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A Short Note on the Comparison of Interpolation Widths,
Entropy Numbers, and Kolmogorov Widths
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Abstract

We compare the Kolmogorov and entropy numbers of compact operators mapping from a
Hilbert space into a Banach space. We then apply these general findings to embeddings between
reproducing kernel Hilbert spaces andL∞(µ). Here we provide a sufficient condition for a gap of
the ordern1/2 between the associated interpolation and Kolmogorovn-widths. Finally, we show
that in the multi-dimensional Sobolev case, this gap actually occurs between the Kolmogorov and
approximation widths.

1 Introduction

Let (X,A, µ) be a measure space andH be a a reproducing kernel Hilbert space (RKHS) overX.
Moreover, assume that the kernelk of H is measurable and that for allp ∈ [2,∞], the mapIk,µ :
H → Lp(µ) defined byIk,µf := [f ]∼, where[f ]∼ denotes theµ-equivalence class off in Lp(µ), is
compact. Now consider the linear interpolationn-width of H in L2(µ), that is

In
(

H,Lp(µ)
)

:= inf
D⊂X,|D|≤n

(
∫

X
sup
f∈BH

∣

∣f(x)−ADf(x)
∣

∣

p
dµ(x)

)1/p

,

with the usual modification forp = ∞. Here,AD : H → H is the bounded linear operator defined by
ADf(x) :=

∑n
i=1 α

∗
i (x)f(xi), whereD = (x1, . . . , xn) andα∗(x) ∈ R

n is the unique solution of

α∗(x) = arg min
α∈Rn

∥

∥

∥
δx −

n
∑

i=1

αiδxi

∥

∥

∥

2

H′

.

For later use we note that we always have

inf
D⊂X,|D|≤n

sup
f∈BH

‖f −ADf‖Lp(µ) ≤ In
(

H,Lp(µ)
)

(1)

and equality holds in the extreme casep = ∞. Moreover, consider the classical Kolmogorovn-width

dn
(

H,Lp(µ)
)

= inf
Fn⊂Lp(µ)

sup
f∈BH

inf
g∈Fn

‖f − g‖Lp(µ) ,

where the left most infimum runs over all subspacesFn of Lp(µ) with dimFn ≤ n. Note that the
lower bound ofIn in (1) measures, how wellf can be approximated by a very particular linear andn-
dimensional scheme, whereasdn measures how wellf can be approximated by the bestn-dimensional
scheme. Consequently, the approximationn-width

an
(

H,Lp(µ)
)

:= inf
A:H→Lp(µ)

sup
f∈BH

‖f −Af‖Lp(µ) ,
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where the infimum is taken over all bounded linear operatorsA : H → Lp(µ) with rankA ≤ n,
satisfiesdn(H,Lp(µ)) ≤ an(H,Lp(µ)) ≤ In(H,Lp(µ)).

In the Hilbert space case, that is,p = 2, these quantities are well understood. Indeed, the general
theory ofs-numbers [12] shows, see e.g. Section 2, that

dn
(

H,L2(µ)
)

= an
(

H,L2(µ)
)

=
√

λn+1 , (2)

where(λn) denotes the (extended and) ordered sequence of eigenvaluesof the integral operatorTk :
L2(µ) → L2(µ) associated with the kernelk. Moreover, ifH is a Sobolev space, thenIn(H,Lp(µ))
shares the asymptotic behavior of (2) and this can actually be achieved by taking quasi-uniform points
D ⊂ X, see [16]. Unfortunately, the situation changes in the other extreme, namelyp = ∞. Indeed,
if µ is a finite measure, then (2) immediately yields

√

λn+1 ≤
√

µ(X) dn
(

H,L∞(µ)
)

,

while [14, Theorem 3] shows that
√

√

√

√

∞
∑

i=n+1

λi ≤
√

µ(X) In
(

H,L∞(µ)
)

, (3)

and in the Sobolev case, this lower bound is matched by an upper bound of the same asymptotic behav-
ior, see [15]. In the case of an algebraic decay of the eigenvalues, it is not hard to see that there is a gap
of the ordern−1/2 between thelower boundsfor dn(H,L∞(µ)) andIn(H,L∞(µ)), and this naturally
raises the question, whether this gap actually occurs between the quantities of interest, that is, between
dn(H,L∞(µ)) andIn(H,L∞(µ)). So far, a positive answer only exists for the 1-dimensionalSobolev
case, see [13]. The goal of this note is to provide a positive answer in a more general framework. To be
more precise, we show that for algebraically decaying eigenvalues we havedn(H,L∞(µ)) ≍

√

λn+1

if and only if the entropy numbers of the embeddingIk,µ : H → L∞(µ) behave like
√

λn+1. Using
(3) this characterization gives a sufficient condition for the existence of the gap. In addition, we present
a result that highlights the role of the eigenfunctions ofTk. For the multi-dimensional Sobolev case
we then show with the help of well-known asymptotics of the entropy and approximation numbers
that the gapn−1/2 actually occurs betweendn(H,L∞(µ)) andan(H,L∞(µ)), that is, between ar-
bitrary n-dimensional approximation and linearn-dimensional approximation. In addition, the cases
p ∈ (2,∞) are treated simultaneously.

The rest of this note is organized as follows: In Section 2 we recall the definition of entropy num-
bers and also introduce some examples ofs-number scales. Section 3 summarizes the relationship
between entropy numbers and the differents-number scales. In Section 4 two general results com-
paring entropy and Kolmogorov numbers of compact operatorsare presented and based upon these
results the RKHS situation is investigated in more detail. In Section 5 we then apply these findings to
the multi-dimensional Sobolev case.

2 Preliminaries: Entropy Numbers, s-Numbers, and Eigenvalues

We writean ≺ bn for two positive sequences(an) and(bn) if there exists a constantc ∈ (0,∞) such
that an ≤ cbn for all n ≥ 1. Similarly, we writean ≍ bn if both an ≺ bn andbn ≺ an. Finally,
a positive sequence is called regular if there exists a constant c ∈ (0,∞) such thatan ≤ ca2n and
am ≤ can for all 1 ≤ m ≤ n. Probably the most interesting examples of regular sequences are
an = n−p(1 + lnn)−q for p > 0 andq ∈ R, or p = 0 andq > 0.

Given a Banach spaceE, we denote its closed unit ball byBE and its dual byE′. Moreover, we
write IF : F → ℓ∞(BF ′) for the canonical embedding andQE : ℓ1(BE) → E for the canonical
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surjection. Furthermore, we writeE →֒ F if E ⊂ F and the inclusion map is continuous. Finally, the
adjoint of a bounded linear operatorS acting between two Hilbert spaces is denoted byS∗.

Now, letE andF be Banach spaces andT : E → F be a bounded, linear operator. Then then-th
(dyadic) entropy numberof T is defined by

en(T ) := inf
{

ε > 0 : ∃x1, . . . , x2n−1 ∈ F : TBE ⊂
2n−1

⋃

i=1

xi + εBF

}

.

Some elementary properties of entropy numbers can be found in [6, Chapter 1]. In particular, we have
en(T ) → 0 if and only if T is compact. SinceT is compact if and only if its dualT ′ is compact, this
immediately raises the question how the entropy numbers ofT andT ′ are related to each other. This
question, known as the duality problem for entropy numbers has, so far, no complete answer. Partial
answers, however, do exist. The one we will need is the following inequality taken from [3]

1

dp
sup
k≤n

k1/p ek(T ) ≤ sup
k≤n

k1/p ek(T
′) ≤ dp sup

k≤n
k1/p ek(T ) , (4)

which holds for alln ≥ 1 and all compactT : E → F , wheneverE or F areB-convex. Here,
dp ∈ (0,∞) is a constant, which depends onp ∈ (0,∞) and the geometry of the involved spaces
E andF , but which is independent of bothn andT . Moreover, recall from e.g. [7, Theorem 13.10]
that a Banach space isB-convex if and only if it has non-trivial type. In particular, Hilbert spaces are
B-convex, and so are the spacesLp(µ) for p ∈ (1,∞) since these spaces have typemin{2, p}, see
e.g. [7, Chapter 11]. Moreover, ifE or F is a Hilbert space, it was shown in [20] that we may choose
dp = 32 for all p ∈ (0,∞). Finally note that from the inequalities in (4) we can derivethe following
equivalences, which hold for all regular sequences(αn) and all compact operatorsT :

en(T ) ≺ αn ⇐⇒ en(T
′) ≺ αn

en(T ) ≍ αn ⇐⇒ en(T
′) ≍ αn .

For a proof, which is based on a little trick originating fromCarl [5], we refer to the proof of [18,
Corollary 1.19] or, in a slightly simplified version, to the proof of [17, Proposition 2].

Besides entropy numbers, we are also interested in some so-calleds-numbers. Namely, ifT : E →
F is a bounded linear operator, we are interested in then-th approximation numberof T , defined by

an(T ) := inf{ ‖T −A‖ | A : E → F bounded, linear withrankA < n } ,

in then-th Gelfand numberof T defined by

cn(T ) := inf{ ‖TIEE0
‖ : E0 subspace ofE with codimE0 < n } ,

whereIEE0
denotes the canonical inclusion ofE0 into E, and in then-th Kolmogorov numberof T

defined by
dn(T ) := inf{ ‖QF

F0
T‖ : F0 subspace ofF with dimF0 < n } ,

whereQF
F0

denotes the canonical surjection from the Banach spaceF onto the quotient spaceF/F0.
Recall from [6, Proposition 2.2.2] that the latter quantitycan also be expressed by

dn(T ) = inf
{

ε > 0 : ∃Fε subspace ofF with dimFε < n andTBE ⊂ Fε + εBF

}

,

and consequently, we have

dn+1(T ) = inf
Fn⊂F

sup
y∈TBE

inf
z∈Fn

‖y − z‖F ,
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where the left most infimum runs over all subspacesFn of F with dimFn ≤ n. In other words,
dn+1(T ) equals the classical Kolmogorovn-width of the setTBE in F , cf. [9, Chapter 13], and there-
fore we havedn+1(Ik,µ : H → Lp(µ)) = dn(H,Lp(µ)), whereH andµ are as in the introduction.
In addition, it is not hard to see that we also havean+1(Ik,µ : H → Lp(µ)) = an(H,Lp(µ)), and
consequently we will consider the operator versions in the remaining parts of this note. Furthermore,
recall e.g. from [6, Theorems 2.3.1 and 2.2.1, and Proposition 2.5.5] that we always have

cn(T ) = an(IFT )

dn(T ) = an(TQE)

dn(T
′) = cn(T ) ,

and for compactT its dual operatorT ′ additionally satisfiescn(T ′) = dn(T ), see [6, Proposition
2.5.6]. Moreover, the approximation, Gelfand, and Kolmogorov numbers ares-numbers in the sense
of [12, Definition 2.2.1], and the same is true for theTikhomirov numbersof T , which are defined by

tn(T ) := an(IFTQE) , n ≥ 1.

In addition, we always have

tn(T ) ≤ cn(T ) ≤ an(T ) ≤
√
2n cn(T )

tn(T ) ≤ dn(T ) ≤ an(T ) ≤
√
2n dn(T ) ,

where we note that in both cases the first two inequalities follow from s-number properties and the
right most inequalities can be found in [6, Propositions 2.4.3 and 2.4.6]. In addition, the factor

√
2n

can be sharpened to1 +
√
n− 1.

The two chains of inequalities above show that the gap between the asymptotic behavior of(an),
(cn) and(dn) is at most of the order

√
n. It is well-known that this gap is sometimes attained, see

e.g. Section 5, while in other cases the gap vanishes. For example, we have

an(T ) = cn(T ) , (5)

if E is a Hilbert space, see [6, Proposition 2.4.1], orF has the metric extension property, see [6,
Proposition 2.3.3], and

an(T ) = dn(T ) , (6)

if F is a Hilbert space, see [6, Proposition 2.4.4], orE has the metric lifting property, see [6, Propo-
sition 2.2.3]. In this respect recall that the spacesℓ∞(J) andL∞(µ), whereµ is some finite measure,
have the metric extension property, see [6, p. 60] and [7, Theorem 4.14], respectively. Moreover, the
spacesℓ1(I) have the metric lifting property, see [6, p. 51]. By combining all these relations we further
see that we havetn(T ) = an(T ) if eitherE = ℓ1(I) andF = ℓ1(J), or E andF are Hilbert spaces.
The latter case also follows from a general result showing that there is only ones-scale for operators
between Hilbert spaces, see e.g. [12, Theorem 2.11.9].

Our next goal is to relate thes-numbers introduced above to eigenvalues. To this end, letS : H1 →
H2 be a compact operator acting between two Hilbert spaces. Then S∗S : H1 → H1 is compact,
self-adjoint and positive, and therefore the classical spectral theorem shows that there is an at most
countable family(λi(S

∗S))i∈I of eigenvalues ofS∗S, which in addition are non-negative and have
at most one limit point, namely0. In the following, we always assume that eitherI = {1, . . . , n} or
I = N, and that the eigenvalues are ordered decreasingly withoutexcluding (geometric) multiplicities.
Then, thesingular numbersof S are defined by

si(S) :=

{

√

λi(S∗S) = λi(
√
S∗S) if i ∈ I

0 if i ∈ N \ I .

4



Recall that this givessi(S) = si(S
∗) for all i ≥ 1, andsi(T ) = λi(T ) for all i ∈ I if T : H → H is

compact, self-adjoint and positive. Moreover, we have, seee.g. [12, Chapter 2.11]

sn(S) = an(S)

for all n ≥ 1 and all compact operatorsS : H1 → H2 between Hilbert spacesH1, H2.

3 Carl’s Inequality and some Inverse Versions

In this section we recall some inequalities betweens-numbers and entropy numbers. We begin with
Carl’s inequality, which states that for allp ∈ (0,∞), there exists a constantCp ∈ (0,∞) such that
for all bounded, linearT : E → F and alln ≥ 1, we have

sup
k≤n

k1/pek(T ) ≤ Cp sup
k≤n

k1/pak(T ) . (7)

We refer to [6, Theorem 3.1.1], where it is also shown that a possible value for the constant isCP =
128(32 + 16/p)1/p. Recall from e.g. [6, Chapter 1.3] that entropy numbers are surjective and weakly
injective, and therefore we have

ek(T ) ≤ 2ek(IFTQE) ≤ 2ek(T )

for all bounded, linearT : E → F and allk ≥ 1. In particular, we may replace the approximation
numbers in (7) by the Gelfand, Kolmogorov, or Tikhomirov numbers for the price of an additional
factor of2 in the constant. Moreover, like for the entropy numbers ofT andT ′, we further have

an(T ) ≺ αn =⇒ en(T ) ≺ αn

for all regular sequences(αn) and all bounded linearT : E → F . It is needless to say that the ap-
proximation numbers in this implication may be replaced by the Gelfand, Kolmogorov, or Tikhomirov
numbers.

Let us now recall some inequalities that describe how certain s-numbers are dominated by entropy
numbers. We begin with compact operatorsS : H1 → H2 acting between two Hilbert spaces. Then
[6, Inequality (3.0.9)] shows

an(S) ≤ 2en(S) (8)

for all n ≥ 1. By an adaptation of the proof of [18, Corollary 1.19] we can then see that (8) in
combination with (7) leads to the following equivalences, which hold for all regular sequences(αn)
and all compact operatorsS : H1 → H2 acting between two Hilbert spaces:

an(S) ≺ αn ⇐⇒ en(S) ≺ αn (9)

an(S) ≍ αn ⇐⇒ en(S) ≍ αn . (10)

Again, the approximation numbers in these equivalences maybe replaced by the Gelfand, Kol-
mogorov, or Tikhomirov numbers. Finally, let us consider the compact, self-adjoint and positive
operatorT : H1 → H1 defined byS∗S. Then we have

si(T ) = λi(T ) = λi(S
∗S) = s2i (S

∗) (11)

if i ∈ I andsi(T ) = 0 = s2i (S
∗) if i ∈ N \ I. The two equivalences above then lead to

sn(T ) ≺ αn ⇐⇒ en(S
∗) ≺ √

αn (12)

sn(T ) ≍ αn ⇐⇒ en(S
∗) ≍ √

αn (13)

5



for all regular sequences(αn). Note thatsn can be replaced by anys-number scale, and in particular
by the approximation, Gelfand, Kolmogorov, and Tikhomirovnumbers. Moreover, we may replace
en(S

∗) by en(S) using the duality results for entropy numbers mentioned above.
Let us now consider the situation in which only one of the involved spaces is a Hilbert space, that

is, we consider compact operators of the formS : E → H or S : H → F , whereH is a Hilbert space
andE or F is an arbitrary Banach space. Then (7) still holds, but in general, we may no longer have
(8). To compare thes-numbers ofT to the entropy numbers ofT , we thus need a surrogate for (8).
Fortunately, there are a few such results. For example, [11,Lemme 1] shows that there exist constants
A,B ∈ (0,∞) such that for all compactS : E → H and alln ≥ 1 we have

n1/2cn(S) ≤ B
∑

k>An

k−1/2ek(S) . (14)

With the help of this inequality it is easy to show that for allp ∈ (0, 2) there exists another constant
Bp ∈ (0,∞) such that

n1/pcn(S) ≤ Bp sup
k>An

k1/pek(S) (15)

for all compactS : E → H and alln ≥ 1. We refer to the very short proof of [11, Théorème A].
Complementary, [18, Theorem 5.12] shows that for allp ∈ (2,∞) there exists a constantKp ∈ (0,∞)
such that

sup
k≤n

k1/ptk(S) ≤ Kp sup
k≤n

k1/pek(S) . (16)

for all compact operatorsS : E → H or S : H → F and alln ≥ 1. Last but not least we like to
mention that [5, Theorem 6] showed an inequality of the form (16) with tk replaced bydk or ck for all
p ∈ (0,∞) and all compactS : E → F for whichE andF ′ are type 2 spaces.

4 Main Results

The goal of this section is to compare the entropy and Kolmogorov numbers of the embeddingIk,µ :
H → L∞(µ). To this end, our first auxiliary result combines Carl’s inequality with its inversed
versions mentioned in Section 3.

Lemma 4.1. LetH be a Hilbert space,F be a Banach spaceS : H → F be a compact operator, and
p ∈ (0, 2). Then, the following equivalence holds:

dn(S) ≺ n−1/p ⇐⇒ en(S) ≺ n−1/p . (17)

Moreover, ifF has the metric extension property, the equivalence is also true for p ∈ (2,∞), and in
addition, we have

dn(S) ≍ n−1/p ⇐⇒ en(S) ≍ n−1/p . (18)

Finally, if F ′ has type 2, then(17)and (18)hold for all p ∈ (0,∞).

Proof of Lemma 4.1: Independent ofp andF , the implication “⇒” in (17) is a direct consequence of
Carl’s inequality (7). For the proof of the converse implication we first consider the casep ∈ (0, 2).
By (4) we then know thaten(S′) ≺ n−1/p, and consequently (15) shows thatcn(S

′) ≺ n−1/p. Using
cn(S

′) = dn(S), which holds for compact operatorsS, we then obtain the assertion. In the case
p ∈ (2,∞), we conclude by (16) thattn(S) ≺ n−1/p. Moreover,F has the metric extension property,
and therefore we havecn(SQE) = an(SQE) by (5). This leads to

tn(S) = an(IFSQE) = cn(SQE) = an(SQE) = dn(S) ,
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and hence we finddn(S) ≺ n−1/p. In addition, (18) follows from combining (7) and (16) as in the
proof of [17, Proposition 2]. Finally, the last assertion can be shown analogously using [5, Theorem
6] instead of (16).

Note that the equivalences obtained in Lemma 4.1 also holds for regular sequences of the form
αn = n−1/p(log n)β , wherep satisfies the constraints of Lemma 4.1 andβ ∈ R. Indeed, for the
second and third case this can be deduced from (7) and (16), respectively [5, Theorem 6], while in the
first case this follows from (7) , (15), and [12, G.3.2].

Clearly, Lemma 4.1 in particular holds for compact operators S : H → Lp(µ). Our next result
shows that for some spacesLp(µ) even more information can be obtained.

Theorem 4.2. LetH be a Hilbert space,µ be a finite measure, andp ∈ [2,∞]. Assume that we have
a compact operatorS : H → Lp(µ) such that

en
(

S : H → L2(µ)
)

≍ n−1/α (19)

for someα ∈ (0, 2). Then, for allq ∈ [2, p], the following equivalence hold:

dn
(

S : H → Lq(µ)
)

≍ n−1/α ⇐⇒ en
(

S : H → Lq(µ)
)

≍ n−1/α .

Proof of Theorem 4.2: “⇒”: By Lemma 4.1, or more precisely, Carl’s inequality, we already know
thaten(S : H → Lq(µ)) ≺ n−1/α. Moreover, usingLq(µ) →֒ L2(µ) we find

n−1/α ≍ en
(

S : H → L2(µ)
)

≤ ‖ id : Lq(µ) → L2(µ)‖ en
(

S : H → Lq(µ)
)

,

and thusen(S : H → Lq(µ)) ≍ n−1/α.
“⇐”: By Lemma 4.1, we already know thatdn(S : H → Lq(µ)) ≺ n−1/α. Moreover, by (19),

(10), and (6) we obtaindn(S : H → L2(µ)) ≍ n−1/α, and hence we find

n−1/α ≍ dn
(

S : H → L2(µ)
)

≤ ‖ id : Lq(µ) → L2(µ)‖ dn
(

S : H → Lq(µ)
)

,

that isdn(S : H → Lq(µ)) ≍ n−1/α.

Note that the entropy numbers in condition (19) can be replaced by the Kolmogorov numbers.
Indeed, (10) shows that (19) is equivalent toan(S : H → L2(µ)) ≍ n−1/α, and since we further have
an(S) = dn(S), we see that condition (19) can be replaced by

dn
(

S : H → L2(µ)
)

≍ n−1/α . (20)

In addition, ifH is an RKHS with kernelk andTk denotes the integral operator associated withk,
then (20), or (19), can be replaced by

λn

(

Tk : L2(µ) → L2(µ)
)

≍ n−2/α (21)

with the help of (11). The following corollary summarizes our findings in this situation in view of the
gap discussed in the introduction.

Corollary 4.3. Let H be an RKHS of a bounded measurable kernelk on (X,A) andµ be a finite
measure on theσ-algebraA. If, in addition, we have

en
(

Ik,µ : H → L2(µ)
)

≍ en
(

Ik,µ : H → L∞(µ)
)

≍ n−1/α

for someα ∈ (0, 2), then we havedn(H,L∞(µ)) ≍ n−1/α andn−1/α+1/2 ≺ In(H,L∞(µ)).
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Proof of Corollary 4.3: The behaviordn(Ik,µ : H → L∞(µ)) ≍ n−1/α follows from Theorem 4.2.
Moreover, we knowλi ≍ i−2/α by (11) and (13), and therefore, (3) shows

n−1/α+1/2 ≺

√

√

√

√

∞
∑

i=n+1

i−2/α ≺

√

√

√

√

∞
∑

i=n+1

λi ≤
√

µ(X) In
(

H,L∞(µ)
)

,

that is, we have shown the second assertion, too.

Our last result in this section shows that in the RKHS case andq = ∞ the asymptotic behavior
en(Ik,µ : H → L2(µ)) ≍ n−1/α is inherited from certain interpolation spaces betweenH andL2(µ).
For its formulation we need the scale of interpolation spaces of the real method, see e.g. [2, Chapter
5], as well as the notation[H]∼ := {[f ]∼ : f ∈ H}.

Theorem 4.4. Let H be an RKHS of a bounded measurable kernelk on (X,A) and µ be a finite
measure on theσ-algebraA such thatA is µ-complete and that

en
(

Ik,µ : H → L2(µ)
)

≍ n−1/α (22)

for someα ∈ (0, 2). In addition assume that the interpolation space[L2(µ), [H]∼]β,2 is compactly
embedded intoL∞(µ) for someβ ∈ (α/2, 1] with

en
(

[L2(µ), [H]∼]β,2 →֒ L∞(µ)
)

≺ n−β/α (23)

Then we have

en
(

[L2(µ), [H]∼]γ,2 →֒ L∞(µ)
)

≍ en
(

[L2(µ), [H]∼]γ,2 →֒ L2(µ)
)

≍ n−γ/α (24)

for all γ ∈ [β, 1], as well asen(Ik,µ : H → L∞(µ)) ≍ n−1/α.

Before we prove this theorem we note that the interpolation spaces[L2(µ), [H]∼]γ,2 can be identi-
fied as RKHSs provided that the assumptions of Theorem 4.4 aresatisfied. For details we refer to the
last part of the following proof.

Proof of Theorem 4.4: We first consider the caseβ ∈ (α/2, 1). Sinceγ ≥ β, we then know
[L2(µ), [H]∼]γ,2 →֒ [L2(µ), [H]∼]β,2 by e.g. [19, Theorems 4.3 and 4.6], and consequently we have
the following diagram of bounded linear embeddings:

[L2(µ), [H]∼]γ,2 L∞(µ)

[L2(µ), [H]∼]β,2

✲

❅
❅
❅
❅❅❘ �

�
�
��✒

The multiplicativity of entropy numbers thus yields

e2n
(

[L2(µ), [H]∼]γ,2 →֒ L∞(µ)
)

≤ en
(

[L2(µ), [H]∼]γ,2 →֒ [L2(µ), [H]∼]β,2
)

· en
(

[L2(µ), [H]∼]β,2 →֒ L∞(µ)
)

. (25)

Now recall from [19, Equation (36) and Theorem 4.6] that

[L2(µ), [H]∼]γ,2 =

{

∑

i∈I

aiλ
γ/2
i [ei]∼ : (ai) ∈ ℓ2(I)

}

, (26)
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where (λi) is the sequence of eigenvalues of the integral operatorTk : L2(µ) → L2(µ) and

([ei]∼) is a corresponding ONS of eigenfunctions. Moreover, the system (λ
γ/2
i [ei]∼) is an ONB of

[L2(µ), [H]∼]γ,2 with respect to an equivalent Hilbert space norm on[L2(µ), [H]∼]γ,2. Consequently,
we have the following diagram for the embedding[L2(µ), [H]∼]γ,2 →֒ [L2(µ), [H]∼]β,2:

[L2(µ), [H]∼]γ,2 [L2(µ), [H]∼]β,2

ℓ2(I) ℓ2(I)

✲

❄

✻

✲

Φγ Φ−1
β

D
(γ−β)/2
Λ

whereΦγ andΦβ are the coordinate mappings andD(γ−β)/2
Λ is the diagonal operator associated to

the sequence(λ(γ−β)/2
i ). By (22), (11), and (13) we conclude thatλ

(γ−β)/2
i ≍ i−(γ−β)/α. Using [4,

Proposition 2], which estimates entropy numbers of diagonal operators, and the diagram above, we
thus find

en
(

[L2(µ), [H]∼]γ,2 →֒ [L2(µ), [H]∼]β,2
)

≺ n−(γ−β)/α .

Combining this with (25), (23), and the fact thatµ is a finite measure we obtain

en
(

[L2(µ), [H]∼]γ,2 →֒ L2(µ)
)

≺ en
(

[L2(µ), [H]∼]γ,2 →֒ L∞(µ)
)

≺ n−γ/α .

To establish the lower bound, we recall from [19, Proposition 4.2 and Theorems 5.3 and 4.6] that, for
a suitable suitableµ-zero setN , [L2(µ), [H]∼]γ,2 can be identified with the RKHS overX \N , whose
kernel is given by

kγµ(x, x
′) :=

∑

i∈I

λγ
i ei(x)ei(x

′) , x, x′ ∈ X \N .

Since the eigenvalues of the corresponding integral operator areλγ
i ≍ i−2γ/α, we conclude from (11)

and (13) thaten
(

[L2(µ), [H]∼]γ,2 →֒ L2(µ)
)

≍ n−γ/α.
Finally, usingran Ik,µ = [H]∼ and Theorem 4.2 the remaining assertions, namely the caseβ =

γ = 1 as well as the assertion forIk,µ : H → L∞(µ) can be proven analogously.

Theorem 4.4 essentially states that the property (24) is passed down from the large spaces in the
scale of spaces[L2(µ), [H]∼]s,2 to the smaller ones. Moreover, using the spaces on the right hand side
of (26) instead of the interpolation spaces, it can easily beseen that the result is also true forγ > 1. In
addition, the representation (26) suggests that the eigenfunctions may play a crucial role in determining
whether (24) holds. In this respect note that [10, Lemma 5.1]essentially showed the continuous
embedding[L2(µ), [H]∼]α/2,1 →֒ L∞(µ) provided that (22) holds and that the eigenfunctions are not
only bounded but uniformly bounded. From this it is easy to conclude that[L2(µ), [H]∼]β,2 →֒ L∞(µ)
holds for allβ ∈ (α/2, 1). In addition, the case[L2(µ), [H]∼]β,2 →֒ L∞(µ) for β ∈ (0, α/2] can
always be excluded, since [19, Theorem 5.3] shows that such an inclusion would imply

∑

i≥1 λ
β
i < ∞

for the eigenvalues of the integral operatorTk, and this summability clearly contradicts (22) by (11)
and (13). Summarizing, we think that understanding when theasymptotic equivalence (24) holds for
someγ close toα/2 is an interesting question for future research.

5 An Example: Sobolev Spaces

The goal of this section is to illustrate the consequences ofLemma 4.1 and Theorem 4.2 by applying
them to embeddings of the formid : H → Lp(µ), whereH is a Sobolev space,X ⊂ R

d is a suitable
subset,µ is the Lebesgue measure onX, andp ∈ [2,∞].

9



We begin by recalling some basics on Sobolev spaces. To this end letX ⊂ R
d be a non-empty,

open, and conncected subset satisfying the strong local Lipschitz condition in the sense of [1, p. 83].
For m ≥ 1 being an integer, we denote the classical Sobolev space onX that is defined by weak
derivatives, see e.g. [1, p. 59-60], byWm(X) := Wm,2(X).

Form > d/2, it is well-known that the embeddingid : Wm(X) → CB(X) is compact, see e.g. [1,
Theorem 6.3] in combination with [1, p. 84]. Therefore, the embeddingsid : Wm(X) → L∞(X) are
compact, and ifX has finite Lebesgue measure, we also obtain the compactness of the the embeddings
id : Wm(X) → Lp(X), where we followed the standard notationLp(X) := Lp(µ). Note that an
immediate consequence of this is that the approximation andentropy numbers of these embeddings
converge to zero. Let us recall some results from [8] that describe the asymptotic behavior of these
numbers. To this end, note that a consequence of Stein’s extension theorem, see [1, Theorem 5.24] is
that

‖f‖ := inf
{

‖g‖Wm(Rd) : g ∈ Wm(Rd) with g|X = f
}

, (27)

wheref ∈ Wm(X), defines an equivalent norm onWm(X). Moreover, if for s ∈ [0,∞) and
p, q,∈ (0,∞] we writeBs

p,q(R
d) andF s

p,q(R
d) for the Besov and Triebel-Lizorkin spaces in the sense

of [8, p. 24f], then we haveBm
2,2(R

d) = Fm
2,2(R

d) = Wm(Rd) by [8, p. 44 and p. 25]. By (27) we
conclude that the spacesBm

2,2(X) defined by restrictions as in [8, p. 57] satisfy

Bm
2,2(X) = Wm(X) (28)

up to equivalent norms. Moreover, [8, p. 25] shows thatF 0
p,2(R

d) = Lp(R
d), and by [8, p. 44] we find

continuous embeddingsB0
p,2(R

d) →֒ Lp(R
d) →֒ B0

p,p(R
d) for all p ∈ [2,∞). By (27) we conclude

that
B0

p,2(X) →֒ Lp(X) →֒ B0
p,p(X) . (29)

Similarly, recall that we have continuous embeddingsB0
∞,1(R

d) →֒ L∞(Rd) →֒ B0
∞,∞(Rd), see

e.g. [8, p. 44], and thus we also have the continuous embeddings

B0
∞,1(X) →֒ L∞(X) →֒ B0

∞,∞(X) . (30)

Let us now assume thatX is open, connected, and bounded, and that it has aC∞-boundary. Moreover,
we fix somes1, s2 ∈ [0,∞) andp1, p2, q1, q2 ∈ (0,∞] such thats1 − s2 > d

(

1
p1

− 1
p2

)

+
. Then [8,

Theorem 2 on p. 118] shows that

en
(

id : Bs1
p1,q1(X) → Bs2

p2,q2(X)
)

≍ n−(s1−s2)/d , (31)

and if we additionally assume that2 ≤ p1 ≤ p2 ≤ ∞, then [8, p. 119] shows that

an
(

id : Bs1
p1,q1(X) → Bs2

p2,q2(X)
)

≍ n−(s1−s2)/d+1/p1−1/p2 . (32)

In particular, fors1 = s, p1 = q1 = 2, s2 = 0, p2 = p ∈ [2,∞], andq2 = q ∈ [1,∞] with
s > d(12 − 1

p) we obtain

en
(

id : Bs
2,2(X) → B0

p,q(X)
)

≍ n−s/d

an
(

id : Bs
2,2(X) → B0

p,q(X)
)

≍ n−s/d+1/2−1/p .

By (28), (29), and (30) we conclude that

en
(

id : Wm(X) → Lp(X)
)

≍ n−m/d (33)

an
(

id : Wm(X) → Lp(X)
)

≍ n−m/d+1/2−1/p (34)
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for all m ∈ N with m > d(12 − 1
p). In other words, the gap between the entropy and approximation

numbers is of the ordern1/2−1/p. Note that for the Hilbert space case, i.e.p = 2, the gap vanishes as
already observed in Section 3, while in the other extremep = ∞, the gap is of the ordern1/2. Finally,
we see by (27) that these asymptotics still hold, if we only assume thatX is an open, connected, and
bounded subset ofRd satisfying the strong local Lipschitz condition.

To illustrate these findings, we now consider the linear interpolationn-width mentioned in the
introduction. To this end, we fix anm ∈ N with m > d/2 and letH = Wm(X) with equivalent
norms. Then (34) shows

n−m/d+1/2−1/p ≍ an+1

(

(id : H → Lp(X)
)

≤ In
(

H,Lp(X)
)

for all p ∈ [2,∞]. Here we note that in the casep = ∞, the lower boundn−m/d+1/2 ≺
In
(

H,L∞(X)
)

already follows from (3). Moreover, (33) in combination with Theorem 4.2 yields

dn
(

id : H → Lp(X)
)

≍ n−m/d (35)

for all p ∈ [2,∞]. In other words, the gap of1/2 − 1/p actually occurs between the non-linear
approximation described bydn and the linear approximation described byan. Moreover, the gap is
maximal forp = ∞ and vanishes in the other extreme casep = 2.

We like to mention that (35) appears to be new, since it is not contained in the list of known
asymptotics compiled in [21]. In addition, the gap betweendn andan is solely derived from the same
gap betweenen andan, that is, from (33) and (34). In other words, we will observe agap betweendn
andan if and only if there is a gap betweenen andan. Fortunately, the latter two quantities have been
considered for various other spacesH and measuresµ, so that it should be possible to compile a list
of cases, in which the gap occurs.

For convenience, the following corollary summarizes our findings for sufficiently large subspaces
of Wm(X). It particularly applies to kernels of many standard Gaussian processes, such as the (iter-
ated) Brownian motion and -bridge, see e.g. the numerical example in [14].

Corollary 5.1. LetX ⊂ R
d be an open, connected, and bounded subset satisfying the strong Lipschitz

condition. Moreover, letH be an RKHS overX with kernelk such thatH →֒ Wm(X) for some
integerm > d/2. Assume, in addition, that

en
(

Ik,µ : H → L2(X)
)

≍ n−m/d

holds. Then we have

dn
(

H,L∞(µ)
)

≍ n−m/d and n−m/d+1/2 ≺ In
(

H,L∞(µ)
)

.

In addition, ifH = Wm(X) with equivalent norms, then, for allp ∈ [2,∞], we have

dn
(

H,Lp(µ)
)

≍ n−m/d and n−m/d+1/2−1/p ≍ an
(

H,Lp(µ)
)

.

Proof of Corollary 5.1: We first note that the sequence of estimates

n−m/d ≍ en
(

Ik,µ : H → L2(X)
)

≺ en
(

Ik,µ : H → L∞(X)
)

≺ en
(

Ik,µ : Wm → L∞(X)
)

≍ n−m/d

yieldsen
(

Ik,µ : H → L∞(X)
)

≍ n−m/d, and therefore Corollary 4.3 shows the first two assertions.
The second set of asymptotic equivalences immediately follows from our findings in the text above
together with the muliplicativity of the approximation numbers.

Acknowledgement. I deeply thank R. Schaback, for pointing me to the question regarding the gap
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transposé.C. R. Acad. Sci. Paris, Ser. I, 301:743–746, 1985.

[12] A. Pietsch.Eigenvalues and s-Numbers. Geest & Portig K.-G., Leipzig, 1987.

[13] A. Pinkus.n-Widths in Approximation Theory. Springer-Verlag, Berlin, 1985.

[14] G. Santin and R. Schaback. Approximation of eigenfunctions in kernel-based spaces.Adv. Comput. Math.,
pages 1–21, 2016.

[15] R. Schaback and H. Wendland. Inverse and saturation theorems for radial basis function interpolation.
Math. Comp., 71:669–681, 2002.

[16] R. Schaback and H. Wendland. Approximation by positivedefinite kernels. In M.D. Buhmann and D.H.
Mache, editors,Advanced Problems in Constructive Approximation: 3rd International Dortmund Meeting
on Approximation Theory (IDoMAT) 2001, pages 203–222. Birkhäuser Basel, Basel, 2003.
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