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Abstract

We investigate the ratio asymptotic behavior of the sequence (Qn)
∞
n=0 of multiple orthog-

onal polynomials associated with a Nikishin system of p ≥ 1 measures that are compactly
supported on the star-like set of p + 1 rays S+ = {z ∈ C : zp+1 ≥ 0}. The main algebraic
property of these polynomials is that they satisfy a three-term recurrence relation of the
form zQn(z) = Qn+1(z) + anQn−p(z) with an > 0 for all n ≥ p. Under a Rakhmanov-type
condition on the measures generating the Nikishin system, we prove that the sequence of
ratios Qn+1(z)/Qn(z) and the sequence an of recurrence coefficients are limit periodic with
period p(p + 1). Our results complement some results obtained by the first author and
Miña-Díaz in a recent paper in which algebraic properties and weak asymptotics of these
polynomials were investigated. Our results also extend some results obtained by the first
author in the case p = 2.
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1 Introduction

This paper is a continuation of the investigations initiated in [25, 22] on properties of multiple
orthogonal polynomials associated with Nikishin systems of measures supported on star-like
sets. Nikishin systems were introduced by Nikishin himself in his seminal work [27], which
served as a starting point for a prolific study of the associated families of multiple orthogonal
polynomials and Hermite-Padé approximants.

There is now a rather comprehensive literature on the theory of multiple orthogonal
polynomials associated with Nikishin systems on the real line, which includes the so-called
type I, type II, and mixed-type polynomials. Among the topics that have been investigated
within this theory we find, e.g., strong asymptotics [1], ratio asymptotics [5, 23, 15, 16],
relative asymptotics [24], zero asymptotic distribution [29, 18, 15], Hermite-Padé approxi-
mation [27, 28, 29, 8, 12, 13, 18, 17, 26], recurrence relations [2, 10], normality and perfectness
[11, 16], and the list could be enlarged.

Recently, the study of Nikishin systems on star-like sets has been motivated by the study
of sequences of polynomials (Qn)

∞
n=0 that satisfy a high order three-term recurrence relation

of the form
zQn(z) = Qn+1(z) + anQn−p(z), an > 0, n ≥ p, (1.1)

where p is a fixed positive integer. Early works that have investigated such recursions
are those of Eiermann-Varga [14] and He-Saff [19] on Faber polynomials associated with
hypocycloidal domains (the constant coefficient case an = 1/p, n ≥ p). Later, Aptekarev-
Kalyagin-Van Iseghem [4] studied (1.1) under no additional hypotheses. They proved a
Favard-type theorem, showing that the polynomials (Qn)

∞
n=0 satisfying (1.1) with initial

conditions
Qℓ(z) = zℓ, 0 ≤ ℓ ≤ p, (1.2)

are multi-orthogonal (in the same non-Hermitian sense of Definition 2.2 below) with respect
to a system of p complex measures µ0, . . . , µp−1 supported on the star-like set

S+ = {z ∈ C : zp+1 ≥ 0}.

The collection {µ0, . . . , µp−1} can be regarded as the system of spectral measures [4, 20, 21]
of the difference operator given in the standard basis of l2(N) by the infinite (p+2)-banded
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Hessenberg matrix




0 1 0 0 0 . . . . . .
0 0 1 0 0 . . . . . .
0 0 0 1 0 . . . . . .
. . . . . . . . . . . . . . . . . . . . .
ap 0 0 0 0 . . . . . .
0 ap+1 0 0 0 . . . . . .
0 0 ap+2 0 0 . . . . . .
. . . . . . . . . . . . . . . . . . . . .




. (1.3)

More recently, Aptekarev-Kalyagin-Saff [3] considered strong asymptotics of polynomials
Qn satisfying (1.1)–(1.2) under the hypothesis

∞∑

n=p

|an − a| <∞, a > 0,

and some properties of the measures µj were also deduced. In particular, for the first time
a formal connection with Nikishin systems on star-like sets was established. In [9], Delvaux
and the first author studied in more detail properties of polynomials Qn satisfying (1.1)–
(1.2), analyzing them in the more general setting of Riemann-Hilbert minors (or generalized
eigenvalue polynomials associated with truncations of the matrix (1.3)). A variety of asymp-
totic and non-asymptotic results were obtained there, and in particular a connection was
explicitly established between (1.1) and Nikishin systems on star-like sets in the case of
periodic recurrence coefficients satisfying some additional conditions, see [9, Theorem 2.10].
Another paper that has recently studied (1.1) in connection with the location and interlacing
of the zeros of the polynomials Qn is Ben Romdhane [7].

The results mentioned so far can be regarded as direct spectral results, since they are
obtained under assumptions on the recurrence coefficients. The first paper that analyzed an
inverse spectral problem for (1.3) was [22]. In that work a Nikishin system consisting of two
measures (case p = 2) was considered on a 3-star centered at the origin, and the asymptotic
behavior of the associated multiple orthogonal polynomials (defined as in Definition 2.2
below) was studied. In particular the ratio asymptotic behavior was described under a
Rakhmanov-type condition on the measures generating the Nikishin system, and it was
observed that this behavior was limit periodic with period 6, which was shomewhat of a
surprise (in the analogous situation on the real line the period is 2, cf. [5, 2]). The main
goal of the present work is to obtain a generalization of this result for an arbitrary p ≥ 1.

Our main reference in this paper will be [25], where the fundamental algebraic properties
of the polynomials under investigation were proved. In [25] the authors also described
the zero asymptotic distribution of these polynomials under regularity conditions on the
measures generating the Nikishin system.

The strategy that we follow in the present work to obtain our ratio asymptotic results was
first used in [5], where an analogue of Rakhmanov’s celebrated theorem on ratio asymptotics
[30, 31] was first proved for multiple orthogonal polynomials associated with Nikishin systems
on the real line. That strategy has been applied in several other papers [23, 15, 16, 22]. It
is based on the analysis of certain boundary value relations between the limiting functions
and the application of asymptotic results of orthogonal polynomials on the real line with
respect to varying measures.

This paper is organized as follows. In Section 2 we define Nikishin systems on star-
like sets, and reproduce those results and definitions from [25] that will be needed for our
analysis. Only the information that is strictly relevant has been presented. In Section 3
we state our main results. In Section 4 we analyze the difference Z(n + 1, k) − Z(n, k),
where the values Z(n, k) (2.18) are the degrees of certain polynomials Pn,k introduced in
Definition 2.11 that play a leading role in our analysis. In Section 5 we prove the interlacing
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property of the zeros of Pn,k. In the last section we analyze the ratio asymptotic behavior
of the polynomials Pn,k and prove our main asymptotic results.

2 Preliminaries

In this section we describe the background material from [25] that is essential for the present
work. We start with the definition of Nikishin systems on stars.

2.1 Definition of Nikishin system on a star and induced hier-

archy on the real line

Let p ≥ 1 be an integer, and let

S± := {z ∈ C : zp+1 ∈ R±}, R+ = [0,+∞), R− = (−∞, 0].

We construct p finite stars contained in S± as follows:

Γj := {z ∈ C : zp+1 ∈ [aj , bj ]}, 0 ≤ j ≤ p− 1,

where
0 ≤ aj < bj <∞, j ≡ 0 mod 2,

−∞ < aj < bj ≤ 0, j ≡ 1 mod 2.
(2.1)

Hence Γj ⊂ S+ if j is even, and Γj ⊂ S− if j is odd. We assume throughout that Γj∩Γj+1 = ∅
for all 0 ≤ j ≤ p− 2.

We define now a Nikishin system on (Γ0, . . . ,Γp−1). For each 0 ≤ j ≤ p−1, let σj denote
a positive, rotationally invariant measure on Γj , with infinitely many points in its support.
These will be the measures generating the Nikishin system.

Let

µ̂(x) :=

∫
dµ(t)

x− t

denote the Cauchy transform of a complex measure µ, and let µ1, . . . , µN be N ≥ 1 measures
such that µj and µj+1 have disjoint supports for every 1 ≤ j ≤ N−1. We define the measure
〈µ1, . . . , µN 〉 by the following recursive procedure. For N = 1, 〈µ1〉 := µ1, for N = 2,

d〈µ1, µ2〉(x) := µ̂2(x) dµ1(x),

and for N > 2,
〈µ1, . . . , µN 〉 := 〈µ1, 〈µ2, . . . , µN 〉〉.

We then define the Nikishin system (s0, . . . , sp−1) = N (σ0, . . . , σp−1) generated by the
vector of p measures (σ0, . . . , σp−1) by setting

sj := 〈σ0, . . . , σj〉, 0 ≤ j ≤ p− 1. (2.2)

Notice that these measures sj are all supported on the first star Γ0.
An alternative and more convenient way to define the Nikishin system (s0, . . . , sp−1) is

as the first row of the following hierarchy of measures sk,j ,

s0,0 s0,1 s0,2 · · · s0,p−1

s1,1 s1,2 · · · s1,p−1

s2,2 · · · s2,p−1

. . .
...

sp−1,p−1

(2.3)

where
sk,j = 〈σk, . . . , σj〉, 0 ≤ k ≤ j ≤ p− 1.
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More descriptively, the measures sk,j are inductively defined by setting

sk,k := σk, 0 ≤ k ≤ p− 1,

dsk,j(z) =

∫

Γk+1

dsk+1,j(t)

z − t
dσk(z), 0 ≤ k < j ≤ p− 1.

Notice then that for each pair k, j with 0 ≤ k ≤ j ≤ p−1, (sk,k, . . . , sk,j) = N (σk, . . . , σj)
is the Nikishin system generated by (σk, . . . , σj).

For every 0 ≤ j ≤ p − 1, we shall denote by σ∗
j the push-forward of σj under the map

z 7→ zp+1, that is, σ∗
j is the measure on [aj , bj ] such that for every Borel set E ⊂ [aj , bj ],

σ∗
j (E) := σj

(
{z : zp+1 ∈ E}

)
. (2.4)

We now construct, out of these σ∗
j , a new hierarchy of measures µk,j , 0 ≤ k ≤ j ≤ p− 1:

µ0,0 µ0,1 µ0,2 · · · µ0,p−1

µ1,1 µ1,2 · · · µ1,p−1

µ2,2 · · · µ2,p−1

. . .
...

µp−1,p−1

(2.5)

where the measures µk,j are inductively defined by setting

µk,k := σ∗
k, 0 ≤ k ≤ p− 1,

dµk,j(τ ) =

(
τ

∫ bk+1

ak+1

dµk+1,j(s)

τ − s

)
dσ∗

k(τ ), τ ∈ [ak, bk], 0 ≤ k < j ≤ p− 1.

The following result, proved in [25, Prop. 2.2], describes the relation between the mea-
sures sk,j and µk,j .

Proposition 2.1. For every 0 ≤ k ≤ j ≤ p− 1, we have
∫

Γk

dsk,j(t)

z − t
= zp+k−j

∫ bk

ak

dµk,j(τ )

zp+1 − τ
,

that is,
ŝk,j(z) = zp+k−jµ̂k,j(z

p+1).

2.2 Multiple orthogonal polynomials and functions of the sec-

ond kind

Definition 2.2. Let {Qn(z)}∞n=0 be the sequence of monic polynomials of lowest degree
that satisfy the following non-hermitian orthogonality conditions:

∫

Γ0

Qn(z) z
l dsj(z) = 0, l = 0, . . . ,

⌊
n− j − 1

p

⌋
, 0 ≤ j ≤ p− 1, (2.6)

where the measures sj are defined in (2.2)

In more detail, (2.6) asserts that the polynomial Qmp+r must satisfy the orthogonality
relations

∫

Γ0

Qmp+r(z) z
l dsj(z) = 0, l = 0, . . . ,m− 1, 0 ≤ j ≤ p− 1,

∫

Γ0

Qmp+r(z) z
m dsj(z) = 0, 0 ≤ j ≤ r − 1.

The goal of [25] was to investigate algebraic properties and the weak asymptotic behavior
of the sequence of multi-orthogonal polynomials (Qn). In the following result we summarize
some of the properties proved in [25].

5



Proposition 2.3. The following properties hold:

1) For each n ≥ 0, the polynomial Qn has maximal degree n.

2) If n ≡ ℓ mod (p + 1), 0 ≤ ℓ ≤ p, then there exists a monic polynomial Qd of degree
d = n−ℓ

p+1
such that

Qn(z) = zℓQd(z
p+1), (2.7)

where the zeros of Qd are all simple and located in (a0, b0). In particular, the zeros of
Qn are located in the star-like set S+.

3) The polynomials Qn satisfy the following three-term recurrence relation of order p+1:

zQn(z) = Qn+1(z) + anQn−p(z), n ≥ p, an ∈ R, (2.8)

where
Qℓ(z) = zℓ, ℓ = 0, . . . , p. (2.9)

4) The recurrence coefficients an in (2.8) are all positive, i.e. an > 0 for all n ≥ p.

5) For every n ≥ p+ 1, the non-zero roots of the polynomials Qn and Qn+1 interlace on
Γ0.

To check the validity of the statements in Proposition 2.3, we refer the reader to the
following results in [25]: Propositions 2.16 and 3.1, Theorem 3.5 and Corollary 3.6.

As it is well-known in the theory of multi-orthogonal polynomials, the so-called functions
of the second kind play a crucial role in the asymptotic analysis. These functions are defined
next.

Definition 2.4. Set Ψn,0 = Qn and let

Ψn,k(z) =

∫

Γk−1

Ψn,k−1(t)

z − t
dσk−1(t), k = 1, . . . , p.

Observe that for each k = 1, . . . , p, Ψn,k is analytic in C \ Γk−1.
The functions Ψn,k were also investigated in [25], and some of the properties found there

are stated in the following result, see Propositions 2.5–2.7 in [25].

Proposition 2.5. The following properties hold:

1) For each k = 0, . . . , p− 1, the function Ψn,k satisfies the orthogonality conditions

∫

Γk

Ψn,k(z) z
l dsk,j(z) = 0, 0 ≤ l ≤

⌊
n− j − 1

p

⌋
, k ≤ j ≤ p− 1. (2.10)

2) Let ω := e
2πi
p+1 . For each k = 0, . . . , p, we have Ψn,k(z) = ωn−kΨn,k(z).

3) Assume that n ≡ ℓ mod (p+ 1) with 0 ≤ ℓ ≤ p. Then, for each k = 1, . . . , p we have

Ψn,k(z) = zp−s
∫

Γk−1

Ψn,k−1(t) t
s

zp+1 − tp+1
dσk−1(t), (2.11)

where s is the only integer in {0, . . . , p} such that s ≡ k − 1− ℓ mod (p+ 1), that is,

s =

{
k − 1− ℓ, ℓ < k,

p+ k − ℓ, k ≤ ℓ.
(2.12)

Some observations on Proposition 2.5 are appropriate at this point. First, (2.10) shows
that the function Ψn,k, 0 ≤ k ≤ p− 1, satisfies multiple orthogonality conditions similar to
those satisfied by Qn but with respect to the Nikishin system given by the kth row of the
hierarchy (2.3). Formula (2.11) allows us to find a representation of Ψn,k that is similar to
the representation of Qn in (2.7). The functions that are necessary for this representation
are defined next.
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Definition 2.6. Set ψn,0 := Qd, where Qd is the polynomial that appears in the right-hand
side of (2.7). For 1 ≤ k ≤ p, let ψn,k be the function analytic in C \ [ak−1, bk−1] defined by

ψn,k(z) =






z
∫
Γk−1

Ψn,k−1(t) t
k−1−ℓ

z−tp+1 dσk−1(t), ℓ < k,

∫
Γk−1

Ψn,k−1(t) t
p+k−ℓ

z−tp+1 dσk−1(t), k ≤ ℓ,

where, as before, n ≡ ℓ mod (p+ 1), 0 ≤ ℓ ≤ p.

Indeed, the following important result is now an immediate consequence of the above
definition and (2.11)–(2.12).

Corollary 2.7. Suppose n ≡ ℓ mod (p+ 1) with 0 ≤ ℓ ≤ p, and define

dσn,k(τ ) :=

{
dσ∗

k(τ ), ℓ ≤ k,

τ dσ∗
k(τ ), k < ℓ.

(2.13)

Then,
zk−ℓΨn,k(z) = ψn,k(z

p+1), 0 ≤ k ≤ p, (2.14)

and for all 1 ≤ k ≤ p,

ψn,k(z) =





z
∫ bk−1

ak−1

ψn,k−1(τ)

z−τ
dσn,k−1(τ ), ℓ < k,

∫ bk−1

ak−1

ψn,k−1(τ)

z−τ
dσn,k−1(τ ), k ≤ ℓ.

(2.15)

We will also refer to the functions ψn,k as functions of the second kind.
We have seen that the functions Ψn,k satisfy orthogonality relations with respect to the

hierarchy (2.3). An important property is that the associated functions ψn,k do the same
with respect to the hierarchy (2.5). We reproduce this property here, which is Proposition
2.10 in [25].

Proposition 2.8. Let 0 ≤ k ≤ p − 1 and assume that n ≡ ℓ mod (p+ 1) with 0 ≤ ℓ ≤ p.
Then the function ψn,k satisfies the following orthogonality conditions:

∫ bk

ak

ψn,k(τ ) τ
s dµk,j(τ ) = 0,

⌈
ℓ− j

p+ 1

⌉
≤ s ≤

⌊
n+ pℓ− 1− j(p+ 1)

p(p+ 1)

⌋
, k ≤ j ≤ p− 1.

(2.16)

2.3 Counting the number of orthogonality conditions

For the asymptotic analysis of the multi-orthogonal polynomials and the functions of the
second kind, it is crucial to have a control on the total number of orthogonality conditions
in (2.16). We define this quantity next in the same way it was defined in [25].

Definition 2.9. Let n be a nonnegative integer, and let ℓ be the integer satisfying n ≡ ℓ
mod (p+ 1), 0 ≤ ℓ ≤ p. For each 0 ≤ j ≤ p− 1, let Mj = Mj(n) be the number of integers
s satisfying the inequalities

⌈
ℓ− j

p+ 1

⌉
≤ s ≤

⌊
n+ pℓ− 1− j(p+ 1)

p(p+ 1)

⌋
. (2.17)

For each 0 ≤ k ≤ p− 1, we define

Z(n, k) :=

p−1∑

j=k

Mj . (2.18)

Also, we convene to set Z(n, p) := 0.

7



It is clear from the definition that for every n,

Z(n, k) ≥ Z(n, k + 1), 0 ≤ k ≤ p− 2, (2.19)

and

Z(n, k)− Z(n, k + 1) = #

{
s :

⌈
ℓ− k

p+ 1

⌉
≤ s ≤

⌊
n+ pℓ− 1− k(p+ 1)

p(p+ 1)

⌋}
.

Exact formulas for the quantity Z(n, k) are involved; the reader may look at the expres-
sions that appear in Lemma 2.13 and Proposition 2.17 from [25]. However, these formulas
are not needed in the present paper. We just note here that

Z(n, k) =
n(p− k)

p(p+ 1)
+O(1), n→ ∞. (2.20)

Later it will be important for our study of ratio asymptotics to analyze the difference Z(n+
1, k)− Z(n, k).

2.4 More properties of the functions of the second kind, and

the polynomials Pn,k

In this paper we will need some more properties of the functions ψn,k that were proved in
[25]. We gather some of them in the next result.

Proposition 2.10. The following properties hold:

1) Let 1 ≤ k ≤ p, and suppose that n ≡ ℓ mod (p+ 1). Then, as z → ∞,

ψn,k(z) = O(z−N(n,k)), (2.21)

where

N(n, k) =

{
Z(n, k − 1)− Z(n, k), ℓ < k,

Z(n, k − 1)− Z(n, k) + 1, k ≤ ℓ,
(2.22)

recall Z(n, p) = 0.

2) For each n ≥ 0 and k = 0, . . . , p − 1, the function ψn,k has exactly Z(n, k) zeros in
C \ ([ak−1, bk−1] ∪ {0}); they are all simple and lie in the open interval (ak, bk). The
function ψn,p has no zeros in C \ ([ap−1, bp−1] ∪ {0}).

3) Let an, n ≥ p, be the coefficients of the recurrence relation (2.8). For every n ≥ p,
0 ≤ k ≤ p, we have

zΨn,k(z) = Ψn+1,k(z) + anΨn−p,k(z), (2.23)

and if n ≡ ℓ mod (p+ 1), 0 ≤ ℓ ≤ p− 1, then

ψn,k(z) = ψn+1,k(z) + anψn−p,k(z), (2.24)

while if n ≡ p mod (p+ 1), then

zψn,k(z) = ψn+1,k(z) + anψn−p,k(z). (2.25)

See Propositions 2.18, 2.19 and 3.2 in [25] for a proof of these properties.
As in [25], an important role in the asymptotic analysis will be played by certain monic

polynomials associated with the functions ψn,k that we define next.

Definition 2.11. For any integers n ≥ 0 and k with 0 ≤ k ≤ p − 1, let Pn,k denote the
monic polynomial whose zeros are the zeros of ψn,k in (ak, bk). For convenience we also
define the polynomials Pn,−1 ≡ 1, Pn,p ≡ 1.

8



Hence by Proposition 2.10 we know that Pn,k has degree Z(n, k) and all its zeros are
simple. Recall that by Definition 2.6, Pn,0 = ψn,0 is the polynomial Qd that appears in
(2.7), and therefore

Z(n, 0) = deg(Pn,0) =

⌊
n

p+ 1

⌋
. (2.26)

The main purpose for introducing the polynomials Pn,k is to prove certain orthogonality
conditions satisfied by the functions ψn,k with respect to varying measures involving these
polynomials.

Proposition 2.12. Let 0 ≤ k ≤ p − 1. Then, the function ψn,k satisfies the following
orthogonality conditions:

∫ bk

ak

ψn,k(τ ) τ
s dσn,k(τ )

Pn,k+1(τ )
= 0, s = 0, . . . , Z(n, k)− 1, (2.27)

recall (2.13).

For a justification of (2.27), see Proposition 2.21 in [25].
Observe that by definition of Z(n, k), the total number of orthogonality conditions in

(2.16) agrees with the number of orthogonality conditions in (2.27), but the advantage of
(2.27) is clear since it involves only one orthogonality measure.

2.5 The auxiliary functions Hn,k

In this subsection we introduce certain functions that will play an important role in the
analysis that will follow.

Definition 2.13. For integers n ≥ 0 and 0 ≤ k ≤ p, set

Hn,k(z) :=
Pn,k−1(z)ψn,k(z)

Pn,k(z)
. (2.28)

Note that Hn,0 ≡ 1. Since the zeros of Pn,k are zeros of ψn,k outside [ak−1, bk−1], we
have

Hn,k ∈ H(C \ [ak−1, bk−1]), 1 ≤ k ≤ p.

Putting together (2.13), (2.27), and (2.28), we readily obtain the following result.

Proposition 2.14. For any k = 0, . . . , p − 1, the polynomial Pn,k satisfies the following
orthogonality conditions:

∫ bk

ak

Pn,k(τ ) τ
s Hn,k(τ ) dσn,k(τ )

Pn,k−1(τ )Pn,k+1(τ )
= 0, s = 0, . . . , Z(n, k)− 1.

Recall that Pn,−1, Pn,p ≡ 1.

The function Hn,k has an integral representation that is analogous to the integral repre-
sentation of the function ψn,k in (2.15).

Proposition 2.15. Let 1 ≤ k ≤ p and n ≡ ℓ mod (p+ 1), 0 ≤ ℓ ≤ p. Then,

Hn,k(z) =






z
∫ bk−1

ak−1

P2
n,k−1(τ)

z−τ

Hn,k−1(τ) dσn,k−1(τ)

Pn,k−2(τ)Pn,k(τ)
, ℓ < k,

∫ bk−1

ak−1

P2
n,k−1(τ)

z−τ

Hn,k−1(τ) dσn,k−1(τ)

Pn,k−2(τ)Pn,k(τ)
, k ≤ ℓ.

(2.29)

Formula (2.29) was proved in [25, Proposition 2.25].
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2.6 Normalization

In this subsection we introduce a convenient normalization of the polynomials Pn,k and the
functions Hn,k.

It follows from the definition of the functions Hn,k and the polynomials Pn,k that the
measures

Hn,k(τ ) dσn,k(τ )

Pn,k−1(τ )Pn,k+1(τ )
, 0 ≤ k ≤ p− 1,

have constant sign on the interval [ak, bk]. We then denote by

|Hn,k(τ )| d|σn,k|(τ )
|Pn,k−1(τ )Pn,k+1(τ )|

the positive normalization of this measure and we have

∫ bk

ak

Pn,k(τ ) τ
s |Hn,k(τ )| d|σn,k|(τ )
|Pn,k−1(τ )Pn,k+1(τ )|

= 0, s = 0, . . . , Z(n, k)− 1, k = 0, . . . , p− 1.

(2.30)
Let

Kn,−1 := 1, Kn,p := 1, (2.31)

Kn,k :=

(∫ bk

ak

P 2
n,k(τ )

|Hn,k(τ )| d|σn,k|(τ )
|Pn,k−1(τ )Pn,k+1(τ )|

)−1/2

, k = 0, . . . , p− 1, (2.32)

and we also define the constants

κn,k :=
Kn,k

Kn,k−1
, k = 0, . . . , p. (2.33)

Definition 2.16. For k = 0, . . . , p, we define

pn,k := κn,k Pn,k, (2.34)

hn,k := K2
n,k−1Hn,k, (2.35)

where the constants κn,k and Kn,k are given in (2.33) and (2.31)–(2.32), respectively.

We will denote by νn,k the measure on [ak, bk] given by

dνn,k(τ ) :=
hn,k(τ ) dσn,k(τ )

Pn,k−1(τ )Pn,k+1(τ )
, k = 0, . . . , p− 1. (2.36)

Again this measure has constant sign in [ak, bk], and we will denote by εn,k its sign and by
|νn,k| its positive normalization, hence

d|νn,k|(τ ) = |hn,k(τ )|d|σn,k|(τ )
|Pn,k−1(τ )Pn,k+1(τ )|

= εn,k
hn,k(τ )dσn,k(τ )

Pn,k−1(τ )Pn,k+1(τ )
. (2.37)

An exact formula for εn,k is given in (4.22).

Proposition 2.17. For each k = 0, . . . , p−1, the polynomial pn,k defined in (2.34) satisfies
the following:

∫ bk

ak

pn,k(τ ) τ
s d|νn,k|(τ ) = 0, s = 0, . . . , Z(n, k)− 1, (2.38)

∫ bk

ak

p2n,k(τ )d|νn,k|(τ ) = 1, (2.39)

that is, pn,k is the orthonormal polynomial of degree Z(n, k) with respect to the positive
measure |νn,k|.
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For each k = 1, . . . , p, the function hn,k defined in (2.35) satisfies

hn,k(z) =






εn,k−1 z
∫ bk−1

ak−1

p2n,k−1(τ)

z−τ
d|νn,k−1|(τ ) ℓ < k,

εn,k−1

∫ bk−1

ak−1

p2n,k−1(τ)

z−τ
d|νn,k−1|(τ ) k ≤ ℓ.

(2.40)

Proof. The orthogonality conditions (2.38) are obvious in view of (2.30). The formulas (2.39)
and (2.40) follow immediately from (2.34)–(2.35), (2.33), (2.31)–(2.32) and (2.29).

3 Main results

In this paper we initiate our analysis with the study of the difference Z(n+1, k)−Z(n, k) =
deg(Pn+1,k) − deg(Pn,k), see Section 4. Recall that the zeros of the polynomials Pn,k are
all simple and lie in the interval (ak, bk), cf. Definition 2.11 and Proposition 2.10. We show
that for each fixed k = 0, . . . , p− 1, the difference Z(n+1, k)−Z(n, k) is periodic in n with
period p(p+ 1) and takes only the values {−1, 0, 1}, see Lemma 4.1.

Our first main result is the interlacing property of the zeros of Pn,k. This property is
proved in Section 5 and is a consequence of an auxiliary result on the zeros of the function
Gn,k defined in (5.1), see Corollary 5.4.

Theorem 3.1. Let (s0, . . . , sp−1) = N (σ0, . . . , σp−1) be a Nikishin system on Γ0, defined as
indicated in Section 2.1, and let (Pn,k) be the system of associated polynomials introduced in
Definition 2.11. Then for each k = 0, . . . , p− 1, the zeros of Pn,k and Pn+1,k interlace; that
is, between two consecutive zeros of Pn,k there is exactly one zero of Pn+1,k and vice versa.

The following theorem is our main asymptotic result, from which we derive all other
asymptotic formulas. In all these formulas, convergence is uniform on compact subsets of
the indicated regions, and the periodicity modulo p(p + 1) is preserved. Theorem 3.2 and
the corollaries that follow are all proved in Section 6.

Theorem 3.2. Assume that for each k = 0, . . . , p− 1, the measure σ∗
k defined in (2.4) has

positive Radon-Nikodym derivative with respect to Lebesgue measure a.e. on [ak, bk]. Then,
for each fixed 0 ≤ ρ ≤ p(p+ 1)− 1,

lim
λ→∞

Pλp(p+1)+ρ+1,k(z)

Pλp(p+1)+ρ,k(z)
= F̃

(ρ)
k (z), z ∈ C \ [ak, bk], k = 0, . . . , p− 1, (3.1)

and

lim
n→∞

Pn+p(p+1),k(z)

Pn,k(z)
=

p(p+1)−1∏

ρ=0

F̃
(ρ)
k (z), z ∈ C \ [ak, bk], k = 0, . . . , p− 1, (3.2)

where F̃
(ρ)
k is F

(ρ)
k divided by its leading coefficient (in the Laurent series expansion at

infinity) and (F
(ρ)
k )p−1

k=0 is a collection of analytic functions that satisfies, for the given value
of ρ, the properties stated in Lemma 6.3.

We describe next the ratio asymptotic behavior of the multiple orthogonal polynomials
(Qn)

∞
n=0 and the asymptotic behavior of the associated recurrence coefficients (an)

∞
n=p.

Corollary 3.3. Assume that for each k = 0, . . . , p− 1, the measure σ∗
k has positive Radon-

Nikodym derivative with respect to Lebesgue measure a.e. on [ak, bk]. Then the sequence
(Qn) of multi-orthogonal polynomials introduced in Definition 2.2 and the sequence (an) of
recurrence coefficients in (2.8) satisfy the following:

Let 0 ≤ ρ ≤ p(p+ 1)− 1 be fixed. If ρ 6≡ p mod (p+ 1), then

lim
λ→∞

Qλp(p+1)+ρ+1(z)

Qλp(p+1)+ρ(z)
= z F̃

(ρ)
0 (zp+1), z ∈ C \ Γ0, (3.3)
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and if ρ ≡ p mod (p+ 1), then

lim
λ→∞

Qλp(p+1)+ρ+1(z)

Qλp(p+1)+ρ(z)
=
F̃

(ρ)
0 (zp+1)

zp
, z ∈ C \ (Γ0 ∪ {0}). (3.4)

We have
lim
λ→∞

aλp(p+1)+ρ = a(ρ), (3.5)

where the limiting values a(ρ) appear in the Laurent expansion at infinity of F̃
(ρ)
0 as follows:

F̃
(ρ)
0 (z) =

{
1− a(ρ)z−1 +O

(
z−2

)
, if ρ 6≡ p mod (p+ 1),

z − a(ρ) +O
(
z−1
)
, if ρ ≡ p mod (p+ 1).

(3.6)

In the next result we describe the ratio asymptotic behavior of the functions of the second
kind (ψn,k), (Ψn,k) and the normalized polynomials (pn,k).

Corollary 3.4. Assume that for each k = 0, . . . , p− 1, the measure σ∗
k has positive Radon-

Nikodym derivative with respect to Lebesgue measure a.e. on [ak, bk]. Then, for each fixed
0 ≤ ρ ≤ p(p+ 1) − 1,

lim
λ→∞

κλp(p+1)+ρ+1,k

κλp(p+1)+ρ,k
= κ

(ρ)
k , k = 0, . . . , p− 1, (3.7)

lim
λ→∞

Kλp(p+1)+ρ+1,k

Kλp(p+1)+ρ,k

= κ
(ρ)
0 · · ·κ(ρ)

k , k = 0, . . . , p− 1, (3.8)

and

lim
λ→∞

pλp(p+1)+ρ+1,k(z)

pλp(p+1)+ρ,k(z)
= κ

(ρ)
k F̃

(ρ)
k (z), z ∈ C \ [ak, bk], k = 0, . . . , p− 1, (3.9)

where

κ
(ρ)
k =

c
(ρ)
k

(c
(ρ)
k−1c

(ρ)
k+1)

1/2
, (3.10)

and (c
(ρ)
k ), k = 0, . . . , p − 1 is the unique solution of the system of equations (6.30) (c

(ρ)
−1 =

c
(ρ)
p = 1).

Regarding the functions of the second kind (ψn,k) and (Ψn,k), for k = 1, . . . , p we have

lim
λ→∞

ψλp(p+1)+ρ+1,k(z)

ψλp(p+1)+ρ,k(z)
=

ε
(ρ)
k h

(ρ)
k (z)

(κ
(ρ)
0 · · ·κ(ρ)

k−1)
2

F̃
(ρ)
k (z)

F̃
(ρ)
k−1(z)

, z ∈ C\([ak−1, bk−1]∪[ak, bk]∪{0}),

(3.11)

where ε
(ρ)
k is either 1 or −1 depending on k and ρ, and

h
(ρ)
k (z) =





z, if ρ ≡ p mod (p+ 1),

z−1, if ρ ≡ k − 1 mod (p+ 1),

1, otherwise.

(3.12)

In (3.11) we use the convention F̃
(ρ)
p ≡ 1. Under the same assumptions on ρ and k we have

lim
λ→∞

Ψλp(p+1)+ρ+1,k(z)

Ψλp(p+1)+ρ,k(z)
=

ε
(ρ)
k g

(ρ)
k (z)

(κ
(ρ)
0 · · ·κ(ρ)

k−1)
2

F̃
(ρ)
k (zp+1)

F̃
(ρ)
k−1(z

p+1)
, z ∈ C\(Γk−1∪Γk∪{0}), (3.13)

where

g
(ρ)
k (z) =

{
z−p, if ρ ≡ k − 1 mod (p+ 1),

z, otherwise.

For an exact formula of ε
(ρ)
k , see Remark 6.5.
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4 Analysis of Z(n + 1, k) − Z(n, k) and some conse-

quences

The study of ratio asymptotics requires as a preliminary step the analysis of Z(n + 1, k)−
Z(n, k), which is the difference in the degrees of the consecutive polynomials Pn+1,k and
Pn,k. Since we are using in this section both indices n and n + 1, we will indicate below
the dependence with respect to n of the quantities that appear in Lemma 4.1. Thus we will
write for instance ℓ(n) for the integer satisfying

n ≡ ℓ(n) mod (p+ 1), 0 ≤ ℓ(n) ≤ p,

and so on.
Throughout this section we decompose n in the form

n = λp(p+ 1) + ρ, (4.1)

where λ = λ(n), ρ = ρ(n) are integers and 0 ≤ ρ ≤ p(p + 1) − 1. We also decompose ρ
modulo p+ 1 and write

ρ(n) = η(p+ 1) + ℓ, η = η(n) ∈ {0, . . . , p− 1}, ℓ = ℓ(n) ∈ {0, . . . , p}. (4.2)

Given two integers n and n′ with n ≤ n′, in this section and in the rest of the paper we will
use for convenience the notation [n : n′] to indicate the set {s ∈ Z : n ≤ s ≤ n′}.

Before describing the difference Z(n+1, k)−Z(n, k), we make some relevant observations.
The lower bound in (2.17) is simply

⌈
ℓ(n)− j

p+ 1

⌉
=

{
0, if ℓ(n) ≤ j,

1, if j < ℓ(n).

Concerning the upper bound in (2.17), using (4.1) and (4.2) we get

⌊
n+ p ℓ(n)− 1− j(p + 1)

p(p+ 1)

⌋
=

⌊
λ+

η(n) + ℓ(n)− j

p
− 1

p(p+ 1)

⌋
, (4.3)

where λ corresponds to n, but we prefer not to write λ(n) in (4.3) and below. If ℓ(n) < p,
then ℓ(n + 1) = ℓ(n) + 1, and in this case we have that the upper bound in (2.17) that
corresponds to n+ 1 is

⌊
n+ 1 + p ℓ(n+ 1) − 1− j(p+ 1)

p(p+ 1)

⌋
=

⌊
λ+

η(n) + ℓ(n)− j + 1

p
− 1

p(p+ 1)

⌋
. (4.4)

However, if ℓ(n) = p, then ℓ(n+ 1) = 0, and then

⌊
n+ 1 + p ℓ(n+ 1)− 1− j(p + 1)

p(p+ 1)

⌋
=

⌊
λ+

η(n)− j + 1

p
− 1

p(p+ 1)

⌋
. (4.5)

Assume now that ℓ(n) < p. Then we easily see that the quantities in (4.3) and (4.4) are
equal for all values of j (recall j ∈ [k : p− 1]) except those satisfying η(n) + ℓ(n)− j ∈ pZ.
In virtue of the restrictions on the quantities η, ℓ and j, the only possible exceptional cases
are j = η(n) + ℓ(n) and j = η(n) + ℓ(n)− p. In any of these two exceptional cases, we have
that the quantity in (4.4) is one unit greater than the quantity in (4.3). Also, as j runs from
k to p − 1, clearly j can take at most one of these exceptional values. These are the key
observations to keep in mind in order to prove the following result.
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Lemma 4.1. Let k ∈ [0 : p − 1] be fixed. Then, as a function of n, the expression Z(n +
1, k)−Z(n, k) is periodic with period p(p+1), and Z(n+1, k)−Z(n, k) ∈ {−1, 0, 1} for all
n. Moreover, using the notation (4.2) we have the following:

If ℓ(n) ∈ [0 : p− 1], then

Z(n+ 1, k) − Z(n, k) =





0, if η(n) + ℓ(n) /∈ [k : p− 1], ℓ(n) ∈ [0 : k − 1],

1, if η(n) + ℓ(n) ∈ [k : p− 1], ℓ(n) ∈ [0 : k − 1],

0, if η(n) + ℓ(n) /∈ [p : p+ k − 1], ℓ(n) ∈ [k : p− 1],

−1, if η(n) + ℓ(n) ∈ [p : p+ k − 1], ℓ(n) ∈ [k : p− 1].

(4.6)

If ℓ(n) = p, then

Z(n+ 1, k)− Z(n, k) =





0, if η(n) ∈ [0 : k − 1],

1, if η(n) ∈ [k : p− 1].
(4.7)

Proof. For convenience let us introduce the notation

ς(n, j) :=

⌈
ℓ(n)− j

p+ 1

⌉
, κ(n, j) :=

⌊
n+ p ℓ(n)− 1− j(p+ 1)

p(p+ 1)

⌋
.

Assume that ℓ(n) < k and η(n) + ℓ(n) ∈ [k : p− 1]. Then we have that

ς(n, j) = ς(n+ 1, j) = 0, for all j ∈ [k : p− 1], (4.8)

and
κ(n, j) = κ(n+ 1, j), for all j ∈ [k : p− 1] \ {η(n) + ℓ(n)}. (4.9)

As it was already observed, if j = η(n) + ℓ(n) then κ(n+ 1, j) = κ(n, j) + 1. Therefore, by
definition of Z(n, k) and Z(n+1, k), we obtain that if ℓ(n) < k and η(n)+ ℓ(n) ∈ [k : p− 1]
then Z(n+ 1, k) = Z(n, k) + 1.

Assume now that ℓ(n) < k and η(n) + ℓ(n) /∈ [k : p− 1]. We still have the relation (4.8),
and the first assumption shows that η(n) + ℓ(n) − p < ℓ(n) < k, hence η(n) + ℓ(n) − p /∈
[k : p − 1]. Therefore, as j runs from k to p − 1, j does not take the exceptional values
η(n)+ ℓ(n) and η(n)+ ℓ(n)−p, which implies that κ(n, j) = κ(n+1, j) for all j ∈ [k : p−1].
It follows that in this case Z(n, k) = Z(n+ 1, k).

Now we assume that k ≤ ℓ(n) ≤ p− 1 and η(n) + ℓ(n) ∈ [k : p− 1]. Then

ς(n, j) =




1, j ∈ [k : ℓ(n)− 1],

0, j ∈ [ℓ(n) : p− 1],
(4.10)

and

ς(n+ 1, j) =

⌈
ℓ(n) + 1− j

p+ 1

⌉
=




1, j ∈ [k : ℓ(n)],

0, j ∈ [ℓ(n) + 1 : p− 1].
(4.11)

On the other hand, since η(n)+ℓ(n) ∈ [k : p−1], we see that (4.9) holds and if j = η(n)+ℓ(n),
then κ(n+ 1, j) = κ(n, j) + 1.

Assume additionally for the moment that η(n) = 0. Then according to (4.10)–(4.11) and
the above observations, we obtain that the intervals (2.17) that correspond to n and n+ 1
take the following form:

[ς(n, j) : κ(n, j)] = [ς(n+ 1, j) : κ(n+ 1, j)] = [1 : λ], j ∈ [k : ℓ(n)− 1],

[ς(n, j), κ(n, j)] = [0 : λ− 1], [ς(n+ 1, j), κ(n+ 1, j)] = [1 : λ], for j = ℓ(n),

[ς(n, j) : κ(n, j)] = [ς(n+ 1, j) : κ(n+ 1, j)] = [0 : λ− 1], j ∈ [ℓ(n) + 1 : p− 1].
(4.12)
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Therefore in this case we have Z(n, k) = Z(n+1, k). Assume now that η(n) > 0, while still
assuming that k ≤ ℓ(n) ≤ p−1 and η(n)+ ℓ(n) ∈ [k : p−1]. In this case the intervals (2.17)
for n and n+ 1 have the form

[ς(n, j) : κ(n, j)] = [ς(n+ 1, j) : κ(n+ 1, j)] = [1 : λ], j ∈ [k : ℓ(n)− 1],

[ς(n, j), κ(n, j)] = [0 : λ], [ς(n+ 1, j), κ(n+ 1, j)] = [1 : λ], for j = ℓ(n),

[ς(n, j) : κ(n, j)] = [ς(n+ 1, j) : κ(n+ 1, j)] = [0 : λ], j ∈ [ℓ(n) + 1 : η(n) + ℓ(n)− 1],

[ς(n, j), κ(n, j)] = [0 : λ− 1], [ς(n+ 1, j), κ(n+ 1, j)] = [0 : λ], for j = η(n) + ℓ(n),

[ς(n, j) : κ(n, j)] = [ς(n+ 1, j) : κ(n+ 1, j)] = [0 : λ− 1], j ∈ [η(n) + ℓ(n) + 1 : p− 1].
(4.13)

It follows that in this case Z(n, k) = Z(n+1, k). The two cases that we just analyzed show
that if k ≤ ℓ(n) ≤ p− 1 and η(n) + ℓ(n) ∈ [k : p− 1], then Z(n, k) = Z(n+ 1, k).

Suppose now that k ≤ ℓ(n) ≤ p − 1 and η(n) + ℓ(n) ≥ p + k. Then we know that
κ(n, j) = κ(n+1, j) for all j except for j = η(n)+ ℓ(n)− p, and (4.10)–(4.11) are still valid.
Notice that k ≤ η(n) + ℓ(n) − p ≤ ℓ(n) − 1 ≤ p − 2. Therefore in this case we have the
following:

[ς(n, j) : κ(n, j)] = [ς(n+ 1, j) : κ(n+ 1, j)] = [1 : λ+ 1], j ∈ [k : η(n) + ℓ(n)− p− 1],

[ς(n, j), κ(n, j)] = [1 : λ], [ς(n+ 1, j), κ(n+ 1, j)] = [1 : λ+ 1], for j = η(n) + ℓ(n)− p,

[ς(n, j) : κ(n, j)] = [ς(n+ 1, j) : κ(n+ 1, j)] = [1 : λ], j ∈ [η(n) + ℓ(n)− p+ 1 : ℓ(n)− 1],

[ς(n, j), κ(n, j)] = [0 : λ], [ς(n+ 1, j), κ(n+ 1, j)] = [1 : λ], for j = ℓ(n),

[ς(n, j) : κ(n, j)] = [ς(n+ 1, j) : κ(n+ 1, j)] = [0 : λ], j ∈ [ℓ(n) + 1 : p− 1].
(4.14)

This shows that if k ≤ ℓ(n) ≤ p− 1 and η(n) + ℓ(n) ≥ p+ k, then Z(n, k) = Z(n+ 1, k).
We assume now that k ≤ ℓ(n) ≤ p − 1 and η(n) + ℓ(n) ∈ [p : p + k − 1]. Then

η(n) + ℓ(n) /∈ [k : p− 1] and η(n) + ℓ(n)− p /∈ [k : p− 1], hence κ(n, j) = κ(n+ 1, j) for all
j ∈ [k : p− 1]. The relations (4.10)–(4.11) hold. Therefore we have

[ς(n, j) : κ(n, j)] = [ς(n+ 1, j) : κ(n+ 1, j)] = [1 : λ], j ∈ [k : ℓ(n)− 1],

[ς(n, j), κ(n, j)] = [0 : λ], [ς(n+ 1, j), κ(n+ 1, j)] = [1 : λ], for j = ℓ(n),

[ς(n, j) : κ(n, j)] = [ς(n+ 1, j) : κ(n+ 1, j)] = [0 : λ], j ∈ [ℓ(n) + 1 : p− 1].

(4.15)

This shows that in this case Z(n+ 1, k) = Z(n, k)− 1.
Finally let’s assume that ℓ(n) = p. Since ℓ(n+ 1) = 0, in this case we have ς(n, j) = 1

and ς(n+ 1, j) = 0 for all j ∈ [k : p− 1]. Writing n = mp(p+ 1) + η(n)(p+ 1) + p, we get

κ(n, j) =

⌊
m+

η(n) + p− j

p
− 1

p(p+ 1)

⌋
=

{
λ+ 1, j ∈ [0 : η(n)− 1],

λ, j ∈ [η(n) : p− 1],

and

κ(n+ 1, j) =

⌊
m+

η(n) + 1− j

p
− 1

p(p+ 1)

⌋
=

{
λ, j ∈ [0 : η(n)],

λ− 1, j ∈ [η(n) + 1 : p− 1].

If we assume that η(n) ∈ [0 : k − 1], then

[ς(n, j) : κ(n, j)] = [1 : λ], [ς(n+ 1, j) : κ(n+ 1, j)] = [0 : λ− 1], for all j ∈ [k : p− 1],
(4.16)

hence in this case Z(n, k) = Z(n+ 1, k). If η(n) ∈ [k : p− 1], then

[ς(n, j) : κ(n, j)] = [1 : λ+ 1], [ς(n+ 1, j) : κ(n+ 1, j)] = [0 : λ], j ∈ [k : η(n)− 1],

[ς(n, j), κ(n, j)] = [1 : λ], [ς(n+ 1, j), κ(n+ 1, j)] = [0 : λ], for j = η(n),

[ς(n, j) : κ(n, j)] = [1 : λ], [ς(n+ 1, j) : κ(n+ 1, j)] = [0 : λ− 1], j ∈ [η(n) + 1 : p− 1],
(4.17)
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which shows that in this case Z(n+ 1, k) = Z(n, k) + 1.
In virtue of (4.1)–(4.2) we have ℓ(n) = ℓ(n + p(p + 1)) and η(n) = η(n + p(p + 1)),

therefore the periodicity of Z(n+ 1, k)− Z(n, k) follows from (4.6)–(4.7).

We illustrate in Table 1 the values of Z(n + 1, k) − Z(n, k) in the case k = 3. It
is worth noticing, as it follows from (4.6)–(4.7), that if k ≥ 1 and η = η(n) = 0, then
Z(n + 1, k) − Z(n, k) = 0; that is, the entries in the first row of the table of values of
Z(n+ 1, k)− Z(n, k), k ≥ 1, are all zero.

0 0 0 0 0

0 0 1 0 0

0 1 1 0 0

1 1 1 0 0

1 1 1 0 0

1 1 1 0 −1

1 1 1 −1 −1

1 1 0 −1 −1

1 0 0 −1 0

0 0 0 0 0

0 0 0 −1 0

0 0 −1 −1 0

0 −1 −1 −1 1

−1 −1 −1 0 1

0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

0 1 2 3 4 p− 4 p− 3 p− 2 p− 1 p

0

1

2

3

4

p− 4

p− 3

p− 2

p− 1

ℓ

η

Table 1: The values of Z(n+1, 3)−Z(n, 3) that correspond to the values of ρ(n) = η(p+1)+ ℓ

with 0 ≤ η ≤ p− 1 and 0 ≤ ℓ ≤ p.

We now state a useful lemma that will be applied in the following section.

Lemma 4.2. Let k ∈ [1 : p− 1]. Then we have the following:

Z(n+ 1, k)− Z(n, k) ≤ Z(n+ 1, k − 1)− Z(n, k − 1) +





0, if ℓ(n) ∈ [0 : k − 2],

1, if ℓ(n) = k − 1,

0, if ℓ(n) ∈ [k : p].

(4.18)

Proof. To prove the first relation in (4.18), assume that ℓ(n) ∈ [0 : k−2]. If η(n)+ℓ(n) ∈ [k :
p−1], then in virtue of (4.6) we have Z(n+1, k)−Z(n, k) = 1. Now, since ℓ(n) ∈ [0 : k−2]
and η(n) + ℓ(n) ∈ [k : p− 1] ⊂ [k− 1 : p− 1], applying the second relation in (4.6) for k − 1
we obtain Z(n+1, k−1)−Z(n, k−1) = 1. Now assume that η(n)+ ℓ(n) /∈ [k : p−1]. Then
Z(n+ 1, k)−Z(n, k) = 0 and we have two possibilities, namely η(n) + ℓ(n) /∈ [k − 1 : p− 1]
or η(n) + ℓ(n) = k − 1. In the former case, we have Z(n+ 1, k − 1) − Z(n, k − 1) = 0, and
in the later case Z(n+ 1, k − 1)− Z(n, k − 1) = 1. This justifies the first relation in (4.18).
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Now assume that ℓ(n) = k − 1. We distinguish again the two alternatives η(n) + ℓ(n) ∈
[k : p−1] and η(n)+ℓ(n) /∈ [k : p−1]. In the first one we have Z(n+1, k)−Z(n, k) = 1, and
because ℓ(n) ∈ [k−1 : p−1] and η(n)+ ℓ(n) /∈ [k : p−1] we get from (4.6) that Z(n+1, k−
1)−Z(n, k−1) = 0, so the claim holds. In the second case we have Z(n+1, k)−Z(n, k) = 0,
so the claim holds trivially since Z(n+ 1, k − 1)−Z(n, k − 1) ∈ {−1, 0, 1}. This proves the
second relation in (4.18).

Suppose now that ℓ(n) ∈ [k : p − 1]. If η(n) + ℓ(n) ∈ [p : p + k − 1] then Z(n +
1, k) − Z(n, k) = −1 and the inequality is trivially valid. If η(n) + ℓ(n) /∈ [p : p + k − 1],
then Z(n + 1, k) − Z(n, k) = 0. The assumptions imply that ℓ(n) ∈ [k − 1 : p − 1] and
η(n) + ℓ(n) /∈ [p : p+ k − 2], hence Z(n+ 1, k − 1)− Z(n, k − 1) = 0, and the claim follows.

Finally, if ℓ(n) = p, inequality follows immediately from (4.7).

In what follows, we shall use the notations sign(f,∆) (sign(ν,∆)) to indicate the sign
of the function f (measure ν) on the interval ∆, and ∆k shall denote the interval [ak, bk].
Recall that εn,k = sign(νn,k,∆k), where νn,k is the measure defined in (2.36). We continue
using the notations (4.1)–(4.2).

Lemma 4.3. Let k ∈ [0 : p− 1] be fixed. Then, as a function of n, the expression
εn+1,k

εn,k
is

periodic with period p(p+ 1). More precisely, we have

εn+1,k

εn,k
= (−1)Z(n+1,2⌈k/2⌉)−Z(n,2⌈k/2⌉)+θ(n,k), (4.19)

where

θ(n, k) :=






1, if ℓ(n) ∈ [0 : k − 1],

0, if ℓ(n) ∈ [k + 1 : p− 1],

1, if ℓ(n) = k, k odd,

0, if ℓ(n) = k, k even,

1, if ℓ(n) = p.

(4.20)

Proof. From (2.1) and the definition of the measure σn,k in (2.13) we deduce that

sign(σn,k,∆k) =






1 for k even,

1 for k odd, ℓ(n) ≤ k,

−1 for k odd, k < ℓ(n).

Since Pn,k is a monic polynomial of degree Z(n, k) and its zeros are located in ∆k, we have

sign(Pn,k−1Pn,k+1,∆k) =

{
1 for k even,

(−1)Z(n,k−1)+Z(n,k+1) for k odd.

In view of (2.40) we also obtain

sign(hn,k,∆k) =





εn,k−1 for k even,

εn,k−1 for k odd, ℓ(n) < k,

(−1)εn,k−1 for k odd, k ≤ ℓ(n).

From the above sign formulas and (2.36) we conclude that for each k = 1, . . . , p− 1,

ǫn,k = sign(νn,k,∆k) =






εn,k−1 for k even,

εn,k−1(−1)Z(n,k−1)+Z(n,k+1) for k odd, ℓ(n) 6= k,

εn,k−1(−1)Z(n,k−1)+Z(n,k+1)+1 for k odd, ℓ(n) = k.

(4.21)

Notice also that εn,0 = 1 for all n.
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A careful iterative application of (4.21) gives the following formula, valid for all k ∈ [0 :
p− 1]:

εn,k =






(−1)Z(n,0)+Z(n,2⌈k/2⌉) for ℓ(n) even,

(−1)Z(n,0)+Z(n,2⌈k/2⌉) for ℓ(n) odd, k < ℓ(n),

(−1)Z(n,0)+Z(n,2⌈k/2⌉)+1 for ℓ(n) odd, ℓ(n) ≤ k.

(4.22)

Recall also that by convention Z(n, p) = 0.
Suppose that ℓ(n) ∈ [0 : p − 1] and ℓ(n) is even. Then ℓ(n + 1) = ℓ(n) + 1 is odd and

Z(n+ 1, 0) = Z(n, 0), therefore from (4.22) we obtain

εn+1,k

εn,k
=

(−1)Z(n+1,0)+Z(n+1,2⌈k/2⌉)+θ1(n,k)

(−1)Z(n,0)+Z(n,2⌈k/2⌉)
= (−1)Z(n+1,2⌈k/2⌉)−Z(n,2⌈k/2⌉)+θ1(n,k),

(4.23)
where

θ1(n, k) :=

{
0, if 0 ≤ k ≤ ℓ(n),

1, if ℓ(n) + 1 ≤ k ≤ p− 1.

If ℓ(n) ∈ [0 : p− 1] and ℓ(n) is odd, then ℓ(n+1) = ℓ(n)+ 1 is even and again Z(n+1, 0) =
Z(n, 0). Hence

εn+1,k

εn,k
=

(−1)Z(n+1,0)+Z(n+1,2⌈k/2⌉)

(−1)Z(n,0)+Z(n,2⌈k/2⌉)+θ2(n,k)
= (−1)Z(n+1,2⌈k/2⌉)−Z(n,2⌈k/2⌉)+θ2(n,k), (4.24)

where

θ2(n, k) :=

{
0, if 0 ≤ k ≤ ℓ(n)− 1,

1, if ℓ(n) ≤ k ≤ p− 1.

From (4.23) and (4.24) we deduce that (4.19) holds in the case ℓ(n) ∈ [0 : p − 1]. The
justification of (4.19) in the case ℓ(n) = p is done similarly and it is left to the reader.

5 Interlacing property of the zeros of Pn,k

In this section we prove the interlacing property of the zeros of the polynomials Pn,k. Recall
that by definition, Pn,k is the monic polynomial whose zeros are the zeros of ψn,k in (ak, bk).
These zeros are all simple and there are Z(n, k) of them, cf. Proposition 2.10. The interlacing
property will be derived from a series of lemmas that will be proved first. We remark that
in the case k = 0, the interlacing property of the zeros of Pn,0 is already a consequence of
property 5) from Proposition 2.3.

In this section we will continue using the notation in (4.1)–(4.2).

5.1 Auxiliary results

Lemma 5.1. Assume that A,B ∈ R with |A| + |B| > 0. For k ∈ [0 : p − 1] and n ≥ 0
integers, let

Gn,k(z) :=

{
Aψn,k(z) +Bψn+1,k(z), ℓ(n) 6= p,

Azψn,k(z) +Bψn+1,k(z), ℓ(n) = p.
(5.1)

Then the following properties hold:

1) If ℓ(n) ∈ [0 : k− 1], then Gn,k has at most Z(n, k)+1 zeros in C \ ([ak−1, bk−1]∪{0}),
counting multiplicities.

2) If ℓ(n) ∈ [k : p − 1], then Gn,k has at most Z(n, k) zeros in C \ ([ak−1, bk−1] ∪ {0}),
counting multiplicities.

3) If ℓ(n) = p, then Gn,k has at most Z(n, k)+1 zeros in C\([ak−1, bk−1]∪{0}), counting
multiplicities.
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Proof. The proof is done by induction on k. First, since ψn,0 = Pn,0, in the case k = 0 we
have

Gn,0(z) =

{
APn,0(z) +BPn+1,0(z), ℓ(n) 6= p,

AzPn,0(z) +BPn+1,0(z), ℓ(n) = p.

If ℓ(n) 6= p, then Gn,0 is a polynomial of degree at most Z(n, 0) = deg(Pn,0) = deg(Pn+1,0),
and if ℓ(n) = p, then Gn,0 is a polynomial of degree at most Z(n, 0) + 1 = deg(Pn,0) + 1 =
deg(Pn+1,0). Moreover, Gn,0 cannot be identically zero, as it easily follows from (2.24)–
(2.25) or from the fact that the zeros of Pn,0 and Pn+1,0 do not coincide. Hence the result
holds in the case k = 0.

Assume that the result holds for k − 1 but it does not hold for k, where 1 ≤ k ≤ p− 1.
So suppose first that ℓ(n) ∈ [0 : k − 1] and Gn,k(z) = Aψn,k(z) + Bψn+1,k(z) has at
least Z(n, k) + 2 zeros in C \ ([ak−1, bk−1] ∪ {0}), counting multiplicities. Note that Gn,k
is analytic in the complement of [ak−1, bk−1] and satisfies Gn,k(z) = Gn,k(z), therefore the
complex non-real zeros of Gn,k, if any, must come in conjugate pairs. Thus, we can construct
a monic polynomial Ln,k with real coefficients and degree at least Z(n, k) + 2 whose zeros
are zeros of Gn,k in C \ ([ak−1, bk−1] ∪ {0}).

Let’s assume that in fact ℓ(n) < k − 1 (the case ℓ(n) = k − 1 will be analyzed later).
Then according to (2.13) and (2.15), we have

ψn,k(z) = z

∫ bk−1

ak−1

ψn,k−1(τ )

z − τ
dσ∗

k−1(τ ), (5.2)

and since ℓ(n+ 1) = ℓ(n) + 1 ≤ k − 1, we also have

ψn+1,k(z) = z

∫ bk−1

ak−1

ψn+1,k−1(τ )

z − τ
dσ∗

k−1(τ ), (5.3)

hence

Gn,k(z) = z

∫ bk−1

ak−1

Aψn,k−1(τ ) +Bψn+1,k−1(τ )

z − τ
dσ∗

k−1(τ ). (5.4)

It follows that
Gn,k(z)

zLn,k(z)
∈ H(C \ [ak−1, bk−1]).

Let us analyze the order of the zero at infinity. By Proposition 2.10, we have

ψn,k(z) = O(z−Z(n,k−1)+Z(n,k)), ψn+1,k(z) = O(z−Z(n+1,k−1)+Z(n+1,k)).

Taking this and the degree of zLn,k(z) into account, it follows that

Gn,k(z)

zLn,k(z)
= O(z−Z(n,k−1)−3) +O(z−Z(n+1,k−1)+Z(n+1,k)−Z(n,k)−3).

Since ℓ(n) ∈ [0 : k− 2], by (4.18) we obtain that −Z(n+ 1, k − 1) +Z(n+ 1, k)−Z(n, k) ≤
−Z(n, k − 1), hence we have

Gn,k(z)

zLn,k(z)
= O(z−Z(n,k−1)−3). (5.5)

We consider now a simple Jordan curve γ that surrounds [ak−1, bk−1] and leaves the zeros
of Ln,k outside. Then from (5.5) and (5.4) we deduce that for j = 0, . . . , Z(n, k − 1) + 1,

0 =
1

2πi

∫

γ

Gn,k(z)

zLn,k(z)
zj dz

=
1

2πi

∫

γ

zj

Ln,k(z)

(∫ bk−1

ak−1

Aψn,k−1(τ ) +Bψn+1,k−1(τ )

z − τ
dσ∗

k−1(τ )

)
dz

=

∫ bk−1

ak−1

(Aψn,k−1(τ ) +Bψn+1,k−1(τ ))
τ j

Ln,k(τ )
dσ∗

k−1(τ ),
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where we applied Cauchy’s theorem and integral formula and Fubini’s theorem. This implies
that Gn,k−1 = Aψn,k−1 + Bψn+1,k−1 has Z(n, k − 1) + 2 zeros with odd multiplicity in
(ak−1, bk−1), which contradicts statement 1) for k − 1 (recall that ℓ(n) ∈ [0 : k − 2] at this
point). This finishes the analysis in the case ℓ(n) < k − 1.

Assume now that ℓ(n) = k − 1. Then (5.2) is valid and since ℓ(n + 1) = ℓ(n) + 1 = k,
(5.3) is replaced by

ψn+1,k(z) =

∫ bk−1

ak−1

ψn+1,k−1(τ )

z − τ
τ dσ∗

k−1(τ ),

hence in this case

Gn,k(z) = Aψn,k(z) +Bψn+1,k(z) =

∫ bk−1

ak−1

Az ψn,k−1(τ ) +B τ ψn+1,k−1(τ )

z − τ
dσ∗

k−1(τ ).

(5.6)
In virtue of (2.21) and (2.22) we have the following estimates at infinity:

ψn,k(z) = O(z−N(n,k)) = O(z−Z(n,k−1)+Z(n,k)),

ψn+1,k(z) = O(z−N(n+1,k)) = O(z−Z(n+1,k−1)+Z(n+1,k)−1),

hence
Gn,k(z)

Ln,k(z)
= O(z−Z(n,k−1)−2) +O(z−Z(n+1,k−1)+Z(n+1,k)−Z(n,k)−3).

Since ℓ(n) = k − 1, applying (4.18) we see that −Z(n+ 1, k − 1) + Z(n+ 1, k)− Z(n, k) ≤
−Z(n, k − 1) + 1, so we obtain

Gn,k(z)

Ln,k(z)
= O(z−Z(n,k−1)−2). (5.7)

Taking a curve γ as before, we deduce from (5.6) and (5.7) that for j = 0, . . . , Z(n, k−1),

0 =
1

2πi

∫

γ

Gn,k(z)

Ln,k(z)
zj dz

=
1

2πi

∫

γ

zj

Ln,k(z)

(∫ bk−1

ak−1

Az ψn,k−1(τ ) +B τ ψn+1,k−1(τ )

z − τ
dσ∗

k−1(τ )

)
dz

=

∫ bk−1

ak−1

(Aψn,k−1(τ ) +Bψn+1,k−1(τ )) τ
j τ dσ

∗
k−1(τ )

Ln,k(τ )
.

This implies that Gn,k−1 = Aψn,k−1+Bψn+1,k−1 has at least Z(n, k−1)+1 zeros with odd
multiplicity in (ak−1, bk−1), contradicting statement 2) for k − 1. This concludes the proof
of statement 1) for k.

The proofs of 2) and 3) proceed in a similar way.
Assume that ℓ(n) ∈ [k : p−1] andGn,k(z) has at least Z(n, k)+1 zeros in C\([ak−1, bk−1]∪

{0}), counting multiplicities. As it was done before, we can take a monic polynomial Ln,k
with real coefficients and degree at least Z(n, k) + 1 whose zeros are zeros of Gn,k in C \
([ak−1, bk−1] ∪ {0}). According to (2.15) and (2.13), in this case we have

Gn,k(z) = Aψn,k(z) +Bψn+1,k(z) =

∫ bk−1

ak−1

Aψn,k−1(τ ) +Bψn+1,k−1(τ )

z − τ
τ dσ∗

k−1(τ ).

Since ℓ(n) ≥ k and ℓ(n + 1) = ℓ(n) + 1 > k, the following estimates hold as z approaches
infinity:

ψn,k(z) = O(z−N(n,k)) = O(z−Z(n,k−1)+Z(n,k)−1),

ψn+1,k(z) = O(z−N(n+1,k)) = O(z−Z(n+1,k−1)+Z(n+1,k)−1),
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hence we have

Gn,k(z)

Ln,k(z)
= O(z−Z(n,k−1)−2) +O(z−Z(n+1,k−1)+Z(n+1,k)−Z(n,k)−2) = O(z−Z(n,k−1)−2),

(5.8)
where in the second equality we applied the third relation in (4.18). This implies, as it
was done before, that Gn,k−1 = Aψn,k−1 +Bψn+1,k−1 has at least Z(n, k − 1) + 1 zeros in
(ak−1, bk−1), contradicting statement 2) for k − 1.

Finally, assume that ℓ(n) = p, and assume that Gn,k(z) = Azψn,k(z) +Bψn+1,k(z) has
at least Z(n, k) + 2 zeros in C \ ([ak−1, bk−1] ∪ {0}), counting multiplicities. Let Ln,k be
a polynomial with real coefficients and degree at least Z(n, k) + 2 whose zeros are zeros of
Gn,k in C \ ([ak−1, bk−1] ∪ {0}).

Since ℓ(n) = p > k and ℓ(n+ 1) = 0 < k, applying (2.15) and (2.13) we obtain

ψn,k(z) =

∫ bk−1

ak−1

ψn,k−1(τ )

z − τ
τ dσ∗

k−1(τ ), ψn+1,k(z) = z

∫ bk−1

ak−1

ψn+1,k−1(τ )

z − τ
dσ∗

k−1(τ ),

therefore

Gn,k(z) = Azψn,k(z) +Bψn+1,k(z) = z

∫ bk−1

ak−1

Aτψn,k−1(τ ) +Bψn+1,k−1(τ )

z − τ
dσ∗

k−1(τ )

and the function
Gn,k(z)

zLn,k(z)
is analytic outside [ak−1, bk−1]. Applying (2.21) and (2.22) we

obtain

ψn,k(z) = O(z−N(n,k)) = O(z−Z(n,k−1)+Z(n,k)−1),

ψn+1,k(z) = O(z−N(n+1,k)) = O(z−Z(n+1,k−1)+Z(n+1,k)),

which implies that

Gn,k(z)

zLn,k(z)
= O(z−Z(n,k−1)−3) +O(z−Z(n+1,k−1)+Z(n+1,k)−Z(n,k)−3) = O(z−Z(n,k−1)−3),

where in the last equality we have used (4.18). This easily implies, as shown before, that the
function Azψn,k−1(z)+Bψn+1,k−1(z) has at least Z(n, k−1)+2 zeros with odd multiplicity
in (ak−1, bk−1), contradicting statement 3) for k − 1.

The following lemma is Corollary 2.15 from [25], and it was obtained as an application of
an AT system property satisfied by the Cauchy transforms of the measures µk,j , see Section
2.4 in [25].

Lemma 5.2. Let k, r be integers such that 0 ≤ k ≤ r ≤ p − 1. Let {dj}p−1
j=k be a finite

sequence of nonnegative integers such that

dk ≥ dk+1 ≥ · · · ≥ dr ≥ dr+1 − 1 ≥ dr+2 − 1 ≥ · · · ≥ dp−1 − 1.

Suppose F 6≡ 0 is a function analytic and real-valued on [ak, bk], satisfying the orthogonality
conditions

∫ bk

ak

F (τ )τ s+δdµk,j(τ ) = 0, 0 ≤ s ≤ dj − 1, k ≤ j ≤ r, (5.9)

∫ bk

ak

F (τ )τ sdµk,j(τ ) = 0, 0 ≤ s ≤ dj − 1, r < j ≤ p− 1, (5.10)

where the constant δ = 1 if r < p − 1 and dr+1 = dr + 1, otherwise δ could be taken to be
either 1 or 0. Then, F has at least

N :=

p−1∑

j=k

dj

zeros of odd multiplicity in (ak, bk).
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Lemma 5.2 will be repeatedly applied in the proof of the following result, which comple-
ments Lemma 5.1.

Lemma 5.3. Assume that A,B ∈ R, |A| + |B| > 0, and let k ∈ [0 : p − 1] and n ≥ 0 be
integers. Then the function Gn,k defined in (5.1) satisfies the following properties:

1) If ℓ(n) ∈ [0 : k−1], then Gn,k has at least Z(n, k) zeros with odd multiplicity in (ak, bk).

2) If ℓ(n) ∈ [k : p − 1], then Gn,k has at least Z(n, k) − 1 zeros with odd multiplicity in
(ak, bk).

3) If ℓ(n) = p, then Gn,k has at least Z(n, k) zeros with odd multiplicity in (ak, bk).

Proof. Assume that ℓ(n) < k and η(n) + ℓ(n) ∈ [k : p − 1]. Then the relations (4.8)–(4.9)
hold, and recall that if j = η(n) + ℓ(n) then κ(n + 1, k) = κ(n, k) + 1. As a consequence,
both functions ψn,k and ψn+1,k satisfy the same orthogonality conditions (2.16). Hence

∫ bk

ak

Gn,k(τ ) τ
s dµk,j(τ ) = 0, ς(n, j) ≤ s ≤ κ(n, j), k ≤ j ≤ p− 1. (5.11)

In this case ς(n, j) = 0 for all j ∈ [k : p− 1] and the sequence {κ(n, j)}p−1
j=k is non-increasing.

So we can apply Lemma 5.2 to F = Gn,k, taking δ = 0 in (5.9), r = k (for example), and
dj = κ(n, j) for all j ∈ [k : p − 1]. It follows that Gn,k has at least Z(n, k) zeros with odd
multiplicity in (ak, bk).

Assume now that ℓ(n) < k and η(n) + ℓ(n) /∈ [k : p − 1]. In this case we have ς(n, j) =
ς(n + 1, j) = 0 for all j ∈ [k : p − 1], and as it was observed in the proof of Lemma 4.1,
we also have κ(n, j) = κ(n+ 1, j) for all j. Hence (5.11) holds and applying Lemma 5.2 to
F = Gn,k as before we obtain that Gn,k has at least Z(n, k) zeros with odd multiplicity in
(ak, bk). This finishes the proof of part 1).

Suppose that ℓ(n) ∈ [k : p − 1] and η(n) + ℓ(n) ∈ [k : p − 1], and assume additionally
for the moment that η(n) = 0. We then deduce from (2.16) and (4.12) that the function
Gn,k = Aψn,k + Bψn+1,k satisfies the following orthogonality conditions. For each j ∈ [k :
ℓ(n)− 1], ∫ bk

ak

Gn,k(τ )τ
s+1dµk,j(τ ) = 0, 0 ≤ s ≤ λ− 1,

for j = ℓ(n), ∫ bk

ak

Gn,k(τ )τ
s+1dµk,j(τ ) = 0, 0 ≤ s ≤ λ− 2,

and for each j ∈ [ℓ(n) + 1 : p− 1] we have

∫ bk

ak

Gn,k(τ )τ
sdµk,j(τ ) = 0, 0 ≤ s ≤ λ− 1.

If we apply Lemma 5.2 to F = Gn,k, taking δ = 1, r = ℓ(n), and indices dj equal to the
upper bounds of the parameter s in the orthogonality conditions, we deduce that Gn,k has
at least Z(n, k)− 1 zeros with odd multiplicity in (ak, bk).

If ℓ(n) ∈ [k : p− 1], η(n) + ℓ(n) ∈ [k : p− 1], and η(n) > 0, then from (2.16) and (4.13)
we deduce that Gn,k satisfies the following orthogonality conditions:

∫ bk

ak

Gn,k(τ )τ
s+1dµk,j(τ ) = 0, 0 ≤ s ≤ λ− 1, j ∈ [k : ℓ(n)],

∫ bk

ak

Gn,k(τ )τ
sdµk,j(τ ) = 0, 0 ≤ s ≤ λ, j ∈ [ℓ(n) + 1 : η(n) + ℓ(n)− 1],

∫ bk

ak

Gn,k(τ )τ
sdµk,j(τ ) = 0, 0 ≤ s ≤ λ− 1, j ∈ [η(n) + ℓ(n) : p− 1],
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which implies by Lemma 5.2 that Gn,k has at least Z(n, k) − 1 zeros with odd multiplicity
in (ak, bk).

If ℓ(n) ∈ [k : p− 1] and η(n) + ℓ(n) ≥ p+ k, then from (2.16) and (4.14) we deduce:

∫ bk

ak

Gn,k(τ )τ
s+1dµk,j(τ ) = 0, 0 ≤ s ≤ λ, j ∈ [k : η(n) + ℓ(n)− p− 1],

∫ bk

ak

Gn,k(τ )τ
s+1dµk,j(τ ) = 0, 0 ≤ s ≤ λ− 1, j ∈ [η(n) + ℓ(n)− p : ℓ(n)],

∫ bk

ak

Gn,k(τ )τ
sdµk,j(τ ) = 0, 0 ≤ s ≤ λ, j ∈ [ℓ(n) : p− 1],

showing again that Gn,k = Aψn,k +Bψn+1,k has at least Z(n, k)− 1 zeros with odd multi-
plicity in (ak, bk).

To finish the proof of part 2), assume now that ℓ(n) ∈ [k : p − 1] and η(n) + ℓ(n) ∈ [p :
p+ k − 1]. Then from (4.15) we obtain

∫ bk

ak

Gn,k(τ )τ
s+1dµk,j(τ ) = 0, 0 ≤ s ≤ λ− 1, j ∈ [k : ℓ(n)],

∫ bk

ak

Gn,k(τ )τ
sdµk,j(τ ) = 0, 0 ≤ s ≤ λ, j ∈ [ℓ(n) + 1 : p− 1].

This implies again that Gn,k has at least Z(n, k)− 1 zeros with odd multiplicity in (ak, bk).
The proof of part 3) is left to the reader (apply (4.16)–(4.17)).

As an immediate consequence of Lemmas 5.1 and 5.3, we obtain the following:

Corollary 5.4. Assume that A,B ∈ R, |A|+ |B| > 0, and let k ∈ [0 : p − 1] and n ≥ 0 be
integers. Then all the zeros of Gn,k in C \ ([ak−1, bk−1] ∪ {0}) are real and simple.

5.2 Proof of Theorem 3.1

By definition, the zeros of Pn,k are the zeros of ψn,k in (ak, bk), see Definition 2.11. By
Proposition 2.10, these zeros are all simple.

First, let us show that the functions ψn,k and ψn+1,k cannot have a common zero in
(ak, bk). Assume the contrary, and let x0 ∈ (ak, bk) satisfy ψn,k(x0) = ψn+1,k(x0) = 0.
Then we have ψ′

n,k(x0) 6= 0, ψ′
n+1,k(x0) 6= 0. Now take

A =





1, if ℓ(n) 6= p,

1/x0, if ℓ(n) = p,
B = − ψ′

n,k(x0)

ψ′
n+1,k(x0)

,

and consider the function Gn,k given by (5.1). With this choice of A and B we obtain
Gn,k(x0) = G′

n,k(x0) = 0, which contradicts Corollary 5.4.
Assume now that ℓ(n) 6= p, and let y ∈ (ak, bk) be arbitrary but fixed. Taking A =

ψn+1,k(y), B = −ψn,k(y), we know by the argument in the previous paragraph that |A| +
|B| > 0. Since

ψn+1,k(y)ψn,k(y)− ψn,k(y)ψn+1,k(y) = 0,

and the zeros on (ak, bk) of Gn,k(x) = ψn+1,k(y)ψn,k(x) − ψn,k(y)ψn+1,k(x) are simple, it
follows that

ψn+1,k(y)ψ
′
n,k(y)− ψn,k(y)ψ

′
n+1,k(y) 6= 0.

But ψn+1,k(y)ψ
′
n,k(y) − ψn,k(y)ψ

′
n+1,k(y) is a continuous real function on (ak, bk), so it

must have constant sign on this interval. Evaluating this function at two consecutive zeros
of ψn+1,k, since the sign of ψ′

n+1,k at these two points changes, the sign of ψn,k must also
change. By Bolzano’s theorem we deduce that there must be an intermediate zero of ψn,k.
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Similarly, one proves that between two consecutive zeros of ψn,k on (ak, bk) there is one of
ψn+1,k.

The argument in the case ℓ(n) = p is analogous, so we leave the analysis to the reader.

6 Ratio asymptotics

6.1 Main ideas

Let us first outline the main ideas in the proof of ratio asymptotics for the polynomials Pn,k.
The method we use for obtaining the ratio asymptotic results was first employed in [5]. The
argument goes as follows. Let ρ ∈ {0, . . . , p(p+ 1)− 1} be fixed but arbitrary. We consider
the p families of ratios

{
Pλp(p+1)+ρ+1,k(z)

Pλp(p+1)+ρ,k(z)

}

λ∈N

, k = 0, . . . , p− 1. (6.1)

For each k fixed, the sequence (6.1) is uniformly bounded on compact subsets of C \ [ak, bk],
due to the interlacing property of the zeros of the polynomials Pn,k.

By Montel’s theorem, there exists a subsequence Λ ⊂ N such that for each k = 0, . . . , p−1,
the limit

lim
λ∈Λ

Pλp(p+1)+ρ+1,k(z)

Pλp(p+1)+ρ,k(z)
= F̃

(ρ)
k (z), z ∈ C \ [ak, bk] (6.2)

holds, uniformly on compact subsets of the indicated region. In principle, the limiting
functions F̃

(ρ)
k (z) depend on the subsequence Λ, but it will be our main goal to show that

in fact they are independent of Λ, proving this way the existence of the limits

lim
λ→∞

Pλp(p+1)+ρ+1,k(z)

Pλp(p+1)+ρ,k(z)
= F̃

(ρ)
k (z), z ∈ C \ [ak, bk],

for every ρ and k fixed as before.
In order to prove the independence of the functions F̃

(ρ)
k from Λ, we first identify these

functions as Szegő functions or Szegő functions multiplied by certain conformal mappings,
the Szegő functions being associated with weights that can be expressed themselves in terms
of the functions F̃

(ρ)
k . This identification is accomplished using results on ratio and relative

asymptotics of orthogonal polynomials with respect to varying measures that were obtained
in [6]. Here we also apply the asymptotic formulas (6.4).

Using the boundary value properties of the Szegő functions, we then show that a certain
normalization F

(ρ)
k of the functions F̃

(ρ)
k satisfies a system of boundary value problems.

Then, to conclude the proof of the uniqueness of the limiting functions F̃
(ρ)
k , it is enough to

show that this boundary value problem has a unique solution.

6.2 Asymptotics of the functions hn,k

A first step in the asymptotic analysis is to obtain the asymptotic behavior of the functions
hn,k. This is gathered in the following result.

Proposition 6.1. Assume that for each k = 0, . . . , p − 1, the measure σ∗
k has positive

Radon-Nikodym derivative with respect to Lebesgue measure a.e. on [ak, bk]. Then for all
k = 0, . . . , p− 1 and ℓ = 0, . . . , p, fixed,

p2m(p+1)+ℓ,k(τ ) d|νm(p+1)+ℓ,k|(τ ) ∗−−−−→
m→∞

1

π

dτ√
(bk − τ )(τ − ak)

. (6.3)
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Consequently, for each k = 1, . . . , p and ℓ = 0, . . . , p fixed,

lim
m→∞

εm(p+1)+ℓ,k−1 hm(p+1)+ℓ,k(z) =






z√
(z−bk−1)(z−ak−1)

if ℓ < k,

1√
(z−bk−1)(z−ak−1)

if k ≤ ℓ,
(6.4)

uniformly on compact subsets of C\ [ak−1, bk−1], where we take the branch of the square root
such that

√
z > 0 for z real, z > 0.

Proof. Taking f(τ ) = 1
z−τ

and using formula (2.40), (6.4) for k + 1 follows directly from
(6.3) for k and the well known identity

1

π

∫ bk

ak

1

z − τ

dτ√
(bk − τ )(τ − ak)

=
1√

(z − bk)(z − ak)
, z ∈ C \ [ak, bk].

Therefore, we limit ourselves to proving (6.3). This is done by induction on k.
Take n = m(p + 1) + ℓ with ℓ fixed, and so the measure σn,k remains fixed as we let

m→ ∞. In particular, for k = 0, we have that

dσn,0(τ ) =

{
dσ∗

0(τ ), ℓ = 0,

τ dσ∗
0(τ ), ℓ > 0,

hn,0 ≡ 1,

and according to (2.37),

p2m(p+1)+ℓ,0(τ ) d|νm(p+1)+ℓ,0|(τ ) = p2m(p+1)+ℓ,0(τ )
dσm(p+1)+ℓ,0(τ )

|Pm(p+1)+ℓ,1(τ )|
.

Note that εm(p+1)+ℓ,0 = 1. Since the zeros of the polynomials Pm(p+1)+ℓ,1 are bounded away
from [a0, b0] (the support of the measure σn,0) and deg(Pm(p+1)+ℓ,1)−2 deg(pm(p+1)+ℓ,0) ≤ 0
(cf. (2.19)), it is straightforward to check that ({σm(p+1)+ℓ,0}, {Pm(p+1)+ℓ,1}, l) is strongly
admissible for every l ∈ Z, in the sense of Definition 2 in [6]. As a consequence, by Corollary
3 in [6] we obtain that for every continuous function f on [a0, b0],

lim
m→∞

∫ b0

a0

f(τ ) p2m(p+1)+ℓ,0(τ )
dσm(p+1)+ℓ,0(τ )

|Pm(p+1)+ℓ,1(τ )|
=

1

π

∫ b0

a0

f(τ ) dτ√
(b0 − τ )(τ − a0)

,

which is (6.3) for k = 0.
The basis of induction has been settled. Let us assume that (6.3) holds for some k−1, 0 ≤

k − 1 ≤ p− 2. We must prove that the same is true if k − 1 is replaced by k.
From the definition we have

d|νm(p+1)+ℓ,k|(τ ) =
|hm(p+1)+ℓ,k(τ )|d|σm(p+1)+ℓ,k|(τ )

|Pm(p+1)+ℓ,k−1(τ )Pm(p+1)+ℓ,k+1(τ )|

where according to (2.13)

d|σm(p+1)+ℓ,k|(τ ) :=
{
dσ∗

k(τ ), ℓ ≤ k,

|τ | dσ∗
k(τ ), k < ℓ.

Since ℓ remains fixed this measure is one and the same for all m. On the other hand, as
indicated in the first sentence of the proof, the induction hypothesis implies that (6.4) takes
place for k. In particular,

lim
m→∞

|hm(p+1)+ℓ,k(τ )| =





|τ |√
|(τ−bk−1)(τ−ak−1)|

if ℓ < k,

1√
|(τ−bk−1)(τ−ak−1)|

if k ≤ ℓ,
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uniformly on [ak, bk].
Now, the zeros of the polynomials Pm(p+1)+ℓ,k−1Pm(p+1)+ℓ,k+1 are bounded away from

[ak, bk] (the support of the measure σm(p+1)+ℓ,k) and according to (2.20)

deg(Pm(p+1)+ℓ,k−1) + deg(Pm(p+1)+ℓ,k+1)− 2 deg(Pm(p+1)+ℓ,k−1) = O(1), m→ ∞.

Consequently, ({|hm(p+1)+ℓ,k||σm(p+1)+ℓ,k|}, {|Pm(p+1)+ℓ,k−1Pm(p+1)+ℓ,k−1|}, l) is strongly
admissible for every l ∈ Z, in the sense of Definition 2 in [6]. Therefore, by Corollary 3
in [6] we obtain (6.3) for k as needed.

Remark 6.2. Since (6.3) is valid for every fixed ℓ = 0, . . . , p, we have the weak limits

p2n,k(τ ) d|νn,k|(τ ) ∗−−−−→
n→∞

1

π

dτ√
(bk − τ )(τ − ak)

for each k = 0, . . . , p− 1.

6.3 Preliminary analysis

Throughout this section we assume that for all k = 0, . . . , p−1, the measure σ∗
k has positive

Radon-Nikodym derivative with respect to Lebesgue measure a.e. on [ak, bk]. If {fn}n∈Λ̃ is

a sequence of analytic functions on an open domain Ω ⊂ C, the notation

lim
n∈Λ̃

fn(z) = F (z), z ∈ Ω,

will stand for the uniform convergence of fn to F on each compact subset of Ω. Recall that
for a pair of integers n ≤ m, the notation [n : m] indicates the set of all integers l satisfying
n ≤ l ≤ m. Below we will continue using the notations n = λp(p+ 1) + ρ and (4.2).

For a measurable function f ≥ 0 defined on [0, 2π] such that log f ∈ L1([0, 2π], dτ ), let

D(f ; z) := exp

{
1

4π

∫ 2π

0

eiτ + z

eiτ − z
log f(τ ) dτ

}
, |z| 6= 1.

If w ≥ 0 is now a measurable function on an interval [a, b] that satisfies the Szegő condition

logw(t)√
(b− t)(t− a)

∈ L1([a, b], dt),

we denote with

S(w; z) :=
1

D(w̃; 1/Φ(z))
= D(w̃; Φ(z)),

the Szegő function on C \ [a, b] associated with w. In this formula, the function Φ = Φ[a,b]

is the conformal mapping of C \ [a, b] onto {|z| > 1} such that Φ(∞) = ∞ and Φ′(∞) > 0,
and w̃ is the function on [0, 2π] given by

w̃(θ) = w(l[a,b](cos θ)),

where l[a,b] denotes the linear map that transforms [−1, 1] onto [a, b], i.e.,

l[a,b](x) =
b− a

2
x+

b+ a

2
.

A well-known property of the function S(w; z) is that if w is continuous at x ∈ [a, b] and
w(x) > 0, then the limit

lim
z→x

|S(w; z)|2 =
1

w(x)
(6.5)
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holds. This can be easily deduced for example from [32, Theorem 1.2.4]. With a slight
abuse of notation, in this paper we will indicate (6.5) by writing |S(w;x)|2w(x) = 1 or an
equivalent expression.

In the preliminary analysis that we will perform in this section, we fix ρ in the expression
n = λp(p + 1) + ρ, and let λ tend to infinity along a certain subsequence. In particular,
the quantities η and ℓ in (4.2) will also remain fixed. The subsequence that we consider is
a sequence Λ ⊂ N such that (6.2) holds for each k = 0, . . . , p − 1. Note that the functions

F̃
(ρ)
k do not vanish in C \ [ak, bk]. By convention, we define F̃

(ρ)
−1 ≡ F̃

(ρ)
p ≡ 1.

The starting point of the analysis is the set of orthogonality conditions
∫ bk

ak

Pn,k(τ ) τ
s d|νn,k|(τ ) = 0, s = 0, . . . , Z(n, k)− 1, (6.6)

∫ bk

ak

Pn+1,k(τ ) τ
s d|νn+1,k|(τ ) = 0, s = 0, . . . , Z(n+ 1, k)− 1, (6.7)

which follow from (2.38). Recall that the measures |νn,k|, |νn+1,k| are given in (2.37). Recall
also that by convention Pn,−1 ≡ Pn,p ≡ 1, see Definition 2.11.

We subdivide the analysis into several cases, namely

Case 1) ℓ(n) ∈ [0 : k − 2],

Case 2) ℓ(n) = k − 1,

Case 3) ℓ(n) = k,

Case 4) ℓ(n) ∈ [k + 1 : p− 1],

Case 5) ℓ(n) = p.

Below we analyze these cases separately:

Case 1) ℓ(n) ∈ [0 : k− 2]. We have ℓ(n+1) = ℓ(n)+ 1 < k; therefore, from (2.13) we obtain
that

dσn,k(τ ) = dσn+1,k(τ ) = dσ∗
k(τ ), (6.8)

and according to (2.37) we can write

d|νn+1,k|(τ ) = gn,k(τ ) d|νn,k|(τ ), (6.9)

where

gn,k(τ ) :=
|hn+1,k(τ )|
|hn,k(τ )|

|Pn,k−1(τ )|
|Pn+1,k−1(τ )|

|Pn,k+1(τ )|
|Pn+1,k+1(τ )|

. (6.10)

Hence in (6.9) we have written the orthogonality measure in (6.7) as a perturbation of the
orthogonality measure in (6.6). If we now let λ→ ∞ along the sequence Λ ⊂ N and we keep
ρ fixed in n = λp(p+ 1) + ρ, in virtue of (6.4) and (6.2) we have

lim
λ∈Λ

gn,k(τ ) =
1

|F̃ (ρ)
k−1(τ )||F̃

(ρ)
k+1(τ )|

, (6.11)

uniformly on [ak, bk].
Suppose now that η(n) + ℓ(n) /∈ [k : p− 1]. Then, it follows from (4.6) that deg(Pn,k) =

deg(Pn+1,k). Applying Theorem 2 from [6] (result on relative asymptotics of polynomials
orthogonal with respect to varying measures), from (6.9) and (6.11) we deduce that

lim
λ∈Λ

Pn+1,k(z)

Pn,k(z)
= F̃

(ρ)
k (z) =

S
(ρ)
k (z)

S
(ρ)
k (∞)

, z ∈ C \ [ak, bk], (6.12)

where S
(ρ)
k is the Szegő function on C\[ak, bk] associated with the weight (|F̃ (ρ)

k−1(τ )||F̃
(ρ)
k+1(τ )|)−1,

τ ∈ [ak, bk]. Due to (6.5) and (6.12), taking limit as z → τ, τ ∈ [ak, bk], we obtain

|F̃ (ρ)
k (τ )|2

|F̃ (ρ)
k−1(τ )||F̃

(ρ)
k+1(τ )|

=
|S(ρ)
k (τ )|2

|S(ρ)
k (∞)|2|F̃ (ρ)

k−1(τ )||F̃
(ρ)
k+1(τ )|

=
1

w
(ρ)
k

, τ ∈ [ak, bk], (6.13)
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where w
(ρ)
k = |S(ρ)

k (∞)|2 > 0.
If we assume that η(n) + ℓ(n) ∈ [k : p − 1], then we have deg(Pn+1,k) = deg(Pn,k) + 1,

cf. (4.6). In order to analyze the ratio Pn+1,k/Pn,k in this case, we introduce an auxiliary
polynomial P ∗

n,k, defined as the monic polynomial of degree deg(Pn+1,k) = deg(Pn,k) + 1
that is orthogonal with respect to the measure d|νn,k|(τ ).

Then, by Theorem 1 from [6] (result on ratio asymptotics of polynomials orthogonal with
respect to varying measures), we obtain that

lim
λ∈Λ

P ∗
n,k(z)

Pn,k(z)
=

φk(z)

φ′
k(∞)

, z ∈ C \ [ak, bk],

where φk denotes the conformal mapping from C\ [ak, bk] onto the exterior of the unit circle
which satisfies φk(∞) = ∞ and φ′

k(∞) > 0. Now P ∗
n,k and Pn+1,k have the same degree,

the first polynomial is orthogonal with respect to |νn,k| and the second one is orthogonal
with respect to gn,k d|νn,k|, so by the relative asymptotic result mentioned above we have

lim
λ∈Λ

Pn+1,k(z)

P ∗
n,k(z)

=
S

(ρ)
k (z)

S
(ρ)
k (∞)

, z ∈ C \ [ak, bk],

where S
(ρ)
k is again the Szegő function on C\[ak, bk] associated with the weight (|F̃ (ρ)

k−1(τ )||F̃
(ρ)
k+1(τ )|)−1,

τ ∈ [ak, bk]. So it follows that if η(n) + ℓ(n) ∈ [k : p− 1] then

lim
λ∈Λ

Pn+1,k(z)

Pn,k(z)
= F̃

(ρ)
k (z) =

S
(ρ)
k (z)

S
(ρ)
k (∞)

φk(z)

φ′
k(∞)

, z ∈ C \ [ak, bk]. (6.14)

Taking account of (6.5) and (6.14), we conclude that

|F̃ (ρ)
k (τ )|2

|F̃ (ρ)
k−1(τ )||F̃

(ρ)
k+1(τ )|

=
|S(ρ)
k (τ )|2

|S(ρ)
k (∞)φ′

k(∞)|2|F̃ (ρ)
k−1(τ )||F̃

(ρ)
k+1(τ )|

=
1

w
(ρ)
k

, τ ∈ [ak, bk],

(6.15)

with w
(ρ)
k = |S(ρ)

k (∞)φ′
k(∞)|2 > 0. This finishes the analysis of Case 1). Since Cases 4) and

1) are rather similar, we now analyze

Case 4) ℓ(n) ∈ [k + 1 : p − 1]. We have ℓ(n+ 1) = ℓ(n) + 1 and so ℓ(n+ 1) > k; therefore,
we deduce from (2.13) that

dσn,k(τ ) = dσn+1,k(τ ) = τdσ∗
k(τ ),

and this implies that (6.9)–(6.10) hold. Applying (6.2) and (6.4) we also obtain (6.11),
uniformly on [ak, bk].

Assume that η(n) + ℓ(n) /∈ [p : p+ k − 1]. Then, it follows from (4.6) that deg(Pn,k) =
deg(Pn+1,k). Applying Theorem 2 from [6] as in Case 1), from (6.9) and (6.11) we obtain

lim
λ∈Λ

Pn+1,k(z)

Pn,k(z)
= F̃

(ρ)
k (z) =

S
(ρ)
k (z)

S
(ρ)
k (∞)

, z ∈ C \ [ak, bk], (6.16)

where S
(ρ)
k is the Szegő function on C\[ak, bk] associated with the weight (|F̃ (ρ)

k−1(τ )||F̃
(ρ)
k+1(τ )|)−1,

τ ∈ [ak, bk]. In this situation, (6.5) and (6.16) imply

|F̃ (ρ)
k (τ )|2

|F̃ (ρ)
k−1(τ )||F̃

(ρ)
k+1(τ )|

=
|S(ρ)
k (τ )|2

|S(ρ)
k (∞)|2|F̃ (ρ)

k−1(τ )||F̃
(ρ)
k+1(τ )|

=
1

w
(ρ)
k

, τ ∈ [ak, bk], (6.17)

where w
(ρ)
k = |S(ρ)

k (∞)|2 > 0 (the same as in (6.13)).
If η(n)+ℓ(n) ∈ [p : p+k−1], then according to (4.6) we have deg(Pn+1,k) = deg(Pn,k)−1,

i.e., Pn+1,k is of degree one unit less than the degree of Pn,k. Arguing as in Case 1) with the
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help of an auxiliary polynomial P ∗
n,k (of degree deg(Pn+1,k) = deg(Pn,k)− 1 and orthogonal

with respect to |νn,k|), we obtain that in this case

lim
λ∈Λ

Pn+1,k(z)

Pn,k(z)
= F̃

(ρ)
k (z) =

S
(ρ)
k (z)

S
(ρ)
k (∞)

φ′
k(∞)

φk(z)
, z ∈ C \ [ak, bk], (6.18)

where φk is exactly as before and S
(ρ)
k is again the Szegő function associated with the weight

(|F̃ (ρ)
k−1(τ )||F̃

(ρ)
k+1(τ )|)−1, τ ∈ [ak, bk]. Now, (6.5) and (6.18) imply

|F̃ (ρ)
k (τ )|2

|F̃ (ρ)
k−1(τ )||F̃

(ρ)
k+1(τ )|

=
|S(ρ)
k (τ )φ′

k(∞)|2

|S(ρ)
k (∞)|2|F̃ (ρ)

k−1(τ )||F̃
(ρ)
k+1(τ )|

=
1

w
(ρ)
k

, τ ∈ [ak, bk], (6.19)

where w
(ρ)
k = |S(ρ)

k (∞)/φ′
k(∞)|2 > 0. This concludes the analysis of Case 4).

Case 2) ℓ(n) = k − 1. Here, ℓ(n + 1) = ℓ(n) + 1 = k, hence (6.8) and (6.9)–(6.10) hold.
However, in this case it is convenient to write

gn,k(τ ) =
1

|τ | g̃n,k(τ ), g̃n,k(τ ) := |τ | |hn+1,k(τ )|
|hn,k(τ )|

|Pn,k−1(τ )|
|Pn+1,k−1(τ )|

|Pn,k+1(τ )|
|Pn+1,k+1(τ )|

.

From (2.40), (6.2), and (6.4) we obtain

lim
λ∈Λ

g̃n,k(τ ) =
1

|F̃ (ρ)
k−1(τ )||F̃

(ρ)
k+1(τ )|

, (6.20)

uniformly on [ak, bk].
In view of this asymptotic behavior of g̃n,k, using the auxiliary asymptotic results from

[6] we conclude that if η(n) + ℓ(n) /∈ [k : p− 1], then

lim
λ∈Λ

Pn+1,k(z)

Pn,k(z)
= F̃

(ρ)
k (z) =

S
(ρ)
k (z)

S
(ρ)
k (∞)

, z ∈ C \ [ak, bk], (6.21)

where S
(ρ)
k is the Szegő function on C\[ak, bk] associated with the weight (|τ ||F̃ (ρ)

k−1(τ )||F̃
(ρ)
k+1(τ )|)−1,

τ ∈ [ak, bk], and if η(n) + ℓ(n) ∈ [k : p− 1], then

lim
λ∈Λ

Pn+1,k(z)

Pn,k(z)
= F̃

(ρ)
k (z) =

S
(ρ)
k (z)

S
(ρ)
k (∞)

φk(z)

φ′
k(∞)

, z ∈ C \ [ak, bk], (6.22)

with the same definition of S
(ρ)
k as in (6.21). From (6.5) and (6.21)–(6.22), we conclude that

|F̃ (ρ)
k (τ )|2

|τ ||F̃ (ρ)
k−1(τ )||F̃

(ρ)
k+1(τ )|

=
1

w
(ρ)
k

, τ ∈ [ak, bk] \ {0}, (6.23)

where

w
(ρ)
k =





|S(ρ)
k (∞)|2 > 0, ℓ(n) = k − 1, η(n) + ℓ(n) /∈ [k : p− 1],

|S(ρ)
k (∞)φ′

k(∞)|2 > 0, ℓ(n) = k − 1, η(n) + ℓ(n) ∈ [k : p− 1].

Case 3) ℓ(n) = k. Since 0 ≤ k ≤ p− 1, now we have ℓ(n+ 1) = ℓ(n) + 1 > k, and so

dσn,k(τ ) = dσ∗
k(τ ),

dσn+1,k(τ ) = τ dσ∗
k(τ ).

Then,
d|νn+1,k|(τ ) = gn,k(τ ) |τ | d|νn,k|(τ ),
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with gn,k as in (6.10), and we also have

lim
λ∈Λ

gn,k(τ ) |τ | = |τ |
|F̃ (ρ)
k−1(τ )||F̃

(ρ)
k+1(τ )|

,

uniformly on [ak, bk].
If η(n) + ℓ(n) /∈ [p : p + k − 1], then deg(Pn+1,k) = deg(Pn,k), and as in Case 1), we

obtain

lim
λ∈Λ

Pn+1,k(z)

Pn,k(z)
= F̃

(ρ)
k (z) =

S
(ρ)
k (z)

S
(ρ)
k (∞)

, z ∈ C \ [ak, bk], (6.24)

where S
(ρ)
k is the Szegő function on C\[ak, bk] associated with the weight |τ |(|F̃ (ρ)

k−1(τ )||F̃
(ρ)
k+1(τ )|)−1,

τ ∈ [ak, bk].
If η(n) + ℓ(n) ∈ [p : p+ k − 1] then deg(Pn,k+1) = deg(Pn,k) − 1, and as in Case 4) we

obtain the asymptotic formula

lim
λ∈Λ

Pn+1,k(z)

Pn,k(z)
= F̃

(ρ)
k (z) =

S
(ρ)
k (z)

S
(ρ)
k (∞)

φ′
k(∞)

φk(z)
, z ∈ C \ [ak, bk], (6.25)

where S
(ρ)
k is defined as in (6.24). From (6.5), (6.24), and (6.25), if follows that

|τ ||F̃ (ρ)
k (τ )|2

|F̃ (ρ)
k−1(τ )||F̃

(ρ)
k+1(τ )|

=
1

w
(ρ)
k

, τ ∈ [ak, bk] \ {0}, (6.26)

where

w
(ρ)
k =





|S(ρ)
k (∞)|2 > 0, ℓ(n) = k, η(n) + ℓ(n) /∈ [p : p+ k − 1],

|S(ρ)
k (∞)/φ′

k(∞)|2 > 0, ℓ(n) = k, η(n) + ℓ(n) ∈ [p : p+ k − 1].

Case 5) ℓ(n) = p. In particular we have ℓ > k and k ≥ ℓ(n+ 1) = 0. Hence in this case

dσn,k(τ ) = τ dσ∗
k(τ ),

dσn+1,k(τ ) = dσ∗
k(τ ),

and so

d|νn+1,k|(τ ) = gn,k(τ )

|τ | d|νn,k|(τ ),

where gn,k is again given by (6.10). In virtue of (6.4) we have

lim
λ∈Λ

|hn+1,k(τ )|
|hn,k(τ )|

=




|τ | if k ≥ 1,

1 if k = 0,
(6.27)

uniformly on [ak, bk]. According to (4.7) we have

deg(Pn+1,k)− deg(Pn,k) =




0 if η(n) ∈ [0 : k − 1],

1 if η(n) ∈ [k : p− 1].

If we assume that η(n) ∈ [0 : k − 1], then in particular k ≥ 1 and from (6.2) and (6.27) we
get

lim
λ∈Λ

gn,k(τ )

|τ | =
1

|F̃ (ρ)
k−1(τ )||F̃

(ρ)
k+1(τ )|

, τ ∈ [ak, bk],

and since deg(Pn+1,k) = deg(Pn,k), we deduce that the asymptotic formula (6.12) holds

with S
(ρ)
k defined in the same way as in that formula.
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Suppose now that η(n) ∈ [k : p− 1]. Then we have

lim
λ∈Λ

gn,k(τ )

|τ | =






1

|τ ||F̃
(ρ)
1 (τ)|

if k = 0,

1

|F̃
(ρ)
k−1

(τ)||F̃
(ρ)
k+1

(τ)|
if k ≥ 1,

τ ∈ [ak, bk], (6.28)

and deg(Pn+1,k) = 1+deg(Pn,k). Arguing as before we obtain that the asymptotic formula

(6.14) is valid with S
(ρ)
k (z) being now the Szegő function associated with the weight indicated

on the right-hand side of (6.28). On account of (6.5) and the structure of F̃
(ρ)
k for the

different values of k, now we have

|F̃ (ρ)
0 (τ )|2

|τ ||F̃ (ρ)
1 (τ )|

=
1

w
(ρ)
0

, τ ∈ [a0, b0] \ {0},

|F̃ (ρ)
k (τ )|2

|F̃ (ρ)
k−1(τ )||F̃

(ρ)
k+1(τ )|

=
1

w
(ρ)
k

, τ ∈ [ak, bk], k ∈ [1 : p− 1],

(6.29)

where w
(ρ)
k = |S(ρ)

k (∞)|2, η(n) + 1 ≤ k ≤ p− 1 and w
(ρ)
k = |S(ρ)

k (∞)φ′
k(∞)|2, 0 ≤ k ≤ η(n).

6.4 Boundary value problem for the functions F̃
(ρ)
k

The preliminary analysis carried out in the previous section leads to the following boundary
value relations between the functions F̃

(ρ)
k .

Lemma 6.3. Let ρ ∈ [0 : p(p + 1) − 1] be fixed, and let ℓ ∈ [0 : p] be the remainder in

the division of ρ by p + 1. Let F̃
(ρ)
k , 0 ≤ k ≤ p − 1, be any collection of functions obtained

through the asymptotic formula (6.2) for some subsequence Λ ⊂ N. Then there exist positive

constants c
(ρ)
k so that the collection of functions F

(ρ)
k (z) = c

(ρ)
k F̃

(ρ)
k (z), 0 ≤ k ≤ p−1 satisfies

the following systems of boundary value equations:

1) When ℓ ∈ [0 : p− 1] (here, [0 : −1], [p : p− 1] and [p + 1 : p− 1] denote the empty set
for the corresponding values of ℓ)

|F (ρ)
k (τ )|2

|F (ρ)
k−1(τ )||F

(ρ)
k+1(τ )|

= 1, τ ∈ [ak, bk], k ∈ [0 : ℓ− 1] ∪ [ℓ+ 2 : p− 1],

|F (ρ)
k (τ )|2 |τ |

|F (ρ)
k−1(τ )||F

(ρ)
k+1(τ )|

= 1, τ ∈ [ak, bk] \ {0}, k = ℓ,

|F (ρ)
k (τ )|2

|τ ||F (ρ)
k−1(τ )||F

(ρ)
k+1(τ )|

= 1, τ ∈ [ak, bk] \ {0}, k = ℓ+ 1.

(The last equation is dropped if ℓ = p− 1.)

2) For ℓ = p, the system is

|F (ρ)
0 (τ )|2

|τ ||F (ρ)
1 (τ )|

= 1, τ ∈ [a0, b0] \ {0},

|F (ρ)
k (τ )|2

|F (ρ)
k−1(τ )||F

(ρ)
k+1(τ )|

= 1, τ ∈ [ak, bk], k ∈ [1 : p− 1].

Moreover, for each ρ fixed, the functions F
(ρ)
k (z), 0 ≤ k ≤ p− 1 satisfy:

i) (F
(ρ)
k )±1 ∈ H(C \ [ak, bk]).

ii) The leading coefficient (corresponding to the highest power of z) of the Laurent expan-

sion of F
(ρ)
k at ∞ is positive.
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iii) F
(ρ)
k either has a simple pole, a simple zero, or takes a finite positive value at ∞. For

a given ρ ∈ [0 : p(p + 1) − 1] and k ∈ [0 : p − 1], only one of these situations occur
independently of Λ.

Proof. Let F̃
(ρ)
k , 0 ≤ k ≤ p− 1, be any collection of functions obtained through the asymp-

totic formula (6.2) for some subsequence Λ ⊂ N. From (6.13), (6.15), (6.17), (6.19), (6.23),
(6.26), and (6.29), we obtain the following systems of boundary value problems for each
fixed ρ making k range from 0 to p− 1.

1) If ℓ ∈ [0 : p− 1],

|F̃ (ρ)
k (τ )|2

|F̃ (ρ)
k−1(τ )||F̃

(ρ)
k+1(τ )|

=
1

w
(ρ)
k

, τ ∈ [ak, bk], k ∈ [0 : ℓ− 1] ∪ [ℓ+ 2 : p− 1],

|F̃ (ρ)
k (τ )|2 |τ |

|F̃ (ρ)
k−1(τ )||F̃

(ρ)
k+1(τ )|

=
1

w
(ρ)
k

, τ ∈ [ak, bk] \ {0}, k = ℓ,

|F̃ (ρ)
k (τ )|2

|τ ||F̃ (ρ)
k−1(τ )||F̃

(ρ)
k+1(τ )|

=
1

w
(ρ)
k

, τ ∈ [ak, bk] \ {0}, k = ℓ+ 1.

2) For ℓ = p, the system is

|F̃ (ρ)
0 (τ )|2

|τ ||F̃ (ρ)
1 (τ )|

=
1

w
(ρ)
0

, τ ∈ [a0, b0] \ {0},

|F̃ (ρ)
k (τ )|2

|F̃ (ρ)
k−1(τ )||F̃

(ρ)
k+1(τ )|

=
1

w
(ρ)
k

, τ ∈ [ak, bk], k ∈ [1 : p− 1].

The values w
(ρ)
k , 0 ≤ k ≤ p − 1, which depend on ρ (i.e., on ℓ and η) were specified in the

preliminary analysis. They are all positive.
Set F

(ρ)
k (z) = c

(ρ)
k F̃

(ρ)
k (z), c

(ρ)
k > 0 and substitute in the previous systems. Our problem

reduces to determining if there exist positive constants c
(ρ)
k , k = 0, . . . , p−1 (c

(ρ)
−1 = c

(ρ)
p = 1)

such that
(c

(ρ)
k )2

c
(ρ)
k−1c

(ρ)
k+1w

(ρ)
k

= 1, k = 0, . . . , p− 1.

Taking logarithm, this is equivalent to determining if the nonhomogeneous linear system of
equations on log c

(ρ)
k is determinate

2 log c
(ρ)
k − log c

(ρ)
k−1 − log c

(ρ)
k+1 = logw

(ρ)
k , k = 0, . . . , p− 1. (6.30)

Of course this is the case.
Since F

(ρ)
k = c

(ρ)
k F̃

(ρ)
k , c

(ρ)
k > 0, the properties i)-iii) are inherited from analogous ones

for F̃
(ρ)
k , 0 ≤ k ≤ p − 1. Therefore, it is sufficient to verify them for the F̃

(ρ)
k . First,

F̃
(ρ)
k ∈ H(C \ [ak, bk]) because it is the uniform limit on compact subsets of C \ [ak, bk]

of holomorphic functions. Since the zeros of these functions all lie in [ak, bk], by Hurwitz’

theorem F̃
(ρ)
k has no zero in C \ [ak, bk]; therefore, its reciprocal is also in H(C \ [ak, bk]).

Regarding ii) and iii), notice that from the preliminary analysis it follows that F̃
(ρ)
k is a

normalized Szegő function in the complement of [ak, bk], or a normalized Szegő function
multiplied or divided by φk which has a simple pole at ∞. In each case the normalization
is taken so that the leading coefficient of the Laurent expansion of F̃

(ρ)
k at ∞ is equal to 1.

Finally, as we have seen, the existence of a pole, a zero, or a finite value of F̃
(ρ)
k at ∞ only

depends on ℓ(n) and η(n) in the decomposition (4.2) of ρ. Since ρ is fixed so are ℓ(n) and
η(n) on the set of indices Λρ = {n : n = λp(p + 1) + ρ, λ ∈ Z+}. We have concluded the
proof.
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Lemma 6.4. Let 0 ≤ ρ ≤ p(p+1)− 1 be fixed, and let F̃
(ρ)
k , 0 ≤ k ≤ p− 1 be any collection

of functions obtained through the asymptotic formula (6.2) for some subsequence Λ ⊂ N. Let

F
(ρ)
k = c

(ρ)
k F̃

(ρ)
k , 0 ≤ k ≤ p − 1, be the corresponding collection of functions obtained as in

Lemma 6.3. Then, the collection F
(ρ)
k , 0 ≤ k ≤ p− 1 is uniquely determined.

Proof. Let F
(ρ)
k , k = 0, . . . , p− 1 and G

(ρ)
k , k = 0, . . . , p− 1, be two collections of functions

satisfying the hypotheses of the Lemma. Then, by Lemma 6.3 we know that both collections
satisfy properties i)-iii) (with a pole, a zero, or a finite value at ∞ for the same values of
k) and the same system of boundary value equations. Let us construct a third collection

of functions H
(ρ)
k = F

(ρ)
k /G

(ρ)
k , k = 0, . . . , p − 1. From i)-iii) it follows that H

(ρ)
k ∈ H(C \

[ak, bk]), k = 0, . . . , p − 1 and the leading coefficients of these functions are positive. The

collection H
(ρ)
k , k = 0, . . . , p− 1 verifies the system of boundary value equations

|H(ρ)
k (τ )|2

|H(ρ)
k−1(τ )||H

(ρ)
k+1(τ )|

= 1, τ ∈ [ak, bk], k = 0, . . . , p− 1, (6.31)

where H
(ρ)
−1 = H

(ρ)
p ≡ 1. Here, we have included the point 0 in the boundary value condition,

even if it is an extreme point of [ak, bk], because H
(ρ)
k is, up to a constant factor, the Szegő

function of |H(ρ)
k−1H

(ρ)
k+1|−1 which is continuous and different from zero on all [ak, bk] (recall

that the Szegő function is multiplicative).
Taking logarithm in (6.31), we obtain the functional homogeneous system of equations

2 log |H(ρ)
k (τ )| − log |H(ρ)

k−1(τ )| − log |H(ρ)
k+1(τ )| = 0, τ ∈ [ak, bk], k = 0, . . . , p− 1. (6.32)

For each 0 ≤ k ≤ p− 1, the function u
(ρ)
k (z) = log |H(ρ)

k (z)|, k = 0, . . . , p− 1 is harmonic in

C\ [ak, bk]. It is the real part of logH
(ρ)
k , k = 0, . . . , p−1 which is holomorphic in C\ [ak, bk].

Thus, logH
(ρ)
k is uniquely determined by uk, taking into consideration that H

(ρ)
k (∞) > 0

so we must find the harmonic conjugate v
(ρ)
k of u

(ρ)
k which equals zero at ∞. According to

[5, Lemma 4.1], the system (6.32) only has the trivial solution (in the space of harmonic

functions); that is, u
(ρ)
k ≡ 0, k = 0, . . . , p − 1. Consequently, v

(ρ)
k ≡ 0, k = 0, . . . , p − 1 and

H
(ρ)
k = exp(u

(ρ)
k + iv

(ρ)
k ) ≡ 1, k = 0, . . . , p− 1. This means that F

(ρ)
k ≡ G

(ρ)
k , k = 0, . . . , p− 1

which is what we needed to prove.

6.5 Proof of Theorem 3.2

To prove the existence of limit in (3.1) it is sufficient to show that (6.2) does not depend on

Λ. The collection of functions (F̃
(ρ)
k ), k = 0, . . . , p−1 verifying (6.2) gives rise to a collection

(F
(ρ)
k ), k = 0, . . . , p− 1 which satisfies a system of boundary value equations as indicated in

Lemma 6.3 and fulfills i)-iii).

Now, according to Lemma 6.4 there is only one collection of functions (F
(ρ)
k ), k =

0, . . . , p − 1 with these properties. Since F̃
(ρ)
k (which must have leading coefficient equal

to one) is obtained dividing F
(ρ)
k by its leading coefficient the proof of (3.1) is settled.

Notice that

Pn+p(p+1),k(z)

Pn,k(z)
=

p(p+1)−1∏

ρ=0

Pn+ρ+1,k(z)

Pn+ρ,k(z)
.

On the right hand side, we have representatives of ratios of consecutive polynomials Pn,k for
all the residue classes of n modulo p(p+ 1). Fix ρ̄ ∈ [0 : p(p+ 1) − 1], using (3.1) it follows
that

lim
n=ρ̄ mod p(p+1)

Pn+p(p+1),k(z)

Pn,k(z)
=

p(p+1)−1∏

ρ=0

F̃
(ρ)
k (z), z ∈ C \ [ak, bk],

where the right hand does not depend on ρ̄ ∈ [0 : p(p+1)− 1]. Therefore, (3.2) takes place.
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6.6 Proof of Corollary 3.3

Let ρ ∈ [0 : p(p+ 1) − 1] be fixed. Replacing z by zp+1 in (3.1) for k = 0, we obtain

lim
λ→∞

Pλp(p+1)+ρ+1,0(z
p+1)

Pλp(p+1)+ρ,0(zp+1)
= F̃

(ρ)
0 (zp+1), z ∈ C \ Γ0. (6.33)

According to (2.7) we have Qn(z) = zℓPn,0(z
p+1) if n ≡ ℓ mod (p+ 1), 0 ≤ ℓ ≤ p (see also

the lines that follow Definiton 2.11). Hence from (6.33) we deduce that if ρ ≡ ℓ mod (p+1)
and ℓ ∈ [0 : p− 1], then

lim
λ→∞

zℓ+1Pλp(p+1)+ρ+1,0(z
p+1)

zℓPλp(p+1)+ρ,0(zp+1)
= lim
λ→0

Qλp(p+1)+ρ+1(z)

Qλp(p+1)+ρ(z)
= zF̃

(ρ)
0 (zp+1), z ∈ C \ Γ0,

and if ρ ≡ p mod (p+ 1), then

lim
λ→∞

Pλp(p+1)+ρ+1,0(z
p+1)

zpPλp(p+1)+ρ,0(zp+1)
= lim
λ→0

Qλp(p+1)+ρ+1(z)

Qλp(p+1)+ρ(z)
=
F̃

(ρ)
0 (zp+1)

zp
, z ∈ C \ (Γ0 ∪ {0}).

This justifies (3.3)–(3.4).

In the following argument we use the cyclic notation F̃
(i)
0 ≡ F̃

(i+p(p+1))
0 for any i. Ap-

plying (2.24) for k = 0 we get that for ρ 6≡ p mod (p+ 1),

aλp(p+1)+ρ =
Pλp(p+1)+ρ,0(z)

Pλp(p+1)+ρ−p,0(z)
− Pλp(p+1)+ρ+1,0(z)

Pλp(p+1)+ρ−p,0(z)
, z ∈ C \ [a0, b0].

Letting λ → ∞ we obtain

lim
λ→∞

aλp(p+1)+ρ = a(ρ) = (1− F̃
(ρ)
0 (z))

ρ−1∏

i=ρ−p

F̃
(i)
0 (z), z ∈ C \ [a0, b0].

Similarly, using (2.25) we obtain that for ρ ≡ p mod (p+ 1),

lim
λ→∞

aλp(p+1)+ρ = a(ρ) = (z − F̃
(ρ)
0 (z))

ρ−1∏

i=ρ−p

F̃
(i)
0 (z), z ∈ C \ [a0, b0].

Hence (3.5) is justified.
Since

deg(Pn+1,0)− deg(Pn,0) = Z(n+ 1, 0)− Z(n, 0) =

{
0, if n 6≡ p mod (p+ 1),

1, if n ≡ p mod (p+ 1),

from (3.1) we deduce that F̃
(ρ)
0 has the Laurent expansion

F̃
(ρ)
0 (z) =

{
1 + C

(ρ)
1 z−1 +O(z−2), if ρ 6≡ p mod (p+ 1)

z + C
(ρ)
0 +O(z−1), if ρ ≡ p mod (p+ 1)

at infinity. Therefore, for ρ 6≡ p mod (p+ 1), we have

a(ρ) = (1− F̃
(ρ)
0 (z))

ρ−1∏

i=ρ−p

F̃
(i)
0 (z) = (−C(ρ)

1 z−1 +O(z−2))(z +O(1)) = −C(ρ)
1 ,

for among the functions in
∏ρ−1
i=ρ−p F̃

(i)
0 (z) there is exactly one of the form z + O(1) and

the rest are of the form 1 + O(z−1). Similarly one shows that if ρ ≡ p mod (p + 1) then

a(ρ) = −C(ρ)
0 .
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6.7 Proof of Corollary 3.4

By Theorem 3.2, the limits in (6.11), (6.20), and (6.28) hold as λ → ∞. Reasoning as in
Subsection 6.3, but now in connection with orthonormal polynomials, from Theorems 1 and
2 in [6] it follows that

lim
λ→∞

pλp(p+1)+ρ+1,k(z)

pλp(p+1)+ρ,k(z)
=
(
w

(ρ)
k

)1/2
F̃

(ρ)
k (z), z ∈ C \ [ak, bk], k = 0, . . . , p− 1.

(6.34)

The numbers w
(ρ)
k , k = 0, . . . , p− 1 are defined as in Subsection 6.3 but now we know that

they will not depend on the subsequence of indices Λ. Dividing (6.34) by (3.1), it follows
that

lim
λ→∞

κλp(p+1)+ρ+1,k

κλp(p+1)+ρ,k

=
(
w

(ρ)
k

)1/2
, k = 0, . . . , p− 1.

Now, (3.7), (3.9), and (3.10) are a consequence of (6.30).
From the definition of κλp(p+1)+ρ,k we have

Kλp(p+1)+ρ,k = κλp(p+1)+ρ,0 · · ·κλp(p+1)+ρ,k.

Therefore, (3.8) follows directly from (3.7).
Using formulas (2.28) and (2.35) for two consecutive indices n, n+ 1, we have

ψn+1,k(z)

ψn,k(z)
=

K2
n,k−1

K2
n+1,k−1

Pn,k−1(z)

Pn+1,k−1(z)

Pn+1,k(z)

Pn,k(z)

hn+1,k(z)

hn,k(z)
.

Taking n = λp(p+ 1) + ρ with ρ fixed and λ→ ∞, from (3.1) and (3.8) we obtain

K2
n,k−1

K2
n+1,k−1

Pn,k−1(z)

Pn+1,k−1(z)

Pn+1,k(z)

Pn,k(z)
−→ 1

(κ
(ρ)
0 · · ·κ(ρ)

k−1)
2

F̃
(ρ)
k (z)

F̃
(ρ)
k−1(z)

,

uniformly on compact subsets of C \ ([ak−1, bk−1] ∪ [ak, bk]). Now we write

hn+1,k(z)

hn,k(z)
=
ε2n+1,k−1 hn+1,k(z)

ε2n,k−1 hn,k(z)

and analyze the expressions

εn+1,k−1

εn,k−1
,

εn+1,k−1 hn+1,k(z)

εn,k−1 hn,k(z)
,

separately.
Taking n = λp(p+ 1) + ρ with ρ fixed, λ→ ∞, and applying (6.4), we easily see that

ελp(p+1)+ρ+1,k−1 hλp(p+1)+ρ+1,k(z)

ελp(p+1)+ρ,k−1 hλp(p+1)+ρ,k(z)
−→ h

(ρ)
k (z),

uniformly on compact subsets of C \ ([ak−1, bk−1] ∪ {0}), where h
(ρ)
k (z) is defined in (3.12).

We claim that the ratio
ελp(p+1)+ρ+1,k−1

ελp(p+1)+ρ,k−1
= ε

(ρ)
k (6.35)

is independent of λ, and so it remains constant as λ → ∞. This follows immediately from
Lemma 4.3 and Lemma 4.1. With this we finish the proof of (3.11).

Finally, the asymptotic formula (3.13) is obtained immediately from (3.11) and (2.14).
We leave the details to the reader.
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Remark 6.5. We can give an explicit formula for the constant ε
(ρ)
k in (3.11). For a given

ρ ∈ [0 : p(p+ 1)− 1], let η, ℓ be the integers satisfying (4.2). Let ζ(ρ, k) and θ(ρ, k) be the
functions defined as follows:

ζ(ρ, k) :=

{
RHS of (4.6) if ℓ ∈ [0 : p− 1],

RHS of (4.7) if ℓ = p,

θ(ρ, k) := RHS of (4.20).

Then from (6.35) and (4.19) we deduce that

ε
(ρ)
k = (−1)ζ(ρ,2⌈

k−1
2 ⌉)+θ(ρ,k−1), k = 1, . . . , p.
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