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Abstract

We present the first polylog-competitive online algorithm for the general multicast admissio
trol and routing problem in the throughput model. The ratio of the number of requests ac
by the optimum offline algorithm to the expected number of requests accepted by our alg
is O((logn + log logM)(logn + logM) logn), whereM is the number of multicast groups an
n is the number of nodes in the graph. We show that this is close to optimum by present
Ω(logn logM) lower bound on this ratio for any randomized online algorithm against an ob
ous adversary, whenM is much larger than the link capacities. Our lower bound applies eve
the restricted case where the link capacities are much larger than bandwidth requested by
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multicast. We also present a simple proof showing that it is impossible to be competitive aga
adaptive online adversary.

As in the previous online routing algorithms, our algorithm uses edge-costs when decid
which is the best path to use. In contrast to the previous competitive algorithms in the throu
model, our cost is not a direct function of the edge load. The new cost definition allows us to de
the effects of routing and admission decisions of different multicast groups.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

We study the problem of online multicast admission control and routing in a capac
network, where both requests to form new groups and requests to join existing mu
groups arrive in an online fashion. Each multicast group requires a certain amount
served bandwidth which has to be allocated along a tree spanning the nodes partic
in the multicast group. In the general case, a multicast request specifies the user (en
and the multicast group that this user wants to participate in. The router should eithe
the request or accept it and allocate bandwidth along a path connecting the new en
with the already existing tree for this group. The total allocated bandwidth on a link s
not exceed the capacity of the link.

In this paper we present the first polylog-competitive algorithm for the general mul
problem. Our algorithm is randomized, as it must be since we also show that it is impo
for any deterministic algorithm to achieve a polylogarithmic competitive ratio. The rat
the number of requests accepted by the optimum offline algorithm to the expected n
of requests accepted by our algorithm isO((logn + log logM)(logn + logM) logn),
whereM is the number of multicast groups andn is the number of nodes in the graph (i.
the network). If each vertex is allowed to serve at most one multicast group, the comp
ratio simplifies toO(log3 n).

Like earlier work on this problem, our algorithm also requires that the maximum b
width requirement of a multicast group be smaller than the minimum capacity of an
by a factor that is at least logarithmic in the network size.

Unicast routing

Routing and admission control problems in the online setting have been exten
studied. Two related performance measures have been considered. In thecongestionmodel,
the algorithm is required to accept all of the requests, and the goal is to minimiz
maximum edge congestion (utilization). Here the congestion is allowed to exceed
In the throughputmodel the algorithm is allowed to reject some of the requests a
not allowed to exceed 100% congestion on any link. The goal is to maximize the
bandwidth-duration product for all the accepted (routed) requests.

The first competitive algorithm in the congestion model for general topology netw

was presented in [1]. The competitive ratio of this algorithm isO(logn), wheren is the
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number of nodes in the network. The first competitive algorithm in the throughput m
was given in [10] for the case of a single-link network and extended in [9] for a line
work. A competitive algorithm for general topology networks in the throughput m
was presented in [4]. This algorithm achievesO(lognT ) competitive ratio, whereT is the
maximum duration (holding time) of a virtual circuit. The competitive ratio improve
O(logn) for the Permanent Virtual Circuits case, i.e., circuits with infinite holding tim
The algorithm assumes that each circuit specifies its holding time upon arrival. It
possible to achieve polylogarithmic competitive ratio if the holding times become kn
only upon termination of the circuit [6,20]. Further, the throughput-competitive algori
mentioned above assume that the bandwidth requested by any one connection is
than the capacity of any link by a factor which is at least logarithmic in the network s

Routing in a probabilistic model where there are assumptions on the distribution o
arrival times and source-destination pairs was considered in [16]. Their results were
on theedge-independenceassumption, which states that the random variables descr
instantaneous load on edges are independent. This assumption is not satisfied in
and hence their results are incomparable to the ones presented in this paper. The r
ized model without the independence assumption was considered in [14]. In the case
the durations are exponentially distributed and the arrivals are Poisson with unknown
their algorithm achieves a(1 + ε) competitive ratio, whereε depends on the ratio of th
minimum capacity to maximum bandwidth of a single virtual circuit. Both [4] and [14]
sume at least logarithmic ratio between maximum virtual circuit bandwidth and mini
link capacity. Similar results without this assumption were developed for special ne
topologies (see, e.g., [18]).

All of the above algorithms are related to the (offline) combinatorial approxima
algorithms for multicommodity flow [15,17,19,21]. As in these algorithms, the basic
is to assign each edge a cost that is exponential in the congestion on this edge, an
route along short paths with respect to this cost.

Multicast routing

The techniques in the above mentioned papers can be used to solve several re
multicast problems in the throughput model. In particular, [4] shows that if the particip
in a single multicast group arrive together (“batch arrivals”), and the accept/reject de
is for the whole multicast group, it is possible to achieve anO(logn) competitive ratio.
Roughly, the idea is to route the multicast request along a minimum-cost Steiner tre
is analogous to routing along a shortest path for unicast. The case where we keep
striction of batch arrivals, but allow rejection of some of the group members and acce
of others can be solved by replacing an approximation algorithm for Steiner tree w
approximation algorithm for the k-MST problem. The first polylogarithmic and cons
factor approximations for this problem were presented in [2,8], and a 3-approxim
algorithm was given in [11]. These k-MST algorithms are relatively slow and use a
nomial number of calls to an approximation algorithm for the prize-collecting trave
salesman problem [13]. The techniques developed in this paper allow the online mu
algorithm to make a single call to the prize-collecting traveling salesman algorithm

each batch arrival.
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Awerbuch and Singh [5] showed how to combine the “winner-picking” technique
with the techniques in [4] to achieve a polylog competitive ratio for the case where
bers of each multicast group arrivesequentially, i.e., the size and membership of the gro
is unknown upon its creation. Their algorithm can deal only with thenon-interleavedcase,
i.e., when all the members of a particular multicast group arrive before a new group
created.

The algorithm in [5] is not applicable in the general case, where the arrivals o
quests belonging to different multicast groups areinterleaved. The main problem is tha
this algorithm depends on the fact that, at every instance, the algorithm is dealing w
construction of only a single multicast tree and all accept/reject decisions with respec
existing multicast groups are already known. As in [4], the algorithm in [5] uses edge
that are exponential in the current link load. One of our contributions is a new definiti
edge-costs that are independent of the specific accept/reject decisions made with re
each multicast group. This decoupling between multicast groups is what allows us t
eralize the algorithm in [5] and to combine it with techniques in [4] to achieve a pol
competitive ratio for the general multicast problem.

Lower bounds

A natural question to ask is if it is possible to make the competitive ratio indepen
of M, the number of multicast groups. We address this issue by showing a lower
of Ω(logM logn) whenM is much larger than the link capacities. This is the first bo
for this problem that is stronger thanΩ(logn) and that works even if we require that t
bandwidth requested by each multicast is significantly smaller than bandwidth of a
link. A similar lower bound for the case where a multicast is allowed to request a con
fraction of a link bandwidth was shown in [3]. For the case where a multicast can re
bandwidth equal to bandwidth of a single link, a polynomial lower bound was shown i

It is interesting to note that the algorithm presented in this paper works even a
a semi-obliviousadversary, i.e., the adversary is allowed to look at the tree used b
online algorithm to service a multicast group only after all the requests for that g
have been processed.4 We show that against an adaptive online adversary, any random
online algorithm must have a competitive ratio ofΩ(min(n, M

u
)). As a corollary, any

deterministic algorithm must also have a competitive ratio ofΩ(min(n, M
u

)).
Previous papers on online multicast routing and admission control often ignore

issue of computational complexity. In particular, the algorithm in [5] assumes an NP
computation at each routing decision. We show that it is possible to use the specia
erties of the prize-collecting Steiner tree algorithm in [13] to implement each step o
algorithm in polynomial time; the same technique also allows us to give a polynomial
O(logn)-competitive algorithm for selective batch arrival multicast requests (see Ap
dix A.3 for a description of the problem).

In Section 2 we introduce the model and the terminology. Section 3 describes the
rithm, and Section 5 presents the proof of the competitive ratio. The algorithm as des
4 A semi-oblivious adversary is at least as powerful as an oblivious adversary.
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in Section 3 may violate capacity constraints on edges. In Section 6 we show that the
algorithm can be slightly modified to guarantee that capacity constraints are never vi
In Section 6.1 we remark that several of the assumptions made in the earlier sections
relaxed. Lower bounds are presented in Section 7. Appendix A explains how to impl
each decision step of our online algorithm in polynomial time and also addresses
lective batch arrival problem. A general introduction to competitive analysis can be
in the work of Sleator and Tarjan [22].

2. Model and definitions

We model the network as a capacitated graph withn nodes andm edges. Edgee has
capacityue. Requests are of two types—for creating a new group or joining an exi
group.

The ith request to create a multicast group specifies the sourcesi and the bandwidth
requirementri of this multicast group. A multicast algorithm does not need to explic
accept or reject this request since no bandwidth reservation is required for the new
at this stage. The online algorithm maintains a treeTi for groupi; initially the tree consists
of the single nodesi .

A “join” request specifies the groupi and the nodev that wants to join this group. Th
multicast routing and admission algorithm can either reject a join request or accept
reserve bandwidthri along some path fromv to Ti ; this path is also added toTi . The total
reserved bandwidth on any link must not exceed the capacity of that link.

For simplicity, we will assume that all edges have the same capacityu and all groups
have the same bandwidth requirementri = 1. We also assume that the number of multic
groupsM is known in advance. The issue of removing these assumptions is defer
Section 6.1.

We also assume thatu � logµ, whereµ is a parameter that is polynomial inn andM,
and will be defined later.5 We assume that multicast groups, once established, never

3. The algorithm

The online algorithm can be viewed as consisting ofL = logn + logM “virtual” algo-
rithms for each one of theM multicast groups. We call these algorithms virtual beca
the routing and accept/reject decisions of these algorithms are not implemented. I
they only modify internal data structures and, in particular, the cost associated with
edge. The description of the cost computation is deferred to Section 4. For now, it
ficient to assume that each edge has an associated cost that is deterministic, depe
on the input sequence of requests, and is monotonically non-decreasing in time. Fo
of edgesS, we use Cost(S) to denote the sum of the costs of the edges inS.

Thej th virtual algorithm associated with theith multicast is called VAi,j and is shown
in Fig. 1. The goal of VAi,j is to build a treeTi,j which spans the sourcesi and some subse
of the nodes that requested to join theith multicast group.
5 This requirement corresponds to a similar requirement in [4].
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A Initialization (si is the root of theith multicast):

1 Ti,j ← {si }.
2 for all u

PROFITi,j (u) ← 0;
USED-PROFITi,j (u) ← 0 (USED-PROFITi,j is used only for the analysis, specifically in Lemma 5.

B Invoked due to receiving profitπ at nodev from VAi,j−1 (VA i,1 is invoked with unit profit due to a join
request at nodev):

1 PROFITi,j (v) ← PROFITi,j (v) + π .
2 ContractTi,j to a single vertexs.
3 Find smallestπ ′ � PROFITi,j (v) such that∃treeS with the following properties:

(i) v ∈ S, s ∈ S;
(ii) Cost(S) � (

∑
u∈S,u�=v PROFITi,j (u) + π ′)/d .

4 if no suchπ ′ found,then uncontractTi,j andexit
else

4.1 Let S be the tree which satisfies the conditions in Step 3.
4.2 for all w ∈ S, w �= v

USED-PROFITi,j (w) ← PROFITi,j (w);
PROFITi,j (w) ← 0.

4.3 USED-PROFITi,j (v) ← π ′;
π ← PROFITi,j (v) − π ′;
PROFITi,j (v) ← 0.

4.4 UncontractTi,j ;
Ti,j ← Ti,j ∪ S.

4.5 Update the cost of each edgee ∈ S.
4.6 if j < L

Invoke VAi,j+1 by passing a profit ofπ at nodev to VAi,j+1.

Fig. 1. Thej th virtual phase of theith real algorithm. Recall thatd is the density value defined at the beginni
of Section 3.

Each request to join theith multicast group is considered as a potential unit of profit,
the virtual algorithms use (“consume”) this profit to “pay” for their trees. VAi,j can expand
its treeTi,j by adding a subtree only if it can pay for this subtree. We will refer to th
subtrees as “fragments”. As payment, VAi,j can use only the profit that is on the nodes
this subtree and that was not used by VAi,k for k < j (this is denoted by PROFITi,j (v) in
Fig. 1). More precisely, VAi,j monitors the profit passed from VAi,j−1. Each time it getsπ
units of profit at some nodev, it addsπ to PROFITi,j (v). It then tries to find a fragment tha
includesv such that the ratio of the unused profit associated with nodes of this frag
plus π ′ is at leastd = dT · 1

6L logn
times the cost of adding this fragment toTi,j , where

dT = 1/(mu) andπ ′ � PROFITi,j (v). The goal of the algorithm is to minimizeπ ′.
This subtree is added to theTi,j , d times the cost of this tree is “consumed”, and the

of the profit (in fact, at most one unit) on the newly added nodes is bequeathed toVi,j+1.
Observe that, since costs are increasing, the total profit used to constructTi,j is bounded

by its final cost divided byd . Since VAi,j builds its tree in an online fashion, there mig
be a larger (in terms of the spanned nodes that requested participation inith multicast)

tree that can be constructed offline using the same profit. In Lemma 5.1 we show that this
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On receiving theith group creation request:

1 Chooseηi ∈ [1. . .L] such that Prob(ηi = j) = β · 2j .
2 Ti ← {si }.
3 for 1� j � L

Perform the initialization step of VAi,j (Step A, Fig. 1).

On receiving a request from nodev to join groupi:

1 Invoke VAi,1 by generating a profit of 1 unit at nodev (Step B, Fig. 1).
2 Ti ← Ti,ηi

.

Fig. 2. Thereal algorithm for multicast groupi.

“loss” is not very significant. Also, note that the only way virtual algorithms dealing w
different multicast groups interact with each other is through edge-costs. Another imp
property is that for allj , the vertices which contribute towards the profit collected by VAi,j

are a subset of the vertices that contribute towards the profit collected by VAi,j−1.
The “real” algorithm is shown in Fig. 2. For each multicast group, it randomly cho

one of the virtual algorithms when the group is created. It then implements the constr
of the tree built by this virtual algorithm. We set the probability of choosing VAi,j to
pj = β · 2j , whereβ is chosen such that

∑L
j=1 pj = 1. When a join request is receive

the real algorithm invokes VAi,1 with one unit of profit. If VAi,1 addsv to its tree, any profi
from v that was not consumed in augmentingTi,1 gets passed to VAi,2, and so on. In this
fashion, even though the real algorithm only invokes VAi,1 explicitly, the algorithms VAi,j
may still get invoked for larger values ofj . If the chosen virtual algorithm modifies its tre
due to this join request, then the real algorithm makes exactly the same modificationTi .

In our analysis, if theith real algorithm has chosen VAi,j for a specific multicast, the
we do not get credit for the profit that was “used up” when VAi,j was constructing its tree
Instead, we will only take credit for the profit that was inherited by VAi,j+1.

4. Edge-costs

Our algorithm can be viewed as a generalization of the algorithm of Awerbuch
Singh [5]. The main conceptual difference lies in definition of edge-costs. In this se
we define the cost metric and the way it is updated as a result of each new reque
cost metric is updated by the virtual algorithms and hence is deterministic.

The online algorithm constructs the cost metric as it goes along. When profit prop
from VAi,j−1 to VAi,j , we consider this an “event”. An event might cause VAi,j to con-
sume some profit and update its treeTi,j . Let ce(k) denote the cost of edgee after thekth
event. When thekth event occurs, the virtual algorithms use costsce(k − 1) for making
their decision. These decisions are then used to computece(k) in a deterministic fashion.

Let �η = (η1, . . . , ηM) represent the indices of the virtual algorithms chosen for theM
multicasts. Also, letp�η represent the probability of making this sequence of choices. D

the load on an edge as 1/u times the number of trees it was used in by the real algorithm,
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and letλ(�η)
e (k) represent the load on edgee after the firstk events have occurred, where�η

represents the choices made by the real algorithms. Since the random choices of
algorithms for different multicasts are independent,p�η = ∏M

i=1 pηi
.

Let ce(0) = u for each edgee. Suppose costsc(0) to c(k − 1) were already computed
Thence(k) is computed as follows.

ce(k) = u
∑

�η
p�ηµλ

(�η)
e (k).

The value ofµ is set to 4m6 log2M. The reason for this value will become clear
Section 6. Observe that, given�η, the expressionλ(�η)

e (k) is deterministic, and hence th
costsce(k) are deterministic as well.

DefineX
(i,j)
e (k) as indicator variables, withXi,j

e (k) being 1 if edgee is used by VAi,j
during the firstk events and 0 otherwise. Notice thatX

(i,j)
e (k) are deterministic quantities

Now, λ(�η)
e (k) = (1/u) · ∑M

i=1 X
(i,ηi )
e (k). We can use this to rewrite the costce(k):

ce(k) = u
∑

�η

M∏
i=1

(
pηi

· µX
(i,ηi )
e (k)/u

)
.

Let �β denote the vector〈η2, η2, . . . , ηM〉. The above sum can now be written as

ce(k) = u

(
L∑

η1=1

pη1µ
X

(i,η1)
e (k)/u

)∑
�β

M−1∏
i=1

(
pβi

· µX
(i+1,βi )
e (k)/u

)
.

Repeating the above step inductively on�β, we get

ce(k) = u

M∏
i=1

L∑
j=1

pjµ
X

(i,j)
e (k)/u. (1)

The above representation gives an easy way to computece(k) efficiently. Since only one
of the sums changes during any event, the online algorithm can recompute that su
obtain the new costs.

The following claim follows from the way we construct the cost metric.

Claim 4.1. The costce(k) is the expectation of the quantityuµλe(k) whereλe(k) is a ran-
dom variable representing the load on edgee after k events.

5. Proof of competitiveness

In order to prove the competitive ratio, we will divide the multicast groups into “p
itable” and “unprofitable”, based on the cost of theoptimumtrees for these groups wit
respect to the cost metric constructed by our algorithm. Here, by optimum trees we

the trees constructed by the optimum offline algorithm.
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Consider theith multicast group, and let the number of requests satisfied by the op
offline algorithm ber∗(i). Similarly, letr(i) be the profit obtained by the online algorith
Let w∗(i) be the cost (in the final cost metric) of the treeT ∗

i used by the optimum algorithm
to service multicast groupi. We call a multicast groupprofitable if the optimal’s tree for
this multicast group has a high profit to cost ratio in thefinal cost metric:

Definition 1. The ith multicast group isprofitableif r∗(i)
w∗(i) � dT , wheredT = 1

mu
.

We use the quantitiesR∗ andR to represent
∑M

i=1 r∗(i) and
∑M

i=1 r(i), respectively.
Let P andU represent the set of profitable and unprofitable multicast groups, respec
Also, we defineR∗

P = ∑
i∈P r∗(i) andR∗

U = ∑
i∈U r∗(i) = R∗ − R∗

P .
We first show (Lemma 5.2) that the online algorithm obtains almost as much profit

profitable groups as the optimal solution does. Then we show that the total profit ob
by the online algorithm can only be polylogarithmically smaller than optimal’s profit f
unprofitable groups. To prove the latter claim, we take an indirect route. We use ca
constraints to argue that the quantitymR∗

U is bounded by the sum of the final costs
all edges (Lemma 5.3). Finally, we bound the final costs in terms of the expected
obtained by the online algorithm (Lemma 5.7).

Consider the quantities PROFITi,j (v) and USED-PROFITi,j (v) at the end, i.e., after a
requests have been received. Let Pi,j (v) = PROFITi,j (v) + USED-PROFITi,j (v). Infor-
mally, the quantity Pi,j (v) denotes the profit consumed by VAi,j at nodev. For any set
X of vertices, Pi,j (X) = ∑

v∈X Pi,j (v); the definitions of PROFITi,j and USED-PROFITi,j

are similarly extended.
The following lemma was first proved by [5] with worse constant factors. Our pro

simpler, and allows us to show (Appendix A) that the algorithm can be implement
polynomial time.

Lemma 5.1. Pi,j (T
∗
i ) � 3w∗(i)d logn.

Proof. We first bound the quantity PROFITi,j (T
∗
i ). This contribution comes from nodes

T ∗
i which do not belong toTi,j . The profit consumed on these nodes by VAi,j must be at

mostw∗(i)d , else these nodes would have formed a fragment on their own and been
to Ti,j .

Now we bound USED-PROFITi,j (T
∗
i ). This contribution comes from nodes that belo

to Ti,j . Recall that VAi,j acquiresTi,j in tree fragments. Consider an Eulerian tourD of
T ∗. Let asegmentof tourD be a maximal contiguous piece ofD such that all edges of th
segment belong to the same fragment ofTi,j . Initially, all segments are marked active.
two consecutive active segments on this tour belong to the same fragment, they are
together along with the portion of the tour between them to form a single segment. Let (s)

denote the event at which the edges of segments were added toTi,j .
Furthermore, we define apredandsuccrelation on active segments such that pred(s,D)

is the predecessor ofs in tourD and succ(s,D) is the successor ofs in D.
Let D0 = D. For h � 1, let Hh = {s is an active segment ofDh−1, t (s) < t(pred(s,
Dh−1)), t (s) < t(succ(s,Dh−1))}. LetLh denote the remaining segments ofDh−1, and let
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Dh denote the tourDh−1 with each segment inLh marked inactive. The segments inHh

remain active inDh. As mentioned above, consecutive active segments are merged
belong to the same fragment.

Note that for allh:

|Lh| > |Hh|.
This implies that there at most logn non empty setsLh. Let s ∈ Lh for someh. Also, let
s′ be the successor or predecessor segment ofs in Dh−1 with t (s′) < t(s) and letp consist
of the part ofD betweens ands′.

Assume USED-PROFITi,j (s) > d(w∗(s) + w∗(p)). Let v ∈ s be the node with the
last request in multicasti among all nodes ins. When the request atv arrived, the sum
PROFITi,j (s) = ∑

u∈s PROFITi,j (u) is more thand(w∗(s)+w∗(p)), because PROFITi,j (s)

is the source of USED-PROFITi,j (s). Thus, at that time we could have used at m
d(w∗(s) + w∗(p)) to adds + p as a fragment. Since the algorithm always tries to
ate a fragment using the minimum amount of profit, we have:

USED-PROFITi,j (s) � d
(
w∗(s) + w∗(p)

)
.

Considering thatD visits every node twice it follows that∑
s∈Lh

USED-PROFITi,j (s) � 2w∗(i)d.

Summing over all values ofh it follows that the profit consumed by VAi,j from all
nodes which belong toT ∗ ∩ Ti,j is at most 2w∗(i)d logn. This completes the proof of th
lemma. �

We now show that for profitable multicasts, the profit obtained by our online algor
is high.

Lemma 5.2. R � R∗
P /2.

Proof. Since there areL levels, Lemma 5.1 guarantees that the total wasted profi
multicast groupi is at most 3Lw∗(i)d logn. Plugging ind = dT · 1

6L logn
and using the

fact thati profitable implies thatr∗(i) � dT w∗(i), we obtain a bound ofr∗(i)/2 on the
wasted profit. Therefore,r(i) � r∗(i)/2 for all profitable groupsi. Summing over all the
profitable groups, we get the desired result.�

Having bounded the profit from the profitable groups, we now concentrate on th
profitable groups. Recall thatce is the cost of edgee at the end, i.e., after all the even
have taken place, and that the costs are non-decreasing in time.

Lemma 5.3. mR∗
U �

∑
e ce.

Proof. Let k∗
e be the number of multicast groups which use edgee in the optimal offline
solution. Consider the treeT ∗
i used by the optimal solution to route theith multicast group.
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If this group is unprofitable then by definitionr∗(i) � 1
mu

∑
e∈T ∗

i
ce. We sum this over al

the unprofitable multicast groups, and then reverse the order of summation.

R∗
U � 1

mu

∑
i∈U

∑
e∈T ∗

i

ce � 1

mu

∑
e

k∗
e ce � 1

m

∑
e

ce.

The last inequality follows from the fact that the optimal offline is not allowed to exc
capacities, implyingk∗

e � u. �
Let wj(i) represent the cost incurred by VAi,j in constructing the treeTi,j . In other

words, each tree fragment ofTi,j contributes towj(i) its cost associated with the eve
of adding this fragment. We usew(i) to denotewη(i)(i), whereη represents the choice o
the real algorithm. Letrj (i) represent the profit consumed in constructing thisTi,j . The
following lemma implies that if the expected profit is small, then the expected cost o
constructed trees is small as well.

Lemma 5.4. E(r(i)) � (d/2)E(w(i)) − 1
M , wherew(i) is the cost paid by the real algo

rithm for multicast groupi.

Proof. If the real algorithm chooses to follow VAi,j , i.e.,η(i) = j , then it will get at leas
the profit used by VAi,j+1. Therefore:

E
(
r(i)

)
�

L−1∑
j=1

pj rj+1(i).

By definition,pj = pj+1/2, and hence

E
(
r(i)

)
�

L∑
j=2

pj rj (i)/2.

By construction:

E
(
w(i)

) =
L∑

j=1

pjwj (i) � (1/d)

L∑
j=1

pj rj (i).

Thus, we have

d · E
(
w(i)

)
� 2E

(
r(i)

) + p1r1(i).

Now notice thatr1(i) can be at mostn, since each request brings in one unit of pro
and there can be at mostn requests for a single multicast group. Also,p1

∑L
j=12j−1 = 1,

which implies thatp1/2 < 2−L. SubstitutingL = logn + logM, we obtainE(r(i)) �
(d/2)E(w(i)) − 1

M .
We remark that in this proof the fact that the VAs are deterministic is quite cru

otherwise, the profitsrj (i) would be conditioned on the random choices made by the

algorithms and the above argument would break down completely.�
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Now we prove that if the expected cost of the constructed trees is small, then th
cost of all the edges is small as well. But first, we need to prove the following tech
lemma. Roughly speaking, this lemma implies that if an event caused an edge to b
by one of the trees, the increase in the cost of this edge is proportional to its current

Consider an eventk that caused VAi,j to augment its tree, and letEk represent the se
of edges of the newly added subtree.

Lemma 5.5. For all e ∈ Ek , ce(k) − ce(k − 1) � logµ
u

pj ce(k − 1). For the edgese /∈ Ek ,
ce(k) = ce(k − 1).

Proof. The second part of the lemma is obvious. We concentrate on edgese ∈ Ek . By
definition of the indicator variables,X(i,j)

e (k − 1) = 0 andX
(i,j)
e (k) = 1. Using Eq. (1), we

have:

ce(k) − ce(k − 1) = pj

(
µX

(i,j)
e (k)/u − 1

)
u

∏
i′ �=i

∑
j ′

pj ′µX
(i′,j ′)
e (k)/u

= pj

(
µ1/u − 1

) ce(k − 1)∑
j ′ pj ′µX

(i,j ′)
e (k−1)/u

� pj

(
µ1/u − 1

)
ce(k − 1).

The last inequality above follows from the fact that
∑

j ′ pj ′µX
(i,j ′)
e (k−1)/u �

∑
j ′ pj ′ = 1.

For all x between 0 and 1, 2x − 1 � x. Therefore,µ1/u − 1 = 2(logµ)/u − 1 � (logµ)/u,
which completes the proof of the lemma.�

Let W = ∑
i wi represent the total cost of the trees constructed by the online algor

The following lemma relates the cost incurred by the algorithms and the final cost
edges.

Lemma 5.6. logµ
u

E(W) �
∑

e(ce − u).

Proof. Let ∆e(k) = ce(k) − ce(k − 1) represent the increase in cost on edgee during the
kth event. Clearly,ce = ce(0) + ∑

k ∆e(k) where the summation is over all events a
ce(0) = u for all edgese. Now, let VAik,jk

be the virtual algorithm that updates its tr
during eventk. Lemma 5.5 implies that∑

e

(ce − u) � (logµ/u)
∑

i

∑
j

pj

∑
k: ik=i, jk=j

∑
e∈Ek

ce(k − 1).

Using definition ofwj(i), we can rewrite this expression as follows:∑
e

(ce − u) � (logµ/u)
∑

i

∑
j

pjwj (i) = (logµ/u)
∑

i

E
(
w(i)

)
.

∑ ∑

Using linearity of expectations, i E(w(i)) = E( i wi), which completes the proof.�
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We are now ready to show that if the obtained profit is small, then the total cost
the edges is small as well.

Lemma 5.7. (5dT

d
logµ)mE(R) �

∑
e ce

Proof. Summing up Lemma 5.4 over all multicast groups, we have:

2

d

(
E(R) +

M∑
i=1

1

M

)
� E(W).

As we will show below,E(R) � 1. Therefore, the above inequality can be rewritten
4
d

E(R) � E(W). Using Lemma 5.6, and the fact thatmdT u = 1, we obtain

∑
e

ce � logµ

u
· 4

d
E(R) + mu = m logµ

(
4dT

d
E(R) + u

logµ

)
.

To complete the proof, it remains to show that the firstu/ logµ requests are always a
cepted, i.e.,E(R) � u/ logµ. Suppose the firstk < u/ logµ requests have been accept
As a result, the load on each edge is no more thank, and the cost of servicing the ne
request can be at mostmuµk/u < muµ1/logµ = 2mu. By construction, the profit needed
pay for this cost is at most

2mud = 2mu
1

mu

1

6L logn
= 1

3L logn
.

Thus, the unit of profit brought by this request is enough to pay for extending the
of all VA algorithms dealing with the corresponding multicast group. Thus, this requ
going to be accepted by the real algorithm as well. In other words, if there are les
u/ logµ requests generated by the adversary then the real algorithm accepts them
has a competitive ratio of 1. Else,R (and thereforeE(R)) is greater thanu/ logµ, which
completes the proof of the claim.�

Combining Lemmas 5.3 and 5.7 with Lemma 5.2, we obtain the following result:

Theorem 5.1. If R∗ is the number of multicast join requests accepted by the optim
offline algorithm andR is the number of multicast join requests accepted by our on
algorithm, thenR∗/E(R) = O(logn logµ(logn + logM)).

Appendix A explains how to implement each decision step of our online algorith
polynomial time.

6. Capacity constraints

In the previous section we showed that the algorithm accepts a significant fract
the requests accepted by the optimum offline algorithm. It remains to show that our

algorithm does not overflow the available capacities. To that end, we setµ = 4m6 log2M.
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Note that, by Theorem 5.1, this implies that we get anO(logn(logn + log logM)(logn +
logM))-competitive algorithm. For the special case where each node is allowed to
at most one multicast group, we clearly have anO(log3 n)-competitive algorithm.

We now show that the above value ofµ is sufficient to ensure that the capacity co
straints are never violated with high probability.

Lemma 6.1. For any edgee, the costce does not exceeduµ1/2.

Proof. Supposece(k) > uµ1/2−1/u for somek. Sinceµ = 4m6 log2M andu � logµ, we
getce > um3 logM. Since maximum profit of a single tree fragment isn, this cost is above
maximum profit divided byd . Thus, this edge will never be used again by any VA. T
claim follows from the fact that during any one event,ce(k) can increase only by a facto
of µ1/u. �
Lemma 6.2. With probability at least1− 1/m2, no edge violates its capacity constrain

Proof. Claim 4.1 states thatce is equal to the expected value of the quantityuµλe , where
λe is the final load on an edge. The eventλe � 1 implies thatuµλe � µ1/2E(uµλe). Us-
ing Markov inequality, the probability of this event happening is at mostµ−1/2 < 1/m3.
Therefore, with probability at least 1−1/m2, all edges satisfy the capacity constraints.�

If the algorithm tries to exceed capacity of an edge, we terminate it. Lemma 6.2
antees that this does not affect the asymptotic competitive ratio given in Theorem 5.

6.1. Relaxing some of the assumptions

Some of the assumptions made in Section 2 can be relaxed using techniques from
particular, we can handle the case where the bandwidth requirements of different mu
groups, the capacities of different edges, and the profits of different multicast group
vary arbitrarily. The modifications to our algorithm, analysis, and competitive ratio pro
similarly to those in [4].

7. Lower bounds

The competitive ratio of our algorithm holds against asemi-obliviousadversary—the
adversary is allowed to look at the multicast tree generated by the online algorithm bu
after all the requests for that multicast group have been processed. Asemi-obliviousadver-
sary is at least as powerful as an oblivious one, so our competitive ratio holds aga
oblivious adversary as well. For the purpose of proving lower bounds it is desirable
the less powerful adversary; accordingly we first show a lower bound ofΩ(logM logn)

against an oblivious adversary. Then we show that a polynomial lower bound on the

petitive ratio of any online algorithm against an adaptive online adversary.
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7.1. Against an oblivious adversary

A lower bound of logn for the problem studied in this paper immediately follows fro
[4]. The challenge in the online multicast problem is to decide which requests to s
(“winner picking”) and how to route a request (“online routing”). We now show how
combine a lower bound for winner picking [3] with the lower bound for online routing
to achieve a lower bound of logM logn for the online multicast problem. This is the fir
lower bound stronger than logn for the online multicast problem if the bandwidth reques
by each multicast can be significantly smaller than bandwidth of a single link.

Theorem 7.1. No algorithm for selective online multicast can have a competitive r
better thanΩ(log(M/u) logn) even against an oblivious adversary, and even when
requests are non-interleaved.

Proof. The basic idea behind the winner-picking lower bound for online multicast is
following. AssumeM multicasts are created, but both the online and the offline algor
are just allowed to pick one. A multicast consists of at least one and up to logM classes
each class consisting ofc requests for some parameterc. Half of the multicasts, chose
randomly from all multicasts, consist of exactlyc request. One fourth of the multicas
chosen randomly from the remaining half of the multicasts, consist of exactly 2c request,
etc. Thus, the expected profit of online is 2c, while the expected profit of offline isc logM.

The lower bound for online routing works in phases: there are logn+1 phases, with the
“profit”, i.e., number of requests, doubling in each phase. It can be shown that there
be a phase such that the expected profit that online has received so far is at most 2/ logn of
the profit that is available in the current phase. In this phase, offline services all the re
i.e., takes all the profit, and the sequence of requests terminates.

We show next how to combine these two bounds. To simplify the presentation w
sume that all demands and all edge capacities are 1, but it is permissible to sa
fractional demand and obtain a fractional profit (the profit for a multicast group i
product of the satisfied demand and the number of satisfied requests). We expla
how this result carries over to our model.

We restrict ourselves to values ofM such that
√

n > logM. Consider the graphG on
n + 2 vertices (see Fig. 3) which is defined as follows. The vertex set is{r, x, v1, . . . , vn}.
There is an edge fromr to x, and there is an edge fromx to each ofv1 . . . vn. For conve-
nience, defineM = M/ logn andN = n/ logM . Notice that the restriction we have plac
onM implies thatN >

√
n.

The adversary operates in at most logN phases: we describe theith phase, 1� i �
logN . In phasei the adversary divides the verticesv1 . . . vn into classes of size 2i−1. Notice
that there must be at least logM classes. The adversary then generatesM multicasts, each
with r as the root. The requests for these multicasts will be non-interleaved. For
multicast, the adversary generates a request at each of the nodes in the first class. T
adversary flips a coin. If the coin toss is a Head (i.e., with probability half) the adve
moves on to the next multicast. Else, it generates a request at each node in the ne
flips another coin, and repeats the same process again. If requests have been gen

logM classes for the same multicast, the adversary moves on to the next multicast. At the
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Fig. 3. The lower bound graph for Theorems 7.1 and 7.4.

end of allM multicasts for this phase, the adversary moves on to the next phase. N
that setting the class size to 2i−1 is equivalent to doubling available profit by 2 for ea
phase.

Let c(i) be the capacity on the edge(r, x) used by the online algorithm during phasei.
Also, letp(i) be the profit obtained by online during theith phase. Letp∗(i) andc∗(i) be
the corresponding quantities for the solution generated by the oblivious adversary.
that

∑
i c(i) can be at most 1. DefineS(k) = 1

2k

∑
1�i�k E(p(i)). The total expected profi

obtained by the algorithm in the firstk phases is 2kS(k).
The following two claims now hold:

Claim 7.2. E(p(i)) < 2iE(c(i)).

Proof. Suppose the online algorithm decides to satisfy a fractional demand ofx for a
specific multicast in theith phase. The cost incurred isx. Suppose that this commitme
is made by the algorithm after thej th request for this multicast group comes in. Then
expected profit from this multicast group is 2i−1 · x ∑

j�j ′�M 2j ′−j < 2ix. Now we sum
this up over all the multicast groups in phasei to get the desired result.�
Claim 7.3. During any phasei, the adversary can ensure thatE(p∗(i)) � logM

4 2ic∗(i).

Proof. During phasei, the adversary can pick the multicast with the maximum numbe
classes of requests. LetP <(i) denote the probability of this number being less thani. Now,
P <(i) = (1/2+1/4+· · ·+21−i )M = (1−21−i )M , for i < logM . Clearly,P <(2

3 logM) <

1/3.6 This tells us that the expected number of classes is greater thanlogM
2 . To complete

the proof of this claim we observe that each class in theith phase has 2i−1 requests. �
We now prove that there exists a phasek such that the total expected profit obtained

the online algorithm during the firstk phases is no more than 2k+1/ logN . Suppose this is
6 P<( 2
3 logM) is in fact much smaller, but we do not need a stronger bound.
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not true. Then,S(i) > 2/ logN for all i. In particular,
∑

1�i�logN S(i) > 2. But
∑

i S(i) =∑
i E(p(i))

∑
i�j�logN

1
2j � 2

∑
i E(p(i))/2i . Using Claim 7.2, we have

∑
i E(c(i)) > 1.

But this is a contradiction, as the online is not allowed to overflow capacities. This p
the existence of a phasek with S(k) � 2/ logN .

The oblivious adversary cannot see the coin tosses of the online algorithm but
compute in advance the quantitiesS(i). Having found the valuek guaranteed by the abov
argument, the adversary stops after phasek and does not generate any more multic
requests. The adversary also generates a “good” solution as follows: it does not sati
demands in the firstk − 1 phases, and in the last phase, it uses up the entire edge(r, x).
Now from Claim 7.3,E(p∗(k)) � 2k−2 logM . The total expected profit obtained by t
online algorithm is 2kS(k) � 2k+1/ logN . This gives a lower bound ofΩ(logM logN) on
the competitive ratio of any online algorithm. SinceN � √

n andM = M/ logn, this is
also aΩ(logM logn) lower bound.

In the above analysis, we assumed that
√

n > logM. This is not a very restrictive as
sumption, because for logM >

√
n, our proof shows that the competitive ratio is alrea

as bad asΩ(
√

n).
Now we adapt this lower bound proof to our model. Assume that the capacity isu. Let

M be the number of multicasts, and letM′ = M/u. The adversary proceeds as befo
except that each phase gets repeatedu times. Also, the online algorithm is restricted
satisfy the entire demand of 1 unit or none at all. The same calculation as done abov
a lower bound ofΩ(logM′ logn) = Ω(log(M/u) logn). �
7.2. Against an adaptive-online adversary

The next obvious question to ask is whether any algorithm can work well aga
more powerful adversary. We answer this question in the negative in this section.
that an adaptive-online adversary is one which can adapt the input sequence depen
the response of the online algorithm; however the adversary must also generate a s
as it goes along.

Theorem 7.4. No randomized algorithm for selective online multicast can have better
Ω(min(n, M

u
)) competitive ratio against an adaptive-online adversary. The lower bo

holds even when the requests are non-interleaved.

Proof. Consider the same graph as in the previous section (see Fig. 3). Each edg
capacityu, all requests have demand 1. The value ofM is fixed at 2nu. The adversary
works in 2u phases.

During theith phase, the adversary chooses a numbermi uniformly at random from
the set{1, . . . , n}. The adversary then does the following for at mostmi − 1 sub-phases
It generates a new set-up request atr . It then generates, in sequence, requests at n
v1, . . . , vn for the newly set up multicast group. As soon as the online algorithm ac
any of these requests, the adversary aborts this phase completely and moves to
phase. If the online algorithm does not accept any of thesen requests, the adversary mov
to the next sub-phase. The adversary does not accept any request during the firstmi − 1

sub-phases. If allmi − 1 sub-phases end without the online algorithm having accepted
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even one request, then the adversary generates yet another set-up request at noder . It then
generates requests in sequence at nodesv1, . . . , vn and accepts them all without botherin
about the online algorithm (if the edge〈r, x〉 is already full in the adversary’s networ
the adversary rejects these requests). During any phase, the online algorithm gets
of n if it “guesses” correctly the valuemi , and at most 1 otherwise. Sincemi is chosen
uniformly at random from{1, . . . , n}, the expected profit for the online algorithm duri
any one phase is at most 2.

At the end of these 2u phases, the adversary is guaranteed to have acceptedun requests
The expected number of requests accepted by the online algorithm can be no more tu.
This proves the desired result. Notice that the requests generated by the adversary
interleaved. If each node is allowed to serve no more than one multicast group, the
argument can be modified to obtain aΩ(

√
n) lower bound foru = O(

√
n). �

Appendix A. Making our algorithm run in polynomial time

There are two issues we need to address to make our algorithm run in polynomia
First, in Step 3 of VAi,j (Fig. 1), we need to compute the minimum profit needed
of the new request to create an appropriate tree fragment. Second, we need to pr
polynomial time approximation algorithm for finding the fragment in Step 3 of VAi,j .

The first problem can be solved by doing a binary search. Letπ be the available profi
on the node where the new request has been generated. We run a maximal de
algorithm with allπ units of profit available. If a non-empty tree is returned, we try w
half the profit, and so on. The key observation here is that we can afford to incur an ad
error of 1/(8nL) in finding the minimum profitπ ′. Therefore, the binary search needs
be done only up to a depth log 8πnL. The competitive ratio remains unaffected by t
modification.

The second problem is resolved using the prize-collecting Steiner tree algorith
Goemans and Williamson [13] which has some very nice properties [11,12].The priz
lecting Steiner tree problem is the following: given a cost metric on the edges, and a p
function defined on the vertices, find a tree such that the sum of the cost of the ed
the tree and the penalty of the vertices not in the tree is minimum. We already have
metric defined on edges. For a vertexv with available profitπv , the penalty of missingv
is set toπv/d . Now the approximation algorithm [13] for the prize-collecting Steiner
problem is invoked, and the tree fragment returned by this algorithm is used. Ifd is set to
half its current value, we obtain the same bound on the competitive ratio (except th
of a factor of two).

A.1. The prize-collecting Steiner tree problem

The problem is the following: given a graphG(V,E) with a cost functionc defined on
the edges, a set of destinationsD, and a prize functionπ defined onD, find a treeT that
minimizes∑

c(e) +
∑

π(v).
e∈T v∈D,v/∈T
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We useCT to denote the first component of the cost andPT for the second compo
nent. This problem is NP-hard, being a strict generalization of the Steiner tree pro
A 2-approximation for this problem was given by Goemans and Williamson [13]. T
approximation generates treesT which have the following nice property:

CT + 2PT � 2(CT ∗ + PT ∗) (A.1)

whereT ∗ is the optimal tree. This property was first used by Goemans and Klein
[12] and a proof of this property is presented in [11]. This property guarantees, as w
see, that with appropriately defined prizes, the prize-collecting Steiner tree approxim
given by [13] is also a good enough approximation to the maximal dense subtree pr

A.2. Using the prize-collecting Steiner tree problem to make our algorithm polynom
time

Suppose the prize-collecting algorithm is run withπ(u) = PROFITi,j (u)/d , returning a
treeT with costw and profitr , where the quantities PROFITi,j (u) are as defined in Step
of Fig. 1. Property A.1 gives the following two results.

Claim A.1. w � 2r/d .

Claim A.2. LetT ′ be any tree, with costw′ and profitr ′. Then(r ′ − r)/d � w′.

In particular, Claim A.2 implies that ifT is empty then for any treeT ′, w′ � r ′/d . Now
we make the following changes to the algorithms VAi,j defined in Fig. 1. First, we defin
d = dT · 1

32L logn
, which is half of the previous value. Also, instead of finding the maxi

dense subtree, VAi,j repeatedly invokes the prize-collecting algorithm, contracts the
found, and runs the prize-collecting algorithm again, till the prize-collecting algor
returns an empty tree. Claims A.1 and A.2 are now sufficient to guarantee the comp
ratio in Theorem 5.1.

A.3. The selective batch arrival problem

Awerbuch, Azar, and Plotkin [4] show how to solve the semi-selective batch a
problem: all join requests arrive in batches and they must be either all accepted
rejected. They use a cost metric very similar to the one used by us in this paper. Eac
a new request arrives, they find the minimum Steiner tree (within a factor of 2) tha
satisfy these requests. If this tree is cheap enough, they accept the multicast and up
costs. We make the following modification: assign to each vertex that wants to be a
the multicast a prize equal to the profit from that vertex, and then run a single insta
the prize-collecting algorithm. The tree so obtained is used to service the current mu

Claims A.1 and A.2 are sufficient to give the same (up to constant factors) bound as [4].
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