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Abstract

Traditionally, forest-stand delineation has beeseased based on orthophotography.
The application of LIDAR has improved forest managet by providing high-spatial-
resolution data on the vertical structure of theesb. The aim of this study was to
develop and test a semi-automated algorithm fardstalelineation in a plantation of
Pinus sylvestrid.. using LIDAR data. Three specific objectives weralaated, i) to
assess two complementary LIDAR metrics, Assmanniiam height and basal area,
for the characterization of the structureRofsylvestrisMediterranean forests based on
object-oriented segmentation, ii) to evaluate tifeuénce of the LIDAR pulse density
on forest-stand delineation accuracy, and iiinteestigate the algorithms” effectiveness
in the delineation oP. sylvestrisstands for map prediction of Assmann dominant Heigh
and basal area. Our results show that it is pasdiblgenerate accurake sylvestris
forest-stand segmentations using multiresolutioomean shift segmentation methods,
even with low-pulse-density LIDAR - which is an ionant economic advantage for
forest management. However, eCognitionultiresolution methods provided better
results than the OTB (Orfeo Tool Box) for standimehtion based on dominant height
and basal area estimations. Furthermore, the mflief pulse density on the results
was not statistically significant in the basal acedculations. However, there was a
significant effect of pulse density on Assmann duani height [E 9505 = 5.69, p =
0.003].for low pulse density. We propose that tippraach shown here should be
considered for stand delineation in other laRjaus plantations in Mediterranean
regions with similar characteristics.

Key words

LIDAR, pulse density, mean shift segmentation, megblution segmentation, forest-

stand delineation, automatic stand delineation.
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Introduction
In forest management, a stand defines an area iecclyy a group of trees that is
homogeneous - in terms of species composition, age, arrangement, and condition -

and distinguishable from other growth forms on adijg areas @'Hara and Nagel,

2013. Precise stand delineation is needed to mandfgzatit uses of the forested area
and its expected ecological and economic benefits revenue. Moreover, strategic
decisions, such as when, where, or how to applgriicplar silvicultural treatment, are

taken at stand leveDgchesne et al., 201.6

Forest-stand delineation traditionally has beeresssd based on orthophotography

(Burnett and Blaschke, 20p3However, the combination of field forest invenyt@and

remote sensing data in cartographic and silvicaltstand delineation is becoming more

common McRoberts et al.,, 20)4 Satellite imagery (e.g. SPOT, IKONOS, or

QuickBird) or Color-Infrared (CIR) image&éckie et al., 2003Pekkarinen, 2004and

Light Detection And Ranging (LIDAR) dat®8¢uvier et al., 201pare currently used in
this process.

Additionally, the uncertainty introduced by traditial methods of stand delineation has
been tackled by automatic algorithms based on insagenentation method&#doux

and Defourny, 2007 These techniques run an algorithm which gengenaégtitions of

the image with similar propertie8laschke et al., 2034 Most of the segmentation

technigues are based on statistical methdtsbp, 2003 where object classes are
represented by probability density functions. Thdsactions are defined over a

predetermined attribute space using methods basethohine learningdhi and Ersoy,

2005 Zhong et al., 2008 directed towards the learning of complex relagitips among
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sample patterns, and structural methddsnfeno et al., 200&agerer and Niemann,

2013 based on spatial patterriddsta et al., 2090

The application of LIDAR provides high-spatial-regeon data on the vertical structure

of the forest \Wu et al., 201Band it has been used to make precise measurewfents
forest inventory attributes (e.g., to estimate kasm) timber volume, basal area, stem

number, mean diameter, or dominant heigRgeéset, 2002n order to improve forest

managementRuiz et al., 201y With the introduction of LIiDAR into forest invésry

assessment, an increasing number of studies hewkréa stand segmentation detection

(Bouvier et al., 2016 Through time, these studies have shown increasediytical

complexity, increased accuracy of results, andcagmn the use of LIDAR data alone.
However, the specification of the fieldwork, sensand flight parameters for laser data
acquisition must be optimized to develop accuratedt inventories and mapping

(Magnussen et al., 20L2The LIDAR data acquisition specifications, suaf scan

angle, pulse density, footprint size, and scanepattinfluence directly the ability to
derive information on the forest structure. Howewsrch attributes must be decided

before the forest surveR(iz et al., 201¥ Among these parameters, the LIDAR data

pulse density is one of the most significant witlgard to accurate estimation of forest-

stand attributesdMagnusson et al., 2007

In Mediterranean pinéorests, canopy cover metrics are the forest managepriority
variables (e.g., stem number, diameter, basal aredpminant height). However, in

addition to yield metricsLopatin et al., 201.5Martin-Alcon et al., 201% other metrics

such as horizontal canopy heterogeneity, open gafuopst, and stand patterns must be
taken into account to assess silvicultural alteveat To overcome these drawbacks, the
selection of LIDAR acquisition parameters (e.glspunumber) and meaningful metrics

to describe stand structure, as well as delimitastand segmentation techniques, could
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help to develop models for specifieinus Mediterranean forests. Therefore, the
objective of this study was to develop and teseraisautomated algorithm for stands
delineation in a plantation dPinus sylvestrid.. using LIDAR data. Three specific
objectives were identified, i) to assess two commgetary LIDAR metrics, Assmann
dominant height and basal area, for characterizibthe structure ofP. sylvestris
Mediterranean forests based on object-oriented setation (e.g. eCognition software
and Orpheo ToolBox software), ii) to evaluate thiguence of the LIDAR pulse density
on forest stand delineation accuracy, and iiinteestigate the algorithms”™ effectiveness
with regard to delineation d?. sylvestrisstands, by evaluating its performance in map
prediction of Assmann dominant height and basal.are

Materials and Methods

Study area

The study area is located in “Sierra de Los Filsbi@7°13'20” N, 2°35'40” W,
between 1600 and 2186 m.a.s.l.), hereafter ablieelvas Filabres, south-eastern Spain
(Fig. S1, Supporting Material). The forest underdstis a 40-year-ol®inus sylvestris
(hereafter Scots pine) plantation covering 409%stablished using subsoiling as ground
preparation between 1970 and 1976. The plantingiewas 2000 trees Haand the
current density ranges between 342 and 1473 traésThe basal area ranges from
11.05 to 47.31 mha’ (Table S1, Supporting material). Overall, the ae&periences
typical semi-arid Mediterranean climate conditiomgh annual precipitation shifting
between 300 and 400 mm, with an average of 330 khoalerately mild temperatures,
with an average over the whole year of 13.1°C, Hasen reported during the 1940-
2007 period, reaching a maximum of 32°C in summeraminimum of -8°C in winter.
The soils have developed on schists and quartaites have loam and silty loam

textures (average composition: 30-35% sand, 40-4l%15-20% clay). The soil
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depth is 45-150 cm and the available soil watetesuns between 100 and 150 mm.
The solil information was obtained from soil cargny at a scale of 1:100008ligs

and Martinez Sanchez, 1988The dominant soils are xerorthents regosols thed

topography is characterized by steep slopes (>35%)

Field data

The forest survey was carried out in August 20lhgus-ield-Map instrumentation
(http://www.fieldmap.cz/): 27 field plots of 11 nadius were established using a
systematic, stratified sampling design. In each, pi@ measured the diameter at breast
height (DBH; 1.3 m above ground level) and theltb&aght of all trees with DBE 10
cm. Two measurements, with a precision to the seéandlimeter, of DBH were made
at right angles with a tree caliper (Masser BT @&l and the arithmetic mean was
recorded. The total height was measured using gefendler and inclinometer (Laser
Technology ForestPro Laser), with a precision @ tlearest centimeter. The structure
and silvicultural conditions were defined using fhkowing stand parameters: number
of trees per hectare (N), basal area per hectarenf€an arithmetic diametery{(dand

basal area median diameteg)(dnean arithmetic heights (i and Assmann dominant

height (H, ) (Assmann, 197(Table S1, Supporting material).

LiDAR data and processing

The LIDAR data were acquired on April 10, 2013 ke tcompany Heliografics

Fotogrametria S.L. (Alicante, Spain), using an AQSb laser scanner (Leica-

Geosystems AG, Heerbrugg, Switzerland) with a laspetition rate of 158.2 kHz, a
scan frequency of 100 Hz, illuminated footprintrdeter of 0.32 cm, and an FOV of 12
degrees. The field was scanned by plane from htfatitude of 3300 m.a.s.l. The ALS
data were acquired with a point density of 10.5ssirf. They were geo-referenced in

the European Terrestrial Reference System 1989 @BUR coordinate system. The
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planimetric coordinates (x and y) and ellipsoideight values were computed for all
echoes. The time gap between the LIDAR data adoprisand the field data collection
is considered insignificant according to the anrfugight and diameter growth in the

study area%anchez-Salguero et al., 2012

For this study, three diferent point densities wabieved, based on a random selection
of LIDAR pulses in a grid cell of 1 fnand were used in the segmentation process: 10.5,
4, and 0.5 pulses f(density). The forest-stand homegenity and geducagistribution
make this statistic robust and informative. Theimim density, 0.5 pulses mexceeds

the minimum necessary to create the 3-m DEM reduineder the proposed USGS
specifications (USGS, National Spatial Progran@0

Recommendations mentionedRuiz et al. (2014 were followed to avoid the influence

of the Digital Terrain Model (DTM) on the final néés. Therefore, separate filtering
processes for the three point clouds were produegidg an adapted algorithm from

Kraus and Pfeifer (1998based on linear prediction. Next, these filteretirns were

used to generate DTMs with a spacing grid of Jar2l 5 m, respectively, for the pulse

densities mentioned above (10.5, 4, and 0.5 pulEds(Anderson et al., 2006In this

way, equal conditions for obtaining models are gotged, so that point clouds of
different pulse densities from different flight pleing settings could be mock.

Next, the elevation values for the LIDAR data ratuwere normalized using the ground
surface model calculated above. We computed LiDA®rigs to support regression,
based on previous research by Naesset (2002). Bletece calculated using FUSION

LIDAR Toolkit (McGaughey, 2014 In this study, a total of 43 metrics were exteac

from LIDAR pulses using thgridmeetriccommand. The metric were calculated from
the height distribution of laser returns and theyrevused as regressors in the statistical

analyses. To obtain a complete explanation of tb&IBN tools, seeMcGaughey



172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

(2014. The summary of the LIDAR metrics, with their sponding descriptions, is
shown in Table S2, Supporting material.

LiDAR data modeling

We built predictive models with the forest struefuattributes and metrics obtained
from the LIDAR data within each field plot. We coatpd multiple linear, power, and
exponential regressions corresponding to all ptessiiombinations. Linearized
transformations were performed for the power andoagntial regressions. Models
were evaluated following the criteria: (a) statiati significance (p value<0.05), (b)
minimum root-mean-squared error (RMSE), (c) minimbias, (d) homoscedasticity,

performing a Breusch-Pagan teldefwartz, 2005 and normal distribution of residuals,

verified with a Shapiro-Wilk testMohd Razali and Wah Yap, 20}11(e) parsimony

principle, (f) non-collinearity, when more than omariable were selected, and (g)

agreement with current biological knowledd&tOdekerckhove et al., 20114

Specifically, in points (e) and (f), the variablesluded in the model were selected
through an exhaustive search using the Bayesiamniation criterion (BIC) method,
which performs all possible subset regressionsligtalthe models in ascending order
of BIC. The models with the lowest BIC were seldctln addition, multicollinearity
among the explanatory variables was verified wlig ¢ondition indexEelsley, 199).

All the variables selected in the models had a tmmdindex lower than 30 and a p-
value of less than 5%. The accuracy of the modalks agsessed by performing a leave-
one-out cross-validation. The resulting models wapplied to the whole extent of the
study area. For each model, LIDAR-based metricewesatracted from the whole point
clouds, using a pixel size equivalent to the figlot size, with FUSION NicGaughey,

2014).
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R software R Core Team, 20)%and the leaps packagéhomas Lumley using Fortran

code by Alan Miller, 200pfor variable selection were the tools employed.

Segmentation methods applied for stand delineation
Stands were segmented using two different algosttimat differed in their complexity.
The first one was based on multiresolution segntiemtausing eCognition software

(Trimble, 2007, involving a more complex method; the second was based on mean

shift segmentation using Orpheo ToolBox softward B (CNES, 2013 for QGIS

(QGIS Development Team, 200@ig. 1), as a less complex approximation to carap

with the eCognition results. Both algorithms useakdd area per hectare (G) and
Assmann dominant height {Has silvicultural variables to identify and groupAR
data into a single stand. These structural varsalsiere chosen based on our knowledge
of the forest in our study areas.

The multiresolution segmentation approach was egps explained iklamilton et al.

(2007, using an optimization procedure which locally nimizes the average
heterogeneity of image objects for a given resotuti Using multiresolution

segmentation, scale parameter determines the a&veiag of the image objects, and
shape and form are determined by the input imaggrdawhich weights determine the

homogeneity lamilton et al., 200/ Segmentations for different scale parametergwer

tested from a minimum value of two to an increaswgnber of parameters, until one
unique object resulted.
The second segmentation methodology used OrphelBdxsoftware (OTB), a non-

parametric density estimator based on Parzen win@awich and Camps, 19P4at is

an adaptive gradient ascent method that works bgodering local maxima in the
feature-space, by moving the window towards thegrementally. With the local

maxima detected, the data points can be groupecciasters \Wu et al., 201R Three
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parameters must be set: (1) the spatial radiudefioe the neighborhood, (2) the range
radius, to define the interval in the spectral spand (3) the minimum size of the
regions to keep after clustering.

Validation of the segmentation method and stand ameysis

The validation of an image segmentation is stilhad task ldaralick and Shapiro,

1985. An accurate segmentation is one which homogsniegions according to a
specific characteristic and, at the same timegrkfitiates adjacent regions according to

the same characteristiéddralick and Shapiro, 1985Thus, segmentation should be

intra-region uniform and inter-region heterogeneda®m the statistics available to

validate image segmentation, Global Score - anddfinJohnson and Xie (20)1 has

been selected due to its simplicity of calculateomd of understanding and its good
results.

Johnson and Xie (20)1suggested that the global intra-segment goodnesssure

should be assessed as a variance weighted by egitiest area on which each variance
is calculated divided by the total area: (Equafi®n

wlar = E—?zl i

DX 1)
Where v; is the variance and: is the area of the segment i. Segments with low
variance should be relatively homogeneous. A wemjivariance was used so that large
segments had more impact on the global calculatizars small ones.
As an inter-segment global goodness measure, Motadex Moran, 1950 was used.

This is a measure of the spatial autocorrelatiothiwithe data and indicates the

statistical separation between equal spatial objeci et al., 2008 (Equation 2). The

values of MI range from -1, indicating low spata@rrelation and perfect dispersion,
which is desirable to the resulting segmentationtl, representing perfect correlation.

A value of zero indicates a random spatial patf€tiif and Ord, 198).

10
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MI = " o
I, — 72 (2, Ew)) @)

Where n is the total number of regioMs; is a measure of the spatial proximity, is

the mean spectral value of region i, ahds the mean spectral value of the image. Each
weighted%ii is a measure of the spatial adjacent regions.

In order to compare MI and the weighted variandeeytwere both normalized
(Equation 3).

- Xm:’ny
KXmax — Xmin (3)

WhereXmin andXmax are the minimum and maximum values of weightedawnae or

MI from all the calculations computed for every day Normalized values range
between 0 and 1.

Finally, the Global Score is defined as the surthefnormalized weighted variance and
the normalized MI (Equation 4).

G5 = V,prm + ML, oo (4)

Where Vrnorm is the normalized weighted variance aldnorm the normalized MI.
Therefore, in segmentation results, GS will rangvieen 0 and 2, the closer to zero the
better; that is, with a low weighted variance aseasure of intra-segment heterogeneity
and a low Ml value as a measure of inter-segmemdgeneity. As there was more than
one layer in the image, the GS values were averbgdatle number of bandddhnson

and Xie, 201}.

Results

Assmann dominant height and basal area modeling

The stand K and BA models based on regression methods proviedalues that
ranged from 0.81 to 0.97 (Table 1), with a root-megquared error of the cross

validation (RMSECYV) below 1 m for dominant heigimdaé nf ha' for basal area. The

11
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models showed low values of bias in all cases, withsistency of the prediction
models. In all cases, the exponential and powestiom models performed significantly
better than the linear ones.

Values ofR? greater than 0.95 and an MAE value of 0.40 m wétained for H using
exponential models, with an RMSECV between 0.53 énfulses i), and 0.76 m (0.5
pulses rif) (Table 1). The basal area models had trendsasituilthose of the dominant
height models, withR* values higher than 0.84 and low values of RMSE®W the
exponential model (3.99 m for 10 pulse¥;r6.05 m for 4 pulses ) and 2.90 m for
0.5 pulses M) (Table 1).

Following the independent variable data selectibe, models using height variables
(i.e., ElevP99, ElevCURT mean CUBE, and ElevP90Hgrand ElevP50, ElevMAD
mode CUBE, and Elev mean for G), together with scdptor for the density of the
forest canopy (CanopyReliefRatio), were the mostcessful models (Fig. S2,
Supporting Material).

Figure 2 presents the scatter plots of the beshats of H and BA for the selected
regression model versus the LIDAR values for thesities 10, 4, and 0.5 pulses’m
The predicted kwas in near perfect agreement with the observeasarements, thie®
value (> 0.95) being higher than that of the regjoes between the modeled and
observed G (> 0.84).

eCognition multiresolution and OTB mean shift segaton

The response of Multiresolution Segmentation tegbistand delineation, described by
the number of segments created, varied with thie peaameter (Tables 2 and 3). Using
the eCognition segmentation algorithm, a total 6R& segments or stands were
delineated with a scale parameter of 2 (Moran @xnd|,om = 0.98 for H and Mhom

= 1.00 for G; average stand area = 0.25 ha), othvhil were classified at the 36 scale

12
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(Mlnorm = 0.06 for H and Mlom = 0.22 for G; average stand area = 37.18 ha) €Tl

A total of 221 segments or stands were delineasatyuOrpheo ToolBox (OTB), with a
spatial radius and a range radius of 2 and a mimraize region of 20 (Mbm = 0.00
for H, and M}om = 0.88 for G; average stand area = 1.85 ha), dndete classified at
a spatial radius of 8, a range radius of 2, andranmam size region of 400 (Mdm =
0.05 for H, and Mkom = 0.79 for G; average stand area = 37.18 ha) €Tapl

General trends in the behavior of the method miightletected when the Global Score
is represented together with the normalized Ml #rgdnormalized variance in the range
parameter (Fig. 3). Figure 3a shows the Global &coormalized weighted variance,
and normalized MI of segmentations assessed atreiff scale parameters for the
eCognition Multiresolution segmentation (10 pulse). Segmentations with low
normalized MI values had, at the same time, higimatized variance oriceversadue

to the characteristics of the definition of theiahles (Equations 1, 2, 3, and 4).

The Global Scores for eCognition Multiresolutiorgsentation were better than the
results obtained with OTB Mean Shift segmentatibig.(4). When compared with
manual delineation, eCognition Multiresolution semtations also performed better
(Fig. 4).

LiDAR pulse density effects on the segmentatioogs®

As expected, the LIDAR pulse density affected staeltheation. We summarized these
effects by analyzing the normalized weighted vamgaand Ml values. The best point
density forP. sylvestrisstand delineation was 10 points’mwhich provided the lowest
values of weighted variance and the highest vabfesormalized MI (Fig. 5). Both
methods predicted the dominant heights of thedsthetter than the basal area.

A one-way, between subjects ANOVA was conductedampare the effects of pulse

densities of 10, 4, and 0.57on plot-measured basal area and dominant heigier.eT

13
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were no statistically significant effects of puldensity on basal area when comparing
group means at the p<0.05 leveb [s95s = 1.15, p = 0.317]. However, there was a
significant effect of pulse density on Assmann duani height [E 9505 = 5.69, p =
0.003]. Post hoc comparisons using the Tukey HSD test indicated tha mean
dominant height of the segments for the pulse te$i0.5 (M = 10.56, SD = 1.21)
differed significantly from that of the other grausHowever, the dominant heights in
the segmentation with a pulse density of 10 (M 4&80SD = 1.07) did not differ
significantly from those of the segmentation withudse density of 4 (M = 10.47, SD =
1.26).

Discussion

Our results show that, given the conditions sehia study, it is possible to generate
accuratelyP. sylvestrisorest-stand segmentations using multiresolutiomean shift
segmentation methods, even with low-pulse-densiJAR - which is an important
economic advantage for forest management. Howes€ngnition multiresolution
methods provided better results than OTB mean shifinentation methods for stand
delineation based on dominant height and basal estiamations. Furthermore, the
influence of pulse density on the results was matistically significant inbasal area
calculations. However, for low pulse density, doamnheight results could be affected.
Assmann Dominant Height and Basal Area Modelinthefstand

The performance of the Assmann dominant height lzashl area models compares
favorably with the results of other studies in whitand height and G were modeled
using LIDAR data. The coefficient of determinatin the final dominant height model
developed in this studyrRf > 0.95) was in the range of previously reported esl(D.82

to 0.98; Means et al., 2000Naesset, 2002Coops et al., 2007Stone et al., 2011

Gonzélez-Ferreiro et al., 201&onzélez-Ferreiro et al., 201®/att and Watt, 2013

14
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The RMSE was similar to or lower than the valugmoreed for other coniferous species

(Means et al., 2000Gonzalez-Ferreiro et al., 2018Vatt and Watt, 2003 in these

studies, it was also found that exponential fumgigerformed better than linear
regression models.

Model predictions of basal area had a precisin>(0.84) comparable to that found in
similar studies within coniferous forests in boremhd temperate regions. The
coefficients of determination ranged from 0.62 1®40for models predicting basal area

in coniferous forests in the United States of AmeerfMeans et al., 2000 Norway

(Neesset, 2002Naesset et al., 2005and Denmark Nord-Larsen and Schumacher,

2012. Additionally, the type of explanatory variablesed might cause the main

differences.Gonzalez-Ferreiro et al. (20l3enerated models to estimate biomass,

which firstly was calculated as a combination afjh&s and diameter. However, in our
study, first order connections were assessed, asvovked directly with dominant
heights, considered as the combination of thehieeghts and basal area - as a diameter
dependent variable, but not a combination of baitebles.

Finally, the precision of dominant height and basala models will be affected by the
errors in the generation of DTM, at the height aiok the point clouds are normalized,

the errors of the sensor, and the pulse dengbllgndsas et al., 20).3However,

variations in LIDAR pulse density did not have grsficant effect on the modeling
process. In fact, neither bias nor percentage erasied meaningfully Gonzalez-

Ferreiro et al., 202Ruiz et al., 201%

LiDAR pulse density effects on prediction models
The accuracy of the forest structure metrics diglmncreased as a function of pulse
density (Table 1). The determination coefficientslominant height and basal area did

not increase significantly from the lowest to thghlest pulse density (i.e., from 0.5 to

15
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10.5 pulses R). Further, accuracy seemed to be related moreottehselection than to
point density. For example, the accuracy of theoeeptial models for dominant height
remained approximately equal to its maximuRi £ 0.94). Similarly, the accuracy of
the power models for basal area rose steadily up pulses i (R = 0.90), then
decreased to its lowest determination coeffici®it 0.81). Collectively, these results
indicate that beyond a certain density level (eagfow as 0.5 points Tnaccuracy does
not increase significantly. These are good exampidsrest metrics that require a low
density to achieve reasonable accuracy, but dd&weefit significantly from very high

LIDAR density Jakubowski et al., 20)30ther authors reported similar results for the

modeling process, with high correlations betweddAR metrics and forest inventory
attributes at the plot level, based on low-pulsesity LIDAR (<2 pulses M) (Thomas

et al., 2006 Naesset, 200950nzalez-Ferreiro et al., 201Ruiz et al., 201% Our results

were not as accurate, most likely due to the moraptex study area. This indicates
that stand allometry requires a relatively lowemtner of LIDAR returns to be mapped
accurately.

eCognition Multiresolution and Mean Shift OTB Segtagon

We found that both eCognition and OTB segmentatbmuld be automatically
segmented to produce spatialsylvestrisstands and that an interpreter could label the
stands in a manner similar to traditional photogsagFig. 4). These results are
consistent with those achieved in other studieagukiDAR for automation of stand

delineation applied to forest inventory practicéofa et al., 2013Dechesne et al.,

2019. LIiDAR data have demonstrated the utility of witstand forest structural
attributes (e.g., current dominant stand height laashl area) as a subset of attributes

required for characterization of forest stands.
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The high Global Score, normalized weighted variareoxed normalized MI of the
segmentations indicate that both eCognition Mudbiation and OTB segmentations

detected homogenous stands well, in concordandepsévious work Espindola et al.,

2006 Johnson and Xie, 20).1Further, the eCognition Multiresolution segmdiota at
10 pulses M was the best scored segmentation, giving intreenegniformity but inter-
region heterogeneity. The reason for that couldhla¢ the eCognition Multiresolution
segmentation algorithm was formulated to searchdédn intra-region homogeneity and
inter-region heterogeneity, while the Mean-Shifjaithm was designed to search only

for homogenous region8#éatz and Schape, 200@s deduced from Figure 3, the value

of the scale parameter had a direct effect on theber of polygons produced by the
resulting segmentation. In contrast, OTB Mean-Sefymentation stands were usually
detected and delineated correctly, but the numbeegments was lower and did not
always match those of the ground reference data.

Due to the relatively large size and homogeneitthefstudy area used, in comparison

with other studiesHspindola et al., 2006dohnson and Xie, 20),lwe found values of

the Global Score that represented less than 5%eoflifference in score between the
first minimum and the next minimum value, suggestthat there is no single best
segmentation but multiple ones; which can differtie number and size of the
segments. Because the number of segments deperitls study area surface and the

size of the forest stand®'Hara and Nagel, 20),2he best results could be identified as

the best minimum group of values of Global Scoresmalized weighted variance,

normalized MI, and number of segmen&hén et al., 2004 These values are located

around the crossing point of the curves of nornedliweighted variance and normalized

MI (Figures 3 and 5).
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Furthermore, there should be agreement betweesetireentation with the best Global
Score, better normalized weighted variances, attéro@rmalized MI and the resulting

number of segments, depending on the forest maregeabjectives. For precision

silviculture, foresters may require very precisanst delineation regarding intra-region
variance with a high number of segments, despéesimilarity of the segments to each
other; for example, segmentation at scale pararbatei able 2, even when it is not the
one with the best score. However, in Mediterrangiae forests, where protection and
water management are the main silvicultural targettess precise stand delineation
would be demanded, including larger areas of highriregion heterogeneity - with,

consequently, a low number of segments (e.g., se@ten at scale parameter 10 in

Table 2), although with higher intra-region variarf€im et al., 2008Johnson and Xie,

2011).

The Mean Shift segmentation algorithm showed thdit@thal complexity of using
three parameters (the range, spatial radius, angimmim region size) in the
segmentation process. In the analysis of the Meaift Segmentations, more
unreliability of the validation system was detect®d obvious relationship between the
segment number created and the Global Score valoelsl be observed (Fig. 5).
Consequently, selection of the best segmentatiofofest-stand delineation using OTB
methodology is not as straightforward as previotistught. Given that the Mean Shift
algorithm has been proven as an adequate methddrist-stand delineation\(u_et

al., 2013 2014, the disturbances in the detection of the begingmtation may come

from the validation system - which, we suggest,ufthde rethought for this kind of
technique with multi-dependent variables.
The question that then arises is: what benefitvdsrfrom the cost and effort of the

eCognition Multiresolution Segmentation approackspnted herein, when the results
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are similar to those obtained using OTB? Moreo@¥FB implementation for stand
delineation would likely be simpler, more cost-effee, and of similar accuracy. While
dominant stand height and basal area do not cotesthie entirety of an inventory, each
is amongst the more important of the suite of laites that is generated. Dominant
stand height information is important for managetpmnposes and is indicative of site
conditions, while basal area (related to volumbiomass) is key to forest management
(silvicultural treatments) and carbon-related cdestions. A recommendation for the
future is that eCognition methodology (and relateemi-automated processing
approachs) should remain focused on locations wpegeision silviculture inventory
programs persist. On the other hand, segmentationidqed by OTB methodology,
offering less precision but also compatibility asichilarity of stand delineation, should
be used in extensive silviculture (e.g., protectichmatic change adaptation, and
hydrologically-oriented silviculture). For areasathare not subject to regular
management or monitoring activities, it is possithlat the more limited precision of
stand delineation provided by OTB will prove suffict for many monitoring and
reporting needs. Thus, a stratification of activihay be possible based upon the
monitoring requirements associated with a givea.are

LiDAR pulse density effects on the segmentatioogs®

The segmentation algorithms were also influencedheyLiDAR pulse density. Our
results suggest that basal area is not affectedegynentations based on different
LIDAR pulse densities. In contrast, low pulse dgnaifects the estimation of dominant
height. Segmentations using medium and high putsesitles do not appear to be
significantly affected with respect to dominant digi results. However, it should be
noted that the values of the means and standandtibes for dominant height were

similar among the three pulse density approaches.
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Overall, our results indicate that a very high LiRAulse density may not be necessary
to predict typical forest structure metrics at et scale or for stand delineation. These
findings are particularly important for land maneggéhat need to survey a large area
with a specific forest metric and accuracy in mi@air results, considered in terms of
cost, coverage, and density, can help guide tlusgss. For example, if dominant basal
area is the most important metric to estimate magonable accuracy level, it may be
sufficient to acquire LiDAR data at about 1 pulsé.r®n the other hand, if it is critical
to derive the average dominant height with highueacy, then it may be advisable to
use a much higher pulse density - between 2 andsé$n.

Conclusions

The objective of this study was to use LIDAR dagreentation to produce stand-level
predictions of dominant height and basal area a#i a® to use two different
segmentation techniques for stand delineation twm@kerto Pinus sylvestrisforest
management in Mediterranean mountains. The useil@AR data provided a large
sample appropriate for model calibration and indepat validation of attribute
predictions. We have demonstrated the utility dAR data with regard to estimating
dominant stand height and basal area with an acgusaitable for operational
activities. We have also noted the differencestama delineation (number and form)
between two different segmentation algorithms (e@@am and OBT), using a semi-
automated methodology based on forestry attributess Mediterranean environment.
We did not find significant differences betweenhignd low LIiDAR pulse density,
neither in the creation of prediction models formioant height and basal area nor in
the segmentation process. Nevertheless, for fuassgrtions, more comparative studies
- varying the radius of the plot sample - shoulcchgied out. The technique developed

in this project could be implemented to provide engorecise data for forest
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management. We propose that the approach showrsheutd be considered for stand
delineation in other largéinus plantations in Mediterranean regions with similar
characteristics. Further, large-area, wall-to-wadbracterization with a high level of
attribute detail is difficult to obtain, with sanmd offering a practical, robust, and
reliable alternative. Future global forest invegtoprograms may benefit from
consideration of the framework and methods pregenézein. Also, depending on the
location and attributes required, wall-to-wall magap that integrates high-spatial-
resolution sensors (i.e., RapidEye or World-ViewjhwLIDAR data may provide a
powerful opportunity for systematic and repeatabtenitoring and reporting of
silvicultural activities.
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Figure 1. Flowchart of the modeling and image processing fooposed stand

delimitation methodology based dominant height laashl area using LIDAR data.
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691  Figure 3: Global Score, normalized weighted vagaand normalized Moran’s Index
692 for the evaluation of the segmentations a) for #t@ognition’s Multiresolution
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693 segmentation at 10 pulse density; b) for the OTEaM8hift segmentation at 10 pulse
694  density.
695
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697 Figure 4: Mean Global Score values obtained usiegi-utomatic forest stand
698 delineation at 10 pulse:frdensity for Ecognition’s Multiresolution segmeitat OTB
699  Mean-Shift segmentation and manual delineation
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Multires olution segmentation
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Figure 5: a) Normalized weighted variance, nornsalizVloran’s Index and global
scores for segmentations at 10, 4 and 0.5 pufSedensity with eCognition’s
Multiresolution Segmentation, b) Normalized weighteariance, normalized Moran’s
Index and global scores for segmentations at Hhd40.5 pulse-fhdensity with Mean
Shift Segmentation with OTB.
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706

707  Figure 6. Maps obtained using semi-automatic fosemtd delineation at 10 pulsé*m
708  density a) Multiresolution segmentation; b) Mean#3egmentation

som e e e a3t 1o s Ty

709

710

711

712

713

36



714

715 Table 1: Summary of the statistical criteria congpufor evaluation the models for
716  dominant height (k) and basal area (BA).
717
LiDAR p_ulse Type of _ ,
density ; Variable R BIAS MAE RMSE RMSECV %ERROR
(m?) regression
Dominant height (m)
10 Lineal Ho 0.97 -3.76¢° 0.35 0.59 0.63 5.65
10 Exponential Ho 0.97 -0.01 0.40 0.49 0.53 5.35
10 Power Ho 0.94 0.03 050 0.62 0.79 7.89
4 Lineal Ho 0.96 -1.66* 0.44 0.56 0.64 6.44
4 Exponential Ho 0.97 -9.66° 0.40 0.50 0.54 5.54
4 Power Ho 0.95-2.9¢° 0.47 0.62 0.73 6.23
0.5 Lineal Ho 0.93 3.66° 059 0.78 0.94 7.78
0.5 Exponential Ho 0.95 2.06® 040 064 0.76 6.37
0.5 Power Ho 0.94-2.66° 056 0.70 0.90 7.04
Basal area (rhha?)
10 Lineal G 0.92 2.3¢®> 360 3.48 3.82 10.28
10 Exponential G 088 -015 243 3.16 3.99 9.85
10 Power G 0.81 -0.14 3.11 3.90 4.58 16.15
4 Lineal G 0.92 -4.3¢* 3.09 4.6 5.75 11.38
4 Exponential G 0.84 -9.06° 2.95 4.00 5.05 10.60
4 Power G 0.93 -0.13 298 4.46 5.67 16.19
0.5 Lineal G 0.93-1.8¢ 270 281 2.96 10.20
0.5 Exponential G 0.92 -9.16* 201 2.52 2.90 10.46
0.5 Power G 0.87 -0.14 263 312 3.39 12.95
718 Mean Absolute Error (MAE), Mean Squared Error ob€¥ Validation (MSECV), Root Mean Squared
719 Error of Cross Validation (RMSECV) and percentageroor (%ERROR)
720
721
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722

723  Table 2: Normalized variance {/), normalized Moran’s Index (Mdm) and global

724  scores (GS) for all scale-parameter segmentatioitis teirs resulting number of
725  segments for the 10 pulse density approach. eGogisitMultiresolution segmentation
726  approach.. Ordering indexes for two-band averageesaare shown in brackets.
727  Minimum values Global Score are highlighted.

728
Ho 10-pulse/nf density band | G 10-pulse/n3 density band Two-band average
Scale Number of
Parameter | Vihom MI horm GS Viom | Ml o GS /e MI porm GS segments
2 0,00 0,98 0,98 0,00 1,00 1,00{ 0,00 0,99 0,99(11) 1628
4 0,35 1,00 1,35 0,29 0,68 0,98] 0,32 0,84 1,17(18) 541
6 0,44 0,54 0,99 0,42 0,40 0,83] 0,43 0,47 0,91(6) 246
8 0,50 0,47 0,97 0,52 0,35 0,88/ 0,51 0,41 0,92(7) 154
10 0,61 0,24 0,85 0,61 0,27 0,89/ 0,61 0,26 0,87(3) 92
12 0,65 0,23 0,89 0,69 0,20 0,90] 0,67 0,22 0,90(5) 68
14 0,71 0,07 0,79 0,76 0,07 0,83] 0,73 0,07 0,81(2) 47
16 0,78 0,13 0,91 0,83 0,00 0,83] 0,80 0,06 0,87(2) 30
18 0,78 0,11 0,90 0,83 0,04 0,88 0,81 0,07 0,89(4) 29
20 0,85 0,03 0,88 0,92 0,05 0,97/ 0,88 0,04 0,93(9) 20
22 0,85 0,03 0,88 0,92 0,05 0,97/0,88 0,04 0,93(10) 2
24 0,87 0,02 0,89 0,93 0,03 0,96 0,90 0,02 0,93(8) 19
26 0,89 0,03 0,93 0,98 0,08 1,06| 0,94 0,05 0,99(12) 16
28 0,90 0,02 0,92 0,98 0,11 1,10| 0,94 0,07 1,01(14) 1%
30 0,90 0,00 0,90 0,98 0,12 1,11 0,94 0,06 1,00(13) 14
32 0,92 0,03 0,95 0,99 0,24 1,23| 0,95 0,13 1,09(15) 1p
34 0,92 0,03 0,95 0,99 0,24 1,23] 0,95 0,13 1,09(16) 1p
36 1,00 0,06 1,06 1,00 0,22 1,221 1,00 0,14 1,14(17) n
729
730
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731

732  Table 3: Normalized variance (), normalized Moran’s Index (Ml and global
733 scores (GS) for all spatial radius, rage radius amdimum size of the region
734  segmentations with theirs resulting number of segmdor the 10 pulse density
735 approach. OTB Mean Shift segmentation approachs hian extract of the 20 best
736  global-scored segmentations out of 278. Orderinigxes for two-band average values
737  are shown in brackets. Minimum values of Globalr8@re highlighted.

Ho 10-pulse/nt density band | G 10-pulse/m density band Two-band average N
Spatial | Rage | Min size segments
radius | Radius | of region | Vyom Ml porm | GS Viorm | Ml porm | GS Viorm | Ml norm | GS
2 2 20 0,00[ 0,00 0,00/ 0,97 0,88 1,85 0,48  0,44/0,92(4) 221
2 2 1000 055 0,31 0,87| 0,27| 0,48 0,76| 0,41  0,40/0,819(2) 6
2 12 20 0,71 0,91 1,63] 0,00 0,00 0,00/ 0,35]  0,45/0,81(1) 5
4 2 20 0,03 0,03 0,06/ 0,95 0,88 1,84| 0,49|  0,45/0,95(7) 199
4 2 50 0,23 0,19 0,42| 0,81 0,74 1,56 0,52|  0,46|0,99(11) 7
6 2 20 0,06 0,00 0,06/ 0,95 0,88 1,83| 0,50,  0,44|0,95(6) 198
6 2 50 02§ 0,17 0,46/ 0,83 0,75 1,58/ 0,55|  0,46|1,02(19) 86
8 2 20 0,10 0,07 0,18/ 1,00 0,85 1,85| 0,55|  0,46(1,01(18) 195
8 2 400 0,53 0,30 0,83| 0,56] 0,61 1,18/ 0,54|  0,46[1,00(15) 11
8 4 20 014 0,05 0,19| 0,89] 0,79 1,69| 0,52|  0,42|0,94(5) 116
8 4 50 029 012 0,41 0,80 0,70 1,51| 0,55  0,41/0,96(8) 62
10 2 20 0,09 0,03 0,12| 0,96 0,91 1,88| 0,53|  0,47|1,00(14) 1817
10 4 20 0,07 0,11 0,18/ 0,93] 0,80 1,74| 0,50,  0,45/0,96(9) 118
10 4 1000 058 043 1,02| 041 055 0,97| 0,50|  0,49/0,99(13) 5
12 2 20 0,08 0,08 0,16/ 0,99] 0,88 1,88| 0,53|  0,48[1,02(20) 192
12 4 20 0,17 0,12 0,29| 093] 0,76 1,69| 0,55|  0,44/0,99(12) 108
14 2 20 0,01 0,04 0,06/ 0,92| 084 1,76| 0,47|  0,44|0,91(3) 180
16 2 20 0,12 0,09 0,22| 0,95 0,85 1,80| 0,53|  0,47|1,01(16) 181
16 4 20 0,16 0,15 0,32| 0,89 0,72 1,61| 0,53|  0,43|0,96(10) 94
18 2 20 0,12 0,07 0,20| 0,95| 0,87 1,82] 0,54]  0,47/1,01(17) 179
738
739
740
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