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Abstract The availability of Very High Resolution (VHR) optical sensors and a growing image 15 

archive that is frequently updated, allows the use of change detection in post-disaster recovery and 16 

monitoring for robust and rapid results. The proposed semi-automated GIS object-based method uses 17 

readily available pre-disaster GIS data and adds existing knowledge into the processing to enhance 18 

change detection. It also allows targeting specific types of changes pertaining to similar man-made 19 

objects. This change detection method is based on pre/post normalized index, gradient of intensity, 20 

texture and edge similarity filters within the object and a set of training data. Once the change is 21 

quantified, based on training data, the method can be used automatically to detect change in order to 22 

observe recovery over time in large areas. Analysis over time can also contribute to obtaining a full 23 
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picture of the recovery and development after disaster, thereby giving managers a better understanding 24 

of productive management practices.   25 

 26 

Keywords: Change Detection, Remote Sensing, Disaster Response and Recovery, Roads, 27 
Open Spaces 28 

 29 

1. Introduction 30 

Rapid and robust impact assessment of poorly-accessible affected areas is essential for initiating 31 

effective emergency response actions following disasters (Dell’Acqua et al. 2009), especially in 32 

highly populated urban areas (Vu and Ban 2010). Information pertaining to accessibility is critical in  33 

order to organize medical help and evacuation as well as aiding in both early- and long-term recovery 34 

evaluation (Joyce et al. 2013). In addition, identifying the location and sizes of open spaces is 35 

important in the early phases of emergency response. This information allows emergency managers to 36 

select the best plots for camps. These campsites also require monitoring and evaluation during in 37 

early-recovery phase to understand the population’s re-housing. 38 

Information on damage caused by an event can be derived quickly from suitable very high-resolution 39 

(VHR) satellite imagery (Walter, 2004) by comparing data from a chosen reference before the event 40 

(pre-event) to imagery acquired shortly after the event (post-event). The availability of pre- and post-41 

event data opens the possibility for gathering impact assessment data using change detection in 42 

complex environments such as urban areas.  Change detection from high spatial-resolution images 43 

such as IKONOS and QuickBird is even more challenging, especially in complex environments 44 

characterised by small objects such as houses, individual trees and roads, and by shadows (Pagot et 45 

al., 2008). 46 

In general, change detection techniques can be grouped into two types: pixel-based and object-based 47 

(Blaschke 2010, Chen et al., 2012). Pixel-based change detection analysis refers to using a change 48 

detection algorithm to compare the multi-temporal images pixel-by-pixel while object-based change 49 

detection analysis refers to using a change detection algorithm to compare multi-temporal images 50 

object-by-object. However, the definition of pixel-based and object-based change detection is not 51 

absolute. The most basic feature of object-based approaches is to segment the image and regard the 52 

objects as the basic unit of operation, rather than the pixel-based approach, which regards a single 53 

pixel as the basic unit (Dai,  et al., 1998). 54 

Object-based methods have the potential to provide more accurate results than traditional pixel-based 55 

methods (Al-Khudhairy et al. 2005), but choosing the object feature is not straightforward because the 56 
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high information content of VHR images requires an accurate definition of the object. Thus the object 57 

detection step causes most of the error (Michaelsen et al. 2006). 58 

Most object-based algorithms concentrate on detecting objects such as rectangular buildings (Lin et 59 

al. 1998) or parallel lines for detecting roads. This search is complex and rarely accurate, especially 60 

after disasters. As noted in the related literature, road extraction has been achieved in single or 61 

multiple operations such as image segmentation (Yang and Wang 2007, Singh et al. 2014), 62 

classification (Mohammadzadeh et al. 2008), using morphological operations (Mena and Malpica 63 

2005, Al-Khudhairy et al. 2005 ) and merging relevant road segments (Akcay and Aksoy 2008, 64 

Mohammadzadeh, 2009). Hough transform and edge detection have also been used to detect linear 65 

parallel segments with constant width (Talib and Ramli 2015), snakes (Butenuth and Heipke 2010) 66 

(contour-based object outlines) and matching  road templates to obtain networks (Touya 2010). 67 

Hiremath et al., 2010 have used a sequence of filtering followed by segmentation, grouping and 68 

optimization on VHR images to identify open spaces in complex urban environments.  69 

Many current change-detection mechanisms do not make effective use of available pre-disaster data 70 

and existing knowledge. Hence using pre-disaster GIS objects such as roads, open spaces, bridges etc. 71 

as indicators allows targeting the search for specific changes to these areas within the objects of 72 

interest. The proposed indicator-specific method uses readily available pre-disaster GIS data and 73 

existing knowledge to enhance the detection of change while offering the possibility to target specific 74 

types of changes pertaining to similar man-made objects.  75 

The GIS object-based method discussed here is based on a pre/post normalized index, gradient. 76 

texture, and edge similarity filters within the object and an existing set of training data.  The proposed 77 

semi-automated method is evaluated with QuickBird, Geoeye 1, and Worldview 2  datasets for 78 

abrupt changes soon after a disaster.  The method could also be automated to monitor progressive 79 

changes months after a disaster. 80 

 81 

2. Method 82 

2.1. Case Study Sites 83 

2.1.1. Van, Turkey 84 

The Van earthquake was a destructive M7.1 earthquake that struck the city of Van in eastern Turkey 85 

on Sunday, 23 October 2011 at 13:41 local time. Based on the reports at least 534 people were killed, 86 

2,300 injured and 14,618 buildings and homes destroyed or damaged in the Ercis-Tabanli-Van area 87 

(Earthquake.usgs.gov 2015). As a part of the SENSUM (European Commission under FP7 (Seventh 88 

Framework Programme): SENSUM: Framework  to Integrate Space-based and in-situ sENSing for 89 

http://en.wikipedia.org/wiki/Turkey
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dynamic  vUlnerability and recovery Monitoring, 312972) project, the Van earthquake was selected 90 

for study because it was one of the most recent destructive, vast earthquakes for which imagery was 91 

available and suitable for a data-poor country for which remotely sensed tools were well suited. 92 

 93 

Table 1 Satellite Data for Van, Turkey  94 

Imagery  Acquisition Date 

Pre- disaster (WV02 ) 06th May 2011 - 5 months before 

earthquake 

Post disaster 1 (Geoeye-1) 12th Jan 2012 - 2.5 months after 

earthquake 

Post disaster 2 (Geoeye-1) 22nd Feb 2012 - 3 months after 

earthquake 

Post disaster 3(WV02 ) 05th June 2013 - 1 year and 7 months 

after earthquake 

The WV02 (WorldView-2) sensor provides a high-resolution Panchromatic band and 8 multispectral bands:  4 95 

standard colors – (red(630 -690 nm), green (510 - 580 nm), blue (450 - 510 nm), and near-infrared 1(770 - 895 96 

nm) –and 4 new bands (coastal, yellow, red edge, and near-infrared 2). For this study we used only 4 spectral 97 

bands out of the 8 bands, omitting 4 new bands.  The resolution of the Panchromatic (nominal at nadir) is 0.46 98 

m and multispectral (nominal at nadir) is 1.85 m. The Geoeye-1 has a Panchromatic band (450 - 800 nm) and 4 99 

multispectral bands, blue (450 - 510 nm), green (510 - 580 nm), red (655 - 690 nm) and near infrared (780 - 920 100 

nm). The resolution of the Panchromatic (nominal at nadir) is 0.41 m and multispectral (nominal at nadir) is 101 

1.65 m. 102 

2.1.2. Muzzaffarabad, Pakistan   103 

The Kashmir earthquake was a destructive 7.6 Mw earthquake that struck the northwest region of 104 

Pakistan, near the city of Muzaffarabad, on 8 October 2005 at 08:52 local time (USGS, 2015).  105 

The Muzaffarabad area was selected as a study site of the ReBuilDD (Remote sensing for Built 106 

environment Disaster and Development) (Brown etal.2012) project because it was a major earthquake 107 

with severe damage. The timing, the extent of the disaster and the fact that very little ground based 108 

data existed, made it a well suited as a case study of remotely sensed data. 109 

Table 2 Imagery and Data Acquisition dates for Muzzaffarabad, Pakistan  110 

Imagery  Acquisition Date  

Pre-disaster 

(QuickBird)* 

13th August 2004 – 14 months before 

earthquake 
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Post disaster 1 

(QuickBird) * 

22nd October 2005 – 2 weeks after 

earthquake 

Post disaster 2 

(QuickBird) * 

13th June 2006 – 8 months after earthquake 

*QuickBird-2 imagery contained five bands namely Blue (450 - 520 nm), Green (520 - 600 nm), Red (630 - 690 111 

nm), NIR (760 - 900 nm), and PAN (760 - 850 nm). The spectral bands have a resolution of 2.44 m and the 112 

PAN band has a pixel resolution of 0.61 m nominal at nadir.     113 

 114 

 115 

2.2. Data Acquisition and Data Preparation  116 

The process of initial data preparation for the proposed change detection method is shown in Figure 1. 117 

The following paragraphs explain the data preparation in detail. 118 

OpenStreetMap data: The data pertaining to the road layer was downloaded directly from the 119 

OpenStreetMap (OSM) archive (GEOFABRIK (Download.geofabrik.de)). In the case of 120 

Muzzaffarabad, the street layers for the primary and secondary roads were manually digitised from 121 

the QuickBird VHR images using QGIS since the OSM data were incomplete.  122 

Satellite Images: For the case study of Van, four satellite images were acquired from 2011 to 2013 123 

(Table 1). For the case study of Muzzaffarabad, three satellite images were acquired from 2004 to 124 

2006 (Table 2). 125 

Geo-rectifying the pre-disaster image: All the satellite data were co-registered to the road layers 126 

obtained from OSM to ensure the best alignment (accuracy <1.47m). The pre-disaster IR R,G bands 127 

were first PAN-sharpened (using QGIS OTB (OrfeoToolBox) Processing toolbox) and then co-128 

registered to the reference vector layer such as a road layer (See Figure 1).   129 

Geo-rectifying the post-disaster image: The PAN-sharpened post-disaster image was geo-rectified 130 

using buildings, roads, and junctions identified in both the pre and post images and used as ground 131 

control points. 132 

 133 

 134 

 135 

 136 

 137 

 138 

Geo-rectify  

pre-disaster images based 

on the GIS data 

INPUT 1: pre-disaster 

Open Street Map 

spatial data layers 

 

INPUT 2: PAN-sharpened pre-

disaster (R, G, IR) & PAN 

bands  

 
INPUT 3: PAN-sharpened post 

disaster (R, G, IR) & PAN 

bands  
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 139 

 140 

 141 

 142 

 143 

Figure 1 Data preparation workflow:  Pre-disaster images are PAN-sharpened and geo-rectified to the Open Street 144 
Map and then the PAN-sharpened post-disaster images are geo-rectified to the pre-disaster images. 145 

 146 

 147 

 148 

 149 

2.3. Accessibility: Building and Buffering Road Data 150 

Before using the road layer in the accessibility workflow Figure 2, the road polylines were merged 151 

and then split into 100-meter long segments. From visual inspection for Van, it was decided to apply a 152 

6-meter buffer and a 4-meter buffer to represent primary and secondary roads respectively.  For 153 

Muzzaffarabad a buffer distance of 4 meters and 2 meters for primary and secondary roads was 154 

identified. As seen in workflow Figure 2, each of the 100m segments was buffered and then clipped 155 

for the complete time series, thus creating the multi-temporal set of raster road segments, which are 156 

the input of the change detection index shown in Figure 3.  157 

 158 
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Figure 2:  The workflow for accessibility showing how the roads (GIS layers) are buffered and used to clip the pre- 159 
and post-images and prepare to calculate the Enhanced Change Detection Index 160 

2.3.1. Pre-Post Normalized Difference of the Satellite data 161 

As per workflow in Figure 3 the pre-post normalized difference between the PAN-sharpened, geo-162 

referenced bands (R, G, IR) and PAN bands is calculated using Equation 1 for each road segment. 163 

The pre-post normalized difference removes changes in reflectance due to acquisition times within the 164 

day. The normalized ratio in the denominator of Equation 1 helps to compensate for differences both 165 

in illumination within an image due to slope and aspect, and differences between images due to time 166 

of day or season when the images were acquired. Taking the square root is intended to correct values 167 

approximate a Poisson distribution and introduce a normal distribution, producing a linear 168 

measurement scale. Adding a constant of 0.5 to all pre-post normalized values does not always 169 

eliminate all negative values, but it leaves fewer of them. 170 

(
𝑷𝑶𝑺𝑻−𝑷𝑹𝑬

𝑷𝑶𝑺𝑻+𝑷𝑹𝑬
+𝟎.𝟓)

|(
𝑷𝑶𝑺𝑻−𝑷𝑹𝑬

𝑷𝑶𝑺𝑻+𝑷𝑹𝑬
+𝟎.𝟓)|

 . √|(
𝑷𝑶𝑺𝑻−𝑷𝑹𝑬

𝑷𝑶𝑺𝑻+𝑷𝑹𝑬
+ 𝟎. 𝟓)| Equation 1 171 

2.3.2. Enhanced Change Detection Index for Roads 172 

As shown in Figure 3 each normalized difference of PAN and PAN-sharpened (IR, R, G) bands for 173 

each road segment was subjected to Vigra edge detection in QGIS (QGIS Development Team, 174 

Buffer the primary and 

secondary roads 

according to the road 

Clip road segments for each 

of the co-registered images 

 

Calculate index for each of the 

segments (workflow in Figure 3) 

 

OUTPUT: Compare and graph change 

of the index over time for each 

segment’s calculated change index 
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2015) and texture using GDAL’s (QGIS) roughness parameter. Edges and texture filters of the pre-175 

post normalized images were used to capture object specific changes in edges. Next the gradient is 176 

calculated for each object in pre- and post-images PAN sharpened bands (R, G, IR) and PAN bands 177 

and then normalized  (for each band) using Equation 1. The change of edges, texture and gradient 178 

parameters are calculated within each of the objects as per the flowchart in Figure 3 (accessibility). 179 

This creates 12 change-related parameters (4 pertaining to edges, 4 to texture, and 4 to the gradient) 180 

for each object in regard to accessibility (road segments). 181 

2.3.3. Visual Index (Training Data) for Road Segments 182 

 183 

A visual index (VI) is developed by comparing the pre and post images visually in a way that is 184 

analogous to a linear visual scale for change. This VI, in the range between 0 and 10 documents the 185 

changes as perceived by a human. As shown in  186 

a)  b)  
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c) 

 

 d) 

 

Figure 4, pre and post images of road segments (objects) of about 1/10 of the total road segments were 187 

used visually to determine the VI. The segments that had mild changes were assigned a small VI 188 

(close to 0, Figure 4 a) and b)) and the segments that showed large changes were assigned large VI 189 

values (close to 10,Figure 4 c) and d) ).  190 

Then as seen in Figure 3, this visual index was used as a training set and regressed against the derived 191 

values of pre-post normalized gradient, edges, and roughness of each road segment.  192 

 193 

 194 

 195 
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 208 

 

  

 209 

 210 

 211 

Figure 3: Workflow showing the enhanced change detection index (ECDI) for the roads in Muzzaffarabad. The pre- 212 
and post-disaster images (outputs from the workflow shown in Figure 2) are normalized and a value pertaining to the 213 
roughness and edges are calculated for each road segment. The gradient is calculated for each road segment in each 214 
for the pre- and post-disaster images individually and then normalized (Equation 1). The change-related parameters 215 
for each road segment are then regressed with the visual index to find the coefficients to create the ECDI. 216 

 217 

a)  b)  

 

 

 

 
 

Regression of indices 

with some visual indices 

of the roads (Figure 5) 

 

INPUT 3:Visual index based on 

INPUT 1 and INPUT 2 of randomly 

selected roads 

 

 

OUTPUT: ECDI for each road 

segment Figure 11 
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c) 

 

 d) 

 

Figure 4 a) and b) are the pre- and post-images of the clipped roads. By looking at these images, a visual index of 2 218 
was determined and assigned because the roads have not changed much between the two images. C) and d) show a 219 
considerable change, hence a value of 9 is used as the visual index.  Thirty road segments were visually analysed and 220 
an appropriate visual index determined in Muzzaffarabad. 221 

 222 

2.3.4. Regression  223 

The visual index derived by observing the visual changes in pre- and post-disaster images for 30 road 224 

segments was regressed with the values obtained from change in texture, gradient, and edges.  225 

 226 

 

 

 

Figure 5  The calculated normalized texture, gradient and edge values derived for each road object for (R, G, IR) and 227 
PAN bands are regressed with the visual index obtained by observing the visual changes  in pre- and post-disaster 228 
images for 1/10th of the road segments.  The obtained regression coefficients are then used to calculate the ECDI 229 
(enhanced change detection index) for all the roads.  230 

The R square value was 0.89 with low P values for PAN and PAN-sharpened IR bands derived 231 

gradient, texture, and edge parameter. This low P value with a high R square combination indicates 232 

that changes in the predictors (gradient, texture, and edge) are related to changes in the response 233 
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variable (visual index), thereby indicating that the model explains a great deal of the response 234 

variability. Red and green band derived parameters did not contribute significantly. The graph of the 235 

visual index vs. ECDI is shown in Figure 6. 236 

 237 

Figure 6: The visual index (using Figure 4) vs. the calculated ECDI (enhanced change detection index) (Figure 5) for 238 
the selected roads. The figure shows a good correlation between the visual index and the pre- and post-disaster 239 
normalized parameters (texture, edges, and gradient) used to create ECDI. 240 

 241 

 242 

2.4. Open Spaces 243 

The open spaces were detected by segmenting the pre-disaster panchromatic sharpened green image 244 

using a Meanshift segmentation algorithm (see the workflow in Figure 7).  Camp sites mostly within 245 

2km from the main roads and within areas 10,000 and 50,000 m2 in Van and  Muzaffarabad were 246 

selected as probable camp-sites. Each selected polygon was used to clip the open space off the pre- 247 

and post-event panchromatic and PAN (panchromatic)-sharpened images. The same rationale applied 248 

in the accessibility workflow was used for open spaces. The workflow shown in  249 

Figure 7 was used to detect local changes. 250 
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 251 

Figure 7:  Workflow for open spaces. Co-registered high-resolution pre-disaster images are segmented using the 252 
mean shift on the Green band to select homogeneous regions.  Then an area threshold and a distance from the main 253 
roads are assigned to select the most suitable and accessible open spaces for campsites.  The thresholds vary in the 254 
two case studies.  255 

 256 

2.4.1. Enhanced Change Detection Index (ECDI) for Open Spaces 257 

As shown in Figure 8 the ECDI for each open space was calculated similarly to the road segments by 258 

first obtaining the normalized difference between the PAN-sharpened, geo-referenced pre- and post-259 

disaster images (bands PAN, and PAN-sharpened IR, Red, and Green) using Equation 1. Similar to 260 

the road segments, the images were subjected to a texture (roughness filter) and edge extraction 261 

(Vigra edge). Each open space area segment was assigned a number based on the texture/roughness 262 

and edge density in all  bands. Then the gradient was calculated for each open space segment in the 263 

Input 1: Co-registered high-
resolution pre-disaster images 

(output from workflow shown in 
Figure 1) 
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the pre-disaster image 

 

Select polygons within an area 
threshold and distance from the 

main road 

 

Clip the high-resolution pre- and 
post-disaster images 

 

Calculation of change detection 
index for each open space over 

time as shown in Figure 8 
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pre- and post-disaster images. The gradients were then pre/post normalized using Equation 1 to obtain 264 

a value for each open space area. 265 
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 277 

 278 

 

  

 279 

 280 

 281 

Figure 8: The workflow of the change index for open spaces. The flowchart shows how the normalized images are 282 
calculated from the pre- and post-disaster images and the texture, gradient, and edge differences within each object, 283 
which are used to regress with the visual index of open spaces. The regression coefficients are used to calculate the 284 
enhanced change detection index (ECDI) for all the objects. 285 

 286 

2.4.2. Visual Index (Training Data) for Open Spaces 287 

Similar to the road segments, for open spaces a visual index (VI) between 0 and 10 is developed by comparing the pre 288 
comparing the pre and post images visually in a way that is analogous to a linear visual scale to represent change. As 289 
represent change. As shown in   290 

Figure 9, pre and post images for open spaces (objects) were used to determine the visual  change. As for the road 291 
segments, the open spaces that had mild changes were assigned a small VI (close to 0,  292 

Figure 9 c) and d)) and the segments that showed large changes were assigned large VI values (close to 10,  293 

Figure 9 a) and b) ). Then as seen in Figure 8, this visual index was used as a training set and 294 

regressed against the derived values of pre-post normalized gradient, edges, and roughness of each 295 

open space.  296 

 297 
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b) 

 

 

 

 

 

 

 

 

c) 

 

d) 

 298 

Figure 9 a) and b) show the pre- and post-disaster images of an open space occupied as a campsite. C) and d) show 299 
the pre- and post-disaster images of an open space not occupied by a campsite after disaster. The visual differences 300 
between the open space are shown in a) and b) is large, so it is given a visual index of 9.  The visual difference between 301 
the open space are shown in c) and d) is relatively small, hence is given a visual index of 3. A visual index smaller than 302 
3 was not given because there were significant differences in the grass patch between the pre- and post-disaster 303 
images. 304 

 305 

2.4.3. Regression  306 

A methodology similar to that used for roads was utilized for open spaces. Through regression we 307 

acquired the coefficients needed to combine the derived pre-post normalized gradient, edge and 308 

roughness parameters with the visual perception (VI) to form an ECDI for all the open spaces, 309 

especially where the change were ambiguous to quantify visually. The R square value was 1 with low 310 

P values for gradient and edge parameters derived from PAN-sharpened IR band .The combination of 311 

a low P value with a high R square indicates that changes in the predictors (texture, edges, and 312 

gradient changes to the object) are related to changes in the response variable (visual index), so the 313 

model explains a great deal of the response variability (visual index). Unlike in roads, PAN-sharpened 314 

IR bands show dominance over the PAN for open spaces, particularly those  covered in vegetation.  315 

Red and Green band derived parameters did not contribute significantly.  The graph of visual index 316 

vs. ECDI is shown in Figure 10. 317 

 318 
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 319 

Figure 10: The visual index (as seen in Figure 10) vs. calculated ECDI  ( 320 

Figure 9) for the selected open spaces. The figure shows a good correlation between the visual index and the pre/post 321 
normalized changes in texture, edges, and gradient used to calculate the ECDI. 322 

 323 

3. Results 324 

3.1. Accessibility 325 

Figure 11 shows the pre/post normalized relative change (ECDI) for the road network in 326 

Muzaffarabad. The higher ECDI indicates a significant change, implying that the roads have changed 327 

since the disaster when compared to the pre-disaster image. Knowing if a road segment has changed 328 

relative to the other roads can allow emergency vehicles to find an alternative route that has very little 329 

change. Because remotely sensed data let us process large areas, alternative routes can be easily 330 

found. 331 

As shown in  332 

 333 

 334 

 335 

 336 

Table 3, each image can be compared to the pre-disaster image as well as an image immediately 337 

following a post-disaster image to get a better picture of the recovery situation. 338 
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 339 

Figure 11:  Enhanced change detection index (ECDI) for roads obtained between pre-disaster and post-disaster. 340 
Higher indices (represented by darker colors) indicate greater changes after disaster. 341 

 342 

 343 

 344 

 345 

 346 

 347 
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Table 3 Accessibility Case Study Scenarios  348 

Table 3 outlines scenarios that can be seen when ECDIs are observed over time. They are obtained by 349 

comparing post-disaster images to pre-disaster image. 350 

ECDI of Pre 

disaster & Post 

T1* 

ECDI of Pre 

disaster & Post 

T2* 

ECDI of Post 

T1*& Post T2* 

Scenario 

>5 <5 >5 Road affected by post T1 date and recovered 

by Post T2 date 

>5 >5 <5 Road affected by post T1 date and NOT 

recovered by Post T2 date 

<5 <5 <5 Road not affected 

<5 >5 >5 Road not affected by post T1 data and not 

modified by Post T2 date 

*Post T1 and Post T2 are dates after the disaster. 351 

As seen in  352 

 353 

 354 

 355 

 356 

Table 3 the variation of roads affected by the disaster and recovered by the post T1 date and/or post 357 

T2 date can be determined.  By obtaining the ECDI over time (  358 

 359 

 360 

 361 

 362 

Table 3), the condition of roads over time can be used to improve management practices during future 363 

scenarios.  364 

 365 

3.2. Open Areas 366 

Shown in Figure 12 is the final output of the ECDI of open areas. The higher numbers in the ECDI 367 

indicate a major change in the open areas, probably due to the building of campsites after disaster. As 368 



 

21 

 

seen in Table 4, by obtaining the ECDI for the two post-disaster images and  then comparing them to 369 

the pre-disaster image, we were able to identify open spaces that were turned into campsites, then 370 

back to open spaces by the post T2 date, as well as the open spaces that remained as campsites by the 371 

post T2 date. With more post-disaster images, a progressive recovery can be observed. 372 

The return of open spaces to their original state is an indication of normalcy and hence an important 373 

aspect of recovery monitoring over time. Areas in which open spaces stay occupied by camps for a 374 

long period of time indicate slow resettlement and development efforts as compared to the areas in 375 

which the campsites are cleared up. The location, size and relative change of the open spaces over 376 

time can be used by managers to better understand management practices pertaining to re-housing of 377 

the population and development efforts. 378 

 379 

Table 4 Open Spaces Case Study Scenarios 380 

This table notes scenarios that can be seen when enhanced change detection indices are observed over 381 

time. 382 

ECDI of Pre 

disaster & Post 

T1* 

ECDI of Pre 

disaster & Post 

T2* 

ECDI of Post 

T1*& Post T2* 

Scenario 

>5 <5 >5 Open spaces occupied by camp site at Post 

T1* date and camp site removed by Post T2* 

date 

>5 >5 <5 Open spaces occupied by camp site at Post 

T1* date and camp site still exists by Post T2* 

date 

<5 <5 <5 Open spaces not occupied by camp sites 

<5 >5 >5 Campsites not present at Post T1* date but 

campsites or development occurred at Post 

T2* date 

*Post T1 and Post T2 are the dates that images were obtained after the disaster. 383 

 384 
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 385 

Figure 12:  ECDI for the open areas of Van. Higher indices (represented by darker colors) indicate larger changes 386 
after the disaster. 387 

4. Discussion and Conclusions 388 

The proposed method uses indicators that pertain to recovery and monitoring as GIS objects and 389 

integrates existing knowledge into processing to optimize change detection. Each road class would 390 

have a specific texture, width, proximity to buildings, traffic, etc.; thus road types are compared with 391 

similar road types and bridges with similar bridges. In this study we separated primary roads from 392 

secondary roads.  Provided one has more information about additional road categories, major and 393 
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minor roads within primary roads could be sub-categorized and analysed separately. This would also 394 

discriminate  roads with heavy traffic from roads with less traffic, roads surrounded by trees from 395 

roads surrounded by buildings, and roads constructed of different materials, thereby increasing the 396 

accuracy.  397 

This method uses the calculation of the texture, edges, and gradient of each object to better estimate 398 

the change between the pre- and post-disaster data. To determine what proportions of each of the 399 

above properties contribute to real change, a visual index is used to train the data. Like any user-400 

derived parameter, the visual index can be very specific to the user. However, provided that the visual 401 

index is completed by a single user, it should contain relative differences representative of the 402 

changes within the image.  It is easy to visually see objects that underwent a large change and those 403 

that experienced no change, so more objects at extremes were used for the visual index.  It is best to 404 

use more objects at the ends of the change spectrum  since the computer is then better able to estimate 405 

objects that are at different gradients of change. 406 

The normalization between the pre- and post-disaster data reduces the differences caused due to the 407 

acquisition times and atmospheric anomalies of the pre/post images. The targeted change is relative to 408 

all roads in a particular road group. Thus the normalization specifically enhances the relative change, 409 

downplaying changes common to all roads in a particular road group.  The VHR sensors used in this 410 

study collect data around the same time, so the shadow effect due to acquisition time will be minimal; 411 

the main issues are the incidence angle and changes in solar zenith, because these will impact the 412 

imagery more directly than the difference between acquisition times. The considered relative change 413 

by normalizing between the pre and post images would give more weight to the changes than the 414 

increase and decrease in shadows. During a non-rush hour the main roads will still have more vehicles 415 

than the alternative roads.  Hence the vehicle changes due to the time of the day would not affect the 416 

analysis as this is a relative change normalized to all roads.  417 

After a disaster, as seen in Figure 4 d) rubble and trees fallen on the road can be factors that cause 418 

change compared to the  pre disaster image Figure 4 c). Rubble and fallen trees are brought out as a 419 

change easily in the pre/post normalization, unless the texture of the rubble mimics the texture created 420 

by vehicles in the same segment of the pre-disaster image. Most houses are not built close to 421 

highways, so rubble that resembles highly dense vehicle traffic is unlikely to affect the analysis. 422 

Rubble is primarily seen at the edges of the road and is visually different from the traffic seen in the 423 

two case studies; hence it was flagged as a change in both cases.  424 

Once the change is quantified based on training data, the pre/post normalized method outlined in this 425 

paper can be used automatically to detect change and to observe recovery over time. Comparing the 426 

most recent image and consecutive past images can give a complete history of changes pertaining to 427 
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road segments. Another benefit is that this method can be used over large areas to get the big picture 428 

and determine changes over time. 429 

The coefficients pertaining to the texture, edges, and gradient obtained from the visual index are 430 

transferable to other roads with similar construction material and thus similar reflective properties.  431 

This transferability works better for roads that are categorized to finer classes and are analysed 432 

separately. The same method can be applied to other categories such as bridges and railroads when 433 

analysed separately as a unique class of GIS objects.  Buildings could also be analysed; this work has 434 

been completed and will be published as a follow-up. Applying this method of analysis over time is a 435 

significant advantage over analysis of ground truth data in temporal analysis. Analysis over time also 436 

contributes to the full picture of the recovery and development after disaster, thereby giving managers 437 

a tool to better understand management practices.   438 
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