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Abstract

We compare the Kolmogorov and entropy numbers of compaatatgms mapping from a
Hilbert space into a Banach space. We then apply these déinelings to embeddings between
reproducing kernel Hilbert spaces ahd,(x). Here we provide a sufficient condition for a gap of
the ordem!/? between the associated interpolation and Kolmogarevidths. Finally, we show
that in the multi-dimensional Sobolev case, this gap atealcurs between the Kolmogorov and
approximation widths.

1 Introduction

Let (X,.A, 1) be a measure space aftlibe a a reproducing kernel Hilbert space (RKHS) a¥er
Moreover, assume that the kerriebf H is measurable and that for all € [2, o], the maply , :
H — L,(n) defined byI}, ., f := [f]~, where[f]. denotes thgi-equivalence class of in L,(x), is
compact. Now consider the linear interpolatiofwidth of H in La(u), that is

1/p
L) = it ([ s | - Aps@)l dute))

DCX,|D|§7L feBy

with the usual modification fop = co. Here,Ap : H — H is the bounded linear operator defined by
Apf(x) =" af(z)f(x;), whereD = (zy,...,2,) anda*(z) € R"™ is the unique solution of

O —Zal i

*
a’(z) = arg min

For later use we note that we always have

f A <TI,(HL 1
DC)1<HID|< fseulelf pfllL, (H, Ly(w)) (1)

and equality holds in the extreme case- co. Moreover, consider the classical Kolmogorowidth

d,(H,L,(n)) = int f
(H, Ly(n)) Fnél%pw)fsé%p}[glennﬂf 9l

where the left most infimum runs over all subspaégsof L,(x) with dim F;, < n. Note that the
lower bound off,, in (@) measures, how wefl can be approximated by a very particular linear and
dimensional scheme, wheregsmeasures how welf can be approximated by the bestimensional
scheme. Consequently, the approximatiewidth

an(Hv L;D(lu)) = AHI—H>£ () sup ||f Af”Lp s

p\M) fEBE
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where the infimum is taken over all bounded linear operators H — L, (x) with rank A < n,
satisfiesd,,(H, Ly(1)) < an(H, Ly(p)) < I,(H, Ly(1)).

In the Hilbert space case, that js= 2, these quantities are well understood. Indeed, the general
theory ofs-numbers[[12] shows, see e.g. Secfibn 2, that

dy (H; LQ(,U)) = an (H7 LZ(,U)) =V )\n-l—l ) (2)

where(\,,) denotes the (extended and) ordered sequence of eigenadltresintegral operatdry, :
Lo(p) — Lo(p) associated with the kerngl Moreover, if H is a Sobolev space, thdn(H, L, (1))
shares the asymptotic behavior[of (2) and this can actuelpchieved by taking quasi-uniform points
D c X, seel[16]. Unfortunately, the situation changes in therotiiteme, namely = co. Indeed,

if 1 is a finite measure, thehl(2) immediately yields

\/>\n+1 < \/M(X) dy (H7 Loo(:u)) 5
while [14, Theorem 3] shows that

U ST N < V) L(H, L) ©)
i=n+1

and in the Sobolev case, this lower bound is matched by arr bp@d of the same asymptotic behav-
ior, see([15]. In the case of an algebraic decay of the eide@sait is not hard to see that there is a gap
of the ordem /2 between théower boundsor d,,(H, Lo (1)) andI,,(H, Lo (1)), and this naturally
raises the question, whether this gap actually occurs legttve quantities of interest, that is, between
dn(H, Lo () @andl,, (H, Lo (1)) So far, a positive answer only exists for the 1-dimensi@wdolev
case, see [13]. The goal of this note is to provide a positigsvar in a more general framework. To be
more precise, we show that for algebraically decaying eiglees we havé,,(H, Lo (1)) = v/ Ant1

if and only if the entropy numbers of the embeddifg, : H — L. (u) behave likey/ A, 1. Using

(3) this characterization gives a sufficient condition fog existence of the gap. In addition, we present
a result that highlights the role of the eigenfunctions/pf For the multi-dimensional Sobolev case
we then show with the help of well-known asymptotics of th&@py and approximation numbers
that the gap—'/2 actually occurs betweeth, (H, Lo (1)) anda,, (H, L (1)), that is, between ar-
bitrary n-dimensional approximation and lineardimensional approximation. In addition, the cases
p € (2,00) are treated simultaneously.

The rest of this note is organized as follows: In Sedfibn 2 &gzt the definition of entropy num-
bers and also introduce some examples-atimber scales. Sectigh 3 summarizes the relationship
between entropy numbers and the differemumber scales. In Secti@h 4 two general results com-
paring entropy and Kolmogorov numbers of compact operatmsgpresented and based upon these
results the RKHS situation is investigated in more detailSéctior b we then apply these findings to
the multi-dimensional Sobolev case.

2 Preiminaries. Entropy Numbers, s-Numbers, and Eigenvalues

We write a,, < b,, for two positive sequences;,) and(b,,) if there exists a constaite (0, co) such
thata, < cb, for all n > 1. Similarly, we writea,, < b, if both a,, < b, andb,, < a,. Finally,
a positive sequence is called regular if there exists a aohste (0, c0) such thata,, < cas, and
am < cap for all 1 < m < n. Probably the most interesting examples of regular secaseace
anp =n"P(1+Inn)"%forp > 0andg € R, orp =0andqg > 0.

Given a Banach spadg, we denote its closed unit ball bz and its dual byZ’. Moreover, we
write I : F' — (o (Bp) for the canonical embedding arglz : ¢;(Bg) — E for the canonical
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surjection. Furthermore, we write — F'if ¥ C F and the inclusion map is continuous. Finally, the
adjoint of a bounded linear operatSracting between two Hilbert spaces is denotedby

Now, let & and F' be Banach spaces afit: £ — F' be a bounded, linear operator. Then thth
(dyadic) entropy numbeof T' is defined by

2n71

en(T) = inf{s >0:3dry,...,29n—1 € F: TBg C U X; +EBF} .
i=1

Some elementary properties of entropy numbers can be foué; Chapter 1]. In particular, we have
en(T) — 0 if and only if 7" is compact. Sinc& is compact if and only if its dual” is compact, this
immediately raises the question how the entropy numbe#s arfid7” are related to each other. This
guestion, known as the duality problem for entropy numbess ko far, no complete answer. Partial
answers, however, do exist. The one we will need is the fatigunequality taken fron ]3]

1 sup kP e, (T) < sup kP e, (T") < d, sup KYP e (T, 4)

dp k<n k<n k<n
which holds for alln > 1 and all compacfl’ : £ — F, wheneverE or I' are B-convex. Here,
d, € (0,00) is a constant, which depends pre (0,0c0) and the geometry of the involved spaces
E and F, but which is independent of bothand7'. Moreover, recall from e.gl_[7, Theorem 13.10]
that a Banach space 1$-convex if and only if it has non-trivial type. In particujatilbert spaces are
B-convex, and so are the spadesy) for p € (1,00) since these spaces have typa{2, p}, see
e.g. [7, Chapter 11]. Moreover, if or F' is a Hilbert space, it was shown in ]20] that we may choose
d, = 32 for all p € (0,00). Finally note that from the inequalities il (4) we can detive following
equivalences, which hold for all regular sequengggs) and all compact operatofs:

en(T) < ay, = en(T') < ay,
en(T) < ap, — en(T) < ay, .

For a proof, which is based on a little trick originating frabarl [5], we refer to the proof of [18,
Corollary 1.19] or, in a slightly simplified version, to theopf of [17, Proposition 2].

Besides entropy numbers, we are also interested in somaled-cnumbers. Namely, if": £ —
F'is a bounded linear operator, we are interested imtkieapproximation numbeof 7', defined by

an(T) :=1inf{ |T— A|| | A: E — F bounded, linear withrank A < n },
in then-th Gelfand numbeof 7" defined by
en(T) == inf{ |TIE,|| : Eo subspace of with codim Ey < n },

wherelg0 denotes the canonical inclusion 8} into £, and in then-th Kolmogorov numbeof T’
defined by
dn(T) == inf{ |Q,T|| : Fp subspace of with dim Fy < n },

whereQ}?0 denotes the canonical surjection from the Banach spacato the quotient spacg/ Fy.
Recall from [6, Proposition 2.2.2] that the latter quantan also be expressed by

dn(T) = inf{s > (0 : JF; subspace of’ with dim F. < nandTBg C F. + sBF} ,

and consequently, we have

d. .1 (T) = inf inf |ly —
nt1(T) FL%FyESlTlEEzlenFn”y 2||F,
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where the left most infimum runs over all subspaégsof F' with dim F,, < n. In other words,
dn+1(T') equals the classical Kolmogoraxwidth of the se’ By in F, cf. [9, Chapter 13], and there-
fore we haved,, (I, : H — L,(n)) = dn(H, L,(1)), whereH andy are as in the introduction.
In addition, it is not hard to see that we also have (I, : H — Ly(u)) = an(H, Ly(1)), and
consequently we will consider the operator versions in @meaining parts of this note. Furthermore,
recall e.g. from([6, Theorems 2.3.1 and 2.2.1, and Projposgi5.5] that we always have

Cn(T) = an(IFT)
dp(T) = a,(TQE)
dn(T") = cn(T),

and for compacfl’ its dual operatofl” additionally satisfies:,,(7") = d,,(T'), see [[6, Proposition
2.5.6]. Moreover, the approximation, Gelfand, and Kolmogaumbers are-numbers in the sense
of [12], Definition 2.2.1], and the same is true for ffikhomirov numbersf T, which are defined by

tn(T) = an(IFTQE), n > 1.
In addition, we always have

tn(T) < en(T) < an(T) < V21, (T)
tn(T) < dn(T) < an(T) < \/%dn(T%

where we note that in both cases the first two inequalitideviofrom s-number properties and the
right most inequalities can be found [ii [6, Propositions2ahd 2.4.6]. In addition, the factar2n
can be sharpened 1o+ /n — 1.

The two chains of inequalities above show that the gap betieeasymptotic behavior ¢f.,),
(cn) and(d, ) is at most of the ordey/n. It is well-known that this gap is sometimes attained, see
e.g. Sectiofls, while in other cases the gap vanishes. Forggawe have

an(T) = e (T), (5)

if £ is a Hilbert space, seel[6, Proposition 2.4.1],Iothas the metric extension property, see [6,
Proposition 2.3.3], and

an(T) = dn(T) ) (6)

if I is a Hilbert space, sekl[6, Proposition 2.4.4] Fbhas the metric lifting property, se€l[6, Propo-
sition 2.2.3]. In this respect recall that the spatg$.J) and L. (1), wherep is some finite measure,
have the metric extension property, see [6, p. 60] ahd [7oféme 4.14], respectively. Moreover, the
spaced; (I) have the metric lifting property, se€ [6, p. 51]. By combgall these relations we further
see that we havg,(T') = a,(T) if either E = ¢1(I) andF = ¢;(.J), or E and F’ are Hilbert spaces.
The latter case also follows from a general result showiagyttiere is only one-scale for operators
between Hilbert spaces, see €.gl[12, Theorem 2.11.9].

Our next goal is to relate thenumbers introduced above to eigenvalues. To this end, 16, —
H, be a compact operator acting between two Hilbert spacesn $h& : H; — H; is compact,
self-adjoint and positive, and therefore the classicatspktheorem shows that there is an at most
countable family(\;(S*S));cr of eigenvalues of*S, which in addition are non-negative and have
at most one limit point, namely. In the following, we always assume that eitider= {1,...,n} or
I = N, and that the eigenvalues are ordered decreasingly withaliding (geometric) multiplicities.
Then, thesingular number®f S are defined by

(§) = { VA = M(VES) tiel
=10 if i e N\ .
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Recall that this gives;(S) = s;(S*) forall i > 1, ands;(T") = \;(T) foralli e Iif T : H — H is
compact, self-adjoint and positive. Moreover, we have esge[12, Chapter 2.11]

$n(S) = an(S)

for all n > 1 and all compact operators: H, — Hs between Hilbert spaced, Hs.

3 Carl’slnequality and some I nverse Versions

In this section we recall some inequalities betweamumbers and entropy humbers. We begin with
Carl's inequality, which states that for alle (0, c0), there exists a constant, € (0, c0) such that
for all bounded, lineaf” : £ — F' and alln > 1, we have

sup k'/Pep,(T) < Cpsup kYPay,(T) . (7)
k<n k<n
We refer to[6, Theorem 3.1.1], where it is also shown thatssiide value for the constant@sp =
128(32 4 16/p)'/?. Recall from e.g.[[6, Chapter 1.3] that entropy numbers arestive and weakly
injective, and therefore we have

er(T) < 2ex(IFTQE) < 2ex(T)

for all bounded, lineafl” : £ — F and allk > 1. In particular, we may replace the approximation
numbers in[(I7) by the Gelfand, Kolmogorov, or Tikhomirov rhers for the price of an additional
factor of2 in the constant. Moreover, like for the entropy number§ ' and7”, we further have

an(T) < oy, = en(T) < ap

for all regular sequencesy,,) and all bounded linedf : £ — F. Itis needless to say that the ap-
proximation numbers in this implication may be replacedh®/@elfand, Kolmogorov, or Tikhomirov
numbers.

Let us now recall some inequalities that describe how cestaiumbers are dominated by entropy
numbers. We begin with compact operatérs H; — H, acting between two Hilbert spaces. Then
[6 Inequality (3.0.9)] shows

an(S) < 2e,(S) (8)

for all n > 1. By an adaptation of the proof of [18, Corollary 1.19] we chert see tha{{8) in
combination with[(V) leads to the following equivalencesiah hold for all regular sequencés,,)
and all compact operators: H; — H> acting between two Hilbert spaces:

an(S) < an = en(S) < ap 9)
an(S) < an = en(S) < ay, . (10)
Again, the approximation numbers in these equivalences lbeayeplaced by the Gelfand, Kol-

mogorov, or Tikhomirov numbers. Finally, let us considee tompact, self-adjoint and positive
operator!’ : H; — H, defined byS*S. Then we have

si(T) = X(T) = Ni(5*S) = s7(5) (11)

if i € I ands;(T) =0 = s?(S*) if i € N\ I. The two equivalences above then lead to

)

sn(T) < o, = en(S™) < Vo, (12)
sn(T) < ap, = en(S*) < ay, (13)



for all regular sequencegsy,, ). Note thats,, can be replaced by asynumber scale, and in particular
by the approximation, Gelfand, Kolmogorov, and Tikhomirmymbers. Moreover, we may replace
en(S*) by e, (S) using the duality results for entropy numbers mentioned/@bo

Let us now consider the situation in which only one of the imed spaces is a Hilbert space, that
is, we consider compact operators of the f&§mFE — H or S : H — F, whereH is a Hilbert space
andE or F'is an arbitrary Banach space. Theh (7) still holds, but iregainwe may no longer have
(8). To compare the-numbers off" to the entropy numbers &f, we thus need a surrogate fof (8).
Fortunately, there are a few such results. For exanipleLidrhme 1] shows that there exist constants
A, B € (0,00) such that for all compact : £ — H and alln > 1 we have

n'?c,(S) < B > kT 2ex(S). (14)
k>An

With the help of this inequality it is easy to show that foralE (0, 2) there exists another constant
B, € (0, 00) such that
n'/Pe,(S) < B, sup k'/Pey(S) (15)
k>An
for all compactS : £ — H and alln > 1. We refer to the very short proof df [11, Théoreme A].
Complementary/ [18, Theorem 5.12] shows that fopadl (2, oo) there exists a consta#t, € (0, o)
such that
sup k'/Pt,(S) < K, sup k'/Pe;,(S) . (16)
k<n k<n
for all compact operator§ : £ — H or S : H — F and alln > 1. Last but not least we like to
mention that[[5, Theorem 6] showed an inequality of the fdf@) (vith ¢, replaced byl or ¢, for all
p € (0,00) and all compact : E — F for which E and F’ are type 2 spaces.

4 Main Results

The goal of this section is to compare the entropy and Kolmmgaumbers of the embedding , :
H — L. (u). To this end, our first auxiliary result combines Carl’s inality with its inversed
versions mentioned in Sectidh 3.

Lemma4.l. Let H be a Hilbert spacef’ be a Banach spacé : H — F' be a compact operator, and
p € (0,2). Then, the following equivalence holds:

do(S) <n VP = e (S) =n VP, (17)

Moreover, if F has the metric extension property, the equivalence is alsoforp € (2, 00), and in
addition, we have

d(S) =n~VP = e, (S) =nTVP. (18)
Finally, if F’ has type 2, theL7) and (I8) hold for all p € (0, c0).

Proof of Lemmal4.Z Independent of andF, the implication =" in (L7) is a direct consequence of
Carl's inequality [¥). For the proof of the converse implioa we first consider the cagee (0, 2).

By @) we then know that,,(S") < n~'/?, and consequentlf (I.5) shows that S’) < n~'/?. Using
cn(S") = dn(S), which holds for compact operatos we then obtain the assertion. In the case
p € (2,00), we conclude by[(16) that,(S) < n~YP. Moreover,F' has the metric extension property,
and therefore we hawg,(SQg) = a,(SQg) by (8). This leads to
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and hence we find,,(S) < n~'/?. In addition, [I8) follows from combinind17) an@{16) as het
proof of [17, Proposition 2]. Finally, the last assertiomds shown analogously using [5, Theorem
6] instead of[(1B). O

Note that the equivalences obtained in Lenima 4.1 also holdsefjular sequences of the form
o, = n_l/p(log n)B, wherep satisfies the constraints of Leminal4.1 ahd: R. Indeed, for the
second and third case this can be deduced fiom (7)Y and (3@gatvely [5, Theorem 6], while in the
first case this follows froni{7) [[(15), and [12, G.3.2].

Clearly, Lemmd4]1 in particular holds for compact ope®r. H — L, (x). Our next result
shows that for some spacesg(;:) even more information can be obtained.

Theorem 4.2. Let H be a Hilbert spacey be a finite measure, angde [2, oo]. Assume that we have
a compact operatof : H — L, (x) such that

en(S: H — Lo(u)) < n~ e (19)
for somex € (0,2). Then, for allg € [2, p], the following equivalence hold:
dn (S : H — Ly(p)) < n='/e = en(S: H — Ly(p)) = n e,

Proof of Theorem[42Z “=": By Lemmal[4.1, or more precisely, Carl’s inequality, weealdy know
thate,, (S : H — Ly(p)) < n~'/. Moreover, using_,(u) < Lo () we find

n Vo <, (S H — Lo(p)) < |id : Ly(p) — La(w)| en (S : H = Ly(p))

and thuse,, (S : H — L,(u)) < n~Ye.
“«<" By Lemmal4.], we already know thaf,(S : H — L,(u1)) < n~'/®. Moreover, by[(ID),
(@0), and[(B) we obtaid,, (S : H — Lo(p)) =< n~/*, and hence we find

n~V < d, (S H — Lo(p)) < ||id : Ly(12) — Lo(p)||dn (S : H — Ly(p))

thatisd,, (S : H — Ly(u)) < n=1/e, O

Note that the entropy numbers in conditidn](19) can be repldry the Kolmogorov numbers.
Indeed, [ID) shows thdf (119) is equivalentdS : H — Lo(p)) = n~ /%, and since we further have
an(S) = d,(S), we see that condition (19) can be replaced by

dn(S : H — Lo(p)) < n= /e, (20)

In addition, if H is an RKHS with kernek and T}, denotes the integral operator associated With
then [20), or[(IB), can be replaced by

A (T : La(p) — Lo(p)) < n=2/ (21)

with the help of[(11L). The following corollary summarizes dimdings in this situation in view of the
gap discussed in the introduction.

Corallary 4.3. Let H be an RKHS of a bounded measurable kefnein (X,.4) and i be a finite
measure on the-algebra.A. If, in addition, we have

en (I H — Lo(w)) < e (I : H — Loo(p)) xn=1/°

for somen € (0,2), then we havel,,(H, Lo (1)) < n~ "/ andn=YtY/2 < I, (H, Loo(p)).



Proof of Corollary 43 The behaviod,, (I, : H — Loo(p)) =< n~/* follows from TheoreniZ12.
Moreover, we know\; = i~2/@ by () and[(IB), and thereforg] (3) shows

i=n+1 i=n+1

n—L/at1/2 {\l i i—2/a <J f: i < V(X)) In(H, Loo (1))

that is, we have shown the second assertion, too. O

Our last result in this section shows that in the RKHS caseqasdoo the asymptotic behavior
en(Ix, - H — La(p)) < n~ '/ is inherited from certain interpolation spaces betw&eand Ls (u).
For its formulation we need the scale of interpolation spaafethe real method, see e.gl [2, Chapter
5], as well as the notatioff? ] := {[f]~: f € H}.

Theorem 4.4. Let H be an RKHS of a bounded measurable kernen (X, .4) and i be a finite
measure on the-algebra.4 such thatA is u-complete and that

en(Iry s H — La(p)) < n=1/® (22)

for somea € (0,2). In addition assume that the interpolation spdée(u), [H]~]s,2 is compactly
embedded intd., (x) for somes € («/2, 1] with

en([La(p), [H] g2 < Loo(n)) < n=7/® (23)
Then we have
en([La(p), [H] ]y 2 = Loo(1)) < en([La(n), [H|<]y2 = Lo(n)) < n™7/® (24)
for all v € [3,1], as well ase,, (I, : H — Loo(p)) < n= /.

Before we prove this theorem we note that the interpolatpates Ly (1), [H]~ ], 2 can be identi-
fied as RKHSs provided that the assumptions of Therein 4 dagisfied. For details we refer to the
last part of the following proof.

Proof of Theorem [4.4& We first consider the casé € («/2,1). Sincey > f, we then know
[La(p), [H]~)y,2 < [La(p), [H]~]s,2 by e.9.[19, Theorems 4.3 and 4.6], and consequently we have
the following diagram of bounded linear embeddings:

[La(p), [H] ]y 2 Loo (1)

[La(p), [H]~]p,2

The multiplicativity of entropy numbers thus yields

eZn([L2(:u)7 [H]N]’Y,Z — LOO(M))
< en([La(p), [H]]y,2 = [La(p), [H])g2) - en([La(p), [H]]g2 = Loo()) - (25)

Now recall from [19, Equation (36) and Theorem 4.6] that

200, 1)y = { S i) el s (@) € (D) (26)

el



where ()\;) is the sequence of eigenvalues of the integral oper&tor: Lo(u) — Lo(n) and
([e;]~) is a corresponding ONS of eigenfunctions. Moreover, th¢69y$)\z/2 [ei]~) is an ONB of
[La(p), [H]~],2 With respect to an equivalent Hilbert space normibs(u), [H]~],,2. Consequently,
we have the following diagram for the embeddidg (1), [H]~],,2 < [La(r), [H]~]p.2:

[La(p), [H] ]2 [La(p), [H]~]p,2
o, @gl
lo(I) lo(1)

pU-P2

where®., and®3 are the coordinate mappings aﬁlﬁy_ﬂ)/z is the diagonal operator associated to
the sequenc(eAE”‘ﬁ)/z). By (22), (11), and[(TI3) we conclude th)a&”‘ﬁ)/2 = i—(r=F)/>_ Using [2,
Proposition 2], which estimates entropy numbers of diagoparators, and the diagram above, we
thus find

en([La(p), [H]]y2 < [Lo(p), [H] g o) < n~ 07/

Combining this with[(Zb)[(23), and the fact thats a finite measure we obtain

en([La(p), [H] ]y 2 = La(p)) < en([La(p), [H])y2 = Loo(n)) < n /%

To establish the lower bound, we recall framl[19, Proposidd2 and Theorems 5.3 and 4.6] that, for
a suitable suitabl@-zero setV, [La(1), [H]~],,2 can be identified with the RKHS ove¥ \ IV, whose
kernel is given by

Kl (x,2') == Z Nei(z)ei(x'), z,2 € X\ N.
iel
Since the eigenvalues of the corresponding integral opesaae), = i~2v/« we conclude from{d1)
and [I3) that,, ([La (), [H] ]2 < La(p)) < n=7/°.
Finally, usingran I}, , = [H|. and Theoreni 412 the remaining assertions, namely thetase
v = 1 as well as the assertion fdf , : H — L.(1) can be proven analogously. O

Theoren{ 4.4 essentially states that the propérty (24) issgadown from the large spaces in the
scale of spaceld s (1), [H]~]s 2 to the smaller ones. Moreover, using the spaces on the ragfut side
of (28) instead of the interpolation spaces, it can easilydsn that the result is also true for> 1. In
addition, the representatidn {26) suggests that the eaigetibns may play a crucial role in determining
whether [[24) holds. In this respect note tHatl [10, Lemma &skgntially showed the continuous
embeddingLa (), [H]~]a/2,1 = Loo(p) provided that[(2R) holds and that the eigenfunctions are not
only bounded but uniformly bounded. From this itis easy teotade thafLo (1), [H]~]5,2 = Loo(1t)
holds for allg € («/2,1). In addition, the cas€la(u), [H]~]p2 < Loo(p) for g € (0, /2] can
always be excluded, sinde [19, Theorem 5.3] shows that suifclusion would imply) -, )\f < 0
for the eigenvalues of the integral operafQy; and this summability clearly contradicis 122) byl(11)
and [I3). Summarizing, we think that understanding wheratlyenptotic equivalencé(24) holds for
somery close toa/2 is an interesting question for future research.

5 An Example: Sobolev Spaces
The goal of this section is to illustrate the consequencdsofmd4.]l and Theoreim 4.2 by applying

them to embeddings of the forid : H — L, (1), whereH is a Sobolev spacef C R% is a suitable
subsety is the Lebesgue measure an andp € [2, oo].
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We begin by recalling some basics on Sobolev spaces. ToridisgeeX ¢ R? be a non-empty,
open, and conncected subset satisfying the strong locathifz condition in the sense 6fi[1, p. 83].
Form > 1 being an integer, we denote the classical Sobolev spack tmat is defined by weak
derivatives, see e.d.[1, p. 59-60], By (X) := W™2(X).

Form > d/2, itis well-known that the embeddirid : W™ (X) — Cp(X) is compact, see e.g.[1,
Theorem 6.3] in combination with[1, p. 84]. Therefore, tinebeddingdd : W"(X) — Lo (X) are
compact, and ifX has finite Lebesgue measure, we also obtain the compactitbssioe embeddings
id : W™(X) — L,(X), where we followed the standard notatiép(X) := L,(x). Note that an
immediate consequence of this is that the approximationeatichpy humbers of these embeddings
converge to zero. Let us recall some results from [8] thatriles the asymptotic behavior of these
numbers. To this end, note that a consequence of Steinsstatetheorem, se&l[1, Theorem 5.24] is
that

11 = it {llgllwm ge) - g € WTR?) with g = [}, (27)

where f € W™(X), defines an equivalent norm di”(X). Moreover, if fors € [0,00) and
p,q, € (0,00] we write B5 (R?) and F;  (R?) for the Besov and Triebel-Lizorkin spaces in the sense

of [8, p. 24f], then we have3y’,(RY) = Fy4(R?) = W™(R?) by [8, p. 44 and p. 25]. By(27) we
conclude that the spacés’,(X) defined by restrictions as inl[8, p. 57] satisfy

By (X) = W™(X) (28)

up to equivalent norms. Moreover] [8, p. 25] shows ﬂ%(Rd) = L,(R%), and by 8, p. 44] we find
continuous embeddingB) ,(R?) — L,(R%) < BY (R?) for all p € [2,00). By (27) we conclude
that

B)o(X) = Ly(X) = By (X). (29)

Similarly, recall that we have continuous embeddidgfs ;(R?) — Lo (R?) — BY (R?), see
e.g. [8, p. 44], and thus we also have the continuous embgslidin

B2 1 (X) = Loo(X) = B oo(X). (30)

Let us now assume thaf is open, connected, and bounded, and that it @¥eboundary. Moreover,
we fix somesy, 53 € [0,00) andpr, p2, q1, g2 € (0, 00] such thats; — sy > d(pi1 — piQ)Jr. Then [8,
Theorem 2 on p. 118] shows that

en(id: B3 (X) = B2 (X)) = n (17s2/d (31)

P1,q91 Dp2,92

and if we additionally assume that< p; < ps < oo, then [8, p. 119] shows that

an(id : BS! , (X) — B2 (X)) = n~(17s2)/del/pi=1/p2 (32)

P1,91 Pp2,q2

In particular, fors; = s, p1 = ¢1 = 2,82 = 0, p2 = p € [2,00], andgs = g € [1,00] with
s > d(3 — ) we obtain

en(id : B3 o(X) = B (X)) =< n~*/4
ap(id : B 5(X) = BY,(X)) = n~s/T1/2=1/p
By (29), (29), and[(30) we conclude that

en (id : W™(X) = Ly(X)) < n~m/4 (33)
an (id : W™(X) — Lp(X)) = n~m/dH1/2=1/p (34)
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for all m € N with m > d(% — %). In other words, the gap between the entropy and approomati

numbers is of the order'/2~1/7. Note that for the Hilbert space case, pe= 2, the gap vanishes as
already observed in Sectibh 3, while in the other extremecc, the gap is of the order!/2. Finally,
we see by[(27) that these asymptotics still hold, if we onguase thatX is an open, connected, and
bounded subset @&¢ satisfying the strong local Lipschitz condition.

To illustrate these findings, we now consider the linearrpakation n-width mentioned in the
introduction. To this end, we fix am € N with m > d/2 and letH = W™ (X) with equivalent
norms. Then[(34) shows

nm 21D g ((d s H = Ly(X)) < Lu(H, Ly(X))

for all p € [2,00]. Here we note that in the cage = oo, the lower boundn—™/d+1/2 <
I,(H, Lo(X)) already follows from[(B). Moreover[(B3) in combination wiTheoren{ 4R yields

dn(id : H — Ly(X)) =< n~™/4 (35)

for all p € [2,00]. In other words, the gap of/2 — 1/p actually occurs between the non-linear
approximation described by, and the linear approximation described &y, Moreover, the gap is
maximal forp = oo and vanishes in the other extreme case 2.

We like to mention that[{35) appears to be new, since it is ootained in the list of known
asymptotics compiled in[21]. In addition, the gap betwdgranda,, is solely derived from the same
gap between,, anda,,, that is, from[[3B) and (34). In other words, we will observgap between,,
anda,, if and only if there is a gap betweer anda,,. Fortunately, the latter two quantities have been
considered for various other spadésand measureg, so that it should be possible to compile a list
of cases, in which the gap occurs.

For convenience, the following corollary summarizes outifigs for sufficiently large subspaces
of W™(X). It particularly applies to kernels of many standard Garsgirocesses, such as the (iter-
ated) Brownian motion and -bridge, see e.g. the numericahgke in [14].

Corollary 5.1. LetX c R be an open, connected, and bounded subset satisfying ¢ing $tipschitz
condition. Moreover, let? be an RKHS oveX with kernelk such thatH — W™ (X) for some
integerm > d/2. Assume, in addition, that

en(Inp: H — Lo(X)) < n~™/4
holds. Then we have
dn (H, Loo(p)) = n=m/4 and n~M Y2 2 1 (H, Loo () -
In addition, if H = W™ (X) with equivalent norms, then, for all€ [2, oc], we have
dn(H, Ly(p)) =< n~m/d and A2 < g (H,Ly(p)) .
Proof of Corollary[5.1 We first note that the sequence of estimates
™ < ey (I H — Lo(X)) < en (It H— Loo(X)) < e (I : W™ — Loo(X)) < 0™/

yieldse,, (I, : H — Loo(X)) =< n~™/4, and therefore Corollafy 4.3 shows the first two assertions.
The second set of asymptotic equivalences immediatelgvisiifrom our findings in the text above
together with the muliplicativity of the approximation nbars. O
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