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Abstract

Let P be an optimization problem, and let A be an approximation algorithm for P .
The domination ratio domr(A,n) is the maximum real q such that the solution x(I)
obtained by A for any instance I of P of size n is not worse than at least a fraction q
of the feasible solutions of I. We describe a deterministic, polynomial time algorithm
with domination ratio 1−o(1) for the partition problem, and a deterministic, polynomial
time algorithm with domination ratio Ω(1) for the MaxCut problem and for some far-
reaching extensions of it, including Max-r-Sat, for each fixed r. The techniques combine
combinatorial and probabilistic methods with tools from Harmonic Analysis.
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1 Introduction

Let P be an optimization problem, and let A be an approximation algorithm for P . The
domination ratio domr(A,n) is the maximum real q such that the solution x(I) obtained by
A for any instance I of P of size n is not worse than at least a fraction q of the feasible
solutions of I.

Initially, domination ratios were studied only for traveling salesman problem (TSP) heuris-
tics; for a recent survey see [16]. It turned out that some often-used heuristics such as the
greedy and nearest neighbor algorithms have domination ratio 1/tn, where tn is the total
number of tours (i.e., tn = (n − 1)! for the asymmetric TSP and tn = (n − 1)!/2 for the
symmetric one). This means that these heuristics produce the unique worst possible tour for
some assignments of weights for every n ≥ 3. This is in line with latest computational ex-
periments with the greedy and nearest neighbor algorithms, see, e.g., [17], where the authors
came to the conclusion that the greedy algorithm might be said to be self-destructive, and
that it should not be used even as a general-purpose starting tour generator.

On the other hand, there are several well-known TSP heuristics of domination ratio
Ω(1/n) [14, 16, 21, 22]. The domination ratio provides a theoretical explanation of the
fact that some ’small’ local search neighborhoods are much more computationally effective
in practice than some neighborhoods of exponential size [16], as indeed some local search
algorithms with smaller neighborhoods have much larger domination ratio.

Interestingly, the well-known double minimum spanning tree heuristic (DMST) is of dom-
ination ratio 1/tn (n ≥ 3) even for the symmetric TSP with the triangle inequality [21]. Thus,
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despite the fact that its performance ratio is 2, DMST produces the unique worst tour for
some assignments of weights. This justifies the study of the domination ratio alongside with
the performance ratio of efficient algorithms.

The domination ratios of algorithms for some other combinatorial optimization problems
have also been investigated [5, 6, 13, 14, 15, 19]. In [5], a pair of heuristics for Generalized TSP
have been compared. The performance of both heuristics in computational experiments was
very similar. Nevertheless, bounds for the domination ratios showed that one of the heuristics
was much better than the other one in the worst case. A pair of greedy-type heuristics for
the frequency assignment problem were compared in [19]. Again, bounds for the domination
ratios allowed the authors of [19] to find out which of the two heuristics behaves better in
the worst case.

The authors of [13] obtained a deterministic polynomial time algorithm for the minimum
partition problem with domination ratio at least 1/2. They asked which other problems admit
polynomial algorithms of domination ratio Ω(1). In the present paper we describe several new
results of this type. Our results include:

• A deterministic polynomial time algorithm for the minimum partition problem whose
domination ratio is 1− o(1), improving the 1/2-domination ratio result of [13].

• A deterministic polynomial time algorithm for the (weighted) MaxCut problem, whose
domination ratio is Ω(1), improving the Ω(1/n)-domination ratio result for this problem
described in [13].

• A deterministic polynomial time algorithm of domination ratio Ω(1) for the problem of
maximizing the total weight of satisfied equations in a system of sparse linear equations
over GF (2).

• A deterministic polynomial time algorithm of domination ratio Ω(1) for the weighted
Max-r-Constraint Satisfaction Problem, where r is fixed. This includes, as special cases,
the Max-r-Sat problem as well as the sparse linear equations problem.

The methods combine combinatorial and probabilistic techniques with tools from Harmonic
analysis and results about small sample spaces that support k-wise independent random
variables. As a by-product we obtain certain consequences about linear codes with sparse
parity check or generating matrices, which may be of independent interest.

In all the problems we consider it is quite easy to generate deterministically a solution
whose value is at least as good as the average value of a random feasible solution. Our aim
is thus either to prove that the average solution beats a constant fraction of the feasible
solutions, or to supply an algorithm that improves over the average solution. The latter task
has common lines with the approach of a recent paper by H̊astad and Venkatesh [18]. In fact
we will extend and improve some of the results of [18].

The rest of this paper is organized as follows. In Section 2 we consider the partition
problem, Section 3 deals with MaxCut, Section 4 deals with the more general problem of
sparse linear equations over GF (2), Section 5 deals with a further generalization, the weighted
constraint satisfaction problem, and the final Section 6 contains some concluding remarks and
open problems, including certain results about linear codes.

2 The Minimum Partition Problem

Let Bn be the set of all n-dimensional vectors (ε1, ε2, . . . , εn) with {−1, 1} coordinates.
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The minimum partition problem (MinPart) can be stated as follows: given n nonnegative
numbers V = {a1, a2, . . . , an}, find a vector (ε1, ε2, . . . , εn) ∈ Bn such that |∑n

i=1 εiai| is
minimum.

Consider the following greedy-type algorithm A for MinPart. Initially sort the num-
bers such that aπ(1) ≥ aπ(2) ≥ · · · ≥ aπ(n). Choose a constant p > 0 and fix k =
bp log2 nc. Solve MinPart to optimality for aπ(1), aπ(2), . . . , aπ(k), i.e., find optimal values of
επ(1), επ(2), . . . , επ(k). (This can be trivially done in time O(np).) Now for each j > k, if∑j−1

i=1 επ(i)aπ(i) < 0, then set επ(j) = 1, and otherwise επ(j) = −1.

Theorem 2.1 The domination ratio of A is at least 1−Θ( 1√
k
).

Observe that if

min |
k∑

i=1

επ(i)aπ(i)| ≥
n∑

i=k+1

aπ(i),

where the minimum is taken over Bk, then A produces an optimal solution. Otherwise, it
follows easily that the solution produced by A satisfies

|
n∑

i=1

επ(i)aπ(i)| ≤ aπ(k+1).

To prove Theorem 2.1, we may thus assume that a1 ≥ a2 ≥ . . . ≥ an and that the solution
produced by the algorithm satisfies |∑n

i=1 εiai| ≤ ak+1. By the assumptions and the simple
fact that

(
k

bk/2c
)
/2k = Θ(1/

√
k), it suffices to prove the following:

Proposition 2.2 The number of vectors (ε1, . . . , εn) ∈ Bn for which |∑n
i=1 εiai| < ak+1 is

at most
(

k
bk/2c

)
2n−k.

Proof: We need the following lemma:

Lemma 2.3 Let a1 ≥ a2 ≥ · · · ≥ ak and let (a, b) be an arbitrary open interval such that
b − a ≤ 2ak. Then the number of vectors (δ1, . . . , δk) ∈ Bk such that

∑k
i=1 δiai ∈ (a, b) is at

most
(

k
bk/2c

)
.

This lemma is related to the one-dimensional Littlewood-Offord problem, and was first
proved by Erdős in [10]. For completeness, we include the short and elegant proof. Let a
vector (δ1, . . . , δk) ∈ Bk correspond to the set {i : δi = +1, 1 ≤ i ≤ k}. Observe that if, for
a vector (δ1, . . . , δk) ∈ Bk,

∑k
i=1 δiai ∈ (a, b), then the change of the sign of any δi will move

the sum from the interval (a, b). Thus, a pair of vectors for which the above sums are in (a, b)
correspond to sets neither of which contains the other one. Hence, by Sperner’s Lemma [23],
there are at most

(
k

bk/2c
)

vectors (δ1, . . . , δk) ∈ Bk such that
∑k

i=1 δiai ∈ (a, b). 2

We proceed with the proof of the proposition. Fix a vector (εk+1, . . . , εn) ∈ Bn−k. Denote
the sum

∑n
i=k+1 εiai by S. Now |∑n

i=1 εiai| < ak+1 if and only if
∑k

i=1 εiai belongs to the
open interval (−S − ak+1,−S + ak+1). However, by the lemma above, there are at most(

k
bk/2c

)
vectors (ε1, . . . , εk) with the above property. Since we can fix (εk+1, . . . , εn) ∈ Bn−k

in |Bn−k| = 2n−k ways, the assertion of the proposition follows, implying the assertion of the
theorem as well. 2
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3 The MaxCut Problem

Let G = (V, E) be an undirected graph on |V | = n vertices, and let w : E → R+ be a
weight function associating a nonnegative real weight w(e) to each edge e ∈ E. The MaxCut
problem is the problem of finding a cut V = A ∪ B, A ∩ B = ∅ of maximum possible total
weight w(A,B) =

∑
a∈A,b∈B,ab∈E w(a, b). In this section we prove that there is an absolute

positive constant c > 1/40 such that for any graph G and any weight function w, at least a
fraction c of all cuts of G have weight at most w(E)/2, where w(E) =

∑
e∈E w(e) is the total

weight of all edges of G. Therefore, any algorithm that finds a cut of weight at least w(E)/2
has domination ratio at least c.

There are many simple algorithms that produce cuts of weight at least w(E)/2. The
simplest is probably the greedy algorithm; order the vertices arbitrarily and put each vertex
in its turn either in A or in B in order to maximize in each step the total weight of crossing
edges. The running time of this algorithm is obviously linear in the number of edges of G.

Another simple algorithm producing a cut of weight at least w(E)/2 can be obtained
using a small sample space supporting n pairwise independent uniform 0/1 random variables.
Since such spaces (as well as similar ones supporting k-wise independent random variables)
will be applied later in the paper as well, we briefly describe their properties in the following
paragraph.

By a construction described, e.g., in Section 15.2 of [4], there exists a 0/1 matrix S(k) =
[sij ] with n columns and r = O(nbk/2c) rows such that every r×k submatrix of S(k) contains an
equal number of all 2k binary k-vectors. This matrix can be constructed by a deterministic
polynomial algorithm; moreover, it can be constructed by a parallel NC algorithm. The
matrix is a simple explicit construction of a sample space of size r that supports n k-wise
independent uniform 0/1-variables. Indeed, the points of the sample space are the rows, each
of them has probability 1/r, and the value of variable number j on the point i is sij .

In polynomial time (and poly-logarithmic parallel time), we can compute the weight of
the cut corresponding to each row of the r × n matrix S(2) and choose the one with the
maximum weight. By the submatrix property of S(2), every edge of G appears exactly in r/2
such cuts. Therefore, the total weight of the r cuts is r

2w(E) and the cut of maximum weight
has weight at least w(E)/2.

In fact, a more careful analysis enables us to get in this way weight at least (1 +
Ω( 1

n))w(E)/2. More interesting is the fact that as a by-product of the analysis below we
can get that there is an absolute positive constant c′ such that at least a fraction c′ of the
cuts have weight that exceeds the average weight w(E)/2 by at least c′ standard deviations.
Moreover, we can find such a cut deterministically in polynomial time.

We proceed with the proofs, starting with a few probabilistic lemmas. The first lemma
is standard, and appears, for example, in [2].

Lemma 3.1 For every real random variable X with finite and positive forth moment,

E(|X|) ≥ E(X2)3/2

E(X4)1/2
.

Proof: By Hölder’s Inequality with p = 3/2 and q = 3, for every two nonnegative random
variables Y, Z,

E(Y Z) ≤ (E(Y p))1/p(E(Zq))1/q.

The result follows by applying this inequality to Y = |X|2/3 and Z = |X|4/3. 2

Using this lemma, we prove the following result, in which the absolute constants can, in
fact, be slightly improved.
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Lemma 3.2 Let X be a real random variable and suppose that its first, second and forth
moments satisfy E(X) = 0, E(X2) = σ2 > 0 and E(X4) ≤ bσ4. Then
(i) The probability that X is positive satisfies: Prob(X > 0) ≥ 1

24/3b
, (and a similar inequality

holds, by symmetry, for the probability that X is negative).
(ii)

Prob(X >
σ

4
√

b
) ≥ 1

44/3b
,

(and a similar inequality holds, by symmetry, for Prob(X < − σ
4
√

b
). )

Proof: By Lemma 3.1, E(|X|) ≥ σ√
b
. Since E(X) = 0 it follows that

Prob(X > 0)E(X|X > 0) ≥ σ

2
√

b
. (1)

Put p = Prob(X > 0). Then, the conditional expectation E(X|X > 0) is at least σ
2p
√

b
and

hence, by Jensen’s Inequality, E(X4|X > 0) ≥ σ4

16p4b2
, implying that

bσ4 ≥ E(X4) ≥ Prob(X > 0)E(X4|X > 0) ≥ σ4

16p3b2
.

Therefore, p ≥ 1
24/3b

, establishing part (i).
The proof of part (ii) is similar. Put δ = Prob(X > σ

4
√

b
). Then

Prob(X > 0)E(X|X > 0) ≤ (1− δ)
σ

4
√

b
+ δE(X|X >

σ

4
√

b
),

implying, by (1), that
E(X|X >

σ

4
√

b
) ≥ σ

4
√

bδ
.

By Jensen’s Inequality this shows that

E(X4|X >
σ

4
√

b
) ≥ σ4

44b2δ4
.

Therefore

bσ4 ≥ E(X4) ≥ δE(X4|X >
σ

4
√

b
) ≥ σ4

44b2δ3
,

implying the assertion of part (ii). 2

Returning to the MaxCut problem for a weighted graph G = (V, E) on a set V =
{1, 2, . . . , n} of n vertices, with weight function w : E → R+, let ε1, ε2, . . . , εn be independent
random variables, each distributed uniformly on {−1, 1}. Let X be the random variable

X =
∑

ij∈E

w(i, j)εiεj .

Notice that if we associate each possible vector (ε1, ε2, . . . , εn) with the cut determined by
A = {i : εi = 1} and B = {i : εi = −1}, then the value of X is precisely w(E) − 2w(A,B).
Therefore, the fraction of cuts of G whose weight is at most w(E)/2 is precisely the fraction
of vectors εi for which the random variable X is nonnegative, that is, precisely the probability
that X is nonnegative. To show that this probability is bounded away from zero we apply
part (i) of Lemma 3.2. In order to do so we have to bound the moments of X as follows.
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Lemma 3.3 The random variable X defined above satisfies:
(i) E(X) = 0.
(ii) E(X2) =

∑
ij∈E w2(i, j).

(iii) E(X4) ≤ 15(E(X2))2.

Proof: The assertions of part (i) and of part (ii) follow easily, by linearity of expectation. To
prove the assertion of part (iii) expand, first, X4, and write it as a sum of |E|4 products, where
each product is a product of four terms of the form w(i, j)εiεj . By linearity of expectation,
E(X4) is the sum of expectations of all these terms. Note that if some εi raised to an
odd power appears in a term, then its contribution to the expectation is 0. Therefore, the
only terms that have a nonzero contribution are those corresponding to collections of (not
necessarily distinct) fourtuples of edges that cover each vertex an even number of times. The
only fourtuples of this form are the |E| fourtuples corresponding to the same edge taken four
times, the

(|E|
2

)
fourtuples consisting of a pair of edges, each taken twice, and the fourtuples

corresponding to four-cycles C4 in the graph. Let C denote the set of all copies of C4 in G,
put m = |E| and let e1, e2, . . . , em be an arbitrary enumeration of all edges of G. By the
discussion above

E(X4) =
m∑

i=1

w4(ei) +
(

4
2

) ∑

1≤i<j≤m

w2(ei)w2(ej) + 4!
∑

C∈C

∏

e∈C

w(e).

For each 4-cycle C whose edges are ei, ej , ek, el in this order,

w(ei)w(ej)w(ek)w(el) ≤ w2(ei)w2(ek) + w2(ej)w2(el)
2

.

Summing over all members of C, for each pair of nonadjacent edges ei, ek, the term w2(ei)w2(ek)
appears at most twice in the right hand side, whereas the corresponding term for a pair of
adjacent edges does not appear at all. It thus follows that

∑

C∈C

∏

e∈C

w(e) ≤
∑

1≤i<k≤m

w2(ei)w2(ek).

Altogether we conclude that

E(X4) ≤
m∑

i=1

w4(ei) + 30
∑

1≤i<j≤m

w2(ei)w2(ej) ≤ 15(E(X2))2,

completing the proof. 2

Combining the last lemma with part (i) of Lemma 3.2, it follows that the probability that
X is nonnegative is at least 1

24/315
> 1

40 . We have thus proved the following.

Theorem 3.4 There exists a linear time, deterministic approximation algorithm for the
MaxCut problem in a weighted graph whose domination ratio exceeds 1/40. There is also
an NC algorithm with the same domination ratio.

Remark: Note that the proof of Lemma 3.3 works even when the random variables εi are 8-
wise independent, rather than fully independent. As there are polynomial size sample spaces
that support such random variables (like the matrix S(k) mentioned in the beginning of this
section), it follows, by Lemma 3.3 and part (ii) of Lemma 3.2 that we can also find, in any

weighted graph G, a cut whose weight exceeds the average by
√P

e∈E w2(e)

8
√

15
in deterministic

polynomial time, and in fact even in NC.
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4 Sparse linear equations

Let L be a system of m linear equations in n variables x1, x2, . . . , xn over GF (2), and suppose
that each equation e has a positive weight w(e). The problem MaxLin is that of finding an
assignment of values to the variables xi, trying to maximize the weight of the equations
satisfied.

Note that the MaxCut problem is a special case of MaxLin, where for each edge e = ij
we have the equation xi +xj = 1 with weight w(e). As is the case with the MaxCut problem,
it is easy to obtain, deterministically, in linear time, a solution whose weight is at least half
the total weight; simply assign each variable in its turn the value that contributes as much as
possible to the total weight of the equations determined so far. It turns out that when there
is a uniform bound, say r, on the number of variables participating in each equation, the
domination ratio of this algorithm is already at least some c(r) > 0. The proof is similar to
the one in the previous section; but since the constants we get here are far worse, we included
the discussion for MaxCut separately.

Our treatment here is similar to the one of H̊astad and Venkatesh in [18], with one crucial
change that enables us to bound the domination ratio away from zero. This also supplies, in
fact, an improvement on the success probability of the algorithm of [18].

Note, first, that we may assume that the left hand sides of each pair of our equations
are different, since if we have for a subset I of {1, 2, . . . , n} the equation

∑
i∈I xi = 0 with

weight w0 and the equation
∑

i∈I xi = 1 with weight w1, we can simply replace this pair by
the equation whose weight is bigger, modifying its new weight to be the difference between
the two old ones.

We thus assume that all the left hand sides of the equations are pairwise distinct. Let
Ij ⊂ {1, 2, . . . , n} be the set of indices of the variables participating in equation number j,
and let δj ∈ {0, 1} be the right hand side of this equation. Let wj denote the weight of
equation number j and define

X =
m∑

j=1

(−1)δjwj

∏

i∈Ij

εi,

where εi ∈ {−1, 1}. Let W denote the total weight of all equations. Then, the total weight
of the equations satisfied by putting xi = 0 if εi = 1 and xi = 1 if εi = −1 for all i is clearly
1
2(X(ε1, ε2 . . . , εn) + W ). Therefore, in order to bound the domination ratio of the simple
greedy algorithm it suffices to lower bound the probability that X is negative, when the
variables εi range over all 2n possibilities in {−1, 1} with equal probability. This is done by
applying Lemma 3.2. In order to do that we need a known extension of Khinchin’s Inequality.
Versions of this inequality appear in various places including [7], [24] and [11]. Here we use
the following version, proved by Bourgain in [7]. The same lemma has been applied in [18]
in a similar context.

Lemma 4.1 ([7]) Let f = f(x1, . . . , xn) be a polynomial of degree r in n variables x1, . . . , xn

with domain {−1, 1}. Define a random variable X by choosing a vector (ε1, . . . , εn) ∈ {−1, 1}n

uniformly at random and setting X = f(ε1, . . . , εn). Then, for every p ≥ 2, there is a constant
cp such that (E(|X|p))1/p ≤ (cp)r(E(X2))1/2. In particular, c4 ≤ 23/2.

Plugging b = 26r in Lemma 3.2, part (i), we conclude that by the above discussion, the
domination ratio of the simple greedy algorithm described above is at least 1

24/3·26r . Moreover,
r-wise independent random variables suffice to get a solution satisfying at least half the total
weight. Thus, we conclude that the following holds.
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Theorem 4.2 There exists a linear time, deterministic approximation algorithm for the
MaxLin problem for a weighted set of linear equations over GF (2) in which each equation
contains at most r variables, whose domination ratio exceeds 1

24/3·26r . There is also an NC
algorithm with the same domination ratio.

Remark: By part (ii) of Lemma 3.2 we conclude that in the above notation, if σ =
√∑

j w2
j ,

then the probability that X exceeds σ
23r+2 is at least 1

44/3·26r . This improves the estimate in
[18] that shows that the probability X exceeds σ/23+3r is at least 1

23+3rm
. The main difference

is that for fixed r the probability bound obtained here is bounded away from zero. Moreover,
since the analysis works whenever the random variables εi are 4r-wise independent, we can
find such an assignment for the variables in deterministic polynomial time, and in fact even
in NC.

5 Constraint satisfaction problems

Let r be a fixed positive integer, and let F = {f1, f2, . . . , fm} be a collection of Boolean
functions, each involving at most r of the n variables, and each having a real, positive weight
w(fi). The Max-r-Constraint Satisfaction Problem (or Max-r-CSP problem, for short), is the
problem of finding a truth assignment to the variables so as to maximize the total weight of
the functions satisfied. Note that this includes, as a special case, the problem of sparse linear
equations considered in the previous section (and hence also the MaxCut problem). Another
interesting special case is the Max-r-Sat problem, in which each of the Boolean functions fi

is a clause of at most r literals. In this section we observe that our techniques can handle this
more general problem without any essential changes. The first observation is that as before,
it is easy to find deterministically a truth assignment in which the total weight of the satisfied
equations is at least the expected value of this weight when the values of the variables are
assigned at random. This can be done either by the method of conditional expectations, or
by using small sample spaces with r-wise independent random variables. It thus suffices to
show that for every fixed r, there is some c(r) > 0 so that at least a fraction c(r) of all feasible
assignments do not supply a better solution than the average. As before, this will be done
by applying Lemma 3.2.

We proceed with the details. For each Boolean function f of r Boolean variables

xi1 , xi2 , . . . , xir ,

with a weight w(f), define a random variable Xf as follows. For convenience, suppose each
variable xij attains values in {−1, 1}. Let V ⊂ {−1, 1}r denote the set of all satisfying
assignments of f . Then

Xf (x1, x2, . . . , xn) = w(f)
∑

v=(v1,...,vr)∈V

∏r
j=1(1 + xijvj)

2r
− w(f)

|V |
2r

.

This is clearly a random variable defined over the space {−1, 1}n and its value at x =
(x1, x2, . . . , xn) is w(f)(1 − |V |

2r ) if x satisfies f , and is −w(f) |V |2r otherwise. It follows that
the expectation of Xf is zero. Define now X =

∑
f∈F Xf . Then the value of X at x =

(x1, x2, . . . , xn) is precisely the total weight of the functions satisfied by the truth assignment
x, minus the average value of this total weight, computed over all possible truth assignments.
It thus suffices to show that with probability at least c(r) > 0, the value of X is negative.
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By linearity of expectation, E(X) = 0. Moreover, since X is a polynomial of degree at
most r in x1, x2, . . . , xn, it follows, by Lemma 4.1, that E(X4) ≤ 26rE(X2)2. The desired
result with c(r) = 1

24/3·26r now follows from Lemma 3.2, part (i). We have thus proved the
following.

Theorem 5.1 For each fixed integer r ≥ 1 there exists a linear time, deterministic approxi-
mation algorithm for the Max-r-CSP problem for a weighted set of Boolean functions in which
each function depends on at most r variables, whose domination ratio exceeds 1

24/3·26r . There
is also an NC algorithm with the same domination ratio.

6 Concluding remarks

There are very simple efficient randomized algorithms with expected domination ratios close
to 1 for all the problems considered here (and for many other ones). Simply pick randomly
and independently, with repetitions, enough feasible solutions, and choose the best one. This
can be done for every problem in which a random feasible solution can be generated efficiently.
Clearly, if we pick t random solutions, then the probability the best one is worse than an
ε-fraction of the solutions is at most (1− ε)t. For a problem of size n and any ε ≥ n−O(1) we
can choose a polynomial t for which this probability will be inverse polynomially small. It
is therefore unlikely to expect any strong inapproximability results for any of these problems
with respect to the domination criterion, as all of them admit efficient randomized algorithms.

6.1 Unweighted graphs

It is sometimes simpler to get efficient algorithms with large domination ratio for unweighted
graphs than for the weighted case. Consider, for example, the unweighted MaxCut problem.
Let G = (V,E) be a t-colorable graph with |E| = m edges. Fix a t-coloring c = (C1, . . . , Ct)
of G. We form a random partition of V by choosing a set I ⊂ {1, . . . , t} of size |I| = bt/2c
uniformly at random and by defining A =

⋃
i∈I Ci, B = V \A. It is easy to see that each edge

e ∈ E crosses between A and B with probability 2
( t−2
b t
2
c−1

) /(
t
b t
2
c
) ≥ 1

2+ 1
2t . Hence the expected

number of edges in the cut [A, B] is m/2 + m/(2t). This argument (mentioned, e.g., in [1])
can be easily derandomized using standard derandomization techniques, to give a polynomial
time deterministic algorithm for finding a bipartite cut of value at least m/2+m/(2t) in any
graph G with m edges that can be colored (in deterministic polynomial time) in t colors.

As the greedy (first fit) algorithm outputs a coloring in which each pair of color classes
is connected by an edge, we conclude that the number t of colors used by it satisfies:

(
t
2

) ≤
m. Substituting this estimate into the above bound for the MaxCut problem, we get a
deterministic algorithm producing a cut of size m/2 +

√
m/8 + O(1) – the well-known result

of Edwards [8], [9]. Since the average size of a cut is m/2 and its variance is m/4, it can be
shown that the domination ratio of this algorithm is at least 1/3 − o(1). This follows from
the simple fact below, whose proof is similar to (and somewhat simpler than) that of Lemma
3.2.

Proposition 6.1 Let X be a real random variable satisfying E(X) = 0, E(X2) = σ2 ( > 0).
Then for every real a > 0, Prob(X ≥ aσ) ≤ 1

a2+1
.

Proof: Put p = Prob(X ≥ aσ). Since E(X) = 0 it follows that (1− p)E(|X||X < 0) ≥ paσ,

implying that E(|X||X < 0) ≥ paσ
1−p . By Jensen’s Inequality, E(X2|X < 0) ≥ p2a2σ2

(1−p)2
and

9



hence

σ2 = E(X2) ≥ p2a2σ2

(1− p)
+ pa2σ2.

Therefore p ≤ 1
a2+1

, as needed. 2

It is not difficult to show that the assertion of the proposition above is tight for every
value of a > 0. In our case, a = 1√

2
+ o(1), implying that the domination ratio of the above

described MaxCut algorithm for unweighted graphs is at least 1/3− o(1).
For many classes of graphs the trivial upper bound on the constructive chromatic number(

t
2

) ≤ m can be improved to t = o(
√

m), resulting in bipartite cuts of size m/2+ω(1)
√

m and
thus in algorithms with domination ratio 1− o(1), that follows from Chebyshev’s Inequality.
This is the case, for example, for H-free graphs, for any fixed graph H (see [3] for more
details), or for graphs with m edges and with clique number bounded by mo(1), as follows
by standard Ramsey-type arguments. Note also that for almost all graphs on n vertices,
the greedy algorithm finds a coloring in O(n/ log n) colors [12], while the number of edges is
quadratic in n. Thus we get an almost sure 1− o(1) domination ratio algorithm here as well.

The authors of [20] show how to find, in polynomial time, given a tournament on n vertices,
an ordering of the vertices consistent with at least 1

2

(
n
2

)
+ Ω(n3/2) arcs (that is, an acyclic

subdigraph with that many arcs). Here, too, it is not difficult to show, using Chebyshev’s
Inequality, that the domination ratio of this algorithm (for the problem of finding an ordering
with the maximum possible number of consistent arcs) is 1− o(1). We omit the details.

6.2 Sparse linear binary codes

Some of the arguments here supply interesting results for linear binary codes. These are
stated and proved below.

Proposition 6.2 Let A = (aij) be a k × n generating matrix of a binary linear code C of
length n and dimension k. Suppose the Hamming weight of each column of A is at most r, and
no two columns are identical. Then the covering radius of the code is at most n/2−√n/23r+3.
Moreover, for every binary word v = (v1, v2, . . . , vn) of length n, at least 2k

44/3·26r of the code-
words of C are within distance n/2−√n/23r+3 from v.

Proof: This is a simple consequence of the last remark in Section 4. Simply apply that
remark to the linear equations

∑k
i=1 aijxj = vj , 1 ≤ j ≤ n. 2

The dual binary Hamming code shows that the assertion of the theorem fails without
the assumption that the weights of all columns are bounded. The code with n =

(
k
2

)
in

which the columns of A are all possible binary k-vectors of Hamming weight 2 shows that
the above estimate is essentially tight, as the maximum weight of a codeword is bk2/4c =
n/2 +

√
n/
√

8 + Θ(1).

Proposition 6.3 For every integer p > 2 there is an absolute constant cp > 0 such that the
following holds. Let H = (hij) be an (n− k)× n parity check matrix of a binary linear code
C of length n and dimension k. Suppose the Hamming weight of each column of A is at most
r, and no two columns are identical. Then the number of codewords of Hamming weight p in
C is at most crp

p

p! np/2.

Proof: Let Ij be the set of all indices i such that hij = 1, and consider

X(ε1, ε2, . . . , εn−k) =
n∑

j=1

∏

i∈Ij

εi.
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When εi’s take random, independent values in {−1, 1}n−k, X becomes a random variable. By
linearity of expectation, E(X2) = n. Therefore, by Lemma 4.1, E(Xp) ≤ (crp

p )np/2. However,
by linearity of expectation E(Xp) is exactly the number of ordered p-tuples of columns of H
whose sum modulo 2 is the zero vector, and each codeword of weight p of C is counted in this
way p! times. 2

The binary Hamming code shows that the conclusion is false without the assumption that
the columns are of bounded Hamming weight. The matrix H in which n =

(
n−k

2

)
, where

the columns are all distinct binary vectors of Hamming weight 2 shows that the result is
essentially tight, since the complete graph with n edges has c(p)np/2 subgraphs with p edges
and all degrees even, for every fixed p.

6.3 Open problems

• A natural variant of the MaxCut algorithm based on small sample spaces with pairwise
(or 4-wise) independent random variables, is to consider all cuts given by a sample
space with k-wise independent random variables, and take the best one. It seems
plausible that as k grows to infinity, the domination ratio of this algorithm tends to
1. Similar algorithms can be considered for sparse linear equations and for the Max-r-
CSP problem, and it will be interesting to decide if by taking the best point in a space
supporting k-wise independent random variables for k bigger than what’s needed to get
the average, we can obtain significantly better domination ratios.

• It was proved in [14] that every Asymmetric TSP (ATSP) algorithm, which always
produces a tour of weight not worse than the average weight of a tour, is of domination
ratio at least 1/(n− 1) for all n 6= 6. This cannot be significantly improved due to the
following simple example. Consider a complete digraph on n vertices in which all arcs
apart from two arcs xy and xz are of weight 0. The weight of xy is 1 and that of xz
is n. The average weight of a tour is (n + 1)/(n− 1). Thus, a tour T through xy is of
weight smaller than the average, yet T dominates only 2(n− 2)! tours.

Since it is not difficult to find, efficiently and deterministically, a tour of weight at most
the average, it follows that there are several polynomial time ATSP algorithms, see,
e.g., [14, 21], of domination ratio Ω(1/n). It will be interesting to improve this ratio to
Ω(1).
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