = 0.06 for Ho and MInorm = 0.22 for G; average stand area = 37.18 ha) (Table 2). 295 

A total of 221 segments or stands were delineated using Orpheo ToolBox (OTB), with a 296 

spatial radius and a range radius of 2 and a minimum size region of 20 (MInorm = 0.00 297 

for Ho and MInorm = 0.88 for G; average stand area = 1.85 ha), and 11 were classified at 298 

a spatial radius of 8, a range radius of 2, and a minimum size region of 400 (MInorm = 299 

0.05 for Ho and MInorm = 0.79 for G; average stand area = 37.18 ha) (Table 3).  300 

General trends in the behavior of the method might be detected when the Global Score 301 

is represented together with the normalized MI and the normalized variance in the range 302 

parameter (Fig. 3). Figure 3a shows the Global Score, normalized weighted variance, 303 

and normalized MI of segmentations assessed at different scale parameters for the 304 

eCognition Multiresolution segmentation (10 pulses m-2). Segmentations with low 305 

normalized MI values had, at the same time, high normalized variance or vice versa due 306 

to the characteristics of the definition of the variables (Equations 1, 2, 3, and 4). 307 

The Global Scores for eCognition Multiresolution segmentation were better than the 308 

results obtained with OTB Mean Shift segmentation (Fig. 4). When compared with 309 

manual delineation, eCognition Multiresolution segmentations also performed better 310 

(Fig. 4). 311 

LiDAR pulse density effects on the segmentation process 312 

As expected, the LiDAR pulse density affected stand delineation. We summarized these 313 

effects by analyzing the normalized weighted variance and MI values. The best point 314 

density for P. sylvestris stand delineation was 10 points m-2, which provided the lowest 315 

values of weighted variance and the highest values of normalized MI (Fig. 5). Both 316 

methods  predicted the dominant heights of the stands better than the basal area.  317 

A one-way, between subjects ANOVA was conducted to compare the effects of pulse 318 

densities of 10, 4, and 0.5 m-2 on plot-measured basal area and dominant height. There 319 
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were no statistically significant effects of pulse density on basal area when comparing 320 

group means at the p<0.05 level [F2, 9595 = 1.15, p = 0.317]. However, there was a 321 

significant effect of pulse density on Assmann dominant height [F2, 9595 = 5.69, p = 322 

0.003]. Post hoc comparisons using the Tukey HSD test indicated that the mean 323 

dominant height of the segments for the pulse density of 0.5 (M = 10.56, SD = 1.21) 324 

differed significantly from that of the other groups. However, the dominant heights in 325 

the segmentation with a pulse density of 10 (M = 10.48, SD = 1.07) did not differ 326 

significantly from those of the segmentation with a pulse density of 4 (M = 10.47, SD = 327 

1.26).  328 

Discussion 329 

Our results show that, given the conditions set in this study, it is possible to generate 330 

accurately P. sylvestris forest-stand segmentations using multiresolution or mean shift 331 

segmentation methods, even with low-pulse-density LIDAR - which is an important 332 

economic advantage for forest management. However, eCognition multiresolution 333 

methods provided better results than OTB mean shift segmentation methods for stand 334 

delineation based on dominant height and basal area estimations. Furthermore, the 335 

influence of pulse density on the results was not statistically significant in basal area 336 

calculations. However, for low pulse density, dominant height results could be affected.  337 

Assmann Dominant Height and Basal Area Modeling of the stand 338 

The performance of the Assmann dominant height and basal area models compares 339 

favorably with the results of other studies in which stand height and G were modeled 340 

using LiDAR data. The coefficient of determination for the final dominant height model 341 

developed in this study (R2 > 0.95) was in the range of previously reported values (0.82 342 

to 0.98; Means et al., 2000; Næsset, 2002; Coops et al., 2007; Stone et al., 2011; 343 

González-Ferreiro et al., 2012; González-Ferreiro et al., 2013; Watt and Watt, 2013). 344 
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The RMSE was similar to or lower than the values reported for other coniferous species 345 

(Means et al., 2000; González-Ferreiro et al., 2013; Watt and Watt, 2013); in these 346 

studies, it was also found that exponential functions performed better than linear 347 

regression models. 348 

Model predictions of basal area had a precision (R2 > 0.84) comparable to that found in 349 

similar studies within coniferous forests in boreal and temperate regions. The 350 

coefficients of determination ranged from 0.62 to 0.94 for models predicting basal area 351 

in coniferous forests in the United States of America (Means et al., 2000), Norway 352 

(Næsset, 2002; Næsset et al., 2005), and Denmark (Nord-Larsen and Schumacher, 353 

2012). Additionally, the type of explanatory variable used might cause the main 354 

differences. González-Ferreiro et al. (2013) generated models to estimate biomass, 355 

which firstly was calculated as a combination of heights and diameter. However, in our 356 

study, first order connections were assessed, as we worked directly with dominant 357 

heights, considered as the combination of the tree heights and basal area - as a diameter 358 

dependent variable, but not a combination of both variables. 359 

Finally, the precision of dominant height and basal area models will be affected by the 360 

errors in the generation of DTM, at the height at which the point clouds are normalized, 361 

the errors of the sensor, and the pulse density (Bollandsås et al., 2013). However, 362 

variations in LiDAR pulse density did not have a significant effect on the modeling 363 

process. In fact, neither bias nor percentage error varied meaningfully (González-364 

Ferreiro et al., 2013; Ruiz et al., 2014). 365 

LiDAR pulse density effects on prediction models 366 

The accuracy of the forest structure metrics slightly increased as a function of pulse 367 

density (Table 1). The determination coefficients of dominant height and basal area did 368 

not increase significantly from the lowest to the highest pulse density (i.e., from 0.5 to 369 
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10.5 pulses m2). Further, accuracy seemed to be related more to model selection than to 370 

point density. For example, the accuracy of the exponential models for dominant height 371 

remained approximately equal to its maximum (R2 > 0.94). Similarly, the accuracy of 372 

the power models for basal area rose steadily up to 4 pulses m-2 (R2 = 0.90), then 373 

decreased to its lowest determination coefficient (R2 = 0.81). Collectively, these results 374 

indicate that beyond a certain density level (even as low as 0.5 points m2) accuracy does 375 

not increase significantly. These are good examples of forest metrics that require a low 376 

density to achieve reasonable accuracy, but do not benefit significantly from very high 377 

LiDAR density (Jakubowski et al., 2013). Other authors reported similar results for the 378 

modeling process, with high correlations between LiDAR metrics and forest inventory 379 

attributes at the plot level, based on low-pulse-density LiDAR (<2 pulses m-2) (Thomas 380 

et al., 2006; Næsset, 2009; González-Ferreiro et al., 2013; Ruiz et al., 2014). Our results 381 

were not as accurate, most likely due to the more complex study area. This indicates 382 

that stand allometry requires a relatively lower number of LiDAR returns to be mapped 383 

accurately.  384 

eCognition Multiresolution and Mean Shift OTB Segmentation  385 

We found that both eCognition and OTB segmentation could be automatically 386 

segmented to produce spatial P. sylvestris stands and that an interpreter could label the 387 

stands in a manner similar to traditional photography (Fig. 4). These results are 388 

consistent with those achieved in other studies using LiDAR for automation of stand 389 

delineation applied to forest inventory practices (Mora et al., 2013; Dechesne et al., 390 

2016). LiDAR data have demonstrated the utility of within-stand forest structural 391 

attributes (e.g., current dominant stand height and basal area) as a subset of attributes 392 

required for characterization of forest stands. 393 
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The high Global Score, normalized weighted variance, and normalized MI of the 394 

segmentations indicate that both eCognition Multiresolution and OTB segmentations 395 

detected homogenous stands well, in concordance with previous work (Espindola et al., 396 

2006; Johnson and Xie, 2011). Further, the eCognition Multiresolution segmentation at 397 

10 pulses m-2 was the best scored segmentation, giving intra-region uniformity but inter-398 

region heterogeneity. The reason for that could be that the eCognition Multiresolution 399 

segmentation algorithm was formulated to search for both intra-region homogeneity and 400 

inter-region heterogeneity, while the Mean-Shift algorithm was designed to search only 401 

for homogenous regions (Baatz and Schäpe, 2000). As deduced from Figure 3, the value 402 

of the scale parameter had a direct effect on the number of polygons produced by the 403 

resulting segmentation. In contrast, OTB Mean-Shift segmentation stands were usually 404 

detected and delineated correctly, but the number of segments was lower and did not 405 

always match those of the ground reference data.  406 

Due to the relatively large size and homogeneity of the study area used, in comparison 407 

with other studies (Espindola et al., 2006; Johnson and Xie, 2011), we found values of 408 

the Global Score that represented less than 5% of the difference in score between the 409 

first minimum and the next minimum value, suggesting that there is no single best 410 

segmentation but multiple ones; which can differ in the number and size of the 411 

segments. Because the number of segments depends on the study area surface and the 412 

size of the forest stands (O'Hara and Nagel, 2013), the best results could be identified as 413 

the best minimum group of values of Global Scores, normalized weighted variance, 414 

normalized MI, and number of segments (Chen et al., 2014). These values are located 415 

around the crossing point of the curves of normalized weighted variance and normalized 416 

MI (Figures 3 and 5). 417 
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Furthermore, there should be agreement between the segmentation with the best Global 418 

Score, better normalized weighted variances, and better normalized MI and the resulting 419 

number of segments, depending on the forest management objectives. For precision 420 

silviculture, foresters may require very precise stand delineation regarding intra-region 421 

variance with a high number of segments, despite the similarity of the segments to each 422 

other; for example, segmentation at scale parameter 6 in Table 2, even when it is not the 423 

one with the best score. However, in Mediterranean pine forests, where protection and 424 

water management are the main silvicultural targets, a less precise stand delineation 425 

would be demanded, including larger areas of high inter-region heterogeneity - with, 426 

consequently, a low number of segments (e.g., segmentation at scale parameter 10 in 427 

Table 2), although with higher intra-region variance (Kim et al., 2008; Johnson and Xie, 428 

2011).  429 

The Mean Shift segmentation algorithm showed the additional complexity of using 430 

three parameters (the range, spatial radius, and minimum region size) in the 431 

segmentation process. In the analysis of the Mean Shift segmentations, more 432 

unreliability of the validation system was detected. No obvious relationship between the 433 

segment number created and the Global Score values could be observed (Fig. 5). 434 

Consequently, selection of the best segmentation for forest-stand delineation using OTB 435 

methodology is not as straightforward as previously thought. Given that the Mean Shift 436 

algorithm has been proven as an adequate method for forest-stand delineation (Wu et 437 

al., 2013, 2014), the disturbances in the detection of the best segmentation may come 438 

from the validation system - which, we suggest, should be rethought for this kind of 439 

technique with multi-dependent variables.  440 

The question that then arises is: what benefit derives from the cost and effort of the 441 

eCognition Multiresolution Segmentation approach presented herein, when the results 442 
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are similar to those obtained using OTB? Moreover, OTB implementation for stand 443 

delineation would likely be simpler, more cost-effective, and of similar accuracy. While 444 

dominant stand height and basal area do not constitute the entirety of an inventory, each 445 

is amongst the more important of the suite of attributes that is generated. Dominant 446 

stand height information is important for management purposes and is indicative of site 447 

conditions, while basal area (related to volume or biomass) is key to forest management 448 

(silvicultural treatments) and carbon-related considerations. A recommendation for the 449 

future is that eCognition methodology (and related semi-automated processing 450 

approachs) should remain focused on locations where precision silviculture inventory 451 

programs persist. On the other hand, segmentation provided by OTB methodology, 452 

offering less precision but also compatibility and similarity of stand delineation, should 453 

be used in extensive silviculture (e.g., protection, climatic change adaptation, and 454 

hydrologically-oriented silviculture). For areas that are not subject to regular 455 

management or monitoring activities, it is possible that the more limited precision of 456 

stand delineation provided by OTB will prove sufficient for many monitoring and 457 

reporting needs. Thus, a stratification of activity may be possible based upon the 458 

monitoring requirements associated with a given area.  459 

LiDAR pulse density effects on the segmentation process 460 

The segmentation algorithms were also influenced by the LiDAR pulse density. Our 461 

results suggest that basal area is not affected by segmentations based on different 462 

LiDAR pulse densities. In contrast, low pulse density affects the estimation of dominant 463 

height. Segmentations using medium and high pulse densities do not appear to be 464 

significantly affected with respect to dominant height results. However, it should be 465 

noted that the values of the means and standard deviations for dominant height were 466 

similar among the three pulse density approaches.  467 
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Overall, our results indicate that a very high LiDAR pulse density may not be necessary 468 

to predict typical forest structure metrics at the plot scale or for stand delineation. These 469 

findings are particularly important for land managers that need to survey a large area 470 

with a specific forest metric and accuracy in mind. Our results, considered in terms of 471 

cost, coverage, and density, can help guide this process. For example, if dominant basal 472 

area is the most important metric to estimate at a reasonable accuracy level, it may be 473 

sufficient to acquire LiDAR data at about 1 pulse m-2. On the other hand, if it is critical 474 

to derive the average dominant height with high accuracy, then it may be advisable to 475 

use a much higher pulse density - between 2 and 4 pulses m-2. 476 

Conclusions 477 

The objective of this study was to use LiDAR data segmentation to produce stand-level 478 

predictions of dominant height and basal area as well as to use two different 479 

segmentation techniques for stand delineation oriented to Pinus sylvestris forest 480 

management in Mediterranean mountains. The use of LiDAR data provided a large 481 

sample appropriate for model calibration and independent validation of attribute 482 

predictions. We have demonstrated the utility of LiDAR data with regard to estimating 483 

dominant stand height and basal area with an accuracy suitable for operational 484 

activities. We have also noted the differences in stand delineation (number and form) 485 

between two different segmentation algorithms (eCognition and OBT), using a semi-486 

automated methodology based on forestry attributes in a Mediterranean environment. 487 

We did not find significant differences between high and low LiDAR pulse density, 488 

neither in the creation of prediction models for dominant height and basal area nor in 489 

the segmentation process. Nevertheless, for further assertions, more comparative studies 490 

- varying the radius of the plot sample - should be carried out. The technique developed 491 

in this project could be implemented to provide more precise data for forest 492 
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management. We propose that the approach shown here should be considered for stand 493 

delineation in other large Pinus plantations in Mediterranean regions with similar 494 

characteristics. Further, large-area, wall-to-wall characterization with a high level of 495 

attribute detail is difficult to obtain, with sampling offering a practical, robust, and 496 

reliable alternative. Future global forest inventory programs may benefit from 497 

consideration of the framework and methods presented herein. Also, depending on the 498 

location and attributes required, wall-to-wall mapping that integrates high-spatial-499 

resolution sensors (i.e., RapidEye or World-View) with LiDAR data may provide a 500 

powerful opportunity for systematic and repeatable monitoring and reporting of 501 

silvicultural activities. 502 
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Figure 1: Flowchart of the modeling and image processing for proposed stand 682 

delimitation methodology based dominant height and basal area using LiDAR data.  683 
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e f 

Figure 2: Scatter plot of the best estimated stand basal area (AB) (a, b, e) and dominate heights 685 

(Ho) (b, c, f) versus LiDAR values according to density pulses (10, 4 and 0.5 pulses/m2from 686 

upper to lower figure). 1/1 Red line.  687 
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689 



32 

 

 690 

a 

b 

Figure 3: Global Score, normalized weighted variance and normalized Moran’s Index 691 

for the evaluation of the segmentations a) for the eCognition’s Multiresolution 692 
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segmentation at 10 pulse density; b) for the OTB Mean Shift segmentation at 10 pulse 693 

density.  694 

695 
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 696 

Figure 4: Mean Global Score values obtained using semi-automatic forest stand 697 

delineation at 10 pulse·m-2 density for Ecognition’s Multiresolution segmentation, OTB 698 

Mean-Shift segmentation and manual delineation 699 

 700 
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b 

Figure 5: a) Normalized weighted variance, normalized Moran’s Index and global 701 

scores for segmentations at 10, 4 and 0.5 pulse·m-2 density with eCognition’s 702 

Multiresolution Segmentation, b) Normalized weighted variance, normalized Moran’s 703 

Index and global scores for segmentations at 10, 4 and 0.5 pulse·m-2 density with Mean 704 

Shift Segmentation with OTB. 705 
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 706 

Figure 6. Maps obtained using semi-automatic forest stand delineation at 10 pulse·m-2 707 

density a) Multiresolution segmentation; b) Mean-Shift segmentation 708 

a b 
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 714 

Table 1: Summary of the statistical criteria computed for evaluation the models for 715 

dominant height (Ho) and basal area (BA).  716 

 717 

LiDAR pulse 
density 
(m-2) 

Type of 
regression 

Variable R2 BIAS MAE  RMSE RMSECV %ERROR 

Dominant height (m) 

10 Lineal Ho 0.97 -3.7e-5 0.35 0.59 0.63 5.65 

10 Exponential Ho 0.97 -0.01 0.40 0.49 0.53 5.35 
10 Power Ho 0.94 0.03 0.50 0.62 0.79 7.89 

4 Lineal Ho 0.96 -1.6e-4 0.44 0.56 0.64 6.44 

4 Exponential Ho 0.97 -9.6e-3 0.40 0.50 0.54 5.54 
4 Power Ho 0.95 -2.9e-2 0.47 0.62 0.73 6.23 

0.5 Lineal Ho 0.93 3.6e-6 0.59 0.78 0.94 7.78 

0.5 Exponential Ho 0.95 2.0e-2 0.40 0.64 0.76 6.37 
0.5 Power Ho 0.94 -2.6e-2 0.56 0.70 0.90 7.04 

Basal area (m2 ha-1) 

10 Lineal G 0.92 2.3e-5 3.60 3.48 3.82 10.28 

10 Exponential G 0.88 -0.15 2.43 3.16 3.99 9.85 
10 Power G 0.81 -0.14 3.11 3.90 4.58 16.15 

4 Lineal G 0.92 -4.3e-4 3.09 4.46 5.75 11.38 

4 Exponential G 0.84 -9.0e-2 2.95 4.00 5.05 10.60 
4 Power G 0.93 -0.13 2.98 4.46 5.67 16.19 

0.5 Lineal G 0.93 -1.8e-4 2.70 2.81 2.96 10.20 

0.5 Exponential G 0.92 -9.1e-2 2.01 2.52 2.90 10.46 
0.5 Power G 0.87 -0.14 2.63 3.12 3.39 12.95 

Mean Absolute Error (MAE), Mean Squared Error of Cross Validation (MSECV), Root Mean Squared 718 

Error of Cross Validation (RMSECV) and percentage of error (%ERROR) 719 

 720 

721 
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 722 

Table 2: Normalized variance (Vnorm), normalized Moran’s Index (MInorm) and global 723 

scores (GS) for all scale-parameter segmentations with theirs resulting number of 724 

segments for the 10 pulse density approach. eCognition’s Multiresolution segmentation 725 

approach.. Ordering indexes for two-band average values are shown in brackets. 726 

Minimum values Global Score are highlighted.  727 

 728 

Scale 
Parameter 

Ho 10-pulse/m2 density band 
______________________ 

G 10-pulse/m2 density band 
_____________________ 

Two-band average 
______             ____________ Number of 

segments Vnorm MI norm GS Vnorm MI norm GS Vnorm MI norm GS 

2 0,00 0,98 0,98 0,00 1,00 1,00 0,00 0,99 0,99(11) 1628 

4 0,35 1,00 1,35 0,29 0,68 0,98 0,32 0,84 1,17(18) 541 

6 0,44 0,54 0,99 0,42 0,40 0,83 0,43 0,47 0,91(6) 246 

8 0,50 0,47 0,97 0,52 0,35 0,88 0,51 0,41 0,92(7) 154 

10 0,61 0,24 0,85 0,61 0,27 0,89 0,61 0,26 0,87(3) 92 

12 0,65 0,23 0,89 0,69 0,20 0,90 0,67 0,22 0,90(5) 68 

14 0,71 0,07 0,79 0,76 0,07 0,83 0,73 0,07 0,81(1) 47 

16 0,78 0,13 0,91 0,83 0,00 0,83 0,80 0,06 0,87(2) 30 

18 0,78 0,11 0,90 0,83 0,04 0,88 0,81 0,07 0,89(4) 29 

20 0,85 0,03 0,88 0,92 0,05 0,97 0,88 0,04 0,93(9) 20 

22 0,85 0,03 0,88 0,92 0,05 0,97 0,88 0,04 0,93(10) 20 

24 0,87 0,02 0,89 0,93 0,03 0,96 0,90 0,02 0,93(8) 19 

26 0,89 0,03 0,93 0,98 0,08 1,06 0,94 0,05 0,99(12) 16 

28 0,90 0,02 0,92 0,98 0,11 1,10 0,94 0,07 1,01(14) 15 

30 0,90 0,00 0,90 0,98 0,12 1,11 0,94 0,06 1,00(13) 14 

32 0,92 0,03 0,95 0,99 0,24 1,23 0,95 0,13 1,09(15) 12 

34 0,92 0,03 0,95 0,99 0,24 1,23 0,95 0,13 1,09(16) 12 

36 1,00 0,06 1,06 1,00 0,22 1,22 1,00 0,14 1,14(17) 11 

 729 

730 
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 731 

Table 3: Normalized variance (Vnorm), normalized Moran’s Index (MInorm) and global 732 

scores (GS) for all spatial radius, rage radius and minimum size of the region 733 

segmentations with theirs resulting number of segments for the 10 pulse density 734 

approach. OTB Mean Shift segmentation approach. This is an extract of the 20 best 735 

global-scored segmentations out of 278. Ordering indexes for two-band average values 736 

are shown in brackets. Minimum values of Global Score are highlighted.  737 

Spatial 
radius 

Rage 
Radius 

Min size 
of region 

Ho 10-pulse/m2 density band 
______________________ 

G 10-pulse/m2 density band 
_____________________ 

Two-band average 
____________________ Number 

segments 
Vnorm MI norm GS Vnorm MI norm GS Vnorm MI norm GS 

2 2 20 0,00 0,00 0,00 0,97 0,88 1,85 0,48 0,44 0,92(4) 221 

2 2 1000 0,55 0,31 0,87 0,27 0,48 0,76 0,41 0,40 0,819(2) 6 

2 12 20 0,71 0,91 1,63 0,00 0,00 0,00 0,35 0,45 0,81(1) 5 

4 2 20 0,03 0,03 0,06 0,95 0,88 1,84 0,49 0,45 0,95(7) 199 

4 2 50 0,23 0,19 0,42 0,81 0,74 1,56 0,52 0,46 0,99(11) 97 

6 2 20 0,06 0,00 0,06 0,95 0,88 1,83 0,50 0,44 0,95(6) 198 

6 2 50 0,28 0,17 0,46 0,83 0,75 1,58 0,55 0,46 1,02(19) 86 

8 2 20 0,10 0,07 0,18 1,00 0,85 1,85 0,55 0,46 1,01(18) 195 

8 2 400 0,53 0,30 0,83 0,56 0,61 1,18 0,54 0,46 1,00(15) 11 

8 4 20 0,14 0,05 0,19 0,89 0,79 1,69 0,52 0,42 0,94(5) 116 

8 4 50 0,29 0,12 0,41 0,80 0,70 1,51 0,55 0,41 0,96(8) 62 

10 2 20 0,09 0,03 0,12 0,96 0,91 1,88 0,53 0,47 1,00(14) 187 

10 4 20 0,07 0,11 0,18 0,93 0,80 1,74 0,50 0,45 0,96(9) 118 

10 4 1000 0,58 0,43 1,02 0,41 0,55 0,97 0,50 0,49 0,99(13) 5 

12 2 20 0,08 0,08 0,16 0,99 0,88 1,88 0,53 0,48 1,02(20) 192 

12 4 20 0,17 0,12 0,29 0,93 0,76 1,69 0,55 0,44 0,99(12) 108 

14 2 20 0,01 0,04 0,06 0,92 0,84 1,76 0,47 0,44 0,91(3) 180 

16 2 20 0,12 0,09 0,22 0,95 0,85 1,80 0,53 0,47 1,01(16) 181 

16 4 20 0,16 0,15 0,32 0,89 0,72 1,61 0,53 0,43 0,96(10) 94 

18 2 20 0,12 0,07 0,20 0,95 0,87 1,82 0,54 0,47 1,01(17) 179 
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