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Abstract

Minkowski’s question mark function is the distribution function of a singular continuous

measure: we study this measure from the point of view of logarithmic potential theory and

orthogonal polynomials. We conjecture that it is regular, in the sense of Ullman–Stahl–Totik

and moreover it belongs to a Nevai class: we provide numerical evidence of the validity of

these conjectures. In addition, we study the zeros of its orthogonal polynomials and the as-

sociated Christoffel functions, for which asymptotic formulae are derived. As a by–product,

we derive upper and lower bounds to the Hausdorff dimension of Minkowski’s measure. Rig-

orous results and numerical techniques are based upon Iterated Function Systems composed

of Möbius maps.
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Regular Measures; Möbius Iterated Function Systems; Nevai class; Gaussian integration;

Christoffel functions.

MATH Subj. Class. 42C05; 47B36; 11A55; 11B57; 37D40

1 Introduction: Minkowski’s Q function and its singular

measure

1.1 Definitions and goals of the paper

Minkowski’s question–mark function Q(x) can be concisely defined—though not in the the most
transparent way—by writing the point x ∈ [0, 1] in its continued fraction representation, x =

[n1, n2, . . . , ], by setting Nj(x) =
∑j

l=1 nl, and by defining Q(x) as the sum of the series [16, 47]

Q(x) =

∞
∑

j=1

(−1)j+12−Nj(x)+1. (1)

This function was originally constructed to map the rationals to the solutions of quadratic equa-
tions with rational coefficients in a continuous, order preserving way [41], but it successively
appeared that it has much wider implications in many fields of mathematics. A graph of Q(x)
is part of Figures 9 and 11 below. It is remarkable that this graph can be seen as the attractor
of an Iterated Function System (IFS) composed of Möbius maps [13], so that Q(x) also belongs
to the family of fractal interpolation functions [11, 12].

In this paper we are interested in the singular-continuous measure µ for which Q(x) is the
distribution function:

Q(x) =

∫ x

0

dµ. (2)
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For short, in this paper we will call this measure the Minkowski’s measure and we will reserve the
symbol µ to denote it. It has been investigated in relation to singularity [16], Hölder continuity
[47], the so–called thermodynamical formalism [28, 32, 33, 34], the asymptotic behavior of its
moments [2, 3] and of its Fourier transform [31, 43, 47, 58, 59], so that many of its properties
have been fully clarified.

To the contrary, the characterization of this measure from the point of view of orthogonal
polynomials and logarithmic potential theory [46, 50] is still an open problem. This problem
is the object of a recent publication by Dresse and Van Assche [17]; by using a more powerful
technique, which describes Minkowski’s measure as the balanced measure of an IFS (to be defined
below), we are in the position to correct their findings and to provide theoretical arguments
and compelling numerical evidence in favor of the precise characterization of µ in terms of two
principal conjectures:

Conjecture 1 Minkowski’s measure µ is regular in the sense of Ullman-Stahl-Totik.

Conjecture 2 Minkowski’s measure µ belongs to the Nevai class N(14 ,
1
2).

Let us briefly define the terms of these conjectures. They are linked to different asymp-
totic behaviors of the orthogonal polynomials {pj(µ;x)}j∈N of Minkowski’s measure µ. Quite
generally, given a positive Borel measure µ supported on a compact subset E of the real axis,
orthogonal polynomials are defined by the relation

∫

pj(µ;x)pm(µ;x)dµ(x) = δjm, where δjm is
the Kronecker delta. They satisfy the three-terms recurrence relation

xpj(µ;x) = aj+1pj+1(µ;x) + bjpj(µ;x) + ajpj−1(µ;x), (3)

initialized by a0 = 0 and p−1(µ; s) = 0, p0(µ; s) = 1, that can be encoded in the Jacobi matrix
J(µ):

J(µ) :=







b0 a1
a1 b1 a2

. . .
. . .

. . .






. (4)

For compact support E the moment problem is determined [1] and the matrix J(µ) is in one–
to–one relation with the measure µ. At times, it is also important to consider monic orthogonal
polynomials, Pj(µ;x), normalized so that Pj(µ;x) = xj + qj−1(x), in which qj−1 is a polynomial
of degree j − 1. Of course, the two differ by a constant factor: pj = γjPj and from eq. (3) it

easily follows that 1/γj =
∏j

l=1 al.
A well established theory, started by the classical works of Geronimus and Szegö [25, 51],

classifies different asymptotic behaviors of these polynomials, which can be summarized as follows,
in the case of a measure whose support is [0, 1]:

Root asymptotics: For z not in [0, 1], when the degree j tends to infinity, pj(µ; z)
1/j tends

to φ(z) = 2z−1+2
√
z2 − z, the function that maps [0, 1] to the unit circle in the complex plane;

equivalently, γ
−1/j
j → Cap([0, 1]) = 1

4 .
Ratio asymptotics: For z not in [0, 1], when the degree j tends to infinity, pj+1(µ; z)/pj(µ; z)

tends to φ(z); equivalently, aj = γj−1/γj → 1
4 , bj → 0.

Power asymptotics: For z not in [0, 1], when the degree j tends to infinity, pj(µ; z)/φ(z)
j

tends to a function g(z); equivalently, γj/4
j → γ > 0.

Convergence in the above is understood to be uniform for z in compact sets in the complement
of [0, 1] in the complex plane. Observe from the start that Minkowski’s singular continuous
measure µ can not fulfill power asymptotics, for otherwise it would belong to Szegö class, i.e.
it would be absolutely continuous, with a density satisfying the well known Szegö condition.
Therefore, if validated, Conjectures 1 (which is equivalent to root asymptotics) and 2 (equivalent
to ratio asymptotics) would grant the strongest possible regularity to which µ can aspire, in the
above hierarchy.

It is remarkable that these asymptotics have a simple, equivalent definition in terms of the
Jacobi matrix of µ. Therefore, the first goal of this paper is its precise computation—for which
we will employ an algorithm that we have introduced in [37]—and the numerical verification of
the above conjectures.
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The second main goal of the paper, linked to the first, is the investigation of three sequences
of discrete measures that are related to µ and of their limits. In this paper, convergence in the
space M([0, 1]) of regular Borel probability measures on [0, 1] will always be understood in weak
star sense, weakly for short, even when not specified: a sequence µj converges to µ if and only
if the integrals of any continuous function f with respect to µj tend to the integral of f with
respect to µ. The measures under investigation are supported on the zeros of the orthogonal
polynomials of µ. We will use the notation ζjl to denote these zeros:

pj(µ; ζ
j
l ) = 0, l = 1, . . . , j. (5)

These measures are: the so–called measure of the zeros, the measure underlying Gaussian inte-
gration, the measure linked to root asymptotics. Let us briefly review their definition and main
properties.

The measure of zeros νj is obtained by placing atomic measures of equal weight at the zeros
of the orthogonal polynomials:

νj =
1

j

j
∑

l=1

δζj

l

. (6)

Here and in the following, δx is the unit mass atomic measure supported at x. The measure νj is
termed the density of states in the physical literature. It can be used to define a further regularity
property. Suppose that E, the support of µ, has positive capacity and that νj converges weakly to
the equilibrium measure νE on this support [46] when the polynomial degree j tends to infinity.
Then, the orthogonal polynomials of µ are said to have regular asymptotic zero distribution:
this is definition 3.1.3 of [50], that is a reference also for the following result. Observe that the
support of Minkowski’s measure is the interval E = [0, 1], which has empty interior (as a set in
the complex plane) and positive capacity. In such a case, regularity of the zero distribution is
equivalent to regularity of the measure µ (Theorem 3.1.4 [50]), which is also equivalent to root
asymptotics (Theorems 3.1.1 and 3.2.1 [50]).

The measure underlying Gaussian integration µj is obtained replacing the equal weights in

eq. (6) with the so–called Christoffel numbers wj
l (that we shall also call Gaussian weights and

are defined in eq. (37) below):

µj =

j
∑

l=1

wj
l δζj

l

. (7)

At difference with νj , the sequence µj always converge: it is well known that integrals of poly-
nomials up to degree 2j − 1 with respect to µ and µj coincide, so that µj tends to µ weakly.

The measure linked to root asymptotics σj is the third type of measure that we will study in
the paper. It is defined via yet another choice of the weights placed at the location of the zeros:

σj =

j
∑

l=1

wj
l p

2
j−1(µ; ζ

j
l )δζj

l

. (8)

Weak star convergence of the sequence σj is equivalent to the fact that µ belongs to the Nevai class
of measures N(a, b) [55]. Measures in this class are those for which diagonal and out-diagonal
Jacobi matrix entries tend to a limit as j tends to infinity:

lim
j→∞

(aj , bj) = (a, b). (9)

In our case, because of symmetry, bj = 1/2 for all values of j. In turn, Nevai class is related, as
seen above, to ratio asymptotics.

Clearly, since the Nevai class is a subset of that of regular measures, proving that Minkowski’s
measure µ belongs to this class also implies that it is regular, so that we could have focused only
on this last problem. Nonetheless, we will describe both conjectures separately and in order of
difficulty, because much is to be learned in each step.
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1.2 Organization of the paper and summary of results

The peculiarities of the Minskowski measure are best revealed when seeing it as a balanced
measure of a Möbius Iterated Function System. In the next section we review two IFS, composed
of Möbius maps, that can be associated to Minkowski’s question mark function [13, 37] and we
briefly comment on their relations with the theory of dynamical systems. We show how they
can be used to construct different sequences of probability measures that converge weakly to
Minkowski’s measure µ.

In Section 3 the previous theory is translated into two algorithms for the computation of the
Jacobi matrix J(µ). The first is based upon the Jacobi matrix of a finite sum of atomic measures,
which approximates µ. We show that it is largely inefficient, when applied to the present case.
This also explains the lack of convergence observed in Section 2 of [17]. The second is the
technique proposed in [37]: in two subsections we test it for speed of convergence and precision.
These tests are mandatory, since the numerical results of this paper rely on the computed entries
of the Jacobi matrix J(µ). We justify experimentally the claim that this algorithm, when run in
double precision Fortran on a standard desktop computer, can provide Jacobi matrices of rank
about 60,000 with a controlled error.

The main part of the paper presents the investigation of the conjectures mentioned before,
as well as further conjectures and finer details of Minkowski’s measure and of its orthogonal
polynomials. We start in Section 4 by analyzing the regularity of the measure µ, i.e. Conjecture 1,

via convergence of the sequence γ
−1/j
j to the value 1

4 . We observe that this convergence holds and

it is of power–law type: there exist two positive constants A and B so that |γ−1/j
j − 1

4 | ∼ Aj−B.
The capital letters A and B will indicate throughout the paper different pairs of constants that
appear in power-law behaviors.

Next, we study the regular asymptotic distribution of the zeros, as defined above. In Section
5 we provide numerical evidence of a stronger property, expressed by
Conjecture 3: The zeros of Minkowski’s polynomials converge uniformly to the zeros of the
Chebyshev polynomials of the same order, as j tends to infinity.
In Section 6 regularity of the distribution of the zeros is established via the analysis of the so–
called discrepancy [5, 6, 7] between the equilibrium measure νE and the sequence of measures νj .
Our findings are summarized in
Conjecture 4: As j tends to infinity, the discrepancy D(νE , νj) tends to zero and convergence
is of power–law type.

In the central Section 7 we examine the measure of Gaussian integration µj in eq. (7). This
detailed analysis best reveals the characteristic features of Minkowski’s measure µ. Together
with Gaussian nodes (i.e. the zeros of the orthogonal polynomials) that have been studied in the
previous sections, we here investigate Christoffel numbers. They can be numerically computed
in different ways [20, 21], the most common being the Golub–Welsh algorithm [26]. To the
contrary, this latter fails in the case of Minkowski’s measure, but in its stead we profitably use a
formula due to Shohat [49] (see eq. (37) below) based on the reproducing kernel of the orthogonal
polynomials.

The reason behind the failure of Golub–Welsh in this case is a distinctive feature of Minkowski’s
measure µ: the presence of extremely small Christoffel numbers even at moderate polynomial
orders j—that become of the order of 10−1000 for j ≃ 60, 000. We describe a reliable technique
for the computation of the atoms composing the measure µj , which can be appropriately dubbed
mathematical neutrinos, for their elusive mass. The technique is inspired by a common practice
in the calculation of Lyapunov exponents. A practical result of this computation is the deriva-
tion of rapidly converging upper and lower bounds to the value of the Hausdorff dimension of
the measure µ, in Sect. 7.2.

The theoretical analysis of Gaussian weights–Christoffel functions is carried out to a large
detail in Sections 7.3 and 7.4, Propositions 1 and 2, which can be briefly and informally summa-
rized as follows:
Proposition 1: For sufficiently large j, the logarithm of the average amplitude of weights wj

l ,

when ζjl is in the neighborhood of the rational point 1
q , is bounded between two explicit functions

reported in eq. (54).
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Proposition 2: The logarithm of the Christoffel functions λj(x) has an asymptotic singular
behavior of the kind log(λj(x)) ∼ − log(2)/(q2|x− 1

q |)− log(j), for x in the neighborhood of 1
q .

These results are a consequence of regularity of the measure µ and of the non–analytic behavior
of Q at rational values, described in Lemma 4, Section 7.3. The theory presented in Section
7 contains much more information, which is discussed at length with the aid of detailed figures
and fits with the hierarchical structure of the so-called Farey tree, defined in Remark 1, Section
3.1. We perform the analysis around the Farey points 1

q , q integer, but the techniques employed
in Lemma 4 permit to treat the case of any rational point.

Finally, in Section 8, we try to assess whether Minkowski’s question mark measure belongs to
the Nevai class N(14 ,

1
2 ). We do this in two ways. The first is the direct verification of convergence

of Jacobi matrix elements. Our data reveal that the out–diagonal entries tend to the limit value
one quarter at a slow pace, which nonetheless seems to be of power–law type. This yields a
stronger version of Conjecture 2:
Conjecture 5: Convergence of the Jacobi matrix elements of Minkowski’s measure is of power–
law type: there exist two positive constants A,B such that |aj − 1

4 | < Aj−B.
In the process, we also show that the computed matrix elements are consistent with the theoretical
result that stronger regularity properties, such as Szegö asymptotics, do not hold. The second
method is via the analysis of the measures σj defined above in eq. (8), which are associated
with ratio asymptotics: by showing numerically that the Hutchinson distance between σj and
the expected limit measure σE vanishes when j tends to infinity we provide further evidence in
favor of enlisting µ in the Nevai class:
Conjecture 6: Convergence of the sequence of measures σj to σE is of power–law type: there
exist two positive constants A,B such that the Hutchinson distance verifies d(σj , σE) < Aj−B.

In the Conclusion we briefly comment on the relevance of these results and on possible ex-
tensions of this analysis.

2 Möbius Iterated Function Systems

Minkowski’s question mark function also appears in dynamical systems: for instance, it makes
the conjugation of the two dynamical systems generated by the tent and Farey maps on the unit
interval [45, 15, 14]. But a second aspect is more important for the present work.

In 1988 Gutzwiller and Mandelbrot [28] studied coding functions for the motion of billiards
in hyperbolic space [48]. Because of the negative curvature of these spaces, these trajectories are
highly unstable and indeed they provide a principal model of chaotic system [8]. Gutzwiller’s
motivation was to find a purely abstract analogue of the coding function of the anisotropic Kepler
problem [29], another strongly chaotic system. By its very nature, a coding function encodes
in its value the infinite symbolic history of a trajectory. Without entering in the details of
the definition of this function, it is enough to remark that, in the case of a particular triangular
billiard, the Gutzwiller–Mandelbrot coding function can be re-written in the form (1) and hence it
coincides with Minkowski’sQ function. By employing the symmetry properties of such hyperbolic
billiards, we were able to show that this function—as well as the coding functions of more general
hyperbolic billiards and also of the anisotropic Kepler system—can be described by Iterated
Function Systems composed of Möbius maps [13].

Recall that a hyperbolic IFS [30, 10, 9] is a collection of contractive maps Φi : X → X ,
i = 1, . . . ,M , on a compact metric space X . For these systems, there exists a unique compact
set A, called the attractor of the IFS, that solves the equation

A =
⋃

i=1,...,M

Φi(A) := Φ(A). (10)

The first IFS associated with Minkowski’s function Q acts on the unit square, X = [0, 1]2,
and has the graph of Q as attractor. This IFS can be constructed as follows. Let the maps Mi

and Pi, i = 1, 2 be defined as

M1(x) =
x

1+x , P1(y) =
y
2 ,

M2(x) =
1

2−x , P2(y) =
y+1
2

(11)
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and let us write
Φi(x, y) = (Mi(x), Pi(y)), i = 1, 2. (12)

Then, the following results hold [13]:

Theorem 1 Let {Φi(x, y), i = 1, 2} be the IFS on the unit square defined in eqs. (11),(12). Its
attractor is A = {(x,Q(x)), x ∈ [0, 1]} and A = limn→∞ Φn(K) in the Hausdorff metric, where
K is any non–empty compact set in [0, 1]2.

Corollary 1 It is convenient to take K = {(x, x), x ∈ [0, 1]}, the graph of the identity function:
then, for any n, Φn(K) is the graph of a function Qn(x) that tends to Minkowski’s function Q(x)
uniformly when n tends to infinity. Thanks to the above, one also proves the symmetries

Q(Mi(x)) = Pi(Q(x)), i = 1, 2. (13)

This procedure was used to produce the graph of Q(x) in Fig. 2 of [13], Fig. 1 of [17] and Figures
9 and 11 herein.

The second IFS we consider is associated with Minkowski’s measure µ and it acts inX = [0, 1].
It is composed of the two Möbius maps φi = Mi just introduced. Clearly, using now the lower
case maps φi to define the IFS in eq. (10) implies that A = [0, 1], but our interest at this point
is not in the attractor.

Rather, recall that a balanced measure can be uniquely associated with a hyperbolic IFS
{φi : [0, 1] → [0, 1], i = 1, . . . ,M}, through the choice of a set of probabilities ρi > 0, i = 1, . . . ,M :
∑

i ρi = 1 [9, 10, 30]. The theory has been extended by Mendivil to transformations that
are contractive on average [40]. A transformation T ∗ on the space M([0, 1]) of regular Borel
probability measures on [0, 1] can be defined as follows: T ∗η is the unique measure that verifies
the equation

∫

f d(T ∗η) =

M
∑

i=1

ρi

∫

(f ◦ φi) dη, (14)

for any continuous function f . T ∗ is also known as the Perron–Frobenius operator. This operator
is contractive in the Hutchinson–Wesserstein–Kantorovich metrics (which is a metric that entails
weak star convergence) under which M([0, 1]) is a complete metric space: if η and θ belong to
M([0, 1]), their distance can be defined as

d(η, θ) = sup{
∫

fdη −
∫

fdθ}, (15)

where the supremum is taken over the set of Lip1 functions. The general theory applied to our
case provides the following results [13, 37]:

Theorem 2 Let {Mi(x), i = 1, 2} be the IFS maps defined in eq. (11), let ρ1 = ρ2 = 1
2 and let

T ∗ be the Perron–Frobenius operator defined in eq. (14) with φi =Mi. The balanced measure of
this IFS coincides with Minkowski’s measure µ:

T ∗µ = µ. (16)

Moreover, for any η ∈ M([0, 1]), the sequence of measures ηn converges weakly in M([0, 1]) to
Minkowski’s measure µ

ηn := (T ∗)nη → µ when n→ ∞. (17)

Corollary 2 On a par with Corollary 1, one can take η as the uniform measure in [0, 1] and
compute Minkowski’s measure µ as the limit of (T ∗)nη.
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3 The Möbius IFS algorithm

3.1 Supportive theory and brief description

Let us now describe how the Jacobi matrix of µ can be computed. The full supportive theory
has indeed been presented in [37], so that only a brief summary of it is reviewed here. The
first immediate observation is that, being the moment problem for η and ηn determinate, weak
convergence of ηn implies strong convergence of the corresponding Jacobi matrices (Theorem 1
in [37]):

Theorem 3 Let J(ηn) be the Jacobi matrix of ηn, defined as in eq. (17) and let (aj(ηn), bj(ηn))
be its entries. Then,

(aj(ηn), bj(ηn)) → (aj(µ), bj(µ)) when n→ ∞ (18)

for any value of j.

This result can be used in two ways. Firstly, one can compute the sequence of measures ηn
and successively J(ηn). This is similar to the approach followed by Dresse and Van Assche in
Sect. 2 of [17]: they have chosen a weakly convergent sequence of discrete measures ηn, composed
of 2n + 1 atoms, and computed by the discretized Stieltjes algorithm the corresponding Jacobi
matrices. In the IFS setting, one can take an initial measure η composed of a finite number L of
atoms, like e.g. η = δ 1

2
or η = 1

2 (δ0 + δ1). Therefore, if

ηn =

L
∑

l=1

cnl δxn
l
, (19)

the action of the Perron–Frobenius operator T ∗ yields

ηn+1 = T ∗ηn =
1

2

2
∑

i=1

L
∑

l=1

cnl δMi(xn
l
). (20)

The new measure is still composed of a finite number of atoms, 2L, at the positions Mi(x
n
l ) and

with the new weights cnl /2.

Remark 1 If η = δ 1
2
the atoms of ηn are located at xnl , which are the nodes of level n of the

Farey tree, rooted at x01 = 1
2 . This tree can therefore be defined recursively via eq. (20).

The Farey tree obviously plays a major role in the theory of the Minkowski measure, as will
appear below.

To compute the Jacobi matrix of the discrete measure ηn, one can use the discretized Stieltjes
algorithm [17], or better Gragg and Harrod’s algorithm [27], which is more stable and can be
enhanced to treat large sets of atoms [39]. Nonetheless, this approach is only helpful if relatively
small values of n are sufficient to yield a significant number of Jacobi matrix entries (at conver-
gence), because of the geometrical increase with n of the computational complexity. As remarked
in [17] and proven below we are in the opposite situation, which jeopardizes this approach.

Therefore, a different approach is needed. While Dresse and Van Assche considered a Cheby-
shev method based on ordinary moments, we employ the technique that we developed in [37]. We
start from equations (14) and (17), but we read them differently, as a transformation of Jacobi
matrices into Jacobi matrices, in which the measures ηn neither appear nor have to be computed.
This magic is effected in two steps [37].

1: Using the spectral theorem for J(η), one defines Mi(J(η)) for the two Möbius maps in eq.
(11): this is the content of Theorem 4 in [37], that also shows that numerical computation of
Mi(J(η)) requires the solution of a tridiagonal linear system.

2: The two Jacobi matrices Mi(J(η)), for i = 1, 2 are in one–to–one correspondence with
two measures, so that we use the algorithm of Elhay–Golub–Kautsky [18] to compute the Jacobi
matrix of their arithmetical average, which is precisely J(T ∗(η)).

7
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Figure 1: Difference ∆n
j = |anj − an−1

j | versus generation numbers n, for j =
125, 250, 500, 1000, 2000, 4000, 8000, 16000, 32000. Different curves can be ordered according to
the location of their sudden drop, increasing with j from left to right.

From an abstract point of view, the combination of 1 and 2 defines a map in the set of Jacobi
matrices of measures in M([0, 1]): we call it T : J ([0, 1]) → J ([0, 1]),

T (J(η)) = J(T ∗(η)), (21)

so that one can compute iteratively the left hand side (aj(ηn), bj(ηn)) in Theorem 3, eq. (18).
Original numerical experiments [37] showed convergence of Jacobi matrix elements up to

j = 4, 000 (see Fig. 3 in Sect. 6 of [37], where following Gutzwiller–Mandelbrot [28] Minkowski’s
Q function is called the slippery devil’s staircase). In this paper we need to push the technique
of [37] to much larger orders, to resolve the conjectures presented in the Introduction. To do this
without peril, we must first assess convergence and reliability of the Möbius IFS algorithm.

3.2 Speed of convergence

First of all, we test the speed of convergence in eq. (18). We start from the Jacobi matrix of the
uniform measure on [0, 1] (that is, from the recurrence relation of rescaled Legendre polynomials).
Of course, implementation of (21) requires a truncation of the Jacobi matrices involved: we fix
a large truncation, jmax = 40, 000, and we compute ∆n

j = |anj − an−1
j |, that is, the variation

of an element of the Jacobi matrix from the n-th iteration of the algorithm to the next. These
differences are plotted versus n in Figure 1, for geometrically increasing values of j. We observe
that the oscillations ∆n

j suddenly drop by orders of magnitude. This is a clear indication that
convergence has been reached in a finite subspace.

To verify this assumption and to quantify the number of iterations required, we define the
rank of the Jacobi matrix at numerical convergence within a threshold ǫ after n iterations as

Nǫ(n) := max{N s.t.
N
∑

j=1

|anj − an+1
j | ≤ ǫ}. (22)

In fact, according to eq. (22) the vector of matrix elements aj with 1 ≤ j ≤ Nǫ(n) vary less than
ǫ in L1 norm when one further iteration of the algorithm is effected after the n-th. This quantity

8



102

103

104

105

 100  200  400  800  1600  3200

N
ε(

n)

n

Figure 2: Range of numerical convergence Nǫ(n) (red) versus n in the case of Fig. 1 with
ǫ = 10−3. The fitting line (green) is a power–law, Nǫ(n) = AnB with A = .11 and B = 1.48.

is plotted versus n in Figure 2: one observes a regular increase of Nǫ(n) with n which indicates
three facts. The first is that convergence has been stably reached in the range 1 ≤ j ≤ Nǫ(n)
independently of truncation. The second is that the number of converged components increases
at a power–law rate: Nǫ(n) ∼ AnB. The third is that, while this increase is fully manageable in
the Möbius algorithm, it prevents the usage of discrete measures, as mentioned in the previous
subsection: in fact, assuming the same rate of convergence and required precision, a number of
atoms of the order of the exponential of N1/B would be needed in eqs. (19),(20) to compute N
Jacobi matrix elements.

The L1 norm employed in eq. (22) entails a rather cogent test since it also implies a bound
on the infinity norm. We can now compare our results with the table published in [17]. These
latter data were obtained via the Chebyshev algorithm from ordinary moments, programmed in
Maple with 400 digits arithmetics, to cope with the numerical instability of the technique. It
can be assumed that all digits reported are correct. We have therefore taken the square roots of
the tabulated a2j coefficients and retained the same number of significant digits, 20. We compare
these values with the values provided by Möbius IFS algorithm, coded in double precision Fortran
on a common desktop computer, reported with 15 significant digits. We observe almost perfect
agreement, the difference between the two data sets being less than 10−15 in all cases. This fact
is consistent with the data of Figure 1: the values of ∆n

j , for j = 125 (first curve, red) drop to a

value of about 10−15 after convergence, which takes place at about n = 150.
Unfortunately, the comparison in Table 3.2 cannot be exploited much further, because the

Chebyshev technique of [17] cannot be easily extended beyond j = 40. We have therefore to
develop different tests that rely uniquely on our data. A first indication follows again from
Figure 1, in which we observe that, after convergence, the values of ∆n

j oscillate around an
average value that increases with j. This increase is a clear sign of loss of precision that we now
investigate.

3.3 Precision of the truncated, fixed point Jacobi matrix

The Möbius IFS algorithm is an iterative technique that converges to a fixed point. The details
of such convergence clearly depend on the initial point of the iteration, i.e. the Jacobi matrix

9



j Algorithm aj
1 Möbius 0.202302932329981
1 Chebyshev 0.20230293232998066551
10 Möbius 0.215070562228327
10 Chebyshev 0.21507056222832743181
20 Möbius 0.224458577806858
20 Chebyshev 0.22445857780685732313
30 Möbius 0.221516521450380
30 Chebyshev 0.22151652145038000730
40 Möbius 0.236423204888560
40 Chebyshev 0.23642320488855968894

Table 1: Jacobi matrix elements aj , for j = 1, 10, 20, 30, 40 from the Möbius algorithm and from
Table 2 in [17] (Chebyshev algorithm).

input to the procedure. In our case, we have used the Jacobi matrix of Legendre polynomials on
[0, 1]. In any case, as observed in Figures 1 and 2, after a certain number of iterations, numerical
convergence is reached in a finite subspace. To investigate this phenomenon we set the size of
Jacobi matrices to the largest experimented value, jmax = 64, 000 and we run the algorithm for
N = 8, 000 iterations. We observe that all matrix elements in the range 1 ≤ j ≤ 64, 000 reach
numerical convergence: an approximation, Jnum(µ), of the fixed point Jacobi matrix,

T (J(µ)) = J(µ), (23)

has been evaluated. To verify the precision of this approximation, we now take as input the
computed Jacobi matrix Jnum(µ) and we further run the algorithm, that is, we act on Jnum(µ) by
T for another N = 700 iterations. Of course, the values of aj(n) are not constant, but fluctuate,
due to numerical errors and finite truncation. In Figure 3 we plot again ∆n

j = |anj − an−1
j |, for

n = 1, . . . , N . As in Fig. 1, the average values increase with j. Nonetheless, at the largest value,
j = 64, 000, they are always smaller than 10−4. We can take this as an indication of the precision
of the computed values aj ’s.

A more refined analysis follows from considering the sequence aj(n) at convergence as a
superposition of the true value aj and of a numerical error ǫj(n). Taking ǫj(n), for n = 1, . . . , N ,
as independent equally distributed random variables, we estimate their standard deviation sj ,
that we take as a reliable measure of the error. Observe that we could have divided such standard
deviation by the statistical factor

√
N − 1, to yield the standard deviation of the sample average

∑N
n=1 aj(n)/N . We prefer not to do this, because do not know whether the sample average

converges to the true value aj and because we want to have a conservative estimate of the error
of our technique. Results are plotted in Figure 4, that shows an initial linear growth of the error,
sj ∼ Aj, which lasts until j ≃ 10, 000, being later replaced by a more rapid increase, which
appears to be faster than polynomial.

To investigate this second region we plot the data in semi–logarithmic scale, where a pure
exponential appears as a straight line. This comparison shows that the error growth is less than
exponential. The reasons beyond this behavior are not easily found, but we can nonetheless
conclude that this technique allows us to compute reliably about 60,000 coefficients aj, with the
precision displayed in Figure 4. An indirect, a posteriori proof of the precision of the computed
Jacobi matrix is offered by the results of Section 7.4.

4 Regularity of Minkowski’s measure

We can now enter the heart of the matter. We start by investigating the regularity of Minkowski’s

measure µ, defined as the existence of the limit limj→∞ γ
−1/j
j = Cap([0, 1]), where Cap([0, 1]) = 1

4

is the logarithmic capacity of the support of µ. From eq. (3) it easily follows that 1/γj =
∏j

l=1 al;
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Figure 3: Differences ∆n
j = |anj − an−1

j | versus iteration n, for the values of j reported. Initial
Jacobi matrix is Jnum, the limit matrix obtained after 8,000 iterations of the algorithm.
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Figure 4: Standard deviation sj of the numerical error ǫj versus matrix index j (red) and power–
law law sj = Aj, with A = 1.18 · 10−16 (green). A second power law, with exponent B = 12 is
also shown for comparison with the data for j larger than 10,000 (blue).
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Figure 5: Standard deviation sj of the numerical error ǫj versus matrix index j (red) and the
exponential law sj = AeBj , with A = 3 · 10−13, B = 4 · 10−4 (green).

therefore, we need to compute the geometric average Γj of the matrix entries al, for l = 1, . . . , j:

Γj = γ
−1/j
j =

[

j
∏

l=1

al

]1/j

. (24)

We plot the results in Figure 6: we observe that the conclusions of [17] (convergence to a smaller
value than 1

4 ) were clearly due to the far–too–small range of j–values considered and to the
deeper fact that the initial entries of the Jacobi matrix “perceive” a smaller support than [0, 1].
We will explain this hitherto obscure remark in Section 5 and following. In the much wider range
presented here convergence to the correct value appears.

This conclusion can be put on even stronger grounds by studying the convergence rate. In
fact, log(Γj) is the Cesàro average of the logarithm of the matrix entries aj : the difference

δj = log(
1

4
)− 1

j

j
∑

l=1

log(al), (25)

features a very clear asymptotic power-law decay of the kind δj = Aj−B (Figure 7). The
pleasingly simple form of this law, its accuracy and the theoretical arguments of the following
sections that explain the observed power–law type convergence from below, all confirm that the
constant 1

4 is the limit of Γj when j tends to infinity. We can therefore pretend that the conjecture
that measure is regular is proven numerically to a large degree of confidence. We will add further
evidence in favor of this conclusion in the following sections. Notice that having at our disposal
matrix elements over various orders of magnitude of the index is essential.

Finally notice that the same data also show that j log 4 +
∑j

log al does not converge to a
finite value as j tends to infinity. In Sect. 8 we will frame theoretically this result, relating it to
the obvious lack of Szegö asymptotics. We now turn to further verifications of the fact that the
measure is regular.
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Figure 6: Geometric average Γj in eq. (24) versus matrix index j.
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Figure 7: Difference δj in eq. (25) versus matrix index j (red). Also plotted is the power-law
decay δj = Aj−B, with A = 1.6186, B = 0.65424 (green).
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5 Zeros Minkowski’s polynomials and their regularity

We now focus on regularity of the distribution of zeros of the polynomials, which, in our case,
is equivalent to regularity of the measure. In this section and in the next we study whether the
sequence νj in eq. (6) converges to νE , the equilibrium measure on [0, 1], which is an absolutely
continuous measure with density νE(x):

νE(x) =
1

π

1
√

x(1 − x)
. (26)

We compute the zeros of pj(µ;x) via diagonalization of the truncated Jacobi matrix J(µ). The
algorithm (the implicit QL method) is notoriously stable and can be easily carried out to large
orders. It yields the values ζjl , for l = 1, . . . , j, and j in the range from 1 to 60,000.

To prove regularity, we check numerically a stronger property. Recall that the equilibrium
measure νE is linked to the (properly shifted and normalized) Chebyshev polynomials, pj(νE ;x),

whose zeros can be explicitly computed: Let ϕj
l =

2l−1
2j for l = 1, . . . , j. Then,

pj(νE ; θ
j
l ) = 0 when θjl =

1

2
[1− cos(ϕj

lπ)], l = 1, . . . , j. (27)

Numerical data support the validity of the following conjecture:

Conjecture 3 As j tends to infinity, the zeros ζjl of the orthogonal polynomials of Minkowski’s
measure converge uniformly to the zeros of the Chebyshev polynomials of the same order. In
addition, convergence is of power–law type: there exist positive constants A and B such that

Uj = max{|θjl − ζjl |, l = 1, . . . , j} ≤ Aj−B. (28)

From the above, a simple consequence follows.

Lemma 1 Conjecture 3 implies regularity of the distribution of zeros.

Proof. Letting f be a continuous function on [0, 1], for any ǫ > 0 there exists δ > 0 such that
|θjl −ζ

j
l | < δ implies |f(θjl )−f(ζ

j
l )| < ǫ, where we use the trivial fact that continuity on a compact

is necessarily uniform. Then, for any ǫ there exists J such that

|1
j

j
∑

l=1

[f(θjl )− f(ζjl )]| ≤
1

j

j
∑

l=1

|f(θjl )− f(ζjl )| ≤ ǫ (29)

if j > J . Since the discrete measures generated by Chebyshev nodes converge weakly to νE , so
does the sequence νj . Observe that in this proof we do not need the estimate on the convergence
rate. ✷

Numerical support to Conjecture 3 is offered in Figure 8. In Figure 9 we plot the absolute
difference |θjl − ζjl | versus θ

j
l : this drawing reveals the locations where the two sequences differ

the most. When compared to the graph of Minkowski’s function Q, we observe that this pattern
follows the structure of the Farey tree (defined in Remark 1): around rational values Minkowski’s
function has a non–analytic behavior, with large “slippery plateaus” (i.e. intervals of very low
measure), which tend to ward off the zeros of pj(µ;x). The phenomenon is stronger the higher
the rational point is in the Farey tree. This fact is not surprising and will be further studied in
the next sections.

To the contrary, the novel result of this investigation is that, this repulsion notwithstanding,
Minkowski’s measure is regular—said otherwise, zeros of the orthogonal polynomials find a way
to “creep in” these regions and eventually populate them accordingly to the equilibrium measure.
They do so at a power–law rate in the polynomial index, which explains the power–law behaviors
found in Sections 4 – 6. In Section 7 we will encounter a dramatic consequence of these facts:
the creation of mathematical neutrinos.
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6 Discrepancy Analysis

Two measures λ, η on [0, 1] differ as much as their integral over sub-intervals is different. This
quantity is discrepancy:

D(λ, η) = sup{|λ(I)− η(I)|, I = (a, b) ⊂ [0, 1]}. (30)

Discrepancy has been intensely investigated [5, 6, 19], since it is linked with root distribution
and the logarithmic potential.

Consider the measures νj and νE . If the sequence D(νj , νE) converges to zero, then νj
converges weakly to νE and this implies regularity of the zero distribution. Zeros of the Chebyshev
polynomials are best seen as projection on the real axis of equi-spaced points on the unit circle
in the complex plane. When lifted to this set, the measure νE becomes the uniform Lebesgue
measure. Therefore, it is convenient to also lift to the unit circle the zeros ζjl of Minkowski’s
orthogonal polynomials: this leads to the definition of the normalized angles

ψj
l =

1

π
arccos(1− 2ζjl ). (31)

The second set of data in Figure 8 compares these values and the Chebyshev angles ϕj
l ; the

quantity Vj :

Vj = max{|ϕj
l − ψj

l |, l = 1, . . . , j}, (32)

coherently with Conjecture 3, it features a power–law decay.
Numerical computation of the discrepancy D(νj , νE) is easily performed via a simple lemma

that can be proven by straightforward computation:

Lemma 2 The discrepancy D(νj , νE) between the discrete measure νj and the Chebyshev mea-
sure νE on [0, 1] is the maximum of the following three quantities:

D1 = max{|ψj
l −

l− i

j
|, l = 1, . . . , j; i = 0, 1}, (33)

D2 = max{|1− ψj
l −

j − l + i

j
|, l = 1, . . . , j; i = 0, 1}, (34)

D3 = max{|ψj
l − ψj

k −
l − k + i

j
|, l, k = 1, . . . , j; i = −1, 1}. (35)

Thanks to the lemma, numerical computation of D(νj , νE) can be performed by a finite com-
putation. This leads to the results plotted in Figure 10. Again, not only we observe convergence
towards zero of D(νj , νE), but we can also extrapolate a power–law behavior with exponent
close to B = 0.35. Observe that by necessity, being νj discrete with atoms of equal weight,
decay is bounded from below by D(νj , νE) > 1/j for all j. We therefore formulate the following
conjecture:

Conjecture 4 As j tends to infinity, the discrepancy D(νj , νE) tends to zero. In addition,
convergence is of power–law type: there exist positive constants A and B such that D(νj , νE) ≤
Aj−B .

7 Gaussian integration of Minkowski’s measure

We have seen that Minkowski’s measure is singular (with respect to the Lebesgue measure) and
at the same time regular (in the Ullman-Stahl-Totik sense). This hectic combination produces
fascinating results, for what concerns Christoffel numbers—also called Gaussian weights. Recall
eq. (7), which defines the discrete measure µj , and let us focus on the weights wj

l . It is convenient
to start their analysis from a visual examination: in Figure 11 we plot the logarithm of the inverse
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Figure 10: Discrepancy D(νj , νE) versus j and fit by the power-law decay dj = Aj−B, with
A = .849, B = 0.351.

of the weights (in base 10) versus their location ζjl , for j = 60, 000. The figure is extremely
instructive.

First of all, observe that the vertical scale at the left of the picture is also logarithmic, so that
what appears graphically is minus the logarithm of the logarithm of the weight: the largest of these
are of the order of 10−3, while the smallest are below 10−1000. There are about one thousand
orders of magnitude of difference between the two! We believe that it is then appropriate to
call the latter mathematical neutrinos, for their elusive mass. Their detection poses a serious
challenge and requires a specific technique, by which it has been possible to compute Figure 11:
this is explained in subsection 7.1.

An immediate application of these result is the computation of the Hausdorff dimension of
the measure µ, in Sect. 7.2.

Returning to Figure 11, observe that small weights appear when Gaussian nodes ζjl approach
the locations of rational points on the Farey tree (defined in Remark 1): this is the same to say,
where Minkowski’s Q function (the continuous curve in the figure) appears to be “almost flat”.
Therefore, Gaussian points and weights reflect the structure of Minkowski’s measure and of the
distribution of rationals on the real line [57], in a significant way. In subsection 7.3 we develop
an asymptotic theory which explicitly computes the “cusps” that appear in Figure 11.

Finally, in subsection 7.4 we deal with the fact that Farey points—the rationals—are dense in
[0, 1]: one must expect a dense set of these cusps. We show that their appearance is hierarchically
ordered, this fact being well described by the asymptotic theory that will be derived.

7.1 Numerical computation of mathematical neutrinos

Let again eq. (7) define the discrete measure µj , with atoms at the Gaussian nodes ζjl . It is well
known that they can be profitably computed as the eigenvalues of the truncated Jacobi matrix
of rank j: J (j)ujl = ζjl u

j
l . In the standard Golub-Welsch algorithm [26], wj

l is obtained as the

positive, first component of the normalized eigenvector ujl . The advantage of this algorithm lies
in the fact that this component can be obtained without having to compute the full eigenvector.
Unfortunately, this procedure is viable only as far as the amplitude of the weights does not fall
below the level of numerical noise. When this happens—and Figure 11 shows that this is the
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Figure 11: Base 10 logarithm of the inverse of the Gaussian weights wj
l , plotted as dots at the

abscissae ζjl , for j = 60, 000 (left vertical scale). Weights near ζ = 0 and ζ = 1 are smaller than
10−1000. Also plotted is the graph of the function Q(ζ) (continuous line, right vertical scale).
The region near x = 1

4 is magnified in Fig. 12 below.

present case—the numerical detection of these weights poses challenges comparable to those of
detecting neutrino’s mass in physical experiments. In this subsection we describe a technique that
can reveal these weights even when the ratio between the largest and the smallest is hundreds
orders of magnitude smaller than machine precision.

Among many equivalent definition of the weights, we choose the one originally due to Shohat
[49, 21]. Let Kj(x, y) be the Christoffel-Darboux kernel:

Kj(x, y) =

j−1
∑

l=0

pl(µ;x)pl(µ; y), (36)

The weights wj
l can be obtained from the diagonal values of this kernel at the roots of pj (that

are computed as the eigenvalues of the truncated Jacobi matrix):

(wj
l )

−1 = Kj(ζ
j
l , ζ

j
l ) =

j−1
∑

l=0

pl(ζ
j
l )

2. (37)

It is customary to call the inverse of the diagonal kernels the Christoffel functions λj(x):

λj(x) =
1

Kj(x, x)
. (38)

The numerical calculation of these values is similar to the calculation of Lyapunov exponents
in dynamical systems or in random matrix theory: according to eq. (36), Kj(x, x) is a summation
of positive values. Low weights correspond to large values of the sum, which, in turn, arise from
the fact that the norm of the two–components column vector vl = (pl(µ;x), pl−1(µ;x))

t becomes
very large and may overflow. The three–terms recurrence relation (3) implies that vl+1 is uniquely
defined from the action of a transfer matrix acting upon vl:

vl+1 =

( x−bl
al+1

− al

al+1

1 0

)

vl. (39)
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j dimH(µ)+ dimH(µ)− dimH(µ)+ - dimH(µ)−
2 0.874761611261160 0.874552879123086 0.000208732138074
3 0.874716939422290 0.874714034545017 0.000002904877273
4 0.874716314143510 0.874716274367535 0.000000039775975
5 0.874716305274063 0.874716304510136 0.000000000763927
6 0.874716305110859 0.874716305099384 0.000000000011475
7 0.874716305108267 0.874716305108003 0.000000000000264
8 0.874716305108213 0.874716305108207 0.000000000000006

Table 2: Upper and lower bounds to the Hausdorff dimension of Minkowski’s measure µ for
increasing values of j, the number of points in Gaussian integration. The fourth column is the
difference between the bounds.

It is therefore not needed to store the full sequence pl(µ;x) when calculating Kj(x, x). We then
act as follows: starting from l = 1, we compute the finite summation (37) term by term, until
Kl(x, x) exceeds a fixed threshold. At that moment, we let V be the maximum of the absolute
values of the two components of vl, and we renormalize vl to vl/V and Kl(x, x) to Kl(x, x)/V

2,
while accumulating the logarithm of V in a resummation variable W (x), initially set to zero. At
the end of the procedure, when l = j − 1, the logarithm of the true value of Kj(x, x) is obtained
from the renormalized variables as logKj(x, x) + 2W (x) and the final formula follows:

logλj(x) = − logKj(x, x) − 2W (x). (40)

Numerical values of Christoffel functions and numbers reported in this paper have been obtained
using this procedure.

7.2 Hausdorff dimension of the measure

The first application of the precise numerical data of the previous subsection is the determination
of rigorous upper and lower bounds to the Hausdorff dimension of Minkowski’s measure µ. Recall
that this is defined as dimH(µ) = inf{dimH(A), µ(A) > 0}, where the infimum is taken over all
Borel measurable sets. It was proven by Kinney [34] that one can write dimH(µ) via an integral
with respect to the measure µ itself:

dimH(µ) = log(2)/[2

∫

log(1 + x)dµ(x)]. (41)

As a matter of facts, the function f(x) = log(1 + x) in the integral is totally monotone on the
positive real axis—i.e. (−1)nf (n)(x) ≥ 0 on [0,∞) for all n. Under these conditions, the so-
called first and second Gauss formulae of numerical integration give rigorous upper and lower
bounds for the value of the integral in eq. (41). The first formula is simply the integral of
f(x) with respect to the discrete measure µj in eq. (7): a finite summation, whose terms can
be computed from Gaussian points and Christoffel weights. The second Gaussian formula is
similar: it is based upon the truncated Jacobi matrix of the modified measure dρ(x) = xdµ(x).
This new Jacobi matrix J(ρ) can be computed recursively starting from J(µ) [22]. Following
these prescriptions we have obtained the data reported in Table 7.2. This permits to compute
rigorously the Hausdorff dimension within 13 significative digits. These bounds contain the
numerical value dimH(µ) = 0.874716305108211142215152904219159757 computed by Alkauskas
[4] via a convergent series involving the moments of µ in high precision arithmetics.

7.3 Asymptotic analysis: Minkowski’s slippery plateaus

Let us now derive an asymptotic theory for the explanation of the Figure 11, which is based on
the arithmetical nature of Minkowski’s question mark measure, encoded by the Móbius trans-
formations (11). In this subsection, we study the average value of Gaussian weights in certain
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subintervals I ⊂ [0, 1], when the polynomial degree j tends to infinity. This average is defined by

wj
I =

∑

ζj

l
∈I w

j
l

#{l s.t. ζjl ∈ I}
. (42)

Since the vertical scale of Figure 11 is logarithmic, we find appropriate to consider the logarithm
of the average weight wj

I . We start proving the following Lemma:

Lemma 3 If Conjecture 1 is verified,

log(wj
I) = − log(j) + log(µ(I)− log(ν(I)) + o(j), (43)

where o(j) indicates as usual an infinitesimal sequence.

Proof. Divide and multiply the denominator in eq. (42) by the order j, to obtain

jwj
I =

∑

ζj

l
∈I w

j
l

#{l s.t. ζjl ∈ I}/j
. (44)

Because of weak convergence of the sequence µj to µ, one has that the numerator at r.h.s. tends
to the µ–measure of I:

lim
j→∞

∑

ζj

l
∈I

wj
l = µ(I). (45)

Since the measure is regular (Conjecture 1), the denominator tends to ν(I). Taking logarithms
yields lim log(j) + logwj

I = log(µ(I)/ν(I)). ✷
We now specialize this result to particular intervals of the kind [pq ,

p
q +y], in the neighborhood

of the rational point p
q , where we observe numerically the cusps in the logarithm of the Christoffel

numbers. For sake of definiteness we consider the case 1
q , which lies on the (q − 2)-th level of

the Farey tree (according to Remark 1 we root the tree at 1
2 , level zero). Our technique can be

applied also to the general case, with a minor additional effort. We need the following technical
Lemma:

Lemma 4 The function Q(x) is non-analytic around all Farey points x = 0, x = 1
q with q

integer, in the following sense: for any integer k ≥ 0 and q > 0

µ([0,
1

k + 1
]) = 2−k; µ([

1

q
,

k + 1

qk + q − 1
]) = 2−k−q+1. (46)

Proof. Let Σ be the set of finite words in the letters 1 and 2. We denote by |σ| the length of
σ ∈ Σ: if |σ| = n then σ is the n-letters sequence s1, s2, . . . , sn where si is either 1 or 2. We
associate to σ the composite maps

Mσ =Ms1 ◦Ms2 ◦ · · · ◦Msn

and
Φσ = Φs1 ◦ Φs2 ◦ · · · ◦ Φsn ,

where the basic maps Mi and Φi have been defined in eqs. (11) and (12). Consider now the set
Σn of cardinality 2n composed of all words of length n. For any n, the graph G of Q is contained
in a union of images of the unit square:

G ⊂
⋃

σ s.t. |σ|=n

Φσ([0, 1]
2).

In the above, each image Φσ([0, 1]
2) is a rectangle of basis Mσ([0, 1]) and height of length 2−|σ|.

Since the graph G is continuous and since these rectangles are joined by the corners, it follows
that the graph of Q passes through these corners, so that

µ(Mσ([0, 1])) = 2−|σ|. (47)
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The basis intervals Mσ([0, 1]) are the partition of [0, 1] produced by the Farey tree up to level
n− 1.

Consider now the word σ = 1k composed of k ones: we can use it to produce nested intervals
shrinking at the point zero. In fact,

M1k([0, 1]) = [0,
1

k + 1
], µ(M1k([0, 1])) = 2−k. (48)

This proves the first part of eq. (46).
We now consider the point 1

q , with q ≥ 2. Observe that 1
2 =M2(0) and that 1

q =M q−2
1 M2(0).

This permits to map the intervals of the previous case, which were shrinking at the point zero,
into a new sequence at the point 1

q . Define σ = 1q−221k, to obtain

M1q−221k([0, 1]) = [
1

q
,

k + 1

qk + q − 1
], µ(M1q−221k([0, 1])) = 2−k−q+1. (49)

The first part of the above equation can be proven by explicit calculation, while the second
follows easily by computing the symbolic length of the word σ. This proves the second part of
eq. (46). ✷

Combining the previous results we have the following

Lemma 5 Let q ≥ 2 and k ≥ 0. Let lq,k = 1
q(qk+q−1) . Define the intervals

Iq,k = [
1

q
+ lq,k+1,

1

q
+ lq,k]. (50)

The average amplitude of Gaussian points of order j in Iq,k behaves asymptotically as

log(wj
Iq,k

) = −[(k + q) log(2) + log(j) + log(ν(Iq,k))] + o(j). (51)

Proof. Using the notations of Lemma 4 the interval Iq,k can be written as

Iq,k =M1q−221k([0, 1]) \M1q−221k+1([0, 1]), (52)

and the first set at r.h.s. completely contains the second. To prove these facts, observe that the
geometric length of the interval M1q−221k([0, 1]) = [ 1q ,

k+1
qk+q−1 ] in eq. (52) is

k + 1

qk + q − 1
− 1

q
=

1

q(qk + q − 1)
= lq,k. (53)

Using eq. (49) we then show that the measure of Iq,k is 2−q−k. The thesis then follows using eq.
(43). ✷

We can now state the principal result of this section:

Proposition 1 Assume that Conjecture 1 holds. Let 0 < y < 1
2 , q ≥ 2. Then, for sufficiently

large j, the logarithmic amplitude log(wj
Iq,k

), where y ∈ Iq,k, verifies the inequalities

− log(wj
Iq,k

) ≤ log(2)[
1

q2y
+

1

q
+ q − 2] + log(j)− 1

2
H−(q; y) + 2 log(qy)− log(1− q2y); (54)

− log(wj
Iq,k

) ≥ log(2)[
1

q2y
+

1

q
+ q − 3] + log(j)− 1

2
H+(q; y) + 2 log(qy)− log(1 + q2y), (55)

where H±(q; y) are continuous functions that tend to log(1q − 1
q2 ) when y tends to zero.

Proof. Let k be such that y ∈ (lq,k+1, lq,k). This means that 1
q + y ∈ Iq,k, the last set being

defined in eq. (50) (see also eq. (52)). Since the measure νE is absolutely continuous, we use

its density to write in the obvious way ν(Iq,k) = |Iq,k|/2
√

tq,k − t2q,k, where tq,k is a point in Iq,k

and where |Iq,k| is the length of the interval Iq,k:

|Iq,k| = lq,k − lq,k+1 = q2lq,klq,k+1.
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Therefore, eq. (51) becomes

− log(wj
Iq,k

) = (k + q − 1) log(2) + log(j)− 1

2
log(tq,k − t2q,k) + log(q2lq,klq,k+1) + o(j). (56)

Since k is such that y ∈ (lq,k+1, lq,k), we have that

1

(k + 1)q2 + q(q − 1)
≤ y ≤ 1

kq2 + q(q − 1)
, (57)

and
1

q2y
+

1

q
− 2 ≤ k ≤ 1

q2y
+

1

q
− 1. (58)

Using this result, we can estimate the various quantities in eq. (56).

2 log(qy)− log(1 + q2y) ≤ log(q2lq,klq,k+1) ≤ 2 log(qy)− log(1− q2y);

tq,k ≤ 1

q
+ lq,k ≤ 1

q

1 + qy

1− q2y
;

tq,k ≥ 1

q
+ lq,k+1 ≥ 1

q

1 + qy

1 + q2y
.

Let h±(q; y) =
1+qy
1∓q2y . These are bounded functions that tend to one as y tends to zero. Consider

the function f(s) = s(1−s). This is a monotonic function, increasing for s < 1
2 and decreasing for

s > 1
2 . Therefore, the quantity log(tq,k(1 − tq,k)) can be estimated via the last two inequalities.

We assume the first case, which corresponds to q ≥ 3, the other consisting of reversed inequalities:
in so doing, the definition

H±(q; y) = log[
1

q
h±(q; y)(1−

1

q
h±(q; y))]

completes the proof. ✷

7.4 Hierarchical Christoffel functions of Minkowski’s measure

Proposition 1 deals with the average value of Christoffel numbers over intervals in the neighbor-
hood of the point 1

q + y. As a matter of facts, only the value y enters the formulae. In addition,

since wj
l is determined via eqs. (37), (38) we can think of wj

Jk
as the typical logarithm of the

Christoffel function at the point 1
q + y. This permits to derive an asymptotic relation for this

latter:

Proposition 2 Assume that Conjecture 1 holds. The typical logarithmic amplitude of the Christof-
fel function λj(x) of order j at the point x = 1

q + y is given by an asymptotic formula that
comprises the sum of four contributions:

log(λj(
1

q
+ y)) ∼ Λj(q; y) = Λ1(q; y) + Λ2(q) + Λ3(q; y) + Λ4(j), (59)

in which the first is a geometrical factor that comes from the projection of the unit circle on the
real axis:

Λ1(q; y) =
1

2
log[

1

q
+ y − (

1

q
+ y)2] + log 2; (60)

the second depends only on q, that is on the level in the Farey tree :

Λ2(q) = (−q + 2− 1

q
) log(2) + log(log(2)); (61)

the third contribution is determined by the distance from the rational point 1
q and it is singular

in the limit of null distance:

Λ3(q; y) = − log 2

q2y
− 2 log(qy); (62)
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the fourth is minus the logarithm of the polynomial order:

Λ4(j) = − log(j). (63)

Proof. We use the results of Proposition 1. Notice that the first term, Λ1(q; y), can be written
as log(| sinϑ|), where ϑ = arccos[2(1q + y − 1)]. In particular, it lies between the two bounds

1

2
H−(q; y) + log(2) ≤ Λ1(q; y) ≤

1

2
H+(q; y) + log 2. (64)

The second contribution, Λ2(q), interpolates the purely q dependent terms in eqs. (54),(55).
The choice of the interpolating constant log(log(2)) stems from a formal calculation of the asymp-
totics, not reproduced here. The estimate is justified by the inequalities

(−q − 1

q
+ 1) log(2) < Λ2(q) < (−q − 1

q
+ 2) log(2)

Notice that in the bounds in the above equation differ from those of eqs. (54),(55) by a single
log(2) contribution, since this has been already included in the above eq. (64).

The third contribution, Λ3(q; y), collects the y dependent quantities in eqs. (54),(55) that
diverge as y tends to zero and therefore are at the origin of the cusps. Clearly, Λ3(q; y) interpolates
the bounds because of the obvious inequalities log(1 − q2y) < 0 < log(1 + q2y). Furthermore,
both of the latter functions are infinitesimal when y tends to zero.

Finally, the last quantity, Λ4(j), directly follows by eqs. (54),(55). ✷

Remark 2 By using the symbolic approach of Lemma 4, similar results can also be derived for
µ([pq ,

p
q+s]), for any relatively prime p and q, so that the local structure of the Christoffel function

and of the diagonal Christoffel-Darboux kernel can be fully explained.

Let us now illustrate the theoretical results with a series of figures, in which we will use the
symbol Kj, to underline the fact that the Christoffel functions are computed from eq. (36) using
the techniques of Section 7.1.

We start from Figure 12, where we plot the logarithm of the diagonal kernel Kj(x, x) for x in
the right neighborhood of the rational point 1

4 (there is no particular reason behind this choice,

other than it is a point on the second level of the Farey tree). The Gaussian pairs (ζjl ,− log(wj
l ))

lie on this graph, because of the fundamental property (37) and are plotted as crosses. Also, the
asymptotic estimate −Λj(

1
4 ; y) is drawn in the picture, where y = x− 1

4 here and everywhere in
the remainder of this section. The value of the polynomial order chosen is j = 60, 000.

Let us begin the analysis from the left part of the figure, i.e. x values smaller than 0.2525. The
distribution of Gaussian pairs reveals the detail of the cusp behavior already observed in Figure
11. The asymptotic formula −Λj(

1
4 ; y) reproduces the cusp on which Gaussian points lie almost

perfectly. At the same time, −Λj(
1
4 ; y) and log(Kj(x, x)) are almost coincident as far as Gaussian

pairs populate the graph and start parting at the location of the leftmost polynomial zero in the
figure. In the innermost interval around 1

4 the logarithm of the Christoffel kernel Kj(x, x) stops
following the cusp–like divergence: it is a continuous, bounded function and therefore it smoothly
tends to a finite value when x tends to 1

4 .
These facts are all explained by the asymptotic theory. In fact, its derivation rests on the

assumption that the measure is regular; since it describes the behavior of Gaussian weights,
where there are no Gaussian points there is no reason to expect agreement with the kernel and
one needs to wait for the asymptotic zero distribution to set in—see Sections 5, 6 and Figure 13.
The ratio between −Λj(

1
4 ; y) and log(Kj(x, x)) is also plotted in Figure 12: it is divergent for

x = 1
4 , but it rapidly approaches one when x is equal to the leftmost polynomial zero, staying

very close to this value in a certain interval. In the right part of the figure this ratio begins to
oscillate while new peaks of the kernel appear: we will examine these momentarily, with the aid
of a more detailed figure.

Let us now concentrate on the role of the polynomial order j. It enters the asymptotic relation
(59) in a very simple way, via the term Λ4(j) = − log(j). It neither determines the shape of
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Figure 12: Logarithm of the Christoffel-Darboux kernel Kj(x, x) in the right neighbourhood

of x = 1
4 (blue), with j = 60, 000, Gaussian pairs (ζjl ,− log(wj

l )) (crosses) and asymptotic
estimate −Λj(

1
4 ; y) (with y = x − 1

4 ) (green). The right vertical scale measures the ratio
−Λj(

1
4 ; y)/ log(Kj(x, x)) (magenta). See text for discussion.

the cusp, which is given by Λ3(q; y), nor it combines with the rational denominator q or the
location x. Also, when compared to other factors, the logarithmic dependence of Λ4(j) is rather
mild. Yet, there is a hidden role of j which does not appear explicitly and it is fully appreciated
when considering the asymptotic nature of the expansion (59) in Proposition 2: Λj(

1
q ;x − 1

q )

approximates logλj(x) = − log(Kj(x, x)) better and better, in an interval which approaches 1
q ,

as j tends to infinity.
In fact, let us first consider Figure 13. It is analogous to Figure 12 but it plots quantities at

geometrically increasing values of j, from j = 7, 500 to j = 60, 000, in a magnified range of values
close to 1

4 . Zeros ζjl are approximately equally spaced, with density given by the equilibrium
measure νE , in a region which excludes the immediate neighborhood of 1

4 . As before, the closest

point ζjl to the rational value 1
4 marks the boundary of the region in which agreement between

log(K(x, x)) and −Λj(
1
4 ; y) takes place. This range moves to the left when j increases, according

to Conjecture 3 in Section 5.
Secondly, eq. (59) holds exactly in the infinite j limit for the average value of Christof-

fel numbers–Gaussian weights over the intervals Iq,k (as follows from Proposition 1), yet it is
asymptotic for the individual weights, which are pointwise values of the Christoffel functions.
This is seen in Figure 14 that plots the magnification of the right part of Figure 12. We observe
the growth of new cusps superimposed to the leading asymptotics −Λj(

1
4 ; y), as the polynomial

degree j increases. These cusps are associated with other rational points of higher order than
1
q in the Farey tree. The same local asymptotic analysis leading to eq. (59) can be carried out
at these new rational points, in a hierarchical construction that parallels that of Minkowski’s
question mark function by Möbius IFS.

We can conclude that the behavior of Gaussian points–Christoffel numbers, described in
this asymptotic analysis, reveals the hierarchical structure of Minkowski’s measure in a very
transparent way. This structure is also hierarchically encoded in the Jacobi matrix of the measure,
in the sense that the finer structure the higher the index of the Jacobi matrix entries that
reproduce it. This happens much in the same way as what observed in [39] for the Jacobi matrix
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Figure 15: Convergence of the Jacobi matrix elements: |aj − 1
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of the equilibrium measure on fractal sets.
Finally, the fine details and the precision of the numerical results prove a posteriori that the

procedures employed to compute Jacobi matrix, eigenvalues and Christoffel functions are stable
and precise to the point of allowing such refined observations.

8 The Nevai class of measures

The Nevai class of measures is defined by the fact that the matrix elements aj and bj tend to
a limit. In our case, being all bj’s equal to one half, this amounts to the limit aj → 1

4 . In
Figure 15 we plot the absolute difference |aj − 1

4 | in double logarithmic scale. Observe that the
data, plotted with dots, range over orders of magnitude; yet, even the largest distances from
the expected limit clearly tend to zero when j grows. We also plot the numerical upper bound
function u(x), defined as u(x) = max{|aj − 1

4 |, x ≤ j ≤ 60, 000}. This function decreases by
definition, but it does so regularly. For comparison, we also plot a power-law decay: although
with a lesser degree of confidence than all other numerical estimates in this paper, we may put
forward the following

Conjecture 5 Convergence of the Jacobi matrix elements of Minkowski’s measure is of power–
law type: there exist two positive constants A,B such that |aj − 1

4 | < Aj−B.

This convergence appears to be characterized by a considerably smaller exponent B than the one
observed in Figure 7. In fact, Figure 7 is related to the average behavior of the logarithm of aj
(regularity of the measure). To the contrary, the decay is here piloted by outliers that we need
to master to prove the stronger requirements of the Nevai class.

In addition to the direct investigation of Jacobi matrix elements, a further analysis can be
performed to test whether µ belongs to the Nevai class. Let us consider the ratio of the orthogonal
polynomials pj−1(µ; z) and pj(µ; z). If µ belongs to N(14 ,

1
2 ) this ratio tends to the function

φE(z) = 1/(z − 1
2 +

√

z(z − 1)), uniformly on compact subsets of the complement of E = [0, 1]
(see the Introduction). At the same time, following e.g. [55], the above ratio can be written as
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the Stieltjes transform of a discrete measure σj(µ):

pj−1(µ; z)

pj(µ; z)
= aj

∫

dσj(µ; s)

z − s
, (65)

where, as in eq. (8), we have put

σj(µ) =

n
∑

l=1

wj
l p

2
j−1(µ; ζ

j
l )δζj

l

, (66)

and, as in eq. (37), the Christoffel weights are (wj
l )

−1 =
∑j−1

l=0 pl(µ; ζ
j
l )

2. They obviously depend
on µ, even if this dependence is left implicit, not to overburden the notation. We find convenient
to introduce a short–hand notation for the weights in eq. (66):

Sj
l (µ) = wj

l p
2
j−1(µ; ζ

j
l ). (67)

Observe that σj(µ) is a sort of weighted version of the discrete measure µj associated with
Gaussian integration, eq. (7). While the sequence of these latter always converges weakly (to µ),
convergence of σj(µ), when j tends to infinity, is not always assured and we can use this fact for
our purpose.

In fact, Nevai class N(14 ,
1
2 ), via convergence of the polynomial ratios to φE(z) and eq. (65)

implies convergence of σj(µ) to the absolutely continuous measure dσE(x) = 1
2π

√

x(1 − x)dx.
Viceversa, if σj(µ) converges weakly to a measure σ, then µ belongs to a Nevai class, since
∫

x dσj(µ;x) = bj−1 and
∫

x2 dσj(µ;x) = b2j−1 + a2j−1. This proves the following criterion [55]:

Theorem 4 The Minkowski’s measure µ belongs to the Nevai class N(14 ,
1
2 ) if and only if the

sequence of measures σj(µ) converges weakly to σE .

A first way to use this criterion comes from Conjecture 3 in Section 5: we have noticed
that zeros of the orthogonal polynomials pj(µ;x) orderly converge to those of the Chebychev
polynomials pj(νE ;x). It is immediate that νE belongs to the Nevai class N(14 ,

1
2 ) and therefore

σj(νE) tends to σE . If we can control the distance between σj(µ) and σj(νE) we may expect to
be able to prove convergence of σj(µ) to σE .

Indeed, let θjl = 1
2 [1− cos(ϕj

lπ)] as in eq. (27) be the location of the roots of the Chebyshev

polynomials pj(νE ;x). We can compute σj(νE) explicitly, since p2j−1(νE ; θ
j
l ) = 2 sin2(2l−1

2n π).
This yields

Sj
l (νE) = 2 sin2(

2l − 1

2n
π)/n. (68)

Next, one might think of operating like in Lemma 1: let again f be a continuous function,

|
∫

fdσj(µ)−
∫

fdσj(νE)| = |
j

∑

l=1

Sj
l (µ)f(ζ

j
l )−

j
∑

l=1

Sj
l (νE)f(θ

j
l )|

≤
j

∑

l=1

Sj
l (νE)|f(ζ

j
l )− f(θjl )|+

j
∑

l=1

|f(ζjl )||S
j
l (νE)− Sj

l (µ)|

≤ sup
l

|f(ζjl )− f(θjl )|+ ‖f‖∞
j

∑

l=1

|Sj
l (νE)− Sj

l (µ)|. (69)

The first term at r.h.s. of the last inequality is infinitesimal, when j tends to infinity, accord-
ing to Conjecture 3. We can also verify numerically (see below, Fig. 16) that sj(νE , µ) =

maxl{|Sj
l (νE) − Sj

l (µ)|} tends to zero as j tends to infinity, and yet we find that the second

summation at rhs, Σ0
j =

∑j
l=1 |S

j
l (νE)− Sj

l (µ)| is not infinitesimal, but it seems to converge to
a positive value: therefore, we cannot conclude from these estimates that σj(µ) converges to σE .
We attribute this to the fact that the majorization made in eq. (69) is too crude, with respect
to the fine properties of σj(µ).
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Lines are merely to guide the eye and connect data at exponentially spaced values of j. See text
for definition and discussion.

We therefore need to compute numerically the Hutchinson distance d(σj(µ), σE). This can
be done via an equivalent form of the definition (15), which considers the distribution functions
of the two measures: for any measure η let F (η;x) =

∫

χ(0,x](y) dη(y). The Hutchinson distance
becomes an integral of the absolute difference of the distribution functions:

d(σj(µ), σE) =

∫ 1

0

|F (σj(µ);x) − F (σE ;x)| dx. (70)

It is apparent that F (σj(µ);x) is a piece–wise constant function, which permits to split [0, 1]
into intervals over which F (σj(µ);x) is constant and the difference F (σj(µ);x)− F (σE ;x) has a
fixed sign. The integral in eq. (70) so becomes a finite sum of integrals which can be explicitly
computed in terms of elementary functions. The results obtained in this way are displayed in
Figure 16. We observe a slow convergence towards zero of the distance d(σj(µ), σE) which is
again dominated by a power–law:

Conjecture 6 Convergence of the sequence of measures σj(µ) to σE is of power–law type: there
exist two positive constants A,B such that the Hutchinson distance verifies d(σj(µ), σE) < Aj−B

We conclude this work by showing that our numerical data are fully consistent with the the-
oretical fact that stronger convergence properties do not hold. For instance, power asymptotics,
i.e. γj/4

j → α, with 0 < α <∞, can be easily seen to be equivalent to convergence of the series
Σ3, whose partial summation is defined, with other quantities to be discussed below, as follows:

Σ1
j =

j
∑

l=1

|al − al−1|; (71)

Σ2
j =

j
∑

l=1

|1− 16 a2l |; (72)

Σ3
j = −

j
∑

l=1

(log(al) + log(4)). (73)
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comments.

Convergence of the other series is regulated by the following “collage” theorem (reviewed e.g.
in [54, 55]):

Theorem 5 If Σ2 is finite, then the measure µ is absolutely continuous with respect to Lebesgue
and its density belongs to Szegö class. Convergence of Σ2 implies convergence of Σ1. In turn, this
latter implies that µ is absolutely continuous with respect to Lebesgue and its density is strictly
positive and continuous on (0, 1).

We expect divergence of the three series. This fact is clearly observed in Figure 17. We also
observe numerically that divergence of Σ3 is of power–law type with exponent less than one.
Since Σ3

j = jδj (see eq. (25) and Fig. 7), this is consistent with regularity of the measure µ.

9 Conclusions

As remarked by Totik [53], the Nevai class seems to contain all sorts of measures. In fact,
it contains pure point measures [56] as well as singular measures [35]. In addition, given any
measure whose support is [0, 1], Totik has shown that there is a second measure, absolutely
continuous with respect to the first, which is in Nevai class. Therefore, it might seem that
enlisting Minkowski’s measure in this family is just another addition of minor interest. We
think that this attitude is reductive, for two reasons. Firstly, since Minkowski’s measure encodes
the distribution of the rationals [57] and their inner structure, proving that it does belong to the
Nevai class might possibly reveal this structure from a different perspective. Secondly, no spectral
characterization of Nevai class is known. Minkowski’s measure falls short of verifying Rakhmanov
sufficient condition [44, 42] i.e. almost everywhere positivity of the Radon Nikodyn derivative
of µ with respect to Lebesgue—which is probably the widest sufficient condition known so far
to this scope. Perhaps this fact is to be welcomed: Minkowski’s measure could be the model of
a possible widening of Rakhmanov condition. This investigation, as well as the simpler proof of
regularity of Minkowski’s measure, will be the object of future publications.
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