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Abstract

Given a system of functions F = (F1, . . . , Fd), analytic on a neighborhood of some
compact subset E of the complex plane with simply connected complement, we define
a sequence of vector rational functions with common denominator in terms of the or-
thogonal expansions of the components Fk, k = 1, . . . , d, with respect to a sequence
of orthonormal polynomials associated with a measure µ whose support is contained
in E. Such sequences of vector rational functions resemble row sequences of type II
Hermite-Padé approximants. Under appropriate assumptions on µ, we give necessary
and sufficient conditions for the convergence with geometric rate of the common de-
nominators of the sequence of vector rational functions so constructed. The exact rate
of convergence of these denominators is provided and the rate of convergence of the
simultaneous approximants is estimated. It is shown that the common denominator of
the approximants detect the location of the poles of the system of functions.
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1 Introduction

Let F = (F1, . . . , Fd) be a system of d formal or convergent Taylor expansions about
the origin; that is, for each i = 1, . . . , d, we have

Fi :=
∞
∑

n=0

fn,iz
n, fn,i ∈ C. (1)

The following construction can be traced back to classical works of Ch. Hermite
[13] and K. Mahler [14].

Definition 1.1. Let F = (F1, . . . , Fd) be a system of d formal Taylor expansions as
in (1). Fix a multi-index m = (m1, . . . , md) ∈ Nd. Set

|m| := m1 +m2 + . . .+md.

Then, for each n ≥ max{m1, . . . , md}, there exist polynomials Q, Pi, i = 1, . . . , d,
such that

degPi ≤ n−mi, i = 1, . . . , d, deg(Q) ≤ |m|, Q 6≡ 0,

Q(z)Fi(z)− Pi(z) = Aiz
n+1 + · · · . (2)

The vector of rational functions Rn,m := (P1/Q, . . . , Pd/Q) is called an (n,m) (type
II) Hermite-Padé approximant of F.

Alternatively, one can solve the following problem

Proposition 1.1. Given F = (F1, . . . , Fd) and m = (m1, . . . , md) ∈ Nd, find poly-
nomials Q, Pk,i, k = 0, 1, . . . , mi − 1, i = 1, . . . , d, such that for all i = 1, 2, . . . , d,

deg Pk,i ≤ n− 1, k = 0, . . . , mi − 1, deg(Q) ≤ |m|, Q 6≡ 0,

Q(z)zkFi(z)− Pk,i(z) = Aiz
n+1 + · · · , k = 0, . . . , mi − 1. (3)

It is easy to verify that the system of homogeneous linear equations to be solved
in order to find the polynomial Q in (2) and (3) is the same. Once Q is found the
polynomial Pi in Definition 1.1 and Pk,i in Proposition 1.1 are uniquely determined.
In this sense, Definition 1.1 and Proposition 1.1 solve the same problem. However,
we wish to point out that different solutions for Q may produce, in general, different
(n,m) Hermite-Padé approximants of F. In the sequel, given (n,m), one particular
solution is taken. For that solution, we write

Rn,m := (Rn,m,1, . . . , Rn,m,d) = (Pn,m,1, . . . , Pn,m,d)/Qn,|m|,
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when Qn,|m| is monic and has no common zero simultaneously with all the Pn,m,i.
Most papers devoted to Hermite-Padé approximation deal with diagonal or near

diagonal sequences (when |m| ≈ n) and their application in several areas (such as
multiple orthogonal polynomials, number theory, random matrices, brownian mo-
tions, Toda lattices, to name a few). Less attention has been paid to the theory
related with row sequences, when m remains fixed independent of n.

The first significant contribution on the convergence of row sequences of Hermite-
Padé approximation is due to Graves-Morris and Saff [10] (see also [11] and [12])
where a Montessus de Ballore type theorem [15] was proved, under the assumption
of polewise independence of the system of fucntions. This concept was introduced
by the authors in the same paper. Recently, Cacoq, de la Calle, and López [5]
improved that result in several directions; namely, improving the estimate on the
rate of convergence and weakening the assumption of polewise independence. In its
final form, in [6, Theorem 1.4 and Theorem 3.7] the authors prove an analogue of the
Montessus de Ballore-Gonchar theorem. To state that result, we need to introduce
some concepts and notation.

Let Ω := (Ω1, . . . ,Ωd) be a system of domains such that, for each i = 1, . . . , d, Fi

is meromorphic in Ωi. We say that the point ξ ∈ Ωi is a pole of F in Ω of order τ if
there exists an index i ∈ {1, . . . , d} such that ξ ∈ Ωi and it is a pole of Fi of order τ,
and for j 6= i either ξ is a pole of Fj of order less than or equal to τ or ξ 6∈ Ωj. When
Ω = (Ω, . . . ,Ω), we say that ξ is a pole of F in Ω.

Denote by
BR := {z ∈ C : |z| < R}

the disk centered at the origin of radius R. Let R0(F) be the radius of the largest disk
BR0(F) to which all the expansions Fi, i = 1, . . . , d can be extended analytically. If
R0(F) = 0, we take BRm(F) = ∅, m ≥ 0; otherwise, Rm(F) is the radius of the largest
disk BRm(F) centered at the origin to which all the analytic elements (Fi,BR0(Fi)) can
be extended so that F has at most m poles counting multiplicities. Denote by N the
set of all positive integers.

Let us define the concept of system pole for a vector of d formal Taylor expansions
F as in (1).

Definition 1.2. Given F = (F1, F2, . . . , Fd) and m = (m1, m2, . . . , md) ∈ Nd, we
say that ξ ∈ C \ {0} is a system pole of order τ of F with respect to m if τ is the
largest positive integer such that for each t = 1, 2, . . . , τ, there exists at least one
polynomial combination of the form

d
∑

i=1

viFi, deg vi < mi, i = 1, 2, . . . , d, (4)
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which is holomorphic on a neighborhood of B|ξ| except for a pole at z = ξ of exact
order t.

To each system pole ξ of F with respect to m we associate several characteristic
values. Let τ be the order of ξ as a system pole of F. For each t = 1, . . . , τ, denote
by rξ,t(F,m) the largest of all the numbers Rt(g) (the radius of the largest disk
containing at most t poles of g), where g is a polynomial combination of type (4)
that is analytic on a neighborhood of B|ξ| except for a pole at z = ξ of order t. Then,

Rξ,t(F,m) := min
k=1,...,t

rξ,k(F,m),

Rξ(F,m) := Rξ,τ (F,m) = min
k=1,...,τ

rξ,k(F,m).

By QF
m, we denote the monic polynomial whose zeros are the system poles of F

with respect to m taking account of their order. The set of distinct zeros of QF
m is

denoted by P(F,m).
The following theorem (see [6, Theorem 1.4 and Theorem 3.7]) is an analogue of

the Montessus de Ballore-Gonchar theorem.

Theorem A. Let F be a vector of formal Taylor expansions at the origin and fix a
multi-index m ∈ Nd. The following two assertions are equivalent:

(a) R0(F) > 0 and F has exactly |m| system poles with respect to m counting
multiplicities.

(b) The denominators Qn,|m|, n ≥ |m|, of the Hermite-Padé approximants of F are
uniquely determined for all sufficiently large n, and there exists a polynomial
Q|m| of degree |m|, Q|m|(0) 6= 0, such that

lim sup
n→∞

‖Q|m| −Qn,|m|‖
1/n = θ < 1,

where ‖ · ‖ denotes the coefficient norm in the space of polynomials.

Moreover, if either (a) or (b) takes place, then Q|m| ≡ QF
m, and

θ = max

{

|ξ|

Rξ(F,m)
: P(F,m)

}

.

An exact expression for the rate and region of convergence of Rn,m,i to Fi as
n → ∞ is also given, see [6, Theorem 3.7].

The object of this paper is to give a similar result when Taylor expansions are
replaced by orthogonal ones in the sense we will describe below.

4



Let E be an infinite compact subset of the complex plane C such that C \ E
is simply connected. Let µ be a finite positive Borel measure with infinite support
supp(µ) contained in E. We write µ ∈ M(E) and define the associated inner product,

〈g, h〉µ :=

∫

g(ζ)h(ζ)dµ(ζ), g, h ∈ L2(µ).

Let
pn(z) := κnz

n + · · · , κn > 0, n = 0, 1, 2, . . . ,

be the orthonormal polynomial of degree n with respect to µ with positive leading
coefficient; that is, 〈pn, pm〉µ = δn,m. Denote by H(E) the space of all functions
holomorphic in some neighborhood of E. We define

H(E)d := {(F1, F2, . . . , Fd) : Fi ∈ H(E), i = 1, 2, . . . , d}.

A natural way of extending the notion of Hermite-Padé approximation as given
by Definition 1.1 to the present setting is the following.

Definition 1.3. Let F = (F1, F2, . . . , Fd) ∈ H(E)d and µ ∈ M(E). Fix a multi-
index m = (m1, m2, . . . , md) ∈ Nd. Set |m| = m1 + m2 + . . . + md. Then, for each
n ≥ max{m1, m2, . . . , md}, there exist polynomials Q̃µ

n,m and P̃ µ
n,m,i, i = 1, 2, . . . , d

such that

deg(P̃ µ
n,m,i) ≤ n−mi, deg(Q̃µ

n,|m|) ≤ |m|, Q̃µ
n,|m| 6≡ 0,

〈Q̃µ
n,|m|Fi − P̃ µ

n,m,i, pj〉µ = 0, j = 0, 1, . . . , n,

for all i = 1, 2, . . . , d. The vector rational function

R̃
µ

n,m := (R̃µ
n,m,1, . . . , R̃

µ
n,m,d) = (P̃ µ

n,m,1/Q̃
µ
n,|m|, . . . , P̃

µ
n,m,d/Q̃

µ
n,|m|)

is called an (n,m) simultaneous Fourier-Padé approximant of F with respect to µ.

The convergence of simultaneous Fourier-Padé approximation was first investi-
gated in [4] for the case when E = {z ∈ C : |z| ≤ 1} and the support of µ is
contained in the unit circle (see also [2, 3] for the case when d = 1 and E is a general
compact set). The results obtained in [4] are not very promising for several reasons.
The restrictions imposed on the measure are stronger than what is to be expected,
the extension to the case of measures supported on more general compact sets of the
complex plane does not appear to be very plausible, the authors only obtain direct
results ((a) implies (b)) using the assumption of polewise independence introduced
in [10] which already in the classical case of Hermite-Padé approximation does not
lead to an inverse statement ((b) implies (a)) in the theorem.

5



It is easy to check, when E = {z ∈ C : |z| ≤ 1} and dµ = dθ/2π on the unit
circle, that the concepts of Hermite-Padé approximation and that of simultaneous
Fourier-Padé approximation with respect to dθ/2π of F coincide. By the same token,
for this special case the simultaneous Fourier-Padé approximants verify Proposition
1.1. However, for other measures the analogues of Definition 1.1 and Proposition
1.1 lead to different homogeneous linear systems of equations. It turns out, that
the correct way to extend the notion of Hermite-Padé approximation to the case of
vector orthogonal expansions in order to obtain direct and inverse type results is
through Proposition 1.1. So, we propose the following definition.

Definition 1.4. Let F = (F1, F2, . . . , Fd) ∈ H(E)d and µ ∈ M(E). Fix a multi-
index m = (m1, m2, . . . , md) ∈ Nd and n ∈ N. Then, there exist polynomials Qµ

n,|m|,

P µ
n,m,k,i, k = 0, 1, . . . , mi − 1, i = 1, 2, . . . , d such that for all i = 1, 2, . . . , d,

deg(P µ
n,m,k,i) ≤ n− 1, k = 0, 1, . . . , mi − 1, deg(Qµ

n,|m|) ≤ |m|, Qµ
n,|m| 6≡ 0, (5)

〈Qµ
n,|m|z

kFi − P µ
n,m,k,i, pj〉µ = 0, k = 0, 1, . . . , mi − 1 j = 0, 1, . . . , n. (6)

The vector rational function

Rµ
n,m := (Rµ

n,m,1, . . . , R
µ
n,m,d) = (P µ

n,m,0,1, . . . , P
µ
n,m,0,d)/Q

µ
n,|m|

is called an (n,m) orthogonal Hermite-Padé approximant of F with respect to µ.

Clearly,

〈Qµ
n,|m|z

kFi, pn〉µ = 0, i = 1, . . . , d, k = 0, 1, . . . , mi − 1. (7)

Since Qµ
n,|m| 6≡ 0, we normalize it to have leading coefficient equal to 1. We call Qµ

n,|m|

a denominator of an (n,m) orthogonal Hermite-Padé approximant of F with respect
to µ.

From (5)-(6) it is obvious that the polynomials P µ
n,m,k,i are uniquely determined

once Qµ
n,|m| is found as a solution of the homogeneous linear system of |m| equations

on the |m| + 1 unknown coefficients of Qµ
n,|m| resulting from (7). Therefore, for any

pair (n,m) ∈ N × Nd, a rational function Rµ
n,m always exists. However, in general,

Rµ
n,m may not be unique. In this paper, we will restrict our attention to orthogonal

Hermite-Padé approximants (as in Definition 1.4).
Given E ⊂ C with C \ E simply connected, there exists a unique (exterior)

conformal mapping Φ from C \ E onto C \ {w ∈ C : |w| ≤ 1} satisfying Φ(∞) = ∞
and Φ′(∞) > 0. For each ρ > 1, we introduce

Γρ := {z ∈ C : |Φ(z)| = ρ}, and Dρ := E ∪ {z ∈ C : |Φ(z)| < ρ},
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as the level curve of index ρ and the canonical domain of index ρ, respectively. Let
ρ0(F) be equal to the index ρ of the largest canonical domain Dρ to which all Fi,
i = 1, . . . , d, can be extended as holomorphic functions. Moreover, ρm(F) is the index
of the largest canonical domain Dρ to which all Fi, i = 1, . . . , d can be extended so
that F has at most m poles counting multiplicities.

In analogy with Definition 1.2 we give

Definition 1.5. Given F = (F1, F2, . . . , Fd) ∈ H(E)d and m = (m1, m2, . . . , md) ∈
Nd, we say that ξ ∈ C is a system pole of order τ of F with respect to m if τ is the
largest positive integer such that for each t = 1, 2, . . . , τ, there exists at least one
polynomial combination of the form

d
∑

i=1

viFi, deg vi < mi, i = 1, 2, . . . , d, (8)

which is holomorphic on a neighborhood of D|Φ(ξ)| except for a pole at z = ξ of exact
order t.

As above, let E be a compact set such that C \ E is simply connected and
µ ∈ M(E). Let pn(z) be the n-th orthonormal polynomial of µ with positive leading
coefficient κn. The measure µ is said to be regular, and we write µ ∈ Reg, if

lim
n→∞

κ1/n
n =

1

cap(supp(µ))
,

where cap(supp(µ)) denotes the logarithmic capacity of supp(µ) (for the definition
of regular measures and its different defining properties see [20, Theorem 3.1.1]). We
are interested in regular measures for which cap(supp(µ)) = cap(E) and for them
we write µ ∈ Reg(E). Since E ⊂ C is a compact set such that C \ E is simply
connected, it is well known, see [7, Theorem 3, p. 314], that

cap(E) = 1/|Φ′(∞)|,

and regularity is equivalent in this case (see again [20, Theorem 3.1.1]) to

lim
n→∞

|pn(z)|
1/n = |Φ(z)|, (9)

uniformly inside C \ Co(E), where Co(E) denotes the convex hull of E. Here, and
in what follows, the phrase “uniformly inside a domain” means “uniformly on each
compact subset of the indicated domain”. Now, if E itself is convex then (9) takes
place in the complement of E. When E \ Co(E) 6= ∅, there may be o(n) zeros of
pn wandering around this complement which affect the n-th root asymptotic in that
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region. We say that µ ∈ Reg1(E) when (9) takes place uniformly on compact subsets
of C \ E.

Let us introduce the second type function

sn(z) :=

∫

pn(ζ)

z − ζ
dµ(ζ), z ∈ C \ supp(µ)

From orthogonality it readily follows that

pn(z)sn(z) :=

∫

|pn(ζ)|
2

z − ζ
dµ(ζ).

It is easy to check that for any compact subset K ⊂ C \ Co(E) there exist positive
constants C1(K), C2(K), independent of n, such that

C1(K) ≤

∣

∣

∣

∣

∫

|pn(ζ)|
2

z − ζ
dµ(ζ)

∣

∣

∣

∣

≤ C2(K), z ∈ K,

so that if µ ∈ Reg(E) then

lim
n→∞

|sn(z)|
1/n = |Φ(z)|−1, (10)

uniformly inside C \ Co(E). We say that µ ∈ Reg2(E) when (10) takes place uni-
formly inside C \ E. Consequently, when E is convex then Reg(E) = Reg1(E) =
Reg2(E). When both (9) and (10) hold uniformly inside C \ E we write µ ∈
Reg1,2(E).

Fix 0 ≤ m ≤ n. From the extremal properties of monic orthogonal polynomials
pn = κnPn in the L2 norm, we have

1

κ2
n

=

∫

|Pn(z)|
2dµ(z) ≤

∫

|zmPn−m(z)|
2dµ(z) ≤ ‖z‖2mE

∫

|Pn−m(z)|
2dµ(z) =

‖z‖2mE
κ2
n−m

.

Whence κn−m

κn

≤ ‖z‖mE , n ≥ m,

where ‖ · ‖E denotes the sup-norm on E. We need an analogous uniform bound with
respect to n from below. We say that µ ∈ Regm

1,2(E) if it is in Reg1,2(E) and there
exists a positive constant c such that

κn−m

κn

≥ c, n ≥ n0. (11)

All measures in the complex plane whose orthonormal polynomials verify strong
asymptotic are in Regm

1,2(E), see [21]. Other classes of measures related with ratio
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asymptotics of orthogonal polynomials, which are contained in Regm
1,2(E) may be

found in [1, 2, 3]. Unfortunately, there are no results of general character, in terms of
the analytic properties of the measure, describing the measures in the complex plane
whose sequence of orthonormal polynomials have ratio asymptotic, except when E
is a segment of the real line, the unit circle, or an arc of the unit circle (see, for
example, [1], [16], [17]).

Let τ be the order of ξ as a system pole of F. For each t = 1, . . . , τ, denote by
ρξ,t(F,m) the largest of all the numbers ρt(G) (the index of the largest canonical
domain containing at most t poles of G), where G is a polynomial combination of
type (8) that is holomorphic on a neighborhood of D|Φ(ξ)| except for a pole at z = ξ
of order t. Then, we define

ρξ,t(F,m) := min
k=1,...,t

ρξ,k(F,m),

ρξ(F,m) := ρξ,τ(F,m) = min
t=1,...,τ

ρξ,t(F,m).

Fix i ∈ {1, . . . , d} and k ∈ {0, 1, . . . , mi − 1}. Let Di,k(F,m) be the largest
canonical domain in which all the poles of zkFi are system poles of F with respect
to m, their order as poles of zkFi does not exceed their order as system poles, and
zkFi has no other singularity. By ρi,k(F,m), we denote the index of this canonical

domain. Let ξ1, . . . , ξN be the poles of zkFi in Di,k(F,m). For each j = 1, . . . , N, let
τ̂j be the order of ξj as pole of z

kFi and τj its order as a system pole. By assumption,
τ̂j ≤ τj . Set

ρ
∗
i,k(F,m) := min{ρi,k(F,m), min

j=1,...,N
ρξj ,τ̂j(F,m)}

and let D∗
i,k(F,m) be the canonical domain with this index.

The main result of the paper is the following.

Theorem 1.2. Let F = (F1, F2, . . . , Fd) ∈ H(E)d, m ∈ Nd be a fixed multi-index,

and µ ∈ Reg
|m|
1,2 (E). Then, the following two assertions are equivalent:

(a) F has exactly |m| system poles with respect to m counting multiplicities.

(b) The polynomials Qµ
n,|m| of F are uniquely determined for all sufficiently large

n, and there exists a polynomial Q|m| of degree |m| such that

lim sup
n→∞

‖Qµ
n,|m| −Q|m|‖

1/n = θ < 1.

Moreover, if either (a) or (b) takes place, then Q|m| = QF
m,

θ = max

{

|Φ(ξ)|

ρξ(F,m)
: ξ ∈ P(F,m)

}

,

9



and for any compact subset K of D∗
i,0(F,m) \ P(F,m),

lim sup
n→∞

‖Rµ
n,m,i − Fi‖

1/n
K ≤

‖Φ‖K
ρ
∗
i,0(F,m)

,

where ‖ · ‖K denotes the sup-norm on K and if K ⊂ E, then ‖Φ‖K is replaced by 1.

Theorem 1.2 is a direct consequence of Theorems 2.3 and 3.8. In Theorem 2.3
we prove that (a) implies (b) and estimate the rate of convergence of the orthogonal
Hermite-Padé approximants. Theorem 3.8 contains the inverse assertion (b) implies
(a). This is done in Sections 2 and 3, respectively.

2 The direct statements

2.1 On the convergence of orthogonal expansions

First of all, let us discuss some properties of orthogonal polynomial expansions of
holomorphic functions. Let µ ∈ Reg1(E). The n-th Fourier coefficient of G ∈ H(E)
with respect to pn is given by

[G]n := 〈G, pn〉µ =

∫

G(z)pn(z)dµ(z).

The following lemma (see, e.g., Theorem 6.6.1 in [20]) is well known but we could
not find an appropriate reference in our setting so we sketch a proof.

Lemma 2.1. Let G ∈ H(E) and µ ∈ Reg1(E). Then,

ρ0(G) =

(

lim sup
n→∞

|[G]n|
1/n

)−1

. (12)

Moroever, the series
∑∞

n=0[G]npn(z) converges absolutely and uniformly inside Dρ0(G)

to G(z), and diverges pointwise for all z ∈ C \Dρ0(G).

Proof of Lemma 2.1. The absolute and uniform convergence of the series on compact
subsets of Dρ0(G) is carried out using (9) in the same way as similar statements
for Taylor series. Let G1 be the uniform limit. Obviously, G1 ∈ H(Dρ0(G)). The
pointwise divergence in the complement of Dρ0(G) is also obtained as for Taylor
series.

Since C \ E is connected by Mergelyan’s theorem, there exists a sequence of
polynomials (gn), n ∈ N, deg(pn) = n such that

lim
n→∞

‖G− gn‖E = 0,

10



where ‖ · ‖E denotes the uniform norm on E. Now

0 ≤ lim
n→∞

(
∫

|(G− gn)(x)|
2dµ(x)

)1/2

≤ µ(E)1/2 lim
n→∞

‖G− gn‖E = 0.

Therefore the partial sums of the Fourier expansion converge to G in L2(µ). So there
is a subsequence of the partial sums that convergence µ almost everywhere of E to
G. Thus, G = G1 µ almost everywhere and consequently G ≡ G1.

As a consequence of Lemma 2.1, if µ ∈ Reg1(E) and F = (F1, F2, . . . , Fd) ∈
H(E)d, then for each i = 1, 2, . . . , d and k = 0, 1, . . . , mi − 1 fixed

zkQµ
n,|m|(z)Fi(z)− P µ

n,m,k,i(z) =

∞
∑

β=n+1

[zkQµ
n,|m|Fi]β pβ(z), z ∈ Dρ0(Fi), (13)

and P µ
n,m,k,i =

∑n−1
β=0[z

kQµ
n,|m|Fi]β pβ is uniquely determined by Qµ

n,|m|.

A simple relation used frequently in this paper is contained in

Lemma 2.2. Let G ∈ H(E), k ∈ N ∪ {0}, and ρ ∈ (1, ρ0(G)). Then,

[G]k =
1

2πi

∫

Γρ

G(w)sk(w)dw. (14)

where sk is the k-th second type function.

Proof of Lemma 2.2. Let G ∈ H(E), k ∈ N ∪ {0}, and ρ ∈ (1, ρ0(G)). By Cauchy’s
integral formula and Fubini’s theorem, we obtain

[G]k = 〈G, pk〉µ =

∫

G(z)pk(z)dµ(z) =

∫

1

2πi

∫

Γρ

G(w)

w − z
dwpk(z)dµ(z)

=
1

2πi

∫

Γρ

G(w)

∫

pk(z)

w − z
dµ(z)dw =

1

2πi

∫

Γρ

G(w)sk(w)dw.

2.2 Proof of (a) implies (b)

Let QF
m denote the monic polynomial whose zeros are the system poles of F with

respect to m taking account of their order. The set of distinct zeros of QF
m is denoted

by P(F,m).
We have
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Theorem 2.3. Let F = (F1, F2, . . . , Fd) ∈ H(E)d, µ ∈ Reg1,2(E), and m ∈ Nd

be a fixed multi-index. Suppose that F has exactly |m| system poles with respect to
m counting multiplicities. Then, the denominators of the orthogonal Hermite-Padé
approximants Qµ

n,|m| are uniquely determined for all sufficiently large n and

lim sup
n→∞

‖Qµ
n,|m| −QF

m‖1/n = max

{

|Φ(ξ)|

ρξ(F,m)
: ξ ∈ P(F,m)

}

, (15)

where ‖ · ‖ denotes the coefficient norm in the space of polynomials. Additionally, for
each i = 1, . . . , d, k = 0, . . . , mi − 1, and for any compact subset K of D∗

i,k(F,m) \
P(F,m),

lim sup
n→∞

∥

∥

∥

∥

∥

P µ
n,m,k,i

Qµ
n,|m|

− zkFi

∥

∥

∥

∥

∥

1/n

K

≤
‖Φ‖K

ρ
∗
i,k(F,m)

, (16)

where ‖ · ‖K denotes the sup-norm on K and if K ⊂ E, then ‖Φ‖K is replaced by 1.

Proof of Theorem 2.3. For each n ∈ N, let qµn,|m| be the polynomial Qµ
n,|m| normalized

so that
|m|
∑

k=0

|λn,k| = 1, qµn,|m|(z) =

|m|
∑

k=0

λn,kz
k. (17)

This normalization implies that the polynomials qµn,|m| are uniformly bounded on

each compact subset of C.
Let ξ be a system pole of order τ of F with respect to m. We wish to show that

lim sup
n→∞

|(qµn,|m|)
(j)(ξ)|1/n ≤

|Φ(ξ)|

ρξ,j+1(F,m)
, j = 0, 1, . . . , τ − 1. (18)

First, we consider a polynomial combination G1 of type (8) that is holomorphic
on a neighborhood of D|Φ(ξ)| except for a simple pole at z = ξ and verifies that
ρ1(G1) = ρξ,1(F,m)(= ρξ,1(F,m)). Then, we have

G1 =
d
∑

i=1

vi,1Fi, deg vi,1 < mi, i = 1, 2, . . . , d.

Define
H1(z) := (z − ξ)G1(z) and a(1)n,n := [qµn,|m|G1]n.

By the definition of Qµ
n,|m|, it is easy to check that a

(1)
n,n = 0. Moreover, using (14),

we have

a(1)n,n = [qµn,|m|G1]n =
1

2πi

∫

Γρ1

qµn,|m|(z)G1(z)sn(z)dz,

12



where 1 < ρ1 < |Φ(ξ)|. Define

τ (1)n,n :=
1

2πi

∫

Γρ2

qµn,|m|(z)G1(z)sn(z)dz,

where |Φ(ξ)| < ρ2 < ρξ,1(F,m). The function qµn,|m|G1sn is meromorphic on Dρ2 \

Dρ1 = {z ∈ C : ρ1 ≤ |Φ(z)| ≤ ρ2} and has a pole at ξ of order at most 1. Applying
Cauchy’s residue theorem to the function qµn,|m|G1sn, we have

1

2πi

∫

Γρ2

qµn,|m|(t)G1(t)sn(t)dt−
1

2πi

∫

Γρ1

qµn,|m|(t)G1(t)sn(t)dt

= res(qµn,|m|G1sn, ξ). (19)

The limit formula for the residue of qµn,|m|G1sn at ξ is

res(qµn,|m|Fsn, ξ) = lim
z→ξ

(z − ξ)qµn,|m|(z)G1(z)sn(z) = H1(ξ)q
µ
n,|m|(ξ)sn(ξ).

We can rewrite (19) as

τ (1)n,n = τ (1)n,n − a(1)n,n = H1(ξ)q
µ
n,|m|(ξ)sn(ξ)

(recall that a
(1)
n,n = 0) which implies

qµn,|m|(ξ) =
τ
(1)
n,n

H1(ξ)sn(ξ)
. (20)

Choose δ > 0 so small that

ρ2 := ρξ,1(F,m)− δ > |Φ(ξ)|, |Φ(ξ)| − δ > 1, and
|Φ(ξ)|+ δ

ρ2 − δ
< 1. (21)

Using (10), there exist n0 ∈ N and c1 > 0, c2 > 0 such that

c1
(ρ+ δ)n

≤ ‖sn‖Γρ
≤

c2
(ρ− δ)n

, n ≥ n0, (22)

where c1 and c2 do not depend on n (from now on, c3, c4, . . . denote constants that
do not depend on n). From (22), we have

|τ (1)n,n| =

∣

∣

∣

∣

∣

1

2πi

∫

Γρ2

qµn,|m|(z)G1(z)sn(z)dz

∣

∣

∣

∣

∣

≤
c3

(ρ2 − δ)n
(23)

13



and
|sn(ξ)| ≥

c1
(|Φ(ξ)|+ δ)n

. (24)

Combining (23) and (24), it follows from (20) that

|qµn,|m|(ξ)| ≤ c4

(

|Φ(ξ)|+ δ

ρ2 − δ

)n

.

which means that

lim sup
n→∞

|qµn,|m|(ξ)|
1/n ≤

|Φ(ξ)|+ δ

ρ2 − δ
.

Letting δ → 0, we obtain ρ2 → ρξ,1(F,m) and

lim sup
n→∞

|qµn,|m|(ξ)|
1/n ≤

|Φ(ξ)|

ρξ,1(F,m)
.

Now we employ induction. Suppose that

lim sup
n→∞

|(qµn,|m|)
(j)(ξ)|1/n ≤

|Φ(ξ)|

ρξ,j+1(F,m)
, j = 0, 1, . . . , ℓ− 2, (25)

(recall that ρξ,j+1(F,m) = mink=1,...,j+1 ρξ,k(F,m)), with ℓ ≤ τ, and let us prove that
the formula (25) holds for j = ℓ− 1.

Consider a polynomial combination Gℓ of type (8) that is holomorphic on a
neighborhood of D|Φ(ξ)| except for a pole of order ℓ at z = ξ and verifies that
ρℓ(Gℓ) = ρξ,ℓ(F,m). Then, we have

Gℓ =

d
∑

i=1

vi,ℓFi, deg vi,ℓ < mi, i = 1, 2, . . . , d.

Set
Hℓ(z) := (x− ξ)ℓGℓ(z) and a(ℓ)n,n = [qµn,|m|Gℓ]n.

By the definition of Qµ
n,|m|, it is easy to check that a

(ℓ)
n,n = 0. Using (14), we have

a(ℓ)n,n = [qµn,|m|Gℓ]n =
1

2πi

∫

Γρ1

qµn,|m|(z)Gℓ(z)sn(z)dz,

where 1 < ρ1 < |Φ(ξ)|. Define

τ (ℓ)n,n =
1

2πi

∫

Γρ2

qµn,|m|(z)Gℓ(z)sn(z)dz,

14



where |Φ(ξ)| < ρ2 < ρξ,ℓ(F,m). The function qµn,|m|Gℓsn is meromorphic on Dρ2 \

Dρ1 = {z ∈ C : ρ1 ≤ |Φ(z)| ≤ ρ2} and has a pole at ξ of order at most ℓ. Applying
Cauchy’s residue theorem to the function qµn,|m|Gℓsn, we have

τ (ℓ)n,n − a(ℓ)n,n =
1

2πi

∫

Γρ2

qµn,|m|(t)Gℓ(t)sn(t)dt−
1

2πi

∫

Γρ1

qµn,|m|(t)Gℓ(t)sn(t)dt

= res(qµn,|m|Gℓsn, ξ). (26)

The limit formula for the residue of qµn,|m|Gℓsn at ξ is

res(qµn,|m|Gℓsn, ξ) =
1

(ℓ− 1)!
lim
z→ξ

((z − ξ)ℓGℓ(z)sn(z)q
µ
n,|m|(z))

(ℓ−1)

=
1

(ℓ− 1)!

ℓ−1
∑

t=0

(

ℓ− 1

t

)

(Hℓsn)
(ℓ−1−t)(ξ)(qµn,|m|)

(t)(ξ), (27)

where the last equality follows from Leibniz’s formula. Since a
(ℓ)
n,n = 0, the equation

(26) becomes

(ℓ− 1)!τ (ℓ)n,n =
ℓ−2
∑

t=0

(

ℓ− 1

t

)

(Hℓsn)
(ℓ−1−t)(ξ)(qµn,|m|)

(t)(ξ) +Hℓ(ξ)sn(ξ)(q
µ
n,|m|)

(ℓ−1)(ξ),

which implies that

(qµn,|m|)
(ℓ−1)(ξ) =

(ℓ− 1)!τ
(ℓ)
n,n

Hℓ(ξ)sn(ξ)
−

ℓ−2
∑

t=0

(

ℓ− 1

t

)

(Hℓsn)
(ℓ−1−t)(ξ)(qµn,|m|)

(t)(ξ)

Hℓ(ξ)sn(ξ)
. (28)

Choose δ > 0 sufficiently small so that

ρ2 := ρξ,ℓ(F,m)− δ > |Φ(ξ)|, |Φ(ξ)| − δ > 1, and
|Φ(ξ)|+ δ

ρ2 − δ
< 1. (29)

Using (22), we have

|τ (ℓ)n,n| =

∣

∣

∣

∣

∣

1

2πi

∫

Γρ2

qµn,|m|(z)Gℓ(z)sn(z)dz

∣

∣

∣

∣

∣

≤
c5

(ρ2 − δ)n
, (30)

|sn(ξ)| ≥
c1

(|Φ(ξ)|+ δ)n
, (31)
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and for all t = 0, 1, . . . , ℓ− 2,

|(Hℓsn)
(ℓ−1−t)(ξ)| =

∣

∣

∣

∣

(ℓ− 1− t)!

2πi

∫

|z−ξ|=ε

Hℓ(z)sn(z)

(z − ξ)ℓ−t
dz

∣

∣

∣

∣

≤
c6

(|Φ(ξ)| − δ)n
, (32)

where {z ∈ C : |z − ξ| = ε} ⊂ {z ∈ C : |Φ(z)| > |Φ(ξ)| − δ}. Moreover, by (25), we
have for all j = 0, 1, . . . , ℓ− 2,

|(qµn,|m|)
(j)(ξ)| ≤ c7

(

|Φ(ξ)|

ρξ,j+1(F,m)

)n

≤ c7

(

|Φ(ξ)|

ρξ,ℓ−1(F,m)

)n

. (33)

Combining (30), (31), (32) and (33), it follows from (28) that

∣

∣

∣
(qµn,|m|)

(ℓ−1)(ξ)
∣

∣

∣
=

∣

∣

∣

∣

∣

(ℓ− 1)!τ
(ℓ)
n,n

Hℓ(ξ)sn(ξ)
−

ℓ−2
∑

t=0

(

ℓ− 1

t

)

(Hℓsn)
(ℓ−1−t)(ξ)(qµn,|m|)

(t)(ξ)

Hℓ(ξ)sn(ξ)

∣

∣

∣

∣

∣

≤ c8

(

|Φ(ξ)|+ δ

ρ2 − δ

)n

+ c9

(

|Φ(ξ)|+ δ

|Φ(ξ)| − δ

)n(
|Φ(ξ)|

ρξ,ℓ−1(F,m)

)n

,

which implies that

lim sup
n→∞

∣

∣

∣
(qµn,|m|)

(ℓ−1)(ξ)
∣

∣

∣

1/n

≤ max

{

|Φ(ξ)|+ δ

ρ2 − δ
,

(

|Φ(ξ)|+ δ

|Φ(ξ)| − δ

)(

|Φ(ξ)|

ρξ,ℓ−1(F,m)

)}

.

(34)
Letting δ → 0, we have ρ2 → ρξ,ℓ(F,m) and from (34), we obtain

lim sup
n→∞

∣

∣

∣
(qµn,|m|)

(ℓ−1)(ξ)
∣

∣

∣

1/n

≤ max

{

|Φ(ξ)|

ρξ,ℓ(F,m)
,

|Φ(ξ)|

ρξ,ℓ−1(F,m)

}

≤
|Φ(ξ)|

ρξ,ℓ(F,m)
.

This completes the induction proof.
Let ξ1, . . . , ξw be the distinct system poles of F with respect to m, and let τj be

the order of ξj as a system pole, j = 1, . . . , w. By assumption, τ1 + . . . + τw = |m|.
We have proved that, for j = 1, . . . , w and t = 0, 1, . . . , τj − 1,

lim sup
n→∞

|(qµn,|m|)
(t)(ξj)|

1/n ≤
|Φ(ξj)|

ρξj ,t+1(F,m)
≤

|Φ(ξj)|

ρξj
(F,m)

. (35)

Using Hermite interpolation, it is easy to construct a basis {ej,t}j=1,2,...,w, t=0,1,...,τj−1

in the space of polynomials of degree at most |m| − 1 satisfying

e
(k)
j,t (ξi) = δi,jδk,t, 1 ≤ i ≤ w, 0 ≤ k ≤ τi − 1.
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Then,

qµn,|m|(z) =
w
∑

j=1

τj−1
∑

t=0

(qµn,|m|)
(t)(ξj)ej,t(z) + CnQ

F
m(z), (36)

Using (35) and (36), we have

lim sup
n→∞

‖qµn,|m| − CnQ
F
|m|‖

1/n ≤ max

{

|Φ(ξ)|

ρξ(F,m)
: ξ ∈ P(F,m)

}

. (37)

Now, necessarily we have
lim inf
n→∞

|Cn| > 0, (38)

since if there exists a subsequence Λ ⊂ N such that limn∈Λ Cn = 0, then from (37),
we have limn∈Λ ‖q

µ
n,|m|‖ = 0, contradicting (17).

As qµn,|m| = CnQ
µ
n,|m|, we have proved

lim sup
n→∞

‖Qµ
n,|m| −QF

|m|‖
1/n ≤ max

{

|Φ(ξ)|

ρξ(F,m)
: ξ ∈ P(F,m)

}

. (39)

In particular, for n ≥ n0, degQ
µ
n,|m| = |m|. The difference of any two distinct monic

polynomials satisfying Definition 1.4 with the same degree produces a new solution of
degree strictly less than |m|, but we have proved that any solution must have degree
|m| for all sufficiently large n. Hence, the polynomial Qµ

n,|m| is uniquely determined

for all sufficiently large n,
Now, we prove the equality in (15). To the contrary, suppose that

lim sup
n→∞

‖Qµ
n,|m| −QF

m‖1/n = θ < max

{

|Φ(ξ)|

ρξ(F,m)
: ξ ∈ P(F,m)

}

. (40)

Let ζ be a system pole of F such that

|Φ(ζ)|

ρζ(F,m)
= max

{

|Φ(ξ)|

ρξ(F,m)
: ξ ∈ P(F,m)

}

.

Clearly, the inequality (40) implies that ρζ(F,m) < ∞.
Choose a polynomial combination

G =
d
∑

i=1

viFi, deg vi < mi, i = 1, 2, . . . , d, (41)

that is holomorphic on a neighborhood of D|Φ(ζ)| except for a pole of order s at z = ζ
with ρs(G) = ρζ(F,m). On the boundary of Dρs(G), the function G must have a
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singularity which is not a system pole. In fact, if all the singularities were of this
type, then we could find a different polynomial combination G1 of type (41) for which
ρs(G1) > ρs(G) = ρζ(F,m), which contradicts the definition of ρζ(F,m). Therefore,
by Lemma 2.1,

lim sup
n→∞

|[QF
mG]n|

1/n =
1

ρζ(F,m)
.

Choose 1 < ρ < |Φ(ζ)| and ε > 0. Then, by the definition of Qµ
n,|m|, (14), and

(40),
1

ρζ(F,m)
= lim sup

n→∞
|[QF

mG]n|
1/n = lim sup

n→∞
|[QF

mG−Qµ
n,|m|G]n|

1/n

= lim sup
n→∞

∣

∣

∣

∣

∣

1

2πi

∫

Γρ

(QF
m −Qµ

n,|m|)(z)G(z)sn(z)dz

∣

∣

∣

∣

∣

1/n

≤
θ

ρ− ε
.

Letting ε → 0 and ρ → |Φ(ζ)| in the above inequality, we have

1

ρζ(F,m)
≤

θ

|Φ(ζ)|
<

|Φ(ζ)|/ρζ(F,m)

|Φ(ζ)|
=

1

ρζ(F,m)
,

which is impossible. This proves the equality (15).
Let us prove the inequality (16). Combining (35) and (38), it follows that for the

system poles ξ1, . . . , ξw of F, if τj is the order of ξj, then

lim sup
n→∞

|(Qµ
n,|m|)

(u)(ξj)|
1/n ≤

|Φ(ξj)|

ρξj ,u+1(F,m)
, u = 0, 1, . . . , τj − 1. (42)

Let i ∈ {1, . . . , d} and k ∈ {0, 1, . . . , mi − 1} be fixed and let ξ̃1, . . . , ξ̃N be the poles

of zkFi in Di,k(F,m). For each j = 1, . . . , N, let τ̂j be the order of ξ̃j as a pole of
zkFi and τ̃j its order as a system pole. Recall that by assumption, τ̂j ≤ τ̃j . Define

a
(i,k)
ℓ,n := [Qµ

n,|m|z
kFi]ℓ =

1

2πi

∫

Γρ1

Qµ
n,|m|(z)z

kFi(z)sℓ(z)dz,

where 1 < ρ1 < ρ0(z
kFi) and

τ
(i,k)
ℓ,n := [Qµ

n,|m|z
kFi]ℓ =

1

2πi

∫

Γρ2

Qµ
n,|m|(z)z

kFi(z)sℓ(z)dz,

where 1 < ρ2 < ρ
∗
i,k(F,m). Arguing as in (26) and (27), we have

τ
(i,k)
ℓ,n − a

(i,k)
ℓ,n =

N
∑

j=1

res(Qµ
n,|m|z

kFisℓ, ξ̃j)
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=

N
∑

j=1

1

(τ̂j − 1)!

τ̂j−1
∑

u=0

(

τ̂j − 1

u

)

((z − ξ̃j)
τ̂jzkFisℓ)

(τ̂j−1−u)(ξ̃j)(Q
µ
n,|m|)

(u)(ξ̃j). (43)

Notice that (z − ξ̃j)
τ̂jzkFi is holomorphic at ξ̃j. Let δ > 0 be such that ρ2 − δ > 1

and |Φ(ξ̃j)| − δ > 1 (later on we will impose another condition on the size of δ). By
computations similar to (30) and (32), we have

|τ
(i,k)
ℓ,n | ≤

c10
(ρ2 − δ)ℓ

and |((z− ξ̃j)
τ̂jzkFisℓ)

(τ̂j−1−u)(ξ̃j)| ≤
c11

(|Φ(ξ̃j)| − δ)ℓ
, (44)

respectively. By (42) and (44), it follows from (43) that

|a
(i,k)
ℓ,n | = |τ

(i,k)
ℓ,n |+

N
∑

j=1

τ̂j−1
∑

u=0

1

(τ̂j − 1)!

(

τ̂j − 1

u

)

∣

∣

∣
((z − ξ̃j)

τ̂jzkFisℓ)
(τ̂j−1−u)(ξ̃j)

∣

∣

∣

∣

∣

∣
(Qµ

n,|m|)
(u)(ξ̃j)

∣

∣

∣
.

≤
c10

(ρ2 − δ)ℓ
+ c12

N
∑

j=1

|Φ(ξ̃j)|
n

(ρξ̃j ,τ̂j
(F,m))n(|Φ(ξ̃j)| − δ)ℓ

≤
c10

(ρ2 − δ)ℓ
+

c12
(ρ∗

i,k(F,m))n

N
∑

j=1

|Φ(ξ̃j)|
n

(|Φ(ξ̃j)| − δ)ℓ
. (45)

By the definition of orthogonal Hermite-Padé approximants,

Qµ
n,|m|z

kFi − P µ
n,m,k,i =

∞
∑

ℓ=n+1

a
(i,k)
ℓ,n pℓ.

Multiplying the above equality by ω(z) :=
∏N

j=1(z − ξ̃j)
τ̂j and expanding the result

in terms of the Fourier series corresponding to the orthonormal system {pν}
∞
ν=0, we

obtain

ωQµ
n,|m|z

kFi − ωP µ
n,m,k,i =

∞
∑

ℓ=n+1

a
(i,k)
ℓ,n ωpℓ

=

∞
∑

ν=0

b(i,k)ν,n pν =

n+|m|
∑

ν=0

b(i,k)ν,n pν +

∞
∑

ν=n+|m|+1

b(i,k)ν,n pν . (46)

Let K be a compact subset of D∗
i,k(F,m) \ P(F,m) and set

σ := max{‖Φ‖K , 1} (47)
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(σ = 1 when K ⊂ E). Choose δ > 0 so small that

ρ2 := ρ
∗
i,k(F,m)− δ, ρ

∗
i,k(F,m)− 2δ > 1, and

σ + δ

ρ2 − δ
< 1. (48)

Let us estimate
∑∞

ν=n+|m|+1 |b
(i,k)
ν,n ||pν| on Dσ. For ν ≥ n + |m|+ 1,

b(i,k)ν,n = [ωQµ
n,|m|z

kFi − ωP µ
n,m,k,i]ν = [ωQµ

n,|m|z
kFi]ν

=
1

2πi

∫

Γρ2

zkω(z)Qµ
n,|m|(z)Fi(z)sν(z)dz,

where 1 < ρ2 < ρ
∗
i,k(F,m). By a computation similar to (30) or (32), we obtain

|b(i,k)ν,n | ≤
c13

(ρ2 − δ)ν
. (49)

Moreover, by (9),
‖pν‖Dσ

≤ c14(σ + δ)ν , ν ≥ 0. (50)

Combining (49) and (50), we have for z ∈ Dσ,

∞
∑

ν=n+|m|+1

|b(i,k)ν,n ||pν(z)| ≤ c15

∞
∑

ν=n+|m|+1

(

σ + δ

ρ2 − δ

)ν

= c16

(

σ + δ

ρ2 − δ

)n

,

which implies that

lim sup
n→∞

∥

∥

∥

∥

∥

∥

∞
∑

ν=n+|m|+1

|b(i,k)ν,n ||pν |

∥

∥

∥

∥

∥

∥

1/n

Dσ

≤
σ + δ

ρ2 − δ
.

Letting δ → 0, we have ρ2 → ρ
∗
i,k(F,m) and

lim sup
n→∞

∥

∥

∥

∥

∥

∥

∞
∑

ν=n+|m|+1

|b(i,k)ν,n ||pν |

∥

∥

∥

∥

∥

∥

1/n

Dσ

≤
σ

ρ
∗
i,k(F,m)

. (51)

Now, we want to estimate
∑n+|m|

ν=0 |b(i,k)ν,n ||pν | on Dσ. Notice that

b(i,k)ν,n =
∞
∑

ℓ=n+1

a
(i,k)
ℓ,n 〈ωpℓ, pν〉µ.
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By the Cauchy-Schwarz inequality and the orthonormality of pν , we have

|〈ωpℓ, pν〉µ|
2 ≤ 〈ωpℓ, ωpℓ〉µ〈pν , pν〉µ ≤ max

z∈E
|ω(z)|2 = c17, (52)

for all ℓ, ν = 0, 1, 2, . . . . By (45), we have

|b(i,k)ν,n | ≤
∞
∑

ℓ=n+1

|a
(i,k)
ℓ,n ||〈ωpℓ, pν〉µ|

≤
c18

(ρ2 − δ)n
+

c19
(ρ∗

i,k(F,m))n

N
∑

j=1

|Φ(ξ̃j)|
n

(|Φ(ξ̃j)| − δ)n
(53)

Combining (50) and (53), we have for z ∈ Dσ,

n+|m|
∑

ν=0

|b(i,k)ν,n ||pν(z)| ≤

c20(n+ |m|+ 1)(σ + δ)n+|m|

(

1

(ρ2 − δ)n
+

1

(ρ∗
i,k(F,m))n

N
∑

j=1

|Φ(ξ̃j)|
n

(|Φ(ξ̃j)| − δ)n

)

,

which implies that

lim sup
n→∞

∥

∥

∥

∥

∥

∥

n+|m|
∑

ν=0

|b(i,k)ν,n ||pν |

∥

∥

∥

∥

∥

∥

1/n

Dσ

≤ max

{

σ + δ

ρ2 − δ
,

(

σ + δ

ρ
∗
i,k(F,m)

)

max
j=1,...,N

(

|Φ(ξ̃j)|

|Φ(ξ̃j)| − δ

)}

.

Letting δ → 0, we have ρ2 → ρ
∗
i,k(F,m) and we obtain

lim sup
n→∞

∥

∥

∥

∥

∥

∥

n+|m|
∑

ν=0

|b(i,k)ν,n ||pν |

∥

∥

∥

∥

∥

∥

1/n

Dσ

≤
σ

ρ
∗
i,k(F,m)

. (54)

Using (39), (51), and (54), it follows from (46) that

lim sup
n→∞

∥

∥

∥

∥

∥

zkFi −
P µ
n,m,k,i

Qµ
n,|m|

∥

∥

∥

∥

∥

1/n

K

≤ lim sup
n→∞

∥

∥

∥

∥

∥

zkFi −
P µ
n,m,k,i

Qµ
n,|m|

∥

∥

∥

∥

∥

1/n

Dσ

≤
σ

ρ
∗
i,k(F,m)

.

This completes the proof.
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3 The inverse statement

First of all, let us give some inverse type results for incomplete orthogonal Padé
approximants.

3.1 Incomplete orthogonal Padé approximants

Let us introduce the definition of incomplete orthogonal Padé approximants.

Definition 3.1. Let F ∈ H(E) and µ ∈ M(E). Fix m ≥ m∗ ≥ 1 and n ∈ N. Then,
there exist polynomials Qµ

n,m,m∗ and P µ
n,m,m∗,k, k = 0, 1, . . . , m∗ − 1, such that

deg(P µ
n,m,m∗,k) ≤ n− 1 deg(Qµ

n,m,m∗) ≤ m, Qµ
n,m,m∗ 6≡ 0,

〈Qµ
n,m,m∗zkF − P µ

n,m,m∗,k, pj〉µ = 0, k = 0, 1, . . . , m∗ − 1, j = 0, 1, . . . , n.

The rational function Rµ
n,m,m∗ := P µ

n,m,m∗,0/Q
µ
n,m,m∗ is called an (n,m,m∗) incomplete

orthogonal Padé approximant of F with respect to µ.

Clearly,

[zkQµ
n,m,m∗F ]n = 〈zkQµ

n,m,m∗F, pn〉µ = 0, k = 0, 1, . . . , m∗ − 1.

In general, Qµ
n,m,m∗ is not uniquely determined. For each m ≥ m∗ ≥ 1 and n ≥ 0,

we choose one candidate of Qµ
n,m,m∗ . Since Qµ

n,m,m∗ 6≡ 0, we normalize it to have
leading coefficient equal to 1. We call Qµ

n,m,m∗ the denominator of the corresponding
(n,m,m∗) incomplete orthogonal Padé approximant of F with respect to µ. Notice
that for each i = 1, . . . , d, Qµ

n,|m| is a denominator of an (n, |m|, mi) incomplete

orthogonal Padé approximant of Fi with respect to µ.
In this section, we are interested in studying the relation between the convergence

of Qµ
n,m,m∗ and the analytic properties of F.

Lemma 3.1. Let F ∈ H(E) and µ ∈ Reg1,2(E). Fix m ≥ m∗ ≥ 1. Suppose that
there exists a polynomial Qm of degree m such that

lim sup
n→∞

‖Qµ
n,m,m∗ −Qm‖

1/n = θ < 1. (55)

Then, ρ0(QmF ) ≥ ρm∗(F ).

Proof of Lemma 3.1. Let ξ1, . . . , ξw be the distinct poles of F inDρm∗ (F ) and τ1, . . . , τw
be their orders, respectively. Consequently,

∑w
j=1 τj = m̃ ≤ m∗. Put

qm∗(z) :=
w
∏

j=1

(z − ξj)
τj .
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Define

Gj,t(z) :=
qm∗(z)F (z)

(z − ξj)t
, j = 1, . . . , w, t = 1, . . . , τj − 1.

Clearly, Gj,t is holomorphic on a neighborhood of D|Φ(ξj)| except for a pole of order
t at z = ξj with ρt(Gj,t) = ρm∗(F ). Moreover, since deg(qm∗/(z − ξj)

t) < m∗ for
all j = 1, . . . , w, and t = 1, . . . , τj − 1, by the definition of Qµ

n,m,m∗ , it is easy to
check that [Qµ

n,m,m∗Gj,t]n = 0. Arguing as in the proof of (35), we can prove that for
j = 1, . . . , w and t = 0, 1, . . . , τj − 1,

lim sup
n→∞

|(Qµ
n,m,m∗)(t)(ξj)|

1/n ≤
|Φ(ξj)|

ρm∗(F )
< 1. (56)

Let ε > 0. By Cauchy’s integral formula, we have for j = 1, . . . , w and t = 0, 1, . . . , τj−
1,

(Qµ
n,m,m∗)(t)(ξj)−Q(t)

m (ξj) =
t!

2πi

∫

|z−ξj |=ε

Qµ
n,m,m∗(z)−Qm(z)

(z − ξj)t+1
dz. (57)

Using (55) and (56), it follows from (57) that for j = 1, . . . , w and t = 0, 1, . . . , τj−1,

lim sup
n→∞

|Q(t)
m (ξj)|

1/n < 1

and Q
(t)
m (ξj) = 0, which means that for each j = 1, . . . , w, the order of the zero ξj

of Qm is at least τj . Hence, Qm can be divided by qm∗ . This implies ρ0(QmF ) ≥
ρm∗(F ).

The following result is used in Lemma 3.3. For the proof see [3, Lemma 3].

Lemma 3.2. Let N0 ∈ N and C > 0. If a sequence of complex numbers {FN}N∈N

has the following properties:

(i) limN→∞ |FN |
1/N = 0,

(ii) |FN | ≤ C
∑∞

k=N+1 |Fk|, for all N ≥ N0,

then there exists N1 ∈ N such that FN = 0 for all N ≥ N1.

The next lemma is the cornerstone for obtaining the inverse statements contained
Theorem 3.8.

Lemma 3.3. Let F ∈ H(E) and µ ∈ Regm
1,2(E). Fix m ≥ m∗ ≥ 1. Suppose that F

is not a rational function with at most m∗ − 1 poles and there exists a polynomial
Qm of degree m such that

lim sup
n→∞

‖Qµ
n,m,m∗ −Qm‖

1/n = θ < 1. (58)

Then, either F has exactly m∗ poles in Dρm∗(F ) or ρ0(QmF ) > ρm∗(F ).
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Proof of Lemma 3.3. From Lemma 3.1, we know that ρ0(QmF ) ≥ ρm∗(F ). Assume
that ρ0(QmF ) = ρm∗(F ). Let us show that F has exactly m∗ poles in Dρm∗(F ). To
the contrary, suppose that F has in Dρm∗ (F ) at most m∗−1 poles. Then, there exists
a polynomial qm∗ with deg qm∗ < m∗ such that

ρ0(qm∗F ) = ρm∗(F ) = ρ0(Qmqm∗F ).

Since deg qm∗ < m∗, by the definition of Qµ
n,m,m∗ , [Q

µ
n,m,m∗qm∗F ]n = 0. Take 1 < ρ <

ρm∗(F ). Then, by Lemma 2.1 and (14),

1

ρm∗(F )
= lim sup

n→∞
|[Qmqm∗F ]n|

1/n = lim sup
n→∞

|[Qmqm∗F −Qµ
n,m,m∗qm∗F ]n|

1/n

= lim sup
n→∞

∣

∣

∣

∣

∣

1

2πi

∫

Γρ

(Qm −Qµ
n,m,m∗)(z)qm∗(z)F (z)sn(z)dz

∣

∣

∣

∣

∣

1/n

.

From the above relation, using (22) and (58), it is easy to show that

1

ρm∗(F )
≤

θ

ρm∗(F )
,

which is possible only if ρm∗(F ) = ∞.
Now, let us show that this is impossible. From (58), without loss of generality,

we can assume that degQµ
n,m,m∗ = m. Set

qm∗(z)F (z) :=
∞
∑

k=0

akpk(z)

and

Qµ
n,m,m∗(z) :=

m
∑

j=0

bn,jz
j ,

where bn,m = 1. From (58), there exists n1 ∈ N,

sup{|bn,j| : 0 ≤ j ≤ m, n ≥ n1} ≤ c1. (59)

Recall that [Qµ
n,m,m∗qm∗F ]n = 0. Therefore,

0 = [Qµ
n,m,m∗qm∗F ]n =

∞
∑

k=0

m
∑

j=0

akbn,j[z
jpk]n =

∞
∑

k=n−m

m
∑

j=0

akbn,j[z
jpk]n
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=
∞
∑

k=n−m

m
∑

j=0

akbn,j〈z
jpk, pn〉µ =

κn−m

κn
an−m +

∞
∑

k=n−m+1

m
∑

j=0

akbn,j〈z
jpk, pn〉µ. (60)

By the Cauchy-Schwarz inequality and the orthonormality of pn, for all k, n ≥ 0 and
j ∈ {1, . . . , m},

|〈zjpk, pn〉µ| ≤ ‖zj‖E〈pk, pk〉
1/2
µ 〈pn, pn〉

1/2
µ = ‖zj‖E ≤ c2. (61)

By (11), there exists n2 ∈ N such that for all n ≥ n2,

κn−m

κn
≥ c3 > 0. (62)

Combining (59), (61), and (62), it follows from (60) that

|an−m| ≤ c4

∞
∑

k=n−m+1

|ak|.

Setting N = n−m, we obtain

|aN | ≤ c4

∞
∑

k=N+1

|ak|.

By Lemma 3.2, since limN→∞ |aN |
1/N = 0, there exists N1 ∈ N such that aN = 0 for

all N ≥ N1, which implies that qm∗F is a polynomial and F is a rational function
with at most m∗ − 1 poles. This contradicts the assumption that F is not a rational
function with at most m∗ − 1 poles. Then, F has exactly m∗ poles in Dρm∗(F ).

3.2 Polynomial independence

Let us introduce the concept of polynomial independence of a vector of functions.

Definition 3.2. A vector F ∈ H(E)d is said to be polynomially independent with
respect to m = (m1, . . . , md) ∈ Nd if there do not exist polynomials v1, . . . , vd, at
least one of which is non-null, such that

(i) deg vi < mi, i = 1, . . . , d,

(ii)
∑d

i=1 vifi is a polynomial.

Note that if F is polynomially independent, then for each i = 1, . . . , d, Fi is not
a rational function with at most mi − 1 poles.

The following lemma reduces the use of polynomial combinations in (8) to that
of linear combinations.
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Lemma 3.4. Let F ∈ H(E)d, µ ∈ M(E), and fix a multi-index m ∈ Nd. Set

F := (F1, . . . , z
m1−1F1, F2, . . . , z

md−1Fd) = (f1, f2, . . . , f|m|) (63)

and define an associated multi-index

m := (1, 1, . . . , 1) (64)

with |m| = |m|. Then:

(i) F is polynomially independent with respect to m if and only if F is polynomially
independent with respect to m.

(ii) the poles of F and their orders are the same as the poles of F and their orders.

(iii) ρm(F) = ρm(F), for all m ∈ N ∪ {0}.

(iv) the systems of equations that define Qµ
n,|m| for F and m, and Qµ

n,|m| for F and

m are the same.

(v) the system poles of F with respect to m and their orders are the same as the
system poles of F with respect to m and their orders.

The proof of the previous lemma is straightforward and we leave it to the reader.

Lemma 3.5. Let F ∈ H(E)d, µ ∈ M(E), and fix a multi-index m ∈ Nd. Suppose
that for all n ≥ n0, the polynomial Qµ

n,|m| is unique and degQµ
n,|m| = |m|. Then the

system F is polynomially independent with respect to m.

Proof of Lemma 3.5. From Lemma 3.4, without loss of generality, we consider F as
defined in (63) and m as defined in (64). Notice that Qµ

n,|m| = Qµ
n,|m|.

Suppose that there exist ci, i = 1, . . . , |m|, such that
∑|m|

i=1 cifi is a polynomial,
say q. Without loss of generality, we can assume that c1 6= 0. Then,

f1 = p−

|m|
∑

i=2

c′ifi,

where c′i := ci/c1 and we denote by N the degree of p = q/c1.
On the other hand, the homogenoeous system of linear equations

〈Qnfi, pn〉µ = 0, i = 2, . . . , |m|,
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where deg(Qn) ≤ |m| − 1, Qn 6≡ 0, has a solution, say a monic polynomial Q̃n.
Moreover, for n ≥ |m|+N,

〈Q̃nf1, pn〉µ = [Q̃nf1]n = [Q̃np−

|m|
∑

i=2

c′iQ̃nfi]n

= [Q̃np]n −

|m|
∑

i=2

c′i[Q̃nfi]n = 0,

which means Q̃n = Qµ
n,|m|. However, deg(Q̃n) ≤ |m| − 1 which contradicts our as-

sumption on Qµ
n,|m|. This completes the proof.

A direct consequence of Lemma 3.3 is the following.

Lemma 3.6. Let m = (m1, . . . , md) ∈ Nd be a fixed multi-index, µ ∈ Reg
|m|
1,2 (E),

and F ∈ H(E)d. Suppose that F is polynomially independent with respect to m and
there exists a polynomial Q|m| of degree |m| such that

lim sup
n→∞

‖Qµ
n,|m| −Q|m|‖

1/n = θ < 1. (65)

Then, for each i = 1, . . . , d, either Fi has exactly mi poles in Dρmi
(Fi) or ρ0(Q|m|Fi) >

ρmi
(Fi).

Lemma 3.7 below contains some straightforward consequences of the concept of
system poles. Its proof is analogous to that of [6, Lemma 3.5] so we will not dwell
into details.

Lemma 3.7. Given F ∈ H(E)d and m ∈ Nd, F can have at most |m| system poles
with respect to m (counting their order). Moreover, if the system F has exactly
|m| system poles with respect to m and ξ is a system pole of order τ, then for all
s > τ there can be no polynomial combination of the form (8) holomorphic on a
neighborhood of D|Φ(ξ)| except for a pole at z = ξ of exact order s.

3.3 Proof of (b) implies (a)

The following theorem contains the inverse statements.

Theorem 3.8. Let F = (F1, F2, . . . , Fd) ∈ H(E)d, m ∈ Nd, be a fixed multi-index,

and µ ∈ Reg
|m|
1,2 (E). Suppose that the denominators Qµ

n,|m| of the orthogonal Hermite-

Padé approximants are uniquely determined for all sufficiently large n, and there
exists a polynomial Q|m| of degree |m| such that

lim sup
n→∞

‖Qµ
n,|m| −Q|m|‖

1/n = θ < 1.
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Then, F has exactly |m| system poles with respect to m counting multiplicities and
Q|m| = QF

m.

Proof of Theorem 3.8. Due to Lemma 3.4, without loss of generality, we can restrict
our attention to the vector of functions

F := (F1, . . . , z
m1−1F1, F2, . . . , z

md−1Fd) = (f1, f2, . . . , f|m|)

and the associated multi-index

m := (1, 1, . . . , 1)

with |m| = |m|. Notice that Qµ
n,|m| = Qµ

n,|m|. Moreover, due to Lemma 3.5, we

know that F is polynomially independent with respect to m which implies that F is
polynomially independent with respect to m according to Lemma 3.4.

The auxiliary results that we have obtained thus far allow us to mimic the proof
employed in [6] to obtain a similar result for the case of row sequences of Hermite-
Padé approximations. For completeness we include the whole proof. The plan is as
follows. First, we collect a set of |m| candidates to be system poles of F (counting
their orders) and prove that they are the zeros of Q|m|. Secondly, we prove that all

these points previously selected are actually system poles of F which means that
they are also system poles of F by Lemma 3.4.

From Lemma 3.6, for each i = 1, . . . , |m|, either Dρ1(fi) contains exactly one
pole of fi and it is a zero of Q|m|, or ρ0(Q|m|fi) > ρ1(fi). Hence, Dρ0(F) 6= C and
Q|m| contains as zeros all the poles of fi on the boundary of Dρ0(fi) counting their
order for i = 1, . . . , |m|. Moreover, the function fi cannot have on the boundary
of D0(fi) singularities other than poles. Hence, the poles of F on the boundary of
Dρ0(F) are all zeros of Q|m| counting multiplicities and the boundary contains no

other singularity except poles. Let us call them candidate system poles of F and
denote them by a1, . . . , an1

repeated according to their order. They constitute the
first layer of candidate system poles of F.

Since degQ|m| = |m|, n1 ≤ |m|. If n1 = |m|, we are done. Let us assume that
n1 < |m| and find coefficients c1, . . . , c|m| such that

|m|
∑

i=1

cifi

is holomorphic in a neighborhood of Dρ0(F). Finding those c1, . . . , c|m| reduces to

solving a homogeneous system of n1 linear equations with |m| unknowns. In fact,
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if z = a is a candidate system pole of F with multiplicity τ, we obtain τ equations
choosing the coefficients ci so that

∫

|w−a|=δ

(w − a)k





|m|
∑

i=1

cifi(w)



 dw = 0, k = 0, . . . , τ − 1. (66)

We have the same type of system of equations for each distinct candidate system pole
on the boundary of Dρ0(F). Combining these equations, we obtain a homogeneous

system of n1 linear equations with |m| unknowns. Moreover, this homogeneous
system of linear equations has at least |m|−n1 linearly independent solutions, which
we denote by c1j , j = 1, . . . , |m| − n∗

1, where n∗
1 ≤ n1 denotes the rank of the system

of equations.
Let

c1j := (c1j,1, . . . , c
1
j,|m|), j = 1, . . . , |m| − n∗

1.

Define the (|m| − n∗
1)× |m| dimensional matrix

C1 :=







c11
...

c1|m|−n∗
1






.

Define the vector g1 of |m| − n∗
1 functions given by

gt
1 := C1F

t
= (g1,1, . . . , g1,|m|−n∗

1
)t,

where At denotes the transpose of the matrix A. Since all the rows of C1 are non-null
and F is polynomially independent with respect to m, none of the functions

g1,j =

|m|
∑

i=1

c1j,ifi, j = 1, . . . , |m| − n∗
1,

are polynomials.
Consider the canonical domain

Dρ0(g1
) =

|m|−n∗
1

⋂

j=1

Dρ0(g1,j).

Clearly, Dρ0(F) ( Dρ0(g1) and [Qµ
n,|m|g1,j]n = 0 for all j = 1, . . . , |m| − n∗

1. Therefore,

for each j = 1, . . . , |m| − n∗
1, Q

µ
n,|m| is a denominator of an (n, |m|, 1) incomplete
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orthogonal Padé approximant of g1,j with respect to µ. Since all g1,j are not poly-
nomials, by Lemma 3.3 with m∗ = 1, for each j = 1, . . . , |m| − n∗

1, either Dρ1(g1,j)

contains exactly one pole of g1,j and it is a zero of Q|m|, or ρ0(Q|m|g1,j) > ρ1(g1,j).
In particular, Dρ0(g1) 6= C and all the singularities of g1 on the boundary of Dρ0(g1)

are poles which are zeros of Q|m| counting their order. They form the next layer of

candidate system poles of F.
Denote by an1+1, . . . , an1+n2

these new candidate system poles. Again, if n1+n2 =
|m|, we are done. Otherwise, n2 < |m| − n1 ≤ |m| − n∗

1, and we keep repeating the
same process by eliminating the n2 poles an1+1, . . . , an1+n2

. In order to do that, we
have |m| − n∗

1 functions which are holomorphic on Dρ0(g1) and meromorphic on a

neighborhood of Dρ0(g1). The corresponding homogeneous system of linear equations,
similar to (66), has at least |m| − n∗

1 − n2 linearly independent solutions c2j , j =
1, . . . , |m| − n∗

1 − n∗
2, where n∗

2 ≤ n2 is the rank of the new system. Let

c2j := (c2j,1, . . . , c
2
j,|m|), j = 1, . . . , |m| − n∗

1 − n∗
2.

Define the (|m| − n∗
1 − n∗

2)× (|m| − n∗
1) dimensional matrix

C2 :=







c21
...

c2|m|−n∗
1
−n∗

2






.

Define the vector g2 of |m| − n∗
1 − n∗

2 functions given by

gt
2 := C2gt

1 = C2C1F
t
= (g2,1, . . . , g2,|m|−n∗

1
−n∗

2
)t.

It is a basic fact from linear algebra that if C1 has full rank and C2 has full rank,
then C2C1 has full rank. This means that the rows of C2C1 are linearly independent,
particularly, they are non-null. Therefore, none of the component functions of g2

are polynomials because of the polynomial independence of F with respect to m.
Thus, we can apply again Lemma 3.3. Using finite induction, we find a total on |m|
candidate system poles.

In fact, on each layer of system poles, ni ≥ 1. Therefore, in a finite number of
steps, say N−1, their sum equals |m|. Consequently, the number of candidate system
poles of F in some disk, counting multiplicities, is exactly equal to |m|, and they are
precisely the zeros of Q|m| as we wanted to prove.

Summarizing, in the N − 1 steps we have taken, we have produced N layers of
candidate system poles. Each layer contains nk candidates, k = 1, . . . , N. At the
same time, on each step k, k = 1, . . . , N − 1, we have solved a system of nk linear
equations, of rank n∗

k, with |m|−n∗
1−· · ·−n∗

k, n
∗
k ≤ nk, linearly independent solutions.

We find ourselves on the N -th layer with nN candidates.
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Let us try to eliminate the poles on the last layer. Write the corresponding
homogeneous system of linear equations as in (66), and we get nN equations where

nN = |m| − n1 − · · · − nN−1 ≤ |m| − n∗
1 − · · · − n∗

N−1 =: nN

with nN unknowns. For each candidate system pole a of multiplicity τ on the N -th
layer, we impose the equations

∫

|w−a|=δ

(w − a)i

(

nN
∑

k=1

ckgN−1,k(w)

)

dw = 0, i = 0, . . . , τ − 1, (67)

where δ is sufficiently small and the gN−1,k, k = 1, . . . , nN , are the functions associ-
ated with the linearly independent solutions produced on step N − 1.

Let n∗
N be the rank of this last homogeneous system of linear equations. Assume

that n∗
k < nk for some k ∈ {1, . . . , N}. Then, the rank of the last system of equations

is strictly less than the number of unknowns, namely n∗
N < nN . Therefore, repeating

the same process, there exists a vector of functions

gN := (gN,1, . . . , gN,|m|−n∗
1
−···−n∗

N
)

such that none of the gN,k is a polynomial because of the polynomial independence
of F with respect to m. Applying Lemma 3.3, each gN,k has on the boundary of its
disk of analyticity a pole which is a zero of Q|m|. However, this is impossible because
all the zeros of Q|m| are strictly contained in that disk. Consequently, nk = n∗

k,
k = 1, . . . , N.

We conclude that all the N homogeneous systems of linear equations that we have
solved have full rank. This implies that if in any one of those N systems of equations
we equate one of its equations to 1 instead of zero (see (66) or (67)), the corresponding
nonhomogeneous system of linear equations has a solution. By the definition of a
system pole, this implies that each candidate system pole is indeed a system pole
of order at least equal to its multiplicity as zero of Q|m|. Moreover, by Lemma 3.7,

F can have at most |m| system poles with respect to m; therefore, all candidate
system poles are system poles, and their order coincides with the multiplicity of that
point as a zero of Q|m|. This also means that Q|m| = QF

m. We have completed the
proof.

Remark. The results of this paper remain valid when E is a compact set whose com-
plement is connected, provided that the sequence of orthonormal polynomials (pn), n ≥
0, and second type functions (sn), n ≥ 0, relative to the measure µ, supp(µ) ⊂ E, sat-
isfy (9) and (10), respectively, inside C \ E, and the sequence of leading coefficients
(κn), n ≥ 0, fulfill (11). On the right hand side of (9) and (10) one should place
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eg(z,∞), where g(z,∞) denotes Green’s function relative to the region C \ E. The
problem with stating the results with this degree of generality is related with the ze-
ros that the second type functions sn may have in Co(E) \ E. For example, if E is
made up of two intervals symmetric with respect to the origin and µ is any measure
supported on E symmetric with respect to the origin then sn has a zeros at z = 0 for
all even n. In this case, no matter how good the measure is, there are problems in
proving (18) at ξ = 0 if this point happens to be a system pole. In this example, this
can be avoided requiring that 0 is not a system pole of F. But, in a more general
configuration, this is hard to guarantee in terms of the data since the zeros of sn in
Co(E) \ E may have a quite exotic behavior.
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J. Approx. Theory 170 (2013), 59-77.

[6] J. Cacoq, B. de la Calle Ysern, and G. López Lagomasino. Direct and inverse
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