
Contents lists available at ScienceDirect

Int J Appl Earth Obs Geoinformation

journal homepage: www.elsevier.com/locate/jag

Sensitivity of multiresolution segmentation to spatial extent
Lucian Drăguţa,⁎, Mariana Belgiub, George Popescua, Peter Bandurac

a Department of Geography, West University of Timişoara, Romania
b Faculty of Geo-Information Science and Earth Observation, University of Twente, Romania
c Department of Physical Geography and Geoecology, Comenius University in Bratislava, Romania

A R T I C L E I N F O

Keywords:
Scale
Buildings
Crop fields
Image segmentation
Estimation of Scale Parameters

A B S T R A C T

Spatial extent (i.e. the size of the study area) is acknowledged as an important component of scale, together with
grain (i.e. cell size). While the influence of grain on multiresolution segmentation has been evaluated, the impact
of spatial extent is still poorly understood. The main goal of our study was to evaluate how changing the extent
affects multiresolution segmentation, in respect to the geometric accuracy of the resulting image objects.

The experiments were carried out on very-high resolution optical images in four study areas: the City of
Manchester (UK), the region of Normandy (France), the City of Tampa (Florida), USA, and the province of
Flevoland (the Netherlands). Data sets of various extents were created by partitioning each image into regular
tiles with eCognition® Server. The smallest tile size was 100 × 100 pixels, which doubled iteratively, until no
further partition was possible, so that the image was processed at its full extent. Each tile was segmented with
the Estimation of Scale Parameters (ESP2) algorithm and for each of the three generated levels the degree of
overlap between the image objects and the reference polygons representing buildings and crop fields was
checked. Segmentation accuracy was performed with the following metrics: Area Fit Index, Under-Segmentation,
Over-Segmentation, D- index, and Quality Rate.

The results show that the geometric accuracy improved by 8–19% in Quality Rate when multiresolution
image segmentation was performed in the smallest extent (100 × 100 pixels), as compared to the segmentation
of whole images. These findings challenge previous assumptions and findings that partitioning an image into
regularly-sized tiles can bias segmentation, and are relevant to guiding the setup of tile size in a distributed
computing framework.

1. Introduction

Within the context of increasing availability of high-resolution
imagery, image segmentation is regarded as a solution to automate
conversion of the raw data into tangible information, which is required
in many application domains (Blaschke, 2010). Multiresolution seg-
mentation (MRS) is now one of the most important algorithms in the
object-oriented analysis of remote sensing imagery (Cheng and Han,
2016). MRS is a region-growing algorithm that relies on the homo-
geneity criteria for partitioning an image into object primitives, which
are the basic entities for further processing procedures (Baatz and
Schäpe, 2000). As the name suggests, MRS is intimately related to scale
in terms of outputs: a scale parameter (SP) controls the internal homo-
geneity of object primitives, which is inversely correlated with their
size. A scene can therefore be segmented at a variety of scale levels,
ideally emulating the scale levels of geographical features

distinguishable in that scene (Costa et al., 2018). However, the scale of
segmentation outputs depends on the scale characteristics of the input
imagery, namely spatial resolution and spatial extent as the most im-
portant components of the geospatial data (Goodchild, 2001).

While the relationship between segmentation scale and spatial re-
solution has been relatively well addressed, the impact of spatial extent
on segmentation results has been basically ignored. For instance, an
ample review of supervised object-based land-cover classification stu-
dies (Ma et al., 2017) has identified 92 case studies which provided the
necessary information to determine the former relationship, and none
relevant to the later one. The cited study reveals a significant
(p < 0.05), but weak (R2 = 0.058) inverse relationship between grid
size and optimal segmentation scales reported in the 92 studies, and
speculates that the size of the study area might have influenced these
statistics. Indeed, the size of the study area would likely impact on the
results of region-growing algorithms, such as MRS, which rely on
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homogeneity, as it is known that increasing the extent of a study area
will increase heterogeneity (Atkinson and Tate, 2000). Understanding
the impact of extent upon segmentation is urged by recent develop-
ments in parallel processing of geospatial data, as for instance Google
Earth Engine (Gorelick et al., 2017). While offering massive computa-
tional capabilities, such facilities require tiling a dataset, thus a decision
on the processing extent.

We have not identified studies reporting directly on the impact of
extent upon segmentation. However, a couple of publications aiming at
improving segmentation via more localized approaches are relevant to
the topic. For instance, d’Oleire-Oltmanns and Tiede (2014) proposed a
procedure to subset a QuickBird image so that MRS applied only to
those regions of the image where gullies were dominant. The study
found that segmentation results improved as compared to segmentation
of the whole image, likely due to reduction in heterogeneity. Kavzoglu
et al. (2017) introduced a two-stage segmentation to classify semi-
urban landscapes: an initial partitioning of images into broad regions
sharing similar characteristics, followed by MRS parameterization for
each region. The study found that adjusting the SP to the individual
regions led to improvements in classification accuracy up to 5% as
compared to segmentations with a global SP. Similarly, Grippa et al.
(2017) and Georganos et al. (2018) found that optimizing segmentation
parameters locally rather than globally helps in mapping heterogeneous
urban environments. Local optimization methods led to up to 1.5%
increase in overall accuracy as well as improvements in the geometric
accuracy of the image objects. Comparable findings were also reported
by Bandura et al. (2018), where partitioning of the complex full scene
into more homogeneous domains led to delineation of geomorpholo-
gical features, which vary in shape and homogeneity properties. The
authors locally adjusted SP for each domain, which, complemented
with subsequent removal of distinct geomorphological features, posi-
tively affected the overall level of homogeneity in the MRS. This

approach led to the decrease of inner variability of input layers in the
segments by 2.5% when compared to the globally-set MRS.

The results reported so far suggest that image segmentation works
better on smaller extents. However, those extents have been primarily
defined by their relative homogeneity, rather than size per se.
Therefore, we only know that segmentation improves due to reducing
heterogeneity via regionalization, and are still uncertain what to expect
when considering ‘pure’ extent, i.e. defined by regular tiles rather than
homogeneous regions. Georganos et al. (2018) found some merits of
regularly-shaped rectangular tiles, but investigations were not sys-
tematic as the aim of the study was different. Within the context of
parallel processing, constructing homogeneous regions would require
additional work if performed in a more automatic way (as in Kavzoglu
et al., 2017 or Georganos et al., 2018), or would be practically im-
possible if regions are delineated manually as in d’Oleire-Oltmanns and
Tiede (2014) or Grippa et al. (2017). Thus, more knowledge is required
to support decision regarding the size of the tiles to be submitted to
processing.

This study aims at evaluating the sensitivity of MRS to spatial ex-
tent, in order to answer two questions: 1) does spatial extent impact on
the geometric accuracy of the image objects?, and 2) if so, is there any
relationship between extent and segmentation results? Based on the
results of the reviewed studies, we hypothesize that MRS works better
on the smallest extents. However, the geometric accuracy of image
objects might suffer because of the edge effect caused by an excessive
tiling, as for instance splitting of building roofs along tile edges
(Georganos et al., 2018). We restrict the evaluation to the geometric
accuracy and do not consider the thematic one as well because the
relationship between segmentation and classification is not straight-
forward, as shown in literature (e.g. Belgiu and Drǎguţ, 2014). The
experiments are conducted in a scenario of extracting buildings and
crop fields from high-resolution images.

Fig. 1. Study areas located in Manchester, UK (up left), Normandy, France (bottom left), and Tampa, FL, USA (right), illustrated in RGB natural-colour composite.
The data sets are available at http://web.eee.sztaki.hu/remotesensing/building_benchmark.html and https://spacenetchallenge.github.io/datasets/
datasetHomePage.html.
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2. Study areas and data

Three study areas were chosen for the analysis of buildings: two
located in Europe – the City of Manchester (UK) and region of
Normandy (France) – and one located in the USA – the City of Tampa
(Florida) (Fig. 1). Each study area represents a different urban pattern
and distribution of buildings, bringing larger variety into the experi-
ments. While the areas of Manchester and Normandy represent a re-
sidential type, the area of Tampa is more of a mixed type (urban, re-
sidential as well as commercial).

Analysis of crop fields was conducted in Flevoland (Fig. 2), which is
one of the twelve provinces of the Netherlands. This province was re-
claimed from the sea for the agricultural expansion purpose. The crop
fields are variable in size and regular in shape.

The input data were obtained from the existing building detection
benchmark datasets available online. The data are in the form of very-
high resolution optical images generated by commercial satellites. Both
images from Europe (smaller scenes) were downloaded from SZTAKI-
INRIA Building Detection Benchmark dataset (Benedek et al., 2012) as
raw images. The image of Tampa (larger scene) was downloaded from
the URBAN3D Challenge dataset (Goldberg et al., 2017) provided by
VRICON and hosted by SpaceNet as a true orthorectified RGB image.
Along with the images, the reference polygons – ground truth footprints
of buildings – are included. PlanetScope 4-band images were used for
the segmentation of the crop fields. Ground truth data were down-
loaded from the PDOK platform, which is the Dutch open platform
(https://www.pdok.nl/) used to share geodata with the public at large.
Table 1 provides an overview of the study areas and input data.

3. Methods

To investigate the impact of changing extent on segmentation, data
sets of various extents were created by partitioning each image into
regular tiles with eCognition® Server (Fig. 3). The smallest tile size was
100 × 100 pixels (E1 in Fig. 3), which doubled iteratively (E2 to E4 in
Fig. 3), until no further partition was possible, so that the image was
processed at its full extent (E5 in Fig. 3). Reference polygons were split
as well when located at the edges of tiles. Thus, five data sets (E1 to E5)
resulted for Manchester and Normandy case studies and seven (E1 to
E7) for Tampa and Flevoland, respectively. Tiling of the Tampa image
stopped at 6400 × 6400 because further partitioning would produce
imbalanced-sized tiles, while processing the full image (more than 250
million pixels) exceeded the available computational resources. Ac-
cording to the full extents of images (Table 1), the number of tiles is
variable in each data set, as shown in Table 2.

Each tile was then segmented with the ESP2 tool (Drăguţ et al.,
2014), which automatically produced image objects by calibrating the
SPs as a function of the Local Variance specific to the tile. The tool was
run with the default parameters (Drăguţ et al., 2014) and delivered
image objects at three scale levels for each tile, from L1 (the finest) to
L3 (the broadest). This processing step aimed at consistency, rather
than accuracy. Tiles were further stitched with eCognition® Server, so
that each data set (E1 to E7) tripled according to the number of gen-
erated scale levels (L1 to L3). The stitched images, including the tile
boundaries and the objects split by them, were further evaluated for
geometric accuracy.

The data sets produced as above were evaluated for geometric

Fig. 2. The study area of Flevoland, the Netherlands illustrated in false-colour composite (Source PlanetScope, https://www.planet.com/explorer).
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Table 1
Study areas and characteristics of the input data.

No. Location Source Image data Reference objects (n)

Spatial resolution (m) Bands Image size (pixels)

1 Manchester Google Earth 1 R, G, B 1412 × 797 196
2 Normandy Google Earth 1 R, G, B 1437 × 814 172
3 Tampa Vricon 0.5 R, G, B 16320 × 15642 36139
4 Flevoland PlanetScope 3 R, G, B, NIR 6746 × 5421 3479

Fig. 3. Overview of the experiments to evaluate sensitivity of multiresolution segmentation to spatial extent.

Table 2
Characteristics of data sets created by tiling: number of data sets per case study; number of tiles and reference polygons per data set.

Data set Number of tiles/reference polygons

Manchester Normandy Tampa Flevoland

No tiles No polygons No tiles No polygons No tiles No polygons No tiles No polygons

E1 120 337 135 315 25748 63019 3740 15059
E2 32 259 40 231 6478 48873 952 9043
E3 8 228 12 196 1640 42152 238 6544
E4 2 196 4 181 420 39072 63 5408
E5 1 196 1 172 110 37641 20 4901
E6 – – – – 30 36952 6 4625
E7 – – – – 9 36571 1 3479
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accuracy with the help of an algorithm introduced by Eisank et al.
(2014). Image objects produced through segmentation were compared
with the reference polygons. First, a mutual spatial overlap of minimum
50% was determined, and then segmentation accuracy metrics were
calculated. Image objects were considered candidates in evaluation
only if they overlapped at least half of the corresponding reference
polygon AND the reference polygon overlapped at least half of their
area (Clinton et al., 2010). The following segmentation accuracy me-
trics were computed: Area Fit Index (AFI) (Lucieer and Stein, 2002),
Under-Segmentation (US), Over-Segmentation (OS), D- index, that
combines US and OS (Clinton et al., 2010), and the Quality Rate (QR)
(Winter, 2000). All of the metrics range from 0 to 1, where 0 indicates
perfect spatial match between reference polygons and individual image
objects, except for QR, where 1 is the ideal value. Images at maximum
extents served as baseline to evaluate the impact of the extent on
geometric accuracy of the segmented objects. At lower extents, the
stitched images were evaluated at once, rather than averaging the re-
sults of the individual tiles.

4. Results

The results of geometric accuracy assessment of segmentation are

shown in Fig. 4 and Tables 3–6. As expected, the segmentation accuracy
metrics are consistent, i.e. the best score of one metric coincides with
the best scores or combinations of the others. Other studies (e.g. Chen
et al., 2018) also found strong correlations between metrics such as QR
and AFI. Therefore QR has been chosen to comparatively illustrate the
results across the study areas, extents, and ESP2 levels (Fig. 4).

For the buildings case studies, it is apparent that the finest ESP2
level (L1) tends to work better in larger extents, while the broader le-
vels (L2 and L3) tend to perform better in smaller extents. This means
that larger extents require lower SP values for segmentation than
smaller extents, which might look counter-intuitive. Within the context
of building extraction, these results look normal: lower SP values pro-
duce smaller and more homogeneous objects, which fit the size of
buildings in large extents, while in smaller extents the same values
would lead to over-segmentation of buildings. Conversely, higher SP
values produce larger image objects, which fit the size of buildings in
small extents, while exceeding their size in larger extents. In some cases
(E4 and E5 in the Manchester and Normandy areas), L3 contained ob-
jects so large that no reference polygon was matched according to the
“50%” rule, and therefore some segmentation accuracy metrics re-
mained undefined (Tables 3 and 4).

An opposite trend is visible in the case of Flevoland: the broadest

Fig. 4. Quality rate of the image objects obtained with ESP2 at three scale levels: L1, L2, and L3.

Table 3
Segmentation accuracy results for the Manchester area.

Extent ESP Level AFI D Index Over Segmentation Quality Rate Under Segmentation

1 1 0.84 0.63 0.87 0.13 0.17
2 0.61 0.55 0.72 0.25 0.29
3 0.98 0.71 0.98 0.02 0.18

2 1 0.70 0.56 0.76 0.22 0.21
2 0.70 0.62 0.80 0.18 0.34
3 0.98 0.77 0.99 0.01 0.47

3 1 0.60 0.54 0.71 0.26 0.26
2 0.86 0.67 0.90 0.10 0.30
3 0.98 0.71 0.98 0.02 0.20

4 1 0.63 0.57 0.74 0.23 0.31
2 0.91 0.71 0.94 0.06 0.34
3 Undefined Undefined Undefined Undefined Undefined

5 1 0.77 0.63 0.84 0.15 0.31
2 0.95 0.72 0.97 0.03 0.32
3 Undefined Undefined Undefined Undefined Undefined
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ESP2 level (L3) works better in smaller extents, while the finer levels
(L1 and L2) tend to perform better in larger extents. Smaller extents
require higher SP values for segmentation than larger extents, to adjust
to the larger size of the crop fields. Higher SP values produce larger and
more heterogeneous objects, which fit the size crop field in small ex-
tents, while lower SP values would lead to their over-segmentation.
Over-segmentation was so severe in E1, that the accuracy metrics re-
mained undefined for L1 (Table 6). The broadest ESP2 level (L3) tends
to produce over-segmented objects, while the finer levels (particularly
L2) adjust better to the size of crop fields.

While L1 and L3 do not exhibit consistent trends in evolution of QR
across extents, L2 clearly shows declines in QR with increase in extent,
in all building case studies. Image objects in L2 best match the reference
buildings in the smallest extent in all three cases. In larger extents,
objects in L1 start matching better the reference polygons, at various
tipping points, which are likely caused by differences in image het-
erogeneity. The tipping points are E2 in Manchester, E4 in Normandy,
and E5 in Tampa (Fig. 4). In Flevoland, all ESP levels show clear trends:
L3 indicates declining QR with increase in extent, while L1 and L2
exhibit opposite trends. The best match between image objects and crop
field polygons is provided by L3 at smaller extents (E1 to E5), and by L2
at the broadest extents (E6 and E7)(Fig. 4).

The best results achieved at maximum extents are inferior or equal
to the best results displayed by the smaller extents, except for E3 and E4

Table 4
Segmentation accuracy results for the Normandy area.

Extent ESP Level AFI D Index Over Segmentation Quality Rate Under Segmentation

1 1 0.74 0.56 0.77 0.22 0.14
2 0.53 0.45 0.62 0.35 0.19
3 0.91 0.68 0.93 0.07 0.26

2 1 0.74 0.57 0.78 0.21 0.16
2 0.58 0.50 0.67 0.30 0.21
3 0.99 0.73 0.99 0.01 0.29

3 1 0.71 0.55 0.76 0.23 0.19
2 0.63 0.55 0.72 0.25 0.26
3 0.93 0.70 0.95 0.05 0.29

4 1 0.69 0.55 0.75 0.23 0.22
2 0.74 0.61 0.82 0.17 0.28
3 Undefined Undefined Undefined Undefined Undefined

5 1 0.63 0.53 0.71 0.27 0.22
2 0.88 0.68 0.91 0.08 0.30
3 Undefined Undefined Undefined Undefined Undefined

Table 5
Segmentation accuracy results for the Tampa area.

Extent ESP Level AFI D Index Over
segmentation

Quality rate Under
segmentation

1 1 0.90 0.65 0.91 0.09 0.13
2 0.63 0.50 0.69 0.30 0.15
3 0.76 0.58 0.80 0.19 0.18

2 1 0.86 0.63 0.88 0.12 0.15
2 0.68 0.53 0.73 0.26 0.15
3 0.81 0.61 0.84 0.15 0.16

3 1 0.81 0.61 0.84 0.15 0.16
2 0.72 0.55 0.77 0.22 0.16
3 0.85 0.63 0.88 0.12 0.15

4 1 0.78 0.58 0.81 0.18 0.16
2 0.76 0.57 0.80 0.20 0.15
3 0.90 0.65 0.91 0.09 0.14

5 1 0.75 0.57 0.79 0.20 0.15
2 0.80 0.59 0.83 0.17 0.14
3 0.92 0.66 0.93 0.07 0.12

6 1 0.77 0.58 0.80 0.19 0.15
2 0.84 0.62 0.86 0.14 0.14
3 0.94 0.68 0.95 0.05 0.13

7 1 0.77 0.58 0.80 0.19 0.15
2 0.86 0.63 0.88 0.12 0.15
3 0.97 0.70 0.97 0.03 0.17

Table 6
Segmentation accuracy results for the Flevoland area.

Extent ESP Level AFI D Index Over segmentation Quality rate Under segmentation

1 1 Undefined Undefined Undefined Undefined Undefined
2 0.83 0.59 0.83 0.17 0.02
3 0.25 0.20 0.27 0.71 0.03

2 1 0.99 0.70 0.99 0.01 0.02
2 0.82 0.58 0.82 0.18 0.01
3 0.34 0.26 0.36 0.63 0.03

3 1 0.98 0.69 0.98 0.02 0.02
2 0.76 0.54 0.76 0.24 0.01
3 0.40 0.29 0.41 0.58 0.02

4 1 0.96 0.68 0.96 0.04 0.01
2 0.68 0.48 0.68 0.32 0.01
3 0.45 0.33 0.46 0.53 0.02

5 1 0.92 0.65 0.92 0.08 0.01
2 0.60 0.43 0.61 0.39 0.01
3 0.49 0.35 0.50 0.49 0.02

6 1 0.89 0.63 0.89 0.11 0.01
2 0.48 0.34 0.49 0.51 0.02
3 0.53 0.38 0.54 0.46 0.02

7 1 0.70 0.50 0.70 0.30 0.01
2 0.47 0.34 0.48 0.52 0.02
3 0.59 0.42 0.60 0.40 0.02
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in Normandy, and E5 and E6 in Flevoland. The ability of segmentation
to delineate buildings improved by 8–11% in QR when performed on
smaller extents, as compared to the segmentation of maximum extents.
Moreover, segmentation of the smallest extent (E1) produced the best
results, except for the Manchester case, where objects in L1 show
slightly better accuracy results (+1%) at E3 (Table 3). Segmentation of
crop fields improved in geometric accuracy by 19% when performed in
the smallest extent, as compared to the largest one (Table 6).

5. Discussion

The overall goal of this study was to explore the relation between
the spatial extent of an image and geometric accuracy of the objects
delineated through multiresolution image segmentation. We found that
segmentation performed at smaller spatial extents improves the geo-
metric accuracy of the primitive objects. This finding is relevant in
guiding the setup of tile size in a distributed computing framework such
as the Google Earth Engine (GEE) platform (Gorelick et al., 2017).
According to Lassalle et al. (2015) and Gorelick et al. (2017), classical
image clustering procedures (including region growing segmentation)
perform poorly on distributed computing platforms because of the
image tiling, which introduces artefacts in the results. However, our
results do not support this assumption. We found that segmentation is
not only insensitive to the lack of information on the global image
heterogeneity, but adjusting segmentation to local conditions actually
improves results.

Previous studies have already reported that increasing the homo-
geneity of the study areas improves the segmentation results. The way
that partitioning was performed varied among these studies. Grippa
et al. (2017), for example, used manually delineated urban land use
zones to optimize the segmentation procedure at the local level.
d’Oleire-Oltmanns and Tiede (2014) also delineated manually the
spatial units used to constrain the segmentation to high density gullies
areas. While these local segmentation approaches are good at im-
proving the segmentation results, they rely on manual delineation of
the homogeneous spatial units, which makes them time-consuming and
less appropriate for use in operational image analysis environments.
Alternatively, Cánovas-García and Alonso-Sarría (2015) used existing
agricultural plots as homogeneous spatial units to delineate different
cropland areas. Despite the fact that the quality of the segmentation
results improved considerably, this study relies on auxiliary data that
are quite often missing in the investigated areas. Georganos et al.
(2018) tested the efficiency of automatic splitting of the image into tiles
of equal area and reported that this approach can cause errors at the
tiling borders such as splitting building roofs in several parts. Conse-
quently, they proposed the partition of the input image into several tiles
by taking into account the linear features (such as roads) present in that
image. However, our study revealed that even if the image tiles impact
the geometric accuracy of the primitive objects located at the tiles

edges, the overall segmentation errors occurring through tiling are
lower than those obtained when the whole image is used as input, as
illustrated in Fig. 5. On the one hand, the geometry of buildings may be
damaged by tiling, as for instance the two buildings marked by a. On
the other hand, many other buildings that were not delineated in the
segmentation of the full image show up in the tiled one, even when
buildings were split into multiple parts, as for instance the group of
objects marked by b. Therefore, we recommend the automatic splitting
of images into tiles of equal size for increasing the quality of the mul-
tiresolution segmentation results. To remove the artefacts occurring at
the tile edges, one of the solutions available in the literature such as
those proposed by Lassalle et al. (2015) can be applied.

The segmentation performs better when the image is partitioned
into smaller tiles, likely due to the reduction in image heterogeneity,
which is related to the number, size and patterns of the objects present
in the image (Stein and De Beurs, 2005). Intrinsic image complexity, i.e.
the amount of information present in an image, is less likely responsible
for these results since different images can have the same complexity, as
proved by Stein and De Beurs (2005). Thus, by reducing the size of the
tiles used for segmentation, the inherent pattern complexity of the
image is reduced and consequently, target objects are better delineated.
Further, the reduction of image heterogeneity has a direct impact on the
scale parameter which is lower when the homogeneity of the image
increases (Cánovas-García and Alonso-Sarría, 2015).

In general, the geometric quality of the delineated primitive objects
was not very high (Fig. 4), mainly because of the over-segmentation of
the buildings into several objects. Over-segmentation is caused by the
contrast between the lighted and shadow sides of the roofs in the three
study areas, which challenges segmentation in general regardless of the
adopted segmentation method. Despite this relatively low geometric
accuracy, the accuracy of buildings classification can be improved
considerably by merging the objects belonging to the same building in
the further classification steps (Belgiu and Drǎguţ, 2014). In contrast,
segmentation of crop fields performed much better in terms of geo-
metric accuracy, with a QR that achieved a value of 0.71, as compared
to the maximum value of 0.35 achieved by the segmentation of build-
ings.

Our findings enable informed decision on the size of the tiles to be
used for multiresolution image segmentation, following the rule “the
smaller, the better”. However, these results should be regarded with
some caution in case of large objects, given that the relationship be-
tween the extent and the size of the target objects has not been fully
considered in this study. The ratio extent/object size at the minimum
extent (E1) ranges between 8.71 (Tampa, minimum extent = 2500 sq
m; average object size = 287 sq m) and 0.14 (Flevoland, minimum
extent = 9000 sq m; average object size = 63,517 sq m). More sys-
tematic studies on the relationship between the extent and the size of
the target objects would be necessary to find whether the rule “the
smaller, the better” holds true for other categories of objects.

Fig. 5. A detailed view of an approximately
500 x 500 m area in the Normandy case study
to visualize the impact of tiling on segmenta-
tion. Left: the image tiled in 100 × 100 pixels.
Right: the same area segmented at the full
image extent. Both images display the best
segmentation results achieved at ESP level 2
and 1, respectively. Polygon colours represent
the degree of matching between image objects
and reference buildings as follows: green =
overlap; blue = under-estimation; red = over-
estimation. See explanations in text for a and b
(For interpretation of the references to colour
in this figure legend, the reader is referred to
the web version of this article.).
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6. Conclusions

This paper evaluated the impact of the spatial extent on the geo-
metric accuracy of the objects delineated through multiresolution
image segmentation. The experiments revealed that the geometric ac-
curacy improved by 8–19% in Quality Rate when multiresolution seg-
mentation was performed in smaller extents, as compared to the seg-
mentation of whole images. Moreover, segmentation within the
smallest extent (100 × 100 pixels) produced the best results in terms of
geometric accuracy. These findings challenge previous assumptions and
findings that partitioning an image into regularly-sized tiles can bias
segmentation. Even though edge errors might occur, the quality of
segmentation increases with the decrease of the size of tiles. The results
suggest that multiresolution image segmentation within the framework
of distributed computing should be performed in small tiles.
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