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Abstract

The entropy numbers of certain finite-dimensional operators acting

between vector-valued sequence spaces are estimated, thus providing a

generalisation of the famous result of Schütt. In addition, two-sided esti-

mates of the entropy numbers of some diagonal operators are obtained.

1 Introduction

The notion of the entropy of a set and the companion idea of the entropy
numbers of a bounded linear map between (quasi-) Banach spaces are now of
proven importance in analysis, especially in spectral theory and approximation
theory: one has only to think of the ground-breaking work of Kolmogorov and
Tikhomirov [11], the subsequent study related to Hilbert’s thirteenth problem
by Vitushkin and Henkin [20], and Birman and Solomyak’s celebrated paper
[2] on embeddings of Sobolev spaces to have an idea of the possibilities. The
theorem of Schütt mentioned in the title relates to the natural embedding id of
lmp in lmq , where n ∈ N and 1 ≤ p < q ≤ ∞ : it asserts that given any k ∈ N,

there are positive constants c1, c2, independent of m and n, such that the nth

entropy number en(T ) of T satisfies c1A(m,n) ≤ en(id) ≤ c2A(m,n), where
A(m,n) is an explicit function of m and n (see Theorem 2.1 below). This
was proved in [18] by means of volume arguments. Now it is known that the
result holds whenever 0 < p < q ≤ ∞ : the upper estimate was obtained in [8],
Proposition 3.2.2, again by volume arguments, while for the lower estimate we
refer to [5], Theorem 2 and [12]. Apart from its intrinsic interest, a good deal of
the importance of Schütt’s theorem stems from its connection with embeddings
of function spaces. In the work of Birman and Solomyak alluded to above,
estimates of the entropy numbers of embeddings between Sobolev spaces were
obtained by means of piecewise polynomial approximations. To deal with more
general spaces, such as those of Besov (perhaps with generalised smoothness)
or Lizorkin-Triebel type, it is more convenient to use decompositions of wavelet
(see, for example, [4], [15], [19]) or atomic (see [10]) form to reduce questions of
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embeddings of function spaces to considerations of mappings between sequence
spaces. It is in connection with these mappings that the Schütt result plays a
part.

In this paper we obtain two-sided estimates for the entropy numbers of
certain mappings between vector-valued sequence spaces. More precisely, we
consider a mapping

T : lmp ({Xi}
m
i=1) → lmq ({Yi}

m
i=1) ,

where 0 < p < q ≤ ∞, the Xk and Yk are quasi-Banach spaces and T is defined
by Tx = (T1x1, ..., Tmxm) , where x = (x1, ..., xm) , each Ti being a bounded
linear map from Xi to Yi. Our main focus is on the case when X = X1 =
... = Xm, Y = Y1 = ... = Ym, Ti = λiT0 (i = 1, ...,m), where T0 : X → Y
is a bounded linear operator and the λi are real numbers. In particular, when
λi = 1 for all i ∈ {1, ...,m} it is shown that knowledge of the entropy numbers
e1(T0), ..., en(T0) of the operator T0 leads to two-sided estimates of the entropy
numbers en(T ) (n ∈ N) of T. In [5] we gave a generalisation of Schütt’s theorem
to the case of finite-dimensional spaces with symmetric bases: in the present
paper we use some ideas from [5] but in a very simple form. Unlike the volume
arguments mentioned above, and the interpolation techniques appearing in [9]
and [12] (in [12] the same ideas as in [5] were used-see Lemma 2.7 below-but with
functions with values in the set {−1, 0, 1} instead of the characteristic functions
of [5]), our proofs are essentially combinatoric in nature: by specialisation they
give an independent proof of Schütt’s theorem.

For previous work on mappings between vector-valued sequence spaces we
refer to [13], [3] and the references contained in these papers. Interest in the
entropy numbers of embeddings of function spaces owes much to [2], in which
Sobolev spaces were considered; since the appearance of [2] the literature on the
subject has grown enormously. Many papers deal with estimates of the entropy
numbers of embeddings of Besov spaces with generalised smoothness; we refer
again to [3], [7], [19] and the references given in those works.

2 Preliminaries

2.1 Background

Throughout the paper log is to be understood as log2, [x] will denote the integer
part of the real number x, N0 = N ∪ {0} and a ≍ b means that c1a ≤ b ≤
c2a for some positive constants independent of variables occurring in a and b.
Given quasi-Banach spaces X and Y, we shall write B(X,Y ) for the space of
all bounded linear maps from X to Y , abbreviating this to B(X) when X = Y ;
the closed unit ball in X will be denoted by BX and the quasinorm on X by
‖·‖X . We recall that a quasi-Banach space Z is said to be an r−Banach space
if the quasi-norm ‖·‖Z has the property that for all z1, z2 ∈ Z,

‖z1 + z2‖
r
Z ≤ ‖z1‖

r
Z + ‖z2‖

r
Z ;
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the quasi-norm is then said to be an r−norm. It is well known (see, for example,
[1] and [17]) that if Z is any quasi-Banach space then there exist r ∈ (0, ] and
an r−norm on Z equivalent to the original quasi-norm. Given a finite set A we
shall write ♯A for the cardinality of the set A.

Let n ∈ N and suppose that M is a bounded subset of an r−normed quasi-
Banach space Y. The nth (dyadic) outer entropy number en(M) of M is defined
to be the infimum of those ε > 0 such that M can be covered by 2n−1 balls in
Y of radius ε. The nth outer entropy number of a map T ∈ B(X,Y ) (where X
and Y are quasi-Banach spaces) is

en(T ) := en (T (BX)) ;

the numbers en(T ) are monotonic decreasing as n increases, with e1(T ) = ‖T ‖ ;
and T is compact if and only if limn→∞ en(T ) = 0. Moreover, for all s, n ∈ N,
and whenever T1 + T2 and R ◦ S are properly defined bounded linear operators
acting between quasi-Banach spaces,

es+n−1 (R ◦ S) ≤ es (R) en (S)

and, if the target space of T1 and T2 is an r−Banach space,

ers+n−1 (T1 + T2) ≤ ers (T1) + ern (T2) .

Following Pietsch ([16], 12.1.6), for each n ∈ N we denote by fn(T ) the (dyadic)
inner entropy number of T ∈ B(X,Y ), defined to be the supremum of all those
ε > 0 such that there are x1, ..., x2n−1+1 ∈ BX with ‖Txi − Txj‖Y ≥ 2ε when-
ever i, j are distinct points of

{
1, 2, ..., 2n−1 + 1

}
. If Y is an r−Banach space,

then the outer and inner entropy numbers are related by

fn(T ) ≤ 21/r−1en(T ) ≤ 21/rfn(T ) (n ∈ N).

These estimates were proved by Pietsch in the Banach space case (r = 1); the
proof in the general case merely involves a simple modification of his arguments.

We shall need vector-valued versions of the familiar sequence space lp and its
m−dimensional subspace lmp . Let p ∈ (0,∞],m ∈ N and suppose thatX1, ..., Xm

are quasi-Banach spaces. Then

lmp ({Xi}
m
i=1) := {x = (x1, ..., xm) : xi ∈ Xi for each i} ;

(for simplicity we shall denote this space by lmp (Xi)) endowed with the quasi-
norm

∥∥x | lmp ({Xi}
m
i=1)

∥∥ :=

(
m∑

i=1

‖xi‖
p
Xi

)1/p

if 0 < p < ∞,

‖x | ln∞ ({Xi}
m
i=1)‖ := sup

1≤i≤m
‖xi‖Xi

,

it is a quasi-Banach space. When X1 = ... = Xm = X, we shall simply denote
this space by lmp (X) .

The theorem of Schütt in which we are interested appears in [18] and asserts
the following:
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Theorem 2.1 Let m,n ∈ N and 1 ≤ p < q ≤ ∞; denote by id the natural
embedding of lmp in lmq . Then there are positive constants c1, c2, independent of
m and n, such that

c1A(m,n) ≤ en(id) ≤ c2A(m,n),

where

A(m,n) =





1, if n ≤ logm,(
log(m/n+1)

n

)1/p−1/q

, if logm ≤ n ≤ m,

2−n/mm1/q−1/p, if n ≥ m.

Various authors have contributed to the generalisation of this result to the
case 0 < p < q ≤ ∞. For the estimate from above, we refer to [8], Proposition
3.2.2; an elementary proof of the lower estimate in the case logm ≤ n ≤ m is
given in Theorem 2 of [5], where a generalisation of Schütt’s result for the case of
quasinormed spaces with a symmetric basis was presented (such a generalisation
is still unknown for the case n ≥ m); a proof of the lower estimate contained
in [12]. More detailed estimates of the constants (upper and lower) and a new
proof of the whole result for 0 < p < q ≤ ∞ are given in [9].

2.2 Preparatory results

Here we present the main ingredients to be used in the proof of the main result.

Lemma 2.2 Let m ∈ N. Then there is a set Γ(m) ⊂ (0, 1]n with the following
properties:
(i) ♯Γ(m) ≤ 25m/2.
(ii) For any sequence {εi}

m
i=1 in Γ(m), the numbers nεi are positive integers for

all i ∈ {1, 2, ..., n},
m∑
i=1

εi ≤ 3 and for all t > 0,

♯ {i ∈ {1, 2, ...,m} : εi ≥ t} ≤ 2/t.

(iii) For any sequence {αi}
m
i=1 with each αi ∈ [0, 1] and

m∑
i=1

αi = 1 there is a

sequence {εi}
m
i=1 ∈ Γ(m) such that αi ≤ εi for all i ∈ {1, 2, ...,m}.

Proof. Put
E =

{
2k/m : k ∈ N0, 2

k < m
}
∪ {1}

and define Γ(m) to be the set of all sequences {εi}
m
i=1 ∈ Em such that

m∑
i=1

εi ≤ 3

and ♯ {i ∈ {1, 2, ...,m} : εi ≥ t} ≤ 2/t for all t > 0. This ensures that (ii) holds.
To estimate the number of elements in Γ(m) we observe that if {εi}

m
i=1 ∈ Γ(m),

k ∈ N0, A(k) :=
{
i ∈ {1, 2, ...,m} : εi = 2k/m

}
and B(k) :=

{
i ∈ {1, 2, ...,m} : εi ≥ 2k/m

}
,

then
♯A(k) ≤ ♯B(k) ≤ min

(
m,m/2k−1

)
.
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Fix the sets A(0), A(1), A(2) and B(3); note that ♯B(3) ≤ m/4. Then for the
choice of the sets A(k) (k ≥ 3) there are at most

∞∏

k=3

2m/2k−1

= 2m/2

possibilities. Since A(k) ⊂ B(k), ♯B(k) ≤ m/2k−1, and it follows that once the

sets A(0), . . . A(k − 1) have been chosen, there are at most 2m/2k possibilities
for the choice of A(k, k ≥ 3.

We now claim that given any non-empty finite set S with m elements, there
are 22m distinct representations of S as the union of 4 disjoint subsets. For if
S = {s1, ..., sm} and S = ∪4

j=1Sj , where the Sj are disjoint, then each si has to
belong to some Sj , and as there are 4 choices for each si, the total number of
choices is 4m = 22m. Thus ♯Γ(n) ≤ 22m · 2m/2 = 25m/2, so that (i) holds. The
final property (iii) is established in a routine fashion and is left to the reader.

Lemma 2.3 Let m ∈ N\{1}, suppose that 0 < p < q ≤ ∞ and put α =
1/p− 1/q. For each i ∈ {1, 2, ...,m} let Xi, Yi be quasi-Banach spaces and Ti ∈
B (Xi, Yi) . Suppose that for every i, s ∈ {1, 2, ...,m},

es (Ti) ≤ (m/s)α.

Let T : lmp (Xi) → lmq (Yi) be the linear operator defined by

T (x) = (T1(x1) , ..., Tm(Xm)), x = (x1, ..., xm) ∈ X1 ×X2 × ...Xm.

Then
e5m(T ) ≤ 31/q.

Proof. Let W = lmp (Xi) . Given any point x ∈ BW , there is a sequence {αi}
m
i=1

with each αi ∈ [0, 1] and
m∑
i=1

αi = 1 such that x ∈
m∏
i=1

α
1/p
i BXi

. By Lemma 2.2,

it follows that

BW ⊂
⋃
(

m∏

i=1

ε
1/p
i BXi

)
,

where the union is taken over all sequences {εi}
m
i=1 ∈ Γ(m), where Γ(m) is the

set defined in Lemma 2.2. Viewing

K :=

m∏

i=1

ε
1/p
k Ti (BXi

) .

as a subset of lmq ({Yi}
m
i=1) , we estimate e2n+1(K). Putmi = mεi (i = 1, 2, ...,m).

Then

emi

(
ε
1/p
i Ti (BXi

)
)
≤ ε

1/p
i

(
n

nεi

)α

= ε
1/q
i .
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Since
m∑
i=1

(mi − 1) ≤ 3m−m = 2m, application of the following simple lemma,

the proof of which is omitted, shows that

e2m+1 (K) ≤

(
m∑

i=1

εi

)1/q

≤ 31/q.

As ♯Γ(m) ≤ 25m/2, we see that eN (T ) ≤ 31/q, where N =
[
5m
2

]
+ 2n + 1 : the

result follows.

Lemma 2.4 Let m,n ∈ N and let n1, ..., nm be non-negative integers such that

n− 1 =
m∑
i=1

(ni − 1); let q ∈ (0,∞]. For each i ∈ {1, 2, ...,m} suppose that Zi, Yi

are quasi-Banach spaces and Ui ∈ B(Zi, Yi). Let U : lm∞ (Zi) → lmq (Yi) be the
linear operator defined by

U(z) = (U1(z1), ..., Um(zm)) , z = (z1, ..., zm) ∈ Z1 × ...× Zm.

Then

en(U) ≤

(
m∑

i=1

eqni
(Ui)

)1/q

.

In the next section we shall need the following estimates, proved in [6] (or
[5]) and [7].

Lemma 2.5 (i) If k,m ∈ N, k ≤ m, then

(m
k

)k
≤

(
m

k

)
≤
(em

k

)k
.

(ii) There are positive constants c1, c2 such that for any m,n ∈ N with 2 ≤ n ≤
m ≤ 2n the following estimates hold:

2c1n ≤

(
m

k

)
≤ 2c2n,

where k is the smallest positive integer such that

k ≥ A :=
n

2 log (2m/n)
.

Proof. As (i) is well known we simply deal with (ii) and suppose that m ≥ 2n.
By (i) we have

log
(
m
k

)

n
≍

k log(m/k)

n
≍

A log (m/A)

n

=
log(2m/n)− log log(2m/n)

2 log(2m/n)
.

The rest follows easily.
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Lemma 2.6 Let m,n ∈ N, b ∈ (0,∞) and 0 < p < q ≤ ∞; put α = 1/p− 1/q.
For each i ∈ {1, 2, ...,m} let Xi, Yi be quasi-Banach spaces and Ti ∈ B(Xi, Yi).
Let T : lp ({Xi}

m
i=1) → lq ({Yi}

m
i=1) be the linear operator defined by

T (x) = (T1(x1), T2(x2), ..., Tm(xm)) , x = (x1, x2, ..., xm) ∈ X1 ×X2 × ...×Xm.

Suppose that fn(Ti) ≥ b for each i ∈ {1, 2, ...,m}. Then

fk(T ) ≥ 2−1/qbm−α, where k = [((n− 1)m/6].

Lemma 2.7 Let E be a set, let v ∈ N be such that 64e3v ≤ ♯E and put
L(E, v) = {E1 ⊂ E : ♯E1 = v} . Then there is a set L(E, v, 1/2) ⊂ L(E, v) with
the following properties:
(i) for any distinct E1, E2 ∈ L(E, v, 1/2),

♯ (E1 ∩ E2) ≤ v/2;

(ii)

(♯L(E, v, 1/2))
4
≥ ♯L(E, v) =

(
♯E

v

)
.

3 The main results

Theorem 3.1 Let 0 < p < q ≤ ∞, set α = 1/p − 1/q and let m,n ∈ N,
2 ≤ n ≤ m ≤ 2n. Let X,Y be r−normed quasi-Banach spaces and suppose that
T0 ∈ B(X,Y ). Let T (m) : lmp (X) → lmq (Y ) be the linear operator defined by
T (m)(x) = (T0(x1), ..., T0(xm)) , x = (x1, ..., xm) ∈ lmp (X). Then

c1A(n,m, T0) ≤ en(T (m)) ≤ c2A(n,m, T0). (3.1)

Here c1, c2 are positive constants which depend on the parameters p, q and r
only, and

A(n,m, T0) = max

(
‖T0‖

(
log(m/n) + 1

n

)α

, max
k∈{1,2,...,n}

((k/n)αek(T0))

)
.

Proof. First note that given any a > 1, there are positive constants C1(a), C2(a)
such that, for any m,n, m̃, ñ ∈ N with m ≥ n, m̃ ≥ ñ,ma ≥ m̃ ≥ m/a, na ≥
ñ ≥ n/a,

C1(a)A(ñ, m̃, T0) ≥ A(n,m, T0) ≥ C2A(ñ, m̃, T0). (3.2)

Now we show that the required statement is a consequence of the following two
assertions.
1. There are positive constants C3, C4 and an integer a > 1 such that, for any
m,n ∈ N with m ≥ n, the following estimates hold:

ena (T (m)) ≤ C3A(n,m, T0), fn(a)(T (m)) ≥ C4A(n,m, T0).

Here n(a) is the smallest positive integer greater than or equal to n/a.
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2. Given any integer b ≥ 1 (we need this assertion for b = 1 only), there is a
constant C5(b) = C5 such that for every n ∈ N,

fnb(T (n)) ≥ C5A(n, n, T0).

Indeed let us prove that the first estimate in (3.1) is a consequence of the first
estimate in assertion 1 and the estimates in (3.2). Let m̃, ñ ∈ N with m̃ ≥ ñ;
without loss of generality we can suppose that ñ ≥ 2a, a ≥ 2. Choose n ∈ N in
such a way that na ≤ ñ ≤ (n+ 1)a. Then

eñ(T (m̃) ≤ ena(T (m̃) ≤ C3A(n, m̃, T0) ≤ C1C3A(na, m̃, T0)

≤ C2
1C3A(ñ, m̃, T0).

To prove the second estimate in (3.1), once more let m̃, ñ ∈ N with m̃ ≥ ñ.
Choose n ∈ N in such a way that n(a) ≥ ñ ≥ n(a)−1; without loss of generality
we can suppose that ñ ≥ 2a, a ≥ 2. There are two possibilities: n ≤ m̃ or n ≥ m̃.
In the first case we use the estimates

fñ(T (m̃)) ≥ fn(a)(T (m̃)) ≥ C4A(n, m̃, T0) ≥ C2C4A(ñ, m̃, T0).

In the second case we use the estimate fn(T (m̃)) ≥ fm̃(T (m̃)), and then asser-
tion 2 with b = 1 and the estimate (3.1).

Now we prove assertions 1 and 2. We begin with the proof of the upper
estimate in statement 1 and let k be the positive integer defined in Lemma 2.5
(ii). For any set F ⊂ {1, 2, ...,m} such that ♯F = k let T (m)F : lmp (X) → lmq (Y )
be the linear operator defined by

T (m)F (x) = (χF (1)T0(x1), ..., χF (m)T0(xm)) , x = (x1, ..., xm) ∈ lmp (X).

Here χF is the characteristic function of F. Let s ∈ N, ε > 0 and η = es(T (m));
letBp be the unit ball in lmp (X) and denote by Γ(F ) an (η+ε)−net (of cardinality
2s−1) of T (m)F (Bp) ⊂ lmq (Y ) such that yi = 0 for any i ∈ {1, 2, ...,m}\F and
y = (y1, ..., ym) ∈ Γ(F ). Let Γ = ∪Γ(F ), where the union is taken over all sets
F ⊂ {1, 2, ...,m} with ♯F = k. Then

♯Γ(F ) ≤ 2s−1

(
m

k

)
.

Much as in [6] (see the proof of Lemma 11) it can be seen that Γ is an ε0−net
of T (m)(Bp) in lmq (Y ), where

εr0 = (η + ε)r + (‖T0‖ /(k + 1)α)
r
.

Now let x = (x1, ..., xm) ∈ Bp and let F be any subset of {1, 2, ...,m} such
that ♯F = k and ‖xi‖X ≥ ‖xj‖X whenever i ∈ F and j ∈ {1, 2, ...,m}\F. Then

‖T0xj‖Y ≤ ‖T0‖ /(k + 1)1/p if j ∈ {1, 2, ...,m}\F. By Hölder’s inequality,

‖(T (m)− T (m)F ) (x)‖lmq (Y ) ≤ ‖T0‖ /(k + 1)α.

8



In view of Lemma 2.5 these arguments imply that there is a positive integer C6

such that, for any s ∈ N,

eC6n+s(T (m)) ≤ 21/q max (es(T (k), ‖T0‖ /(k + 1)α) .

Together with Lemma 2.3 this gives the required upper estimate in statement
1. The lower estimate is a consequence of Lemma 2.6.

To prove statement 2, note that because of Lemma 2.6 and the estimates of
A(n,m, T0) given in (3.1), it is enough to show that given any b ∈ N, there is a
positive constant C7(b) = C7 such that for every n ∈ N,

fnb(T (n)) ≥ C7 ‖T0‖ /n
α.

Let n, u ∈ N with n > 64e3, put E = {1, 2, ..., n}, suppose that v is the largest
integer such that 64e3v ≤ n, and let x ∈ X satisfy ‖x‖X ≤ 1 and ‖T0x‖Y ≥
‖T0‖ /2. Define I(u) to be the subset of the unit ball of lmp (X) consisting of all

points with ith coordinate (1 ≤ i ≤ m)

u∑

j=1

2−krv−1/pχE(j)(i)x for some E(j) ∈ L(E, v, 1/2).

Then ♯I(u) ≥ 2C8n and ‖T (m)x− T (m)y‖lmq (Y ) ≥ 2−ruv−αC9 for all distinct

x, y ∈ I(u). The result follows.
To conclude we formulate one more result, the proof of which is similar to

that of the last theorem.

Theorem 3.2 Let 0 < p < q ≤ ∞, set α = 1/p − 1/q and let m,n ∈ N,
m ≤ 2n. For each i ∈ {1, 2, ...,m} let Xi, Yi be r−normed quasi-Banach spaces
and suppose that Ti ∈ B(Xi, Yi). Let T : lmp (Xi) → lmq (Ys) be the linear operator
defined by

T (x) = (T1(x1), ..., Tm(xm)) x = (x1, ..., xm) ∈ lmp (Xi).

(i) Let m ≥ 2n and suppose that ‖T1‖ ≥ ‖T2‖ ≥ ... ≥ ‖Tm‖ , ‖T1‖ ≤ 2 ‖Tn‖ ;
put

A(n,m) = max
s∈{n,n+1,...,m},s≤2n

‖Ts‖

(
log(2s/n)

n

)α

,

B(n,m) = max
k∈{1,2,...,n}, i∈{1,2,...,m}

((k/n)αek (Ti)) .

Then
c1A(n,m) ≤ en(T ) ≤ c2 max(A(n,m), B(n,m)),

where c1, c2 are positive constants which depend on the parameters p and q only.
(ii) Suppose that m ≤ n and T1 = T2 = ... = Tm = T0. For any a > 0 let

D(a, n,m) = max
k∈{1,2,...,n}, k≥a

((k/n)αek (T0)) .
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Then
c5D(c3n/m, n,m) ≤ en(T ) ≤ c6D(c4n/m, n,m),

where c3, c4 are absolute constants and the constants c5, c6 depend on the pa-
rameters p and q only.
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