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Abstract

We present the first polylog-competitive online algorithm for the general multicast admission con-
trol and routing problem in the throughput model. The ratio of the number of requests accepted
by the optimum offline algorithm to the expected number of requests accepted by our algorithm
is O((logn + loglogM)(logn + log M) logn), where M is the number of multicast groups and
n is the number of nodes in the graph. We show that this is close to optimum by presenting an
£2(lognlog M) lower bound on this ratio for any randomized online algorithm against an oblivi-
ous adversary, whem is much larger than the link capacities. Our lower bound applies even in
the restricted case where the link capacities are much larger than bandwidth requested by a single
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multicast. We also present a simple proof showing that it is impossible to be competitive against an
adaptive online adversary.

As in the previous online routing algorithms, our algorithm uses edge-costs when deciding on
which is the best path to use. In contrast to the previous competitive algorithms in the throughput
model, our cost is not a direct function of the edge load. The new cost definition allows us to decouple
the effects of routing and admission decisions of different multicast groups.

0 2004 Elsevier Inc. All rights reserved.
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1. Introduction

We study the problem of online multicast admission control and routing in a capacitated
network, where both requests to form new groups and requests to join existing multicast
groups arrive in an online fashion. Each multicast group requires a certain amount of re-
served bandwidth which has to be allocated along a tree spanning the nodes participating
in the multicast group. In the general case, a multicast request specifies the user (endpoint)
and the multicast group that this user wants to participate in. The router should either reject
the request or accept it and allocate bandwidth along a path connecting the new endpoint
with the already existing tree for this group. The total allocated bandwidth on a link should
not exceed the capacity of the link.

In this paper we present the first polylog-competitive algorithm for the general multicast
problem. Our algorithm is randomized, as it must be since we also show that it is impossible
for any deterministic algorithm to achieve a polylogarithmic competitive ratio. The ratio of
the number of requests accepted by the optimum offline algorithm to the expected number
of requests accepted by our algorithm@g(logn + loglogM)(logn + log M) logn),
where M is the number of multicast groups amds the number of nodes in the graph (i.e.,
the network). If each vertex is allowed to serve at most one multicast group, the competitive
ratio simplifies toO (log® n).

Like earlier work on this problem, our algorithm also requires that the maximum band-
width requirement of a multicast group be smaller than the minimum capacity of an edge
by a factor that is at least logarithmic in the network size.

Unicast routing

Routing and admission control problems in the online setting have been extensively
studied. Two related performance measures have been considerec:dnglestionrmodel,
the algorithm is required to accept all of the requests, and the goal is to minimize the
maximum edge congestion (utilization). Here the congestion is allowed to exceed 100%.
In the throughputmodel the algorithm is allowed to reject some of the requests and is
not allowed to exceed 100% congestion on any link. The goal is to maximize the total
bandwidth-duration product for all the accepted (routed) requests.

The first competitive algorithm in the congestion model for general topology networks
was presented in [1]. The competitive ratio of this algorithnDidogn), wheren is the
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number of nodes in the network. The first competitive algorithm in the throughput model
was given in [10] for the case of a single-link network and extended in [9] for a line net-
work. A competitive algorithm for general topology networks in the throughput model
was presented in [4]. This algorithm achiev@dognT) competitive ratio, wheré is the
maximum duration (holding time) of a virtual circuit. The competitive ratio improves to
O (logn) for the Permanent Virtual Circuits case, i.e., circuits with infinite holding times.
The algorithm assumes that each circuit specifies its holding time upon arrival. It is im-
possible to achieve polylogarithmic competitive ratio if the holding times become known
only upon termination of the circuit [6,20]. Further, the throughput-competitive algorithms
mentioned above assume that the bandwidth requested by any one connection is smaller
than the capacity of any link by a factor which is at least logarithmic in the network size.

Routing in a probabilistic model where there are assumptions on the distribution of call
arrival times and source-destination pairs was considered in [16]. Their results were based
on theedge-independen@ssumption, which states that the random variables describing
instantaneous load on edges are independent. This assumption is not satisfied in general,
and hence their results are incomparable to the ones presented in this paper. The random-
ized model without the independence assumption was considered in [14]. In the case where
the durations are exponentially distributed and the arrivals are Poisson with unknown rates,
their algorithm achieves él + ¢) competitive ratio, where depends on the ratio of the
minimum capacity to maximum bandwidth of a single virtual circuit. Both [4] and [14] as-
sume at least logarithmic ratio between maximum virtual circuit bandwidth and minimum
link capacity. Similar results without this assumption were developed for special network
topologies (see, e.g., [18]).

All of the above algorithms are related to the (offline) combinatorial approximation
algorithms for multicommodity flow [15,17,19,21]. As in these algorithms, the basic idea
is to assign each edge a cost that is exponential in the congestion on this edge, and try to
route along short paths with respect to this cost.

Multicast routing

The techniques in the above mentioned papers can be used to solve several restricted
multicast problems in the throughput model. In particular, [4] shows that if the participants
in a single multicast group arrive together (“batch arrivals”), and the accept/reject decision
is for the whole multicast group, it is possible to achieve@togn) competitive ratio.
Roughly, the idea is to route the multicast request along a minimum-cost Steiner tree; this
is analogous to routing along a shortest path for unicast. The case where we keep the re-
striction of batch arrivals, but allow rejection of some of the group members and acceptance
of others can be solved by replacing an approximation algorithm for Steiner tree with an
approximation algorithm for the k-MST problem. The first polylogarithmic and constant
factor approximations for this problem were presented in [2,8], and a 3-approximation
algorithm was given in [11]. These k-MST algorithms are relatively slow and use a poly-
nomial number of calls to an approximation algorithm for the prize-collecting traveling
salesman problem [13]. The techniques developed in this paper allow the online multicast
algorithm to make a single call to the prize-collecting traveling salesman algorithm for
each batch arrival.
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Awerbuch and Singh [5] showed how to combine the “winner-picking” technique [3]
with the techniques in [4] to achieve a polylog competitive ratio for the case where mem-
bers of each multicast group arrigsequentiallyi.e., the size and membership of the group
is unknown upon its creation. Their algorithm can deal only withrttve-interleavedtase,

i.e., when all the members of a particular multicast group arrive before a new group can be
created.

The algorithm in [5] is not applicable in the general case, where the arrivals of re-
guests belonging to different multicast groups iterleaved The main problem is that
this algorithm depends on the fact that, at every instance, the algorithm is dealing with the
construction of only a single multicast tree and all accept/reject decisions with respect to all
existing multicast groups are already known. As in [4], the algorithm in [5] uses edge-costs
that are exponential in the current link load. One of our contributions is a new definition of
edge-costs that are independent of the specific accept/reject decisions made with respect to
each multicast group. This decoupling between multicast groups is what allows us to gen-
eralize the algorithm in [5] and to combine it with techniques in [4] to achieve a polylog
competitive ratio for the general multicast problem.

Lower bounds

A natural question to ask is if it is possible to make the competitive ratio independent
of M, the number of multicast groups. We address this issue by showing a lower bound
of £2(log M logn) whenM is much larger than the link capacities. This is the first bound
for this problem that is stronger than(logn) and that works even if we require that the
bandwidth requested by each multicast is significantly smaller than bandwidth of a single
link. A similar lower bound for the case where a multicast is allowed to request a constant
fraction of a link bandwidth was shown in [3]. For the case where a multicast can request
bandwidth equal to bandwidth of a single link, a polynomial lower bound was shown in [7].

It is interesting to note that the algorithm presented in this paper works even against
a semi-obliviousadversary, i.e., the adversary is allowed to look at the tree used by the
online algorithm to service a multicast group only after all the requests for that group
have been processédVe show that against an adaptive online adversary, any randomized
online algorithm must have a competitive ratio @f(min(z, —)) As a corollary, any
deterministic algorithm must also have a competitive ratmzt()fmn(n —))

Previous papers on online multicast routing and admission control often ignored the
issue of computational complexity. In particular, the algorithm in [5] assumes an NP-hard
computation at each routing decision. We show that it is possible to use the special prop-
erties of the prize-collecting Steiner tree algorithm in [13] to implement each step of our
algorithm in polynomial time; the same technique also allows us to give a polynomial time,
O (logn)-competitive algorithm for selective batch arrival multicast requests (see Appen-
dix A.3 for a description of the problem).

In Section 2 we introduce the model and the terminology. Section 3 describes the algo-
rithm, and Section 5 presents the proof of the competitive ratio. The algorithm as described

4 A semi-oblivious adversary is at least as powerful as an oblivious adversary.
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in Section 3 may violate capacity constraints on edges. In Section 6 we show that the above
algorithm can be slightly modified to guarantee that capacity constraints are never violated.
In Section 6.1 we remark that several of the assumptions made in the earlier sections can be
relaxed. Lower bounds are presented in Section 7. Appendix A explains how to implement
each decision step of our online algorithm in polynomial time and also addresses the se-
lective batch arrival problem. A general introduction to competitive analysis can be found
in the work of Sleator and Tarjan [22].

2. Modd and definitions

We model the network as a capacitated graph withodes andr edges. Edge has
capacityu,. Requests are of two types—for creating a new group or joining an existing
group.

The ith request to create a multicast group specifies the souraed the bandwidth
requirement; of this multicast group. A multicast algorithm does not need to explicitly
accept or reject this request since no bandwidth reservation is required for the new group
at this stage. The online algorithm maintains a fgfor groupi; initially the tree consists
of the single node;.

A “join” request specifies the groupand the node that wants to join this group. The
multicast routing and admission algorithm can either reject a join request or accept it and
reserve bandwidth along some path from to 7;; this path is also added . The total
reserved bandwidth on any link must not exceed the capacity of that link.

For simplicity, we will assume that all edges have the same capacityd all groups
have the same bandwidth requiremgnt 1. We also assume that the number of multicast
groupsM is known in advance. The issue of removing these assumptions is deferred to
Section 6.1.

We also assume that> log ., wherep is a parameter that is polynomial inand M,
and will be defined latetWe assume that multicast groups, once established, never leave.

3. Thealgorithm

The online algorithm can be viewed as consistind.ef logn + log M “virtual” algo-
rithms for each one of thaA multicast groups. We call these algorithms virtual because
the routing and accept/reject decisions of these algorithms are not implemented. Instead,
they only modify internal data structures and, in particular, the cost associated with each
edge. The description of the cost computation is deferred to Section 4. For now, it is suf-
ficient to assume that each edge has an associated cost that is deterministic, depends only
on the input sequence of requests, and is monotonically non-decreasing in time. For a set
of edgesS, we use Cosf5) to denote the sum of the costs of the edges.in

The jth virtual algorithm associated with thith multicast is called VA; and is shown
in Fig. 1. The goal of VA ; is to build a tre€l; ; which spans the souregand some subset
of the nodes that requested to join thle multicast group.

5 This requirement corresponds to a similar requirement in [4].
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VA, j

A Initialization (s; is the root of the th multicast):
1 T,J <~ {S,‘}.
2 for all u
PROFIT; j(u) < 0;
USED-PROFIT; j(u) < 0 (USED-PROFIT; ; is used only for the analysis, specifically in Lemma 5.1).

B Invoked due to receiving profit at nodev from VA; ;_1 (VA; 1 is invoked with unit profit due to a join
request at node):
1 PROFIT,"j(U) <~ PROFIT,‘,]'(U) + .
2 Contract; ; to a single vertex.
3 Find smallestr’ < PROFIT; j(v) such thaBtreeS with the following properties:
HvesS,ses;
(i) Cost(S) < (X yes,uzep PROFIT; j(u) + 7')/d.
4 if no suchr’ found,then uncontract; ; andexit
ese
4.1 Let S be the tree which satisfies the conditions in Step 3.
42 forallwe S, w#v
USED-PROFIT; j(w) < PROFIT; ;(w);
PROFIT; j(w) <= 0.
4.3 USED-PROFIT; (v) < 7’;
7 < PROFIT; j(v) —
F’ROFITI-J(U) <~ 0.
4.4 Uncontractl; ;

Tl]<—T US

4.5 Update the cost of each edge S.
46 if j <L
Invoke VA; ;11 by passing a profit of at nodev to VA; ;1.

Fig. 1. Thejth virtual phase of théth real algorithm. Recall that is the density value defined at the beginning
of Section 3.

Each request to join thieh multicast group is considered as a potential unit of profit, and
the virtual algorithms use (“consume”) this profit to “pay” for their trees; YAan expand
its treeT; ; by adding a subtree only if it can pay for this subtree. We will refer to these
subtrees as “fragments”. As payment,;\/Acan use only the profit that is on the nodes of
this subtree and that was not used by; YAor k < j (this is denoted by ROFIT; ;(v) in
Fig. 1). More precisely, VA; monitors the profit passed from YA_1. Each time it getsr
units of profit at some nodeg it addsr to PROFIT; ;(v). It then tries to find a fragment that
includesv such that the ratio of the unused profit associated with nodes of this fragment
plusr’ is at leastd = d” - 6L|0 — times the cost of adding this fragmentTp;, where
T = 1/(mu) andn’ < PROFIT; ;(v). The goal of the algorithm is to minimize'.
This subtree is added to tlig ;, d times the cost of this tree is “consumed”, and the rest
of the profit (in fact, at most one unit) on the newly added nodes is bequeatlred tn
Observe that, since costs are increasing, the total profit used to corfstriebounded
by its final cost divided by!. Since VA ; builds its tree in an online fashion, there might
be a larger (in terms of the spanned nodes that requested participatitnritulticast)
tree that can be constructed offline using the same profit. In Lemma 5.1 we show that this
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Realf)

On receiving theth group creation request:
1 Choosen; € [1...L] such that Prob); = j) = - 2/.
2 T; < {s;}.
3for1<, <L
Perform the initialization step of VA; (Step A, Fig. 1).
On receiving a request from nodeto join groupi:
1 Invoke VA; 1 by generating a profit of 1 unit at noae(Step B, Fig. 1).

2T« Ty,

Fig. 2. Thereal algorithm for multicast group.

“loss” is not very significant. Also, note that the only way virtual algorithms dealing with
different multicast groups interact with each other is through edge-costs. Another important
property is that for allj, the vertices which contribute towards the profit collected by VA
are a subset of the vertices that contribute towards the profit collected by YA

The “real” algorithm is shown in Fig. 2. For each multicast group, it randomly chooses
one of the virtual algorithms when the group is created. It then implements the construction
of the tree built by this virtual algorithm. We set the probability of choosing, VAo
pj =B -2/, wherep is chosen such th{]@:l p; = 1. When a join request is received,
the real algorithm invokes VA with one unit of profit. If VA 1 addsv to its tree, any profit
from v that was not consumed in augmentifig gets passed to \i&, and so on. In this
fashion, even though the real algorithm only invokes Y&xplicitly, the algorithms VA, ;
may still get invoked for larger values ¢f If the chosen virtual algorithm modifies its tree
due to this join request, then the real algorithm makes exactly the same modifications to

In our analysis, if theth real algorithm has chosen YA for a specific multicast, then
we do not get credit for the profit that was “used up” when YAvas constructing its tree.
Instead, we will only take credit for the profit that was inherited by YA;.

4. Edge-costs

Our algorithm can be viewed as a generalization of the algorithm of Awerbuch and
Singh [5]. The main conceptual difference lies in definition of edge-costs. In this section
we define the cost metric and the way it is updated as a result of each new request. The
cost metric is updated by the virtual algorithms and hence is deterministic.

The online algorithm constructs the cost metric as it goes along. When profit propagates
from VA; ;1 to VA; ;, we consider this an “event”. An event might cause; YAo con-
sume some profit and update its tfgg. Let ¢, (k) denote the cost of edgeafter thekth
event. When thé&th event occurs, the virtual algorithms use cast& — 1) for making
their decision. These decisions are then used to comp(tein a deterministic fashion.

Letn = (n1,...,nAm) represent the indices of the virtual algorithms chosen forkthe
multicasts. Also, lep; represent the probability of making this sequence of choices. Define
the load on an edge ag:dtimes the number of trees it was used in by the real algorithm,
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and Ietxﬁ”)(k) represent the load on edgafter the firstc events have occurred, wheje
represents the choices made by the real algorithms. Since the random choices of the real
algorithms for different multicasts are independenit= ]'[?;‘1 Dri -

Let ¢.(0) = u for each edge. Suppose costg0) to c(k — 1) were already computed.
Thenc, (k) is computed as follows.

(i)
Ce(k) —u Zpﬁu)w (k)
i

The value ofu is set to 4:8log? M. The reason for this value will become clear in

Section 6. Observe that, givej) the expressionf’)(k) is deterministic, and hence the
costsc, (k) are deterministic as well.

Definexgi’j)(k) as indicator variables, Witlxé’j(k) being 1 if edgee is used by VA ;
during tbe firstt events and 0 cherwise. Notice th‘é&"’)(k) are deterministic quantities.
Now, 2 (k) = (1/u) - Z{\;‘l x5 (k). We can use this to rewrite the castk):

M .
@n;)
ce(k)=u Zn(p'?i _MXL» (k)/u)'
noi=1

n

Let B denote the vectofnz, n2, ..., npq). The above sum can now be written as

L X(i‘”l)(k)/Lt M1 X(i+1’ﬁi)(k)/u
ety =u( 3 pru O ) ST (7O,
i=1

m=1 B

Repeating the above step inductively;@nNe get
M L

@i, ))
cey=ul D pju*e” O 1)

i=1j=1

The above representation gives an easy way to compdtgefficiently. Since only one
of the sums changes during any event, the online algorithm can recompute that sum and
obtain the new costs.

The following claim follows from the way we construct the cost metric.

Claim 4.1. The cost, (k) is the expectation of the quantiy.*®) wherea, (k) is a ran-
dom variable representing the load on edgafter k events.

5. Proof of competitiveness

In order to prove the competitive ratio, we will divide the multicast groups into “prof-
itable” and “unprofitable”, based on the cost of tygtimumtrees for these groups with
respect to the cost metric constructed by our algorithm. Here, by optimum trees we mean
the trees constructed by the optimum offline algorithm.
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Consider theéth multicast group, and let the number of requests satisfied by the optimal
offline algorithm be-*(i). Similarly, letr (i) be the profit obtained by the online algorithm.
Letw*(i) be the cost (in the final cost metric) of the ti&eused by the optimum algorithm
to service multicast group We call a multicast grouprofitableif the optimal’s tree for
this multicast group has a high profit to cost ratio in fimal cost metric:

Definition 1. Theith multicast group iprofitableif ;;«((I,)) >d’, whered? = L.

mu

We use the quantitieR* and R to represenE{‘:’llr*(i) and Zl/\:/llr(i), respectively.

Let P andU represent the set of profitable and unprofitable multicast groups, respectively.
Also, we defineR}y, =), pr*(i) andR}, =), 7" (i) = R* — R},.

We first show (Lemma 5.2) that the online algorithm obtains almost as much profit from
profitable groups as the optimal solution does. Then we show that the total profit obtained
by the online algorithm can only be polylogarithmically smaller than optimal’s profit from
unprofitable groups. To prove the latter claim, we take an indirect route. We use capacity
constraints to argue that the quantityR;, is bounded by the sum of the final costs of
all edges (Lemma 5.3). Finally, we bound the final costs in terms of the expected profit
obtained by the online algorithm (Lemma 5.7).

Consider the quantitiesROFIT; ;(v) and USED-PROFIT; ;(v) at the end, i.e., after all
requests have been received. Leti®) = PROFIT; ;(v) + USED-PROFIT; ;(v). Infor-
mally, the quantity P;(v) denotes the profit consumed by MAat nodev. For any set
X of vertices, P;(X) =), .x Pi j(v); the definitions of ROFIT; ; and USED-PROFIT; ;
are similarly extended.

The following lemma was first proved by [5] with worse constant factors. Our proof is
simpler, and allows us to show (Appendix A) that the algorithm can be implemented in
polynomial time.

Lemmab5.1. P; ;(T;*) < 3w*(i)d logn.

Proof. We first bound the quantity®FIT; ;(7;*). This contribution comes from nodes in
T* which do not belong t@; ;. The profit consumed on these nodes by; YAnust be at
mostw*(i)d, else these nodes would have formed a fragment on their own and been added
toT; ;.

Now we bound WGED-PROFIT; ;(T;*). This contribution comes from nodes that belong
to 7; ;. Recall that VA ; acquiresT; ; in tree fragments. Consider an Eulerian t@uiof
T*. Let asegmenbf tour D be a maximal contiguous piece bfsuch that all edges of the
segment belong to the same fragmentpf. Initially, all segments are marked active. If
two consecutive active segments on this tour belong to the same fragment, they are merged
together along with the portion of the tour between them to form a single segmengs)_et
denote the event at which the edges of segmewire added td; ;.

Furthermore, we define@edandsuccrelation on active segments such that gsed)
is the predecessor 6fin tour D and sucgs, D) is the successor afin D.

Let Do=D. Forh > 1, let’ H, = {s is an active segment db,,_1, 7(s) < t(preds,
Dy_1)),t(s) < t(sucds, Dy_1))}. Let £, denote the remaining segmentsiof_, and let
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Dy, denote the touD;_; with each segment if;, marked inactive. The segmentsity,
remain active inD;,. As mentioned above, consecutive active segments are merged if they
belong to the same fragment.

Note that for allk:

|Ln| > [Hal.

This implies that there at most lagnon empty set€;,. Lets € £, for someh. Also, let
s’ be the successor or predecessor segmeniroD;,_1 with 7(s”) < ¢(s) and letp consist
of the part ofD betweens ands’.

Assume WED-PROFIT; j(s) > d(w*(s) + w*(p)). Let v € s be the node with the
last request in multicastamong all nodes ir. When the request at arrived, the sum
PROFIT; j(s) = ) _,c; PROFIT; ; (1) is more thanl(w*(s) + w*(p)), because ROFIT; ;(s)
is the source of WED-PROFIT; ;(s). Thus, at that time we could have used at most
d(w*(s) + w*(p)) to adds + p as a fragment. Since the algorithm always tries to cre-
ate a fragment using the minimum amount of profit, we have:

USED-PROFIT; ;(s) < d(w*(s) + w*(p)).
Considering thaD visits every node twice it follows that

Z USED-PROFIT; (s) < 2w*(i)d.

sely

Summing over all values af it follows that the profit consumed by VA from all
nodes which belong t&* N 7; ; is at most 2*(i)d logn. This completes the proof of this
lemma. O

We now show that for profitable multicasts, the profit obtained by our online algorithm
is high.

Lemma52. R > R} /2.

Proof. Since there ard. levels, Lemma 5.1 guarantees that the total wasted profit for
multicast group is at most 3.w*(i)d logn. Plugging ind = d” - ﬁ and using the
fact thati profitable implies that* (i) > d” w*(i), we obtain a bound af*(i)/2 on the
wasted profit. Therefore,(i) > r*(i)/2 for all profitable groupg. Summing over all the
profitable groups, we get the desired result

Having bounded the profit from the profitable groups, we now concentrate on the un-
profitable groups. Recall that is the cost of edge at the end, i.e., after all the events
have taken place, and that the costs are non-decreasing in time.

Lemmab3.mRj; <} _,ce.

Proof. Let k) be the number of multicast groups which use eelge the optimal offline
solution. Consider the treg* used by the optimal solution to route tith multicast group.
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If this group is unprofitable then by definitiorf(i) < - ZeeT-* c.. We sum this over all
the unprofitable multicast groups, and then reverse the order of summation.

1 1 1

Ry S d D ce<ynd kice< o) jce
i€U eeT e e

The last inequality follows from the fact that the optimal offline is not allowed to exceed

capacities, implying} <u. O

Let w; (i) represent the cost incurred by YAin constructing the tred; ;. In other
words, each tree fragment @f ; contributes tow; (i) its cost associated with the event
of adding this fragment. We use(i) to denotew, ;) (i), wheren represents the choice of
the real algorithm. Let; (i) represent the profit consumed in constructing his. The
following lemma implies that if the expected profit is small, then the expected cost of the
constructed trees is small as well.

Lemmab5.4. E(r(i)) > (d/2)E(w(i)) — ﬁ wherew (i) is the cost paid by the real algo-
rithm for multicast group.

Proof. If the real algorithm chooses to follow VA, i.e.,n(i) = j, then it will get at least
the profit used by VA; 1. Therefore:

E(r()) > Zp,r,+1<z)

By def|n|t|0n,pj = pj+1/2, and hence

E(r(i)) Zp,r,(z)/z

j=2

By construction:

E(w()) Zp,w (i) < <1/d>ijr (i).

j=1 j=1

Thus, we have

d-E(w() < 2E(r() + prra)-

Now notice thatr1(i) can be at most, since each request brings in one unit of profit,
and there can be at mastrequests for a single multicast group. A|$QZ 27t =1,
which implies thatpl/Z < 27L SubstitutingL = logn + log M, we obtalnE(r(z)) >
(d/2Ew@)) — —-

We remark that in this proof the fact that the VAs are deterministic is quite crucial;
otherwise, the profitg; (i) would be conditioned on the random choices made by the real
algorithms and the above argument would break down completely.
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Now we prove that if the expected cost of the constructed trees is small, then the total
cost of all the edges is small as well. But first, we need to prove the following technical
lemma. Roughly speaking, this lemma implies that if an event caused an edge to be used
by one of the trees, the increase in the cost of this edge is proportional to its current cost.

Consider an everit that caused VA; to augment its tree, and &l represent the set
of edges of the newly added subtree.

Lemma5.5. For all e € Ey, ce(k) — co(k — 1) < '°§“pjcg(k — 1). For the edgeg ¢ Ey,
ce(k) =co(k —1).

Proof. The second part of the lemma is obvious. We concentrate on edges,. By
definition of the indicator variablex"” (k — 1) = 0 andXx\"” (k) = 1. Using Eq. (1), we
have:

(0,J) @i
celt) = ek =1 = pj (X O 0 [T pyru*e k) fu
i'#i !
ce(k—1)
@.j")
Zj’ pj/,bLXf k=1 /u

<pj (M = 1)eok —1).

=pj(rt" -1

. . ((¥8)
The last inequality above follows from the fact that;, p;u*e Dh=D/u > Y ipi=1.
For all x between 0 and 1,2— 1 < x. Therefore u/* — 1 =2009W/u _ 1 < (logp)/u,
which completes the proof of the lemman

LetW =}, w; represent the total cost of the trees constructed by the online algorithm.
The following lemma relates the cost incurred by the algorithms and the final cost of the
edges.

Lemma5.6. QLE(W) > Y, (¢, — u).

Proof. Let A.(k) = c.(k) — c.(k — 1) represent the increase in cost on edgkiring the
kth event. Clearlyc. = c.(0) + )", A.(k) where the summation is over all events and
c.(0) = u for all edgese. Now, let VA, ;, be the virtual algorithm that updates its tree
during evenk. Lemma 5.5 implies that

D ce—w<logu/w)y N pi D D clk—1).

J k:ix=i, jx=j e€Ey

Using definition ofw; (i), we can rewrite this expression as follows:
D (e —w) < (ogu/u) Yy " pjw;(i) = (logu/u) Y E(w(@)).
e i i

Using linearity of expectation$, ; E(w(i)) = E(}_; w;), which completes the proof.0
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We are now ready to show that if the obtained profit is small, then the total cost of all
the edges is small as well.

Lemmab.7. (5% logu)ymE(R) =3, ce

Proof. Summing up Lemma 5.4 over all multicast groups, we have:

2ER Ml >EW
5 ()+;ﬂ/().

As we will show below,E(R) > 1. Therefore, the above inequality can be rewritten as
4E(R) > E(W). Using Lemma 5.6, and the fact that/7u = 1, we obtain

Zce < IO% . gE(R) +mu=m |Ogu<%E(R) + |0;/L>'

To complete the proof, it remains to show that the firstogu requests are always ac-

cepted, i.e.E(R) > u/logu. Suppose the first < u/logu requests have been accepted.
As a result, the load on each edge is no more thaand the cost of servicing the next

request can be at mast /" < mupl/'°9* = 2mu. By construction, the profit needed to

pay for this cost is at most

2mud = 2mui 1 = 1 .
mu 6Llogn  3Llogn

Thus, the unit of profit brought by this request is enough to pay for extending the trees
of all VA algorithms dealing with the corresponding multicast group. Thus, this request is
going to be accepted by the real algorithm as well. In other words, if there are less than
u/logu requests generated by the adversary then the real algorithm accepts them all and
has a competitive ratio of 1. EIs&, (and thereford=(R)) is greater tham/logu, which
completes the proof of the claim.O

e

Combining Lemmas 5.3 and 5.7 with Lemma 5.2, we obtain the following result:

Theorem 5.1. If R* is the number of multicast join requests accepted by the optimum
offline algorithm andr is the number of multicast join requests accepted by our online
algorithm, thenrR*/E(R) = O (logn logu(logn + logM)).

Appendix A explains how to implement each decision step of our online algorithm in
polynomial time.
6. Capacity constraints

In the previous section we showed that the algorithm accepts a significant fraction of

the requests accepted by the optimum offline algorithm. It remains to show that our online
algorithm does not overflow the available capacities. To that end, we=setm®log? M.
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Note that, by Theorem 5.1, this implies that we getaiogn (logn + loglog M) (logn +
log M))-competitive algorithm. For the special case where each node is allowed to serve
at most one multicast group, we clearly havecafiog® n)-competitive algorithm.

We now show that the above value pfis sufficient to ensure that the capacity con-
straints are never violated with high probability.

Lemma 6.1. For any edger, the cost, does not exceegu /2.

Proof. Suppose, (k) > uu2-1/" for somek. Sincep = 4m®log? M andu > log i, we
getc, > um3log. M. Since maximum profit of a single tree fragmeni jshis cost is above
maximum profit divided byl. Thus, this edge will never be used again by any VA. The
claim follows from the fact that during any one event(k) can increase only by a factor
of ut/#. o

Lemma 6.2. With probability at leastl — 1/m?, no edge violates its capacity constraint.

Proof. Claim 4.1 states that, is equal to the expected value of the quantity*, where
e is the final load on an edge. The event> 1 implies thatuu’e > u/2Euu’e). Us-
ing Markov inequality, the probability of this event happening is at most? < 1/m2.
Therefore, with probability at leastd1/m?, all edges satisfy the capacity constraints:

If the algorithm tries to exceed capacity of an edge, we terminate it. Lemma 6.2 guar-
antees that this does not affect the asymptotic competitive ratio given in Theorem 5.1.

6.1. Relaxing some of the assumptions

Some of the assumptions made in Section 2 can be relaxed using techniques from [4]. In
particular, we can handle the case where the bandwidth requirements of different multicast
groups, the capacities of different edges, and the profits of different multicast groups can
vary arbitrarily. The modifications to our algorithm, analysis, and competitive ratio proceed
similarly to those in [4].

7. Lower bounds

The competitive ratio of our algorithm holds againstami-obliviousadversary—the
adversary is allowed to look at the multicast tree generated by the online algorithm but only
after all the requests for that multicast group have been processsnifobliviousdver-
sary is at least as powerful as an oblivious one, so our competitive ratio holds against an
oblivious adversary as well. For the purpose of proving lower bounds it is desirable to use
the less powerful adversary; accordingly we first show a lower boursd (&dg M logn)
against an oblivious adversary. Then we show that a polynomial lower bound on the com-
petitive ratio of any online algorithm against an adaptive online adversary.
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7.1. Against an oblivious adversary

A lower bound of log: for the problem studied in this paper immediately follows from
[4]. The challenge in the online multicast problem is to decide which requests to service
(“winner picking”) and how to route a request (“online routing”). We now show how to
combine a lower bound for winner picking [3] with the lower bound for online routing [4]
to achieve a lower bound of loyyt logn for the online multicast problem. This is the first
lower bound stronger than lagor the online multicast problem if the bandwidth requested
by each multicast can be significantly smaller than bandwidth of a single link.

Theorem 7.1. No algorithm for selective online multicast can have a competitive ratio
better thans2 (log(M/u)logn) even against an oblivious adversary, and even when the
requests are non-interleaved.

Proof. The basic idea behind the winner-picking lower bound for online multicast is the
following. AssumeM multicasts are created, but both the online and the offline algorithm
are just allowed to pick one. A multicast consists of at least one and up totlofasses,
each class consisting ofrequests for some parameterHalf of the multicasts, chosen
randomly from all multicasts, consist of exactdyrequest. One fourth of the multicasts,
chosen randomly from the remaining half of the multicasts, consist of exactigqRiest,

etc. Thus, the expected profit of online is @hile the expected profit of offline islog M.

The lower bound for online routing works in phases: there are lbd phases, with the
“profit”, i.e., number of requests, doubling in each phase. It can be shown that there must
be a phase such that the expected profit that online has received so far is at togst&
the profit that is available in the current phase. In this phase, offline services all the request,
i.e., takes all the profit, and the sequence of requests terminates.

We show next how to combine these two bounds. To simplify the presentation we as-
sume that all demands and all edge capacities are 1, but it is permissible to satisfy a
fractional demand and obtain a fractional profit (the profit for a multicast group is the
product of the satisfied demand and the number of satisfied requests). We explain later
how this result carries over to our model.

We restrict ourselves to values #fl such that,/n > log M. Consider the grapts on
n + 2 vertices (see Fig. 3) which is defined as follows. The vertex detis v, ..., v,}.

There is an edge fromto x, and there is an edge fromto each ofv; ... v,. For conve-
nience, defindf = M/logn andN = n/log M. Notice that the restriction we have placed
on M implies thatN > /n.

The adversary operates in at most Mghases: we describe thth phase, K i <
log N. In phase the adversary divides the vertices. . . v, into classes of siz€ 21. Notice
that there must be at least l&fjclasses. The adversary then generafemulticasts, each
with r as the root. The requests for these multicasts will be non-interleaved. For each
multicast, the adversary generates a request at each of the nodes in the first class. Then the
adversary flips a coin. If the coin toss is a Head (i.e., with probability half) the adversary
moves on to the next multicast. Else, it generates a request at each node in the next class,
flips another coin, and repeats the same process again. If requests have been generated at
log M classes for the same multicast, the adversary moves on to the next multicast. At the
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|

Fig. 3. The lower bound graph for Theorems 7.1 and 7.4.

end of all M multicasts for this phase, the adversary moves on to the next phase. Notice
that setting the class size t62 is equivalent to doubling available profit by 2 for each
phase.

Let c(i) be the capacity on the edge x) used by the online algorithm during phase
Also, let p(i) be the profit obtained by online during thth phase. Lep*(i) andc* (i) be
the corresponding quantities for the solution generated by the oblivious adversary. Notice
that) ", c(i) can be at most 1. Defin(k) = Zik Zlgigk E(p(i)). The total expected profit
obtained by the algorithm in the firktphases is ‘25 (k).

The following two claims now hold:

Claim 7.2. E(p(i)) < 2'E(c(i)).

Proof. Suppose the online algorithm decides to satisfy a fractional demandfaf a
specific multicast in théth phase. The cost incurredis Suppose that this commitment
is made by the algorithm after thjgh request for this multicast group comes in. Then the
expected profit from this multicast group i52-x ", <y 2/~ < 2'x. Now we sum
this up over all the multicast groups in phage get the desired result.C

Claim 7.3. During any phase, the adversary can ensure thatp*(i)) > IogTMZ"c*(i).

Proof. During phase, the adversary can pick the multicast with the maximum number of
classes of requests. LEt= (i) denote the probability of this number being less thaxiow,
P<(i) = (1/24+1/4+---+2¥"H)M = (1-21)M fori < log M. Clearly,P=(5log M) <
1/3.5 This tells us that the expected number of classes is greateljﬁ’%‘é{n To complete

the proof of this claim we observe that each class inthehase has'2! requests. &

We now prove that there exists a phassuch that the total expected profit obtained by
the online algorithm during the firdtphases is no more thah*?/log N. Suppose this is

6 P<(% log M) is in fact much smaller, but we do not need a stronger bound.
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nottrue. Then$(i) > 2/logN foralli. In particular,ZlgiQOgN S@)>2.But); S@i)=

> E(p() Zigjglogzv 2% <2 ;E(p(i))/2". Using Claim 7.2, we hav®_; E(c(i)) > 1.

But this is a contradiction, as the online is not allowed to overflow capacities. This proves
the existence of a phagewith S(k) < 2/logN.

The oblivious adversary cannot see the coin tosses of the online algorithm but it can
compute in advance the quantitieg). Having found the valué guaranteed by the above
argument, the adversary stops after phasnd does not generate any more multicast
requests. The adversary also generates a “good” solution as follows: it does not satisfy any
demands in the first — 1 phases, and in the last phase, it uses up the entire(edge
Now from Claim 7.3,E(p*(k)) > 2*"?log M. The total expected profit obtained by the
online algorithm is 25 (k) < 2¢*1/log N. This gives a lower bound a2 (log M log N) on
the competitive ratio of any online algorithm. Sinse> /n and M = M/ logn, this is
also a2 (log M logn) lower bound.

In the above analysis, we assumed tlyat > log M. This is not a very restrictive as-
sumption, because for loy! > /n, our proof shows that the competitive ratio is already
as bad as2 ({/n).

Now we adapt this lower bound proof to our model. Assume that the capaaity it
M be the number of multicasts, and &1’ = M /u. The adversary proceeds as before,
except that each phase gets repeatdunes. Also, the online algorithm is restricted to
satisfy the entire demand of 1 unit or none at all. The same calculation as done above gives
a lower bound of2 (log M'logn) = 2(log(M/u)logn). O

7.2. Against an adaptive-online adversary

The next obvious question to ask is whether any algorithm can work well against a
more powerful adversary. We answer this question in the negative in this section. Recall
that an adaptive-online adversary is one which can adapt the input sequence depending on
the response of the online algorithm; however the adversary must also generate a solution
as it goes along.

Theorem 7.4. No randomized algorithm for selective online multicast can have better than
£2(min(n, %)) competitive ratio against an adaptive-online adversary. The lower bound
holds even when the requests are non-interleaved.

Proof. Consider the same graph as in the previous section (see Fig. 3). Each edge has a
capacityu, all requests have demand 1. The value\dfis fixed at 2u. The adversary
works in 2« phases.

During theith phase, the adversary chooses a numbeuniformly at random from
the set{1, ..., n}. The adversary then does the following for at mast— 1 sub-phases.
It generates a new set-up request att then generates, in sequence, requests at nodes
v1, ..., v, for the newly set up multicast group. As soon as the online algorithm accepts
any of these requests, the adversary aborts this phase completely and moves to the next
phase. If the online algorithm does not accept any of thesguests, the adversary moves
to the next sub-phase. The adversary does not accept any request during the-first
sub-phases. If alls; — 1 sub-phases end without the online algorithm having accepted
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even one request, then the adversary generates yet another set-up request.dt toete
generates requests in sequence at noges., v, and accepts them all without bothering
about the online algorithm (if the edde, x) is already full in the adversary’s network,
the adversary rejects these requests). During any phase, the online algorithm gets a profit
of n if it “guesses” correctly the value:;, and at most 1 otherwise. Sineg is chosen
uniformly at random from{1, ..., n}, the expected profit for the online algorithm during
any one phase is at most 2.

At the end of thesei?phases, the adversary is guaranteed to have accepreduests.
The expected number of requests accepted by the online algorithm can be no mote than 4
This proves the desired result. Notice that the requests generated by the adversary are non-
interleaved. If each node is allowed to serve no more than one multicast group, the above
argument can be modified to obtain(,/n) lower bound fo: = O(/n). O

Appendix A. Making our algorithm run in polynomial time

There are two issues we need to address to make our algorithm run in polynomial time.
First, in Step 3 of VA ; (Fig. 1), we need to compute the minimum profit needed out
of the new request to create an appropriate tree fragment. Second, we need to provide a
polynomial time approximation algorithm for finding the fragment in Step 3 of VA

The first problem can be solved by doing a binary searchzlLie¢ the available profit
on the node where the new request has been generated. We run a maximal dense tree
algorithm with allz units of profit available. If a non-empty tree is returned, we try with
half the profit, and so on. The key observation here is that we can afford to incur an additive
error of 1/(8nL) in finding the minimum profitz’. Therefore, the binary search needs to
be done only up to a depth log8L. The competitive ratio remains unaffected by this
modification.

The second problem is resolved using the prize-collecting Steiner tree algorithm of
Goemans and Williamson [13] which has some very nice properties [11,12].The prize col-
lecting Steiner tree problem is the following: given a cost metric on the edges, and a penalty
function defined on the vertices, find a tree such that the sum of the cost of the edges in
the tree and the penalty of the vertices not in the tree is minimum. We already have a cost
metric defined on edges. For a vertewith available profitr,, the penalty of missing
is set torr, /d. Now the approximation algorithm [13] for the prize-collecting Steiner tree
problem is invoked, and the tree fragment returned by this algorithm is uséds Het to
half its current value, we obtain the same bound on the competitive ratio (except the loss
of a factor of two).

A.1l. The prize-collecting Steiner tree problem

The problem is the following: given a gragh(V, E) with a cost functiorc defined on
the edges, a set of destinatiobs and a prize functiomr defined onD, find a treeT that
minimizes

Yo+ Y w).

eeT veD,v¢T
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We useCr to denote the first component of the cost akg for the second compo-
nent. This problem is NP-hard, being a strict generalization of the Steiner tree problem.
A 2-approximation for this problem was given by Goemans and Williamson [13]. Their
approximation generates treEswhich have the following nice property:

Cr 4+ 2Py < 2(Crx + Prx) (A1)

where T* is the optimal tree. This property was first used by Goemans and Kleinberg
[12] and a proof of this property is presented in [11]. This property guarantees, as we will
see, that with appropriately defined prizes, the prize-collecting Steiner tree approximation
given by [13] is also a good enough approximation to the maximal dense subtree problem.

A.2. Using the prize-collecting Steiner tree problem to make our algorithm polynomial
time

Suppose the prize-collecting algorithm is run wittw) = PROFIT; ; (1) /d, returning a
treeT with costw and profitr, where the quantitiesfOFIT; ; (1) are as defined in Step 3
of Fig. 1. Property A.1 gives the following two results.

ClamA.1L w < 2r/d.
Claim A.2. Let T’ be any tree, with cost’ and profitr’. Then(r’ —r)/d < w'.

In particular, Claim A.2 implies that if" is empty then for any tre&’, w’ > r’/d. Now
we make the following changes to the algorithms; YAlefined in Fig. 1. First, we define
d=d’. m, which is half of the previous value. Also, instead of finding the maximal
dense subtree, A repeatedly invokes the prize-collecting algorithm, contracts the tree
found, and runs the prize-collecting algorithm again, till the prize-collecting algorithm
returns an empty tree. Claims A.1 and A.2 are now sufficient to guarantee the competitive
ratio in Theorem 5.1.

A.3. The selective batch arrival problem

Awerbuch, Azar, and Plotkin [4] show how to solve the semi-selective batch arrival
problem: all join requests arrive in batches and they must be either all accepted or all
rejected. They use a cost metric very similar to the one used by us in this paper. Each time
a new request arrives, they find the minimum Steiner tree (within a factor of 2) that can
satisfy these requests. If this tree is cheap enough, they accept the multicast and update the
costs. We make the following modification: assign to each vertex that wants to be a part of
the multicast a prize equal to the profit from that vertex, and then run a single instance of
the prize-collecting algorithm. The tree so obtained is used to service the current multicast.
Claims A.1 and A.2 are sufficient to give the same (up to constant factors) bound as [4].



20 A. Goel et al. / Journal of Algorithms 55 (2005) 1-20

References

[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, O. Waarts, On-line load balancing with applications to machine
scheduling, in: 25th ACM Symposium on Theory of Computing, 1993, pp. 623-631.

[2] B. Awerbuch, Y. Azar, A. Blum, S. Vempala, New approximation guarantees for minimum weigbes,
SIAM J. Comput. 28 (1) (1998) 254—-262.

[3] B. Awerbuch, Y. Azar, A. Fiat, T. Leighton, Making commitments in the face of uncertainty: how to pick a
winner almost every time, in: 28th ACM Symposium on Theory of Computing, 1996, pp. 519-530.

[4] B. Awerbuch, Y. Azar, S. Plotkin, Throughput competitive online routing, in: 34th IEEE Symposium on
Foundations of Computer Science, 1993, pp. 32—40.

[5] B. Awerbuch, T. Singh, Online algorithms for selective multicast and maximal dense trees, in: 29th ACM
Symposium on Theory of Computing, 1997.

[6] Y. Azar, A. Broder, A. Karlin, On-line load balancing, Theoret. Comput. Sci. 130 (1) (1994) 73-84.

[7] Y. Bartal, A. Fiat, S. Leonardi, Lower bounds for on-line graph problems with application to on-line circuit
and optical routing, in: Proc. of the 28th Symposium on Theory of Computation, 1996, pp. 531-540.

[8] A. Blum, R. Ravi, S. Vempala, A constant factor approximation for the k-mst problem, J. Comput. System
Sci. 58 (1) (1999) 101-108.

[9] J. Garay, |. Gopal, S. Kutten, Y. Mansour, M. Yung, Efficient on-line call control algorithms, J. Algo-
rithms 23 (1) (1997) 180-194.

[10] J. Garay, |. Gopal, Call preemption in communication networks, in: Proc. INFOCOM '92, vol. 44, Florence,
Italy, 1992, pp. 1043-1050.

[11] N. Garg, A 3-approximation for the minimum tree spanninggrtices, in: 37th IEEE Symposium on Foun-
dations of Computer Science, 1996, pp. 302-309.

[12] M. Goemans, J. Kleinberg, An improved approximation ratio for the minimum latency problem, in: 7th
ACM-SIAM Symposium on Discrete Algorithms, 1996, pp. 152-158.

[13] M. Goemans, D. Williamson, A general approximation technique for constrained forest problems, SIAM J.
Comput. 24 (2) (1995) 296-317.

[14] A. Kamath, O. Palmon, S. Plotkin, Routing and admission control in general topology networks with Poisson
arrivals, J. Algorithms 27 (2) (1998) 236-258.

[15] D. Karger, S. Plotkin, Adding multiple cost constraints to combinatorial optimization problems, with appli-
cations to multicommodity flows, in: Proc. 27th Annual ACM Symposium on Theory of Computing, May
1995, pp. 18-25.

[16] F.P. Kelly, Blocking probabilities in large circuit-switched networks, Adv. in Appl. Prob. 18 (1986) 473-505.

[17] P. Klein, S. Plotkin, C. Stein, E. Tardos, Faster approximation algorithms for the unit capacity concurrent
flow problem with applications to routing and finding sparse cuts, SIAM J. Comput. 23 (3) (1994) 466-487.

[18] J. Kleinberg, E. Tardos, Disjoint paths in densely embedded graphs, in: 36th IEEE Symposium on Founda-
tions of Computer Science, 1995, pp. 52-61.

[19] T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tardos, S. Tragoudas, Fast approximation algorithms for
multicommodity flow problems, J. Comput. System Sci. 50 (2) (1995) 228-243.

[20] Y. Ma, S. Plotkin, Improved lower bounds for load balancing of tasks with unknown duration, Inform.
Process. Lett. 62 (6) (1997) 301-303.

[21] S. Plotkin, D. Shmoys, E. Tardos, Fast approximation algorithms for fractional packing and covering prob-
lems, Math. Oper. Res. 20 (2) (1995) 257-301.

[22] D. Sleator, R. Tarjan, Amortized efficiency of list update and paging rules, Comm. ACM 28 (2) (1985)
202-208.



