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INTERPOLATION BY GENERALIZED EXPONENTIAL SUMS

WITH EQUAL WEIGHTS

PETR CHUNAEV

Abstract. In this paper we solve Padé- (i.e. multiple) and Prony (i.e. simple exponen-
tial) interpolation problems for the generalized exponential sums with equal weights:

Hn(z;h) :=
µ

n

∑n

k=1
h(λkz), where µ, λk ∈ C,

and h is a fixed analytic function under few natural assumptions. The interpolation of a
function f by Hn is due to properly chosen µ and {λk}nk=1, which depend on f , h and n.

The sums Hn are related to the h-sums and amplitude and frequency sums (also known
as generalized exponential sums), i.e. correspondingly to

H∗

n(z;h) :=
∑n

k=1
λkh(λkz) and Hn(z;h) :=

∑n

k=1
µkh(λkz), where µk, λk ∈ C,

which generalize many classical approximants and whose properties are actively studied.
As for the Padé problem, we show that Hn and H∗

n have similar constructions and rates
of interpolation, whereas calculating Hn requires less arithmetic operations. Although the
Padé problem for Hn is known to have a doubled interpolation rate with respect to H∗

n

and thus to Hn, it can be however unsolvable in quite simple and useful cases and this
may entirely eliminate the advantage of Hn. We show that, in contrast to Hn, the Padé
problem for Hn always has a unique solution. What is even more important, we also
obtain several efficient estimates for µ and λk, valuable by themselves, and use them in
further evaluating interpolation quality and in numerical applications.

The above-mentioned Padé problem and estimates provide a basis for managing the
more interesting Prony problem for exponential sums with equal weights Hn(z; exp), i.e.
when h(z) = exp(z). We show that it is uniquely solvable and surprisingly µ and λk can
be efficiently estimated. This is in sharp contrast to the case of well-known exponential
sums Hn(z; exp).

1. Introduction

1.1. Statement of the problem. In this paper we consider Padé (i.e. multiple) and
Prony (i.e. simple exponential) interpolation by sums of the form

(1) Hn(z;h) :=
µ

n

n
∑

k=1

h(λkz), where µ, λk ∈ C

and h is a fixed analytic function. The interpolation of a function by Hn is carried out by
a proper choice of the parameters µ and λk, k = 1, . . . , n, which depend on n, h and the
function to be interpolated.

The sums (1) may be considered as representatives of the class of amplitude and frequency

sums (also known as generalized exponential sums), i.e. sums with 2n free parameters
(amplitudes (or weights) µk and frequencies (or exponents) λk) of the form

(2) Hn(z;h) :=
n
∑

k=1

µkh(λkz), where µk, λk ∈ C.

Date: January 6, 2020.
1The research presented in Sections 2, 3 and 5 was funded by Russian Foundation for Basic Research ac-

cording to the research project 18-01-00744 A. The research presented in Section 4 was financially supported
by Russian Science Foundation, Agreement 17-71-30029, with co-financing of Bank Saint Petersburg.

1

http://arxiv.org/abs/1906.01332v3


2 PETR CHUNAEV

The approximative properties of general sums (2) and their particular cases (including ex-
ponential sums, classical Padé approximants, Gauss type quadratures) are actively studied
in approximation theory (see a brief survey e.g. in [12]). The sums (2) with the restriction
µk = λη

k for some η ∈ N0 (i.e. already with n free parameters)

(3) H∗
η,n(z;h) :=

n
∑

k=1

λη
kh(λkz), η ∈ N0, λk ∈ C,

are usually called h-sums; they were introduced in [13]. The most explored case is η = 1,

(4) H∗
n(z;h) := H∗

1,n(z;h) =

n
∑

k=1

λkh(λkz), λk ∈ C,

see [6,8,9,13,14,16,23]. The paper [13] contains several remarks1 on the general case of (3).
Observe that computing (1) requires less arithmetic operations than that of (2) and (4),

although all these sums have similar approximative properties with respect to the number
of free parameters, as will be shown below.

Let us come back to the formulation of the problems that we consider in this paper. In
the case of the Padé interpolation we set

(5) f(z) =
∞
∑

m=0

fmzm and h(z) =
∞
∑

m=0

hmzm.

The function h is a fixed analytic function, f is an analytic function to be interpolated.
Additionally, we suppose2 that

(6) f0 6= 0 and hm = 0 ⇒ fm = 0 for all m = 0, 1, . . . .

For convenience, we introduce the following (well defined due to (6)) numbers:

(7) rm = rm(f, h) :=

{

0, fm = 0,
fm/hm, fm 6= 0,

m = 0, 1, . . . .

We are interested in solving the following Padé (multiple) interpolation problem
in a neighbourhood of z = 0: find complex µ and {λk}nk=1, depending on f, h and n,

such that

(8) f(z)−Hn(z;h) = O(zn+1) for z → 0.

As for the Prony interpolation, we fix h(z) = exp(z) in (1) and interpolate by

(9) Hn(z; exp) = Hexp
n (z) :=

µ

n

n
∑

k=1

exp(λkz)

the table

(10) {m, g(m)}nm=0 , g(0) 6= 0,

generated by a complex-valued function g. Thus we deal with the Prony (simple expo-
nential) interpolation problem: find complex µ and λk, depending on g and n, such

that

(11) g(z) = Hexp
n (z) for z ∈ {m}nm=0.

1Note that the sums (4) for η = 0, although look similar, have more restricted approximative properties
than our sums (1). Indeed, the 0th Taylor coefficient of the function H∗

0,n(z;h) is always n. This does not
allow to approximate functions f with f0 6= n. This circumstance can be however overcome by considering
n
f0
f with f0 6= 0 instead of f , i.e. by applying our sums (1) in fact. The sums (1) and (4) are also connected

as follows. Put h(z) = zηg(z), η ∈ N0, in (1) to get Hn(z;h) =
µ
n

∑n
k=1(λkz)

ηg(λkz) = zη µ
n
H∗

η,n(z; g).
2If the first non-vanishing Taylor coefficient of f is fl, then write f(z) = zlF (z) so that F0 6= 0 and

apply the scheme from this paper to F to get an interpolant of the form zl µ
n

∑n
k=1 h(λkz) for f(z). In some

cases it is reasonable to add a non-zero parameter playing the role of f0 6= 0 (see Subsection 3.3.5).
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The paper is organised as follows. Section 2 (with an appendix in Section 5) contains
several estimates for the so-called power sums and their components. The estimates have
their own value and are used later for estimating |µ|, |λk|, the remainder and the rate
of interpolation in the problems under consideration. Section 3.1 is devoted to solving
the Padé problem (8), with corresponding estimates. In Sections 3.2 and 3.3, we compare
approximative properties of Hn with those of Hn and H∗

n and give several applications of
Hn to numerical analysis. In Section 4.1 we solve the Prony problem (11) and estimate the
interpolation parameters. In Sections 4.2 and 4.3, we compare Hexp

n , solving (11), and the
original Prony exponential sums.

2. Estimates for power sums and their components

We first aim to prove several estimates for the power sums of complex numbers. They
are of an independent interest since are related to the power sums problems appearing in
different fields of analysis (e.g. in Turán’s power sum method). Let

(12) Λn := {λk}nk=1, where λk ∈ C.

Consider the power sums for the set Λn:

(13) Sm := Sm(Λn) =

n
∑

k=1

λm
k , m = 1, 2, . . . .

Theorem 1. Let n > 2. If |Sm(Λn)| 6 am for some a > 0 and m = 1, . . . , n, then

(14) max
k=1,...,n

|λk| 6 (1 + εn)a, where εn :=
2(ln n− ln lnn)

n
<

2 ln n

n
.

Furthermore, (14) cannot be improved much as for n > n0 there exists Λ̃n such that

(15) |Sm(Λ̃n)| 6 am, m = 1, . . . , n, and |λ̃1| =
(

1 +
cn
n

)

a, cn ∈ [1/10, 1].

This result is a revised and generalized version of the estimates partly obtained in the
papers [8,14] and the unpublished manuscript [10] by the author. The preceding and more
qualitative estimate maxk=1,...,n |λk| 6 2a under the same assumptions is proved in [13].
The proof of Theorem 1 is postponed to Section 5 due to its length.

Below we will use Theorem 1 to obtain estimates for different parameters in the inter-
polation processes under consideration.

For further discussion we recall how to find the set Λn (see (12)) from the following
system for their power sums Sm = Sm(Λn):

(16) Sm = sm, m = 1, . . . , n, where sm ∈ C are given.

We call (16) a Newton moment problem. To proceed, let us introduce the elementary

symmetric polynomials for the elements of Λn:

(17) σm = σm(Λn) :=
∑

16j1<...<jm6n

λj1 · · ·λjm , m = 1, . . . , n.

The connection between the power sums (13) and polynomials (17) is expressed by the
well-known Newton-Girard formulas [26, Section 3.1]:

(18) σ1 = S1, σm =
(−1)m+1

m



Sm +
m−1
∑

j=1

(−1)j Sm−jσj



 , m = 2, . . . , n.

Moreover, the set Λn is formed by the n roots of the unitary polynomial

(19) Pn(λ) := λn − σ1λ
n−1 + σ2λ

n−2 + . . .+ (−1)nσn.

Consequently, given any sm, one can solve the system (16) using (18) and (19) and —
what is very important for us — this solution Λn always exists and is unique.
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The formulas (18) and (19) allow to get estimates for |σm| and |λk| (as in Theorem 1)
under some assumptions on |sm| (i.e. on |Sm|, equivalently). For example, it is proved
in [8], that the condition |sm| 6 am implies that |σm| 6 am, where m = 1, . . . , n. This is
applied in [8, 10, 13] for obtaining several estimates preceding to (14). As shown in [14],
the condition sm = am−1 for a > 1 implies that maxk=1,...,n |λk| 6 a(1 − (1 − a−1)/n).
This estimate is essentially used for constructing new extrapolation formulas for analytic
functions in [9,14]. Other related estimates can be also found e.g. in [13,16,19]. Note that
the majority of previous estimates are established under the condition that power sums
are bounded by corresponding members of a geometric progression. Now we prove a result
with another condition that in particular gives the case when the power sums are bounded
by members of an arithmetic progression.

Theorem 2. Let n > 2. If |Sm| 6 γmvam with some γ > 0, a > 0 and v ∈ [0, 1] for all

m = 1, . . . , n, then

(20) |σm| 6 γmv−1(1 + γ)m−1am, m = 1, . . . , n.

Moreover, it holds that

(21) max
k=1,...,n

|λk| 6
(

(1 + γ)n
v−1
n−1 + γ

)

a 6 (1 + 2γ) a.

Proof. First, by the change of variables the problem can be reduced to the case a = 1. We
proceed by induction. For m = 1 we get from (18) that |σ1| 6 γ and thus (20) holds in
this case. Suppose that (20) is also true for each m = 2, . . . ,M − 1. Then by (18),

M |σM |

6 |SM |+
∑M−1

j=1
|SM−j ||σj | 6 γMv + γ2

∑M−1

j=1
(M − j)vjv−1(1 + γ)j−1

6 γMv

(

1 + γ
∑M−1

j=1

(

1− j
M

)v
jv−1(1 + γ)j−1

)

6 γMv

(

1 + γ
∑M−1

j=1
(1 + γ)j−1

)

= γMv

(

1 + γ · 1− (1 + γ)M−1

1− (1 + γ)

)

= γMv(1 + γ)M−1.

Dividing both parts by M yields the required inequality for |σM |.
Now we prove the estimate for |λk|. From (19) and (20) we get for λ 6= 0 that

|Pn(λ)|
|λ|n > 1−

∑n

m=1

|σm|
|λ|m > 1− γ

|λ|
∑n

m=1

(

1 + γ

|λ|

)m−1

mv−1.

Furthermore, m = (e
lnm
m−1 )m−1 > (e

lnn
n−1 )m−1 = n

m−1
n−1 for m = 2, . . . , n. Since v ∈ [0, 1], it

holds for |λ| > (1 + γ)n
v−1
n−1 + γ that

|Pn(λ)|
|λ|n > 1− γ

|λ|
∑n

m=1

(

1 + γ

|λ| n
v−1
n−1

)m−1

=

=
|λ| − (1 + γ)n

v−1
n−1 − γ

(

1−
(

1+γ
|λ| n

v−1
n−1

)n)

|λ| − (1 + γ)n
v−1
n−1

>

|λ| −
(

(1 + γ)n
v−1
n−1 + γ

)

|λ| − (1 + γ)n
v−1
n−1

> 0.

Thus, all λk, the roots of Pn, lie in the disc |λ| 6 (1+γ)n
v−1
n−1 +γ. For the second inequality

in (21), take into account that v ∈ [0, 1] and n
v−1
n−1 6 1 for n > 2. �

3. Padé interpolation by Hn

The results from this section were announced in [11].
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3.1. Main theorem about the Padé interpolation by Hn. Recall the definitions (1)
and (8) and the assumptions (5), (6) and (7).

Theorem 3. Fix n and h. Given a function f satisfying (5) and (6), there exist uniquely

determined µ 6= 0 and Λn = {λk}nk=1 such that the following interpolation formula holds:

(22) f(z) =
µ

n

n
∑

k=1

h(λkz) +Rn(z), Rn(z) = O(zn+1), z → 0.

This formula is exact for polynomials f of degree 6 n, i.e. Rn(z) ≡ 0 for such f .

More precisely, one can find the above-mentioned numbers as follows:

(23) µ = r0;

Λn is the solution to the system of the form (16) with

(24) sm =
n

r0
rm, m = 1, . . . , n.

Proof. By (1) and (5)

Hn(z;h) =
µ

n

n
∑

k=1

∞
∑

m=0

hm(λkz)
m =

∞
∑

m=0

hm

(

µ

n

n
∑

k=1

λm
k

)

zm.

From the condition (8), i.e.

∞
∑

m=0

hm

(

µ

n

n
∑

k=1

λm
k

)

zm =

∞
∑

m=0

fmzm +O(zn+1),

we arrive at the system

hm

(

µ

n

n
∑

k=1

λm
k

)

= fm, m = 0, . . . , n.

From here, by taking into account (6), we obtain the unique µ 6= 0 as in (23) and the
system (24) that is actually a Newton-type moment problem (16), whose solution Λn =
Λn({sm}nm=1) always exists and is unique. �

For the terms in the next result, recall Theorems 1 and 3.

Theorem 4. Suppose that the assumptions of Theorem 3 are satisfied. Additionally, let

|hm| 6 1 for all m = n+ 1, n + 2, . . .. Then the following holds for (22):

(a) If |rm| 6 |r0|
n am for all m = 1, 2, . . . and some a > 0, then

(i) maxk=1,...,n |λk| 6 (1 + εn)a,
(ii) in the disk |z| < (1 + εn)

−1a−1 the sum Hn(z) is analytic and moreover

(25) |Rn(z)| 6
2|r0|n2|az|n+1

1− (1 + εn)a|z|
, n > 2,

(iii) Hn(z) → f(z) uniformly for |z| < a−1.

(b) If |rm| 6 |r0|
n γmam for all m = 1, 2, . . . and some γ > 0 and a > 0, then

(i) maxk=1,...,n |λk| 6 (1 + 2γ)a,
(ii) in the disk |z| < (1 + 2γ)−1a−1 the sum Hn(z) is analytic and moreover

(26) |Rn(z)| 6
2|r0||(1 + 2γ)az|n+1

(1− (1 + 2γ)a|z|)2 , n > 2,

(iii) Hn(z) → f(z) uniformly for |z| < (1 + 2γ)−1.
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Proof. By the change of variables we can reduce the proof to the case of a = 1.

Let us start with (a). Since |rm| 6 |r0|
n for m = 1, 2, . . ., we have |sm| 6 1 for m = 1, . . . , n

and therefore |λk| 6 1 + εn by Theorem 1. This implies that |Sm| 6 n(1 + εn)
m for

m > n + 1. Recall the definition (7) and that µ = r0. Consequently, taking into account
all the assumptions,

|Rn(z)| =
∣

∣

∣

∣

∣

∞
∑

m=n+1

(

rm − r0
n
Sm

)

hmzm

∣

∣

∣

∣

∣

6
|r0|
n

∞
∑

m=n+1

(1 + n(1 + εn)
m) |z|m

6
|r0|
n

( |z|n+1

1− |z| +
n|(1 + εn)z|n+1

1− (1 + εn)|z|

)

6
|r0|(1/n + (1 + εn)

n+1)|z|n+1

1− (1 + εn)|z|
, |z| < 1

1 + εn
.

To get (25), note that 1/n + (1 + εn)
n+1 6 2n2 for n > 2.

For |z| 6 (1− δ)(1 + εn)
−1, where δ ∈ (0, 1), we get

|Rn(z)| 6 2|r0|n2(1− δ)n+1/δ.

This implies that |Rn(z)| → 0 uniformly for |z| < 1, recalling that εn → 0 as n → ∞.

Now we consider (b). Since |rm| 6 |r0|
n γm for m = 1, 2, . . ., we have |sm| 6 γm for

m = 1, . . . , n and therefore |λk| 6 1+2γ by Theorem 2. This implies that |Sm| 6 n(1+2γ)m

for m > n+ 1. Consequently, if |z| < (1 + 2γ)−1, then

|Rn(z)| 6
|r0|
n

∞
∑

m=n+1

(γm+ n(1 + 2γ)m) |z|m

=
|r0|
n

(

γ
(n+ 1− n|z|)|z|n+1

(1− |z|)2 + n
|(1 + 2γ)z|n+1

1− (1 + 2γ)|z|

)

6
2|r0||(1 + 2γ)z|n+1

(1− (1 + 2γ)|z|)2 .

For |z| 6 (1− δ)(1 + 2γ)−1, where δ ∈ (0, 1), we get

|Rn(z)| 6 2|r0|(1 − δ)n+1/δ2.

This implies that |Rn(z)| → 0 uniformly for |z| < (1 + 2γ)−1. �

3.2. The number of arithmetic operations. Comparison with other Padé-type
problems for amplitude and frequency sums. From the point of view of necessary
arithmetic operations, calculating the amplitude and frequency sums (2) and h-sums (4)
for each fixed z and known λk, µk and h(λkz) requires, generally speaking, n multiplica-
tions (µk or λk by h(λkz)) and n summations (the sum of the values obtained). On the
other hand, calculating the sums (1) requires n summations and just one multiplication
(additionally note that µ is independent of n and is only determined by r0). This reduc-
tion in arithmetic complexity lies in the circle of problems considered by P. Chebyshev. In
particular, this was his motivation in obtaining the famous quadrature with equal weights,
see [18, Section 10, §3] and [22, Section VI, §4]. We will come back to this quadrature in
Section 3.3.4 in the context of the sums (1).

Now we compare Theorems 3 and 4 with the corresponding ones for (2) and (4). The
result for (4) is proved in [13] and can be summarised as follows under assumptions of
Theorem 3: there always exists a uniquely determined set Λn = {λk}nk=1 such that

f(z) =

n
∑

k=1

λkh(λkz) +Rn(z), Rn(z) = O(zn), z → 0.

The set Λn is the solution to the system (16) with

(27) sm = rm−1, m = 1, . . . , n.

Thus, it can be seen that the Padé interpolation schemes for Hn and h-sums H∗
n are

similar. In both cases the solution always exists and is unique under the assumptions of
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Theorem 3. Moreover, the corresponding rates of interpolation (O(zn) and O(zn+1)) just
slightly differ and directly depend on the number of free parameters. This similarity clearly
underlines the advantage of Hn over H∗

n in the sense of the number of required arithmetic
operations discussed at the beginning of this subsection.

The Padé interpolation problem for the amplitude and frequency sums (2) is more
delicate. First of all, it is not always solvable for given f and fixed h and n, even if the
assumptions of Theorem 3 are met. As shown in [12], its solvability relies on the properties
of the (possibly non-unitary) polynomial

(28) P ∗
n(λ) :=

n
∑

m=0

σ∗
mλm =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 λ λ2 . . . λn

s0 s1 s2 . . . sn
s1 s2 s3 . . . sn+1

. . . . . . . . . . . . . . .
sn−1 sn sn+1 . . . s2n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

which is an analogue of (18) and (19) for the following weighted version of (16),

(29) S∗
m = sm, where S∗

m :=

n
∑

k=1

µkλ
m
k , m = 0, . . . , 2n− 1,

and the moments sm are defined as follows:

(30) sm = rm, m = 0, . . . , 2n− 1.

Namely, it is proved in [12] that for the functions f and h satisfying the assumptions of
Theorem 3, it holds with uniquely determined {µk, λk}nk=1 that

(31) f(z) =

n
∑

k=1

µkh(λkz) +Rn(z), Rn(z) = O(z2n),

if and only if the polynomial (28) is of degree n and all its roots are pairwise distinct. This
condition on P ∗

n is quite strong and can be unsatisfied even for simple and natural sequences
of moments sm in (30), e.g. sm = m+ 1 or sm = am, where m = 0, 1, . . . (see [12]), whilst
the corresponding problems for (1) and (4) still have unique solutions. This disadvantage
of the amplitude and frequency sums (2) with respect to Hn and h-sums is however quite
compensated by the doubled rate of interpolation, O(z2n).

Note that the system (29) and particular cases of the identity (31) appear in different
areas of analysis and approximation theory and are closely related to Hankel matrices,
Gauss quadratures, classical Padé fractions, exponential sums and Hamburger, Stieltjes
and Hausdorff moment problems. A survey on these connections can be found e.g. in [12,
Section 2] or [21]. Moreover, the system (11) is the main tool to solve the original Prony

(simple exponential) interpolation problem

(32) Hn(m; exp) =

n
∑

k=1

µk exp(λkm) = g(m), µk ∈ C\{0}, λk ∈ C, m = 0, . . . , 2n−1,

where λk are assumed pairwise distinct. Let us mention that (32) is well-studied analytically
and has numerous applications (see [3,12,21] for a nice survey). Moreover, there are several
numerical approaches for solving (11) and its variations, see [2,5,24,25]. But still, from the
above-mentioned condition on (28) one can deduce that the Prony problem (32) can have

no solution for some g(m), m = 0, . . . , 2n−1. We will come back to this issue in Section 4.

3.3. Applications of the Padé interpolation and corresponding estimates. Now
we give several examples how Theorem 3 can be applied in numerical analysis. We compare
these applications with the corresponding ones for (2) and (4) in appropriate places.
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3.3.1. The case f(z) = h(az) for a complex a 6= 0. Under assumptions of Theorem 3, we
have µ = 1 and sm = nam, m = 1, . . . , n. The solution to (16) is then Λn = {a}nk=1. Thus

f(z) = h(az) ≡ Hn(z) =
1

n

n
∑

k=1

h(az), i.e. Rn(z) ≡ 0.

In particular, this means that Hn do not generate extrapolation operators appearing in
a similar situation for h-sums as in [9, 14].

3.3.2. Rational interpolation. Choosing h(z) = 1/(z−1) = −∑∞
m=0 z

m in Theorem 3 leads
to rational interpolants of the form

H rat
n (z) :=

µ

n

n
∑

k=1

1

λkz − 1
.

For example, if f(z) ≡ 1, then µ = −1, sm = 0 for m = 1, . . . , n and thus Λn = {0}nk=1.

Consequently, the corresponding H rat
n (z) = − 1

n

∑n
k=1

1
0·z−1 ≡ 1, i.e. our interpolant coin-

cides with f . Such a coincidence clearly happens for all f(z) = H rat
n (z) with arbitrarily

chosen {λk}nk=1 due to the uniqueness of Λn.
If h(z) = 1/(z − 1) in (2) and (4), then interpolants to f are correspondingly the well-

known [n − 1, n]–type Padé fractions (see e.g. [12, Subsection 2.3]) and rational h-sums
called simple partial fractions whose properties are actively studied [15]. In comparison
with H rat

n , the calculation of the h-sums require more arithmetic operations whilst the
Padé fractions may not exist for some f and n (see Section 3.2).

3.3.3. Padé interpolation by exponential sums. Another important particular case of Hn is
when one chooses h(z) = exp(z) and obtains Padé exponential sums of the form (9), i.e.

Hexp
n (z) =

µ

n

n
∑

k=1

exp(λkz).

Let us interpolate f(z) = cos(z) by Hexp
2 (z). We have

µ = 1, s1 = 0, s2 = −2, P2(λ) = λ2 + 1.

Consequently, Λ2 = {i,−i} and we get the well-known identity

cos z = Hexp
2 (z) =

exp(iz) + exp(−iz)

2
.

Surprisingly, this identity appears for f and h mentioned for any even n in Hexp
n (z).

Let us emphasize that interpolants Hexp
n always exist for a given f with f0 6= 0 (since

the condition (6) is always satisfied), unlike exponential sums Hn(z; exp) of the form (2)
(see Section 3.2).

3.3.4. Chebyshev’s quadrature. Let us use Hn to interpolate the function

(33) f(x) =
1

x

∫ x

−x
h(t)ρ(t)dt, x > 0,

where f and h satisfy (5) and the integral weight ρ = ρ(t) > 0 for t ∈ [−x, x].
As an example, take ρ(x) ≡ 1. Then by (5) clearly

f(x) =
1

x

∫ x

−x
h(t) dt =

∞
∑

m=0

hm

(

1

x

∫ x

−x
tmdt

)

=
∞
∑

m=0

1 + (−1)m

m+ 1
hmzm,

and from Theorem 3 we deduce that µ = 2 and Λn is the solution to the system (16) with

(34) sm =
n

2
· 1 + (−1)m

m+ 1
, m = 1, . . . , n.
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Note that µ and Λn are independent of h and are universal in this sense. The system (16)
with (34) and the corresponding polynomials Pn of the form (19) are well studied [18,
Section 10, §3]. Thus for a fixed x > 0 one gets the interpolation formula

(35)
1

x

∫ x

−x
h(t)dt =

2

n

n
∑

k=1

h(λkx) +Rn(x),

that is nothing else but Chebyshev’s quadrature with equal weights [18, Section 10, §3],
whose frequencies λk, the roots of Pn, are real and belong to the segment [−1, 1] only for
n = 1, . . . , 7, 9. For other n there are complex λk in (35). In particular, this is proved by S.
Bernstein for n > 10. Further information on the distribution of λk can be found in [20,22].
What is more, Theorem 3 implies that (35) is exact for polynomials h of degree 6 n in
the sense that Rn(x) ≡ 0 for such h. Moreover, for even n the quadrature formula is exact
for polynomials h of degree 6 n+ 1 as Sn+1 = 0. One can find more information on (35),
including estimates for the remainder Rn(x), in [18, Section 10, §3].

Let us briefly mention that if we use Hn to interpolate the function

f(x) =
1

x

∫ x

0
h(t)dt, x > 0,

then µ = 1 and Λn is the solution to the system (16) with

(36) sm =
n

m+ 1
, m = 1, . . . , n.

Thus, for a fixed x > 0, one gets shifted Chebyshev’s quadrature

(37)
1

x

∫ x

0
h(t)dt =

1

n

n
∑

k=1

h(λ∗
kx) +Rn(x),

where λ∗
k are generated by the frequencies in (35) appropriately shifted to a neighbourhood

of (0, 1). Note that the asymptotic behaviour of λk and thus λ∗
k is fully studied in [20].

In a similar manner Theorem 3 leads to Chebyshev-type quadrature formulas for inte-
grals (33) with other weights ρ.

For (33) with ρ(x) ≡ 1, one can find quadratures based on the h-sums in [13] but they
still require more arithmetic operations than Hn (see Section 3.2). If the integral (33) with
ρ(x) ≡ 1 is interpolated by (2), then one obtains the well-known Gauss quadrature (see [12,

Subsection 2.2]). If ρ(x) = (1− x2)−1/2 in (33), the corresponding Gauss-type quadrature
(usually called Gauss-Chebyshev or Hermite quadrature) has equal amplitudes as Hn does
(see [12, Sunsection 2.2] and [22, Section VI, §4]). However, these quadratures have different
nature, namely, the ones based on Hn have equal amplitudes for any weight ρ in the integral
(33), whilst the ones based on (2) have this property only for ρ(x) = (1−x2)−1/2 as shown
by K. Posse and J. Geronimus, see [22, Section VI, §§4–5].

3.3.5. Numerical differentiation in a neighbourhood of z = 0. Now let us interpolate

f(z) = h0t+ zh′(z) = h0t+

∞
∑

m=1

mhmzm, h0 6= 0,

where t > 0 is parameter, by sums Hn. We clearly have rm = m for m = 1, 2, . . . and thus

µ = t > 0, sm =
n

t
m, m = 1, . . . , n.

Solving the system (16) leads to the identity

h0t+ zh′(z) =
t

n

n
∑

k=1

h(λkz) +Rn(z),
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where λk = λk(t, n) are independent of h and are universal in this sense. Finally, the
following interpolation formula holds true:

(38) zh′(z) = t

(

−h(0) +
1

n

n
∑

k=1

h(λkz)

)

+Rn(z), Rn(z) = O(zn+1),

that is exact for polynomials h of degree 6 n, i.e. Rn(z) ≡ 0 in that case.
Now we estimate the remainder and |λk| in (38) using Theorem 4(b) and that |rm| =

m 6 t
nγmam with γ = n and a = t−1/n, where t > 1. Fix n and suppose that |hm| 6 1 for

all m. Then by Theorem 4(b),

max
k=1,...,n

|λk| 6
2n + 1

t1/n
.

This, in particular, implies that maxk=1,...,n |λk| → 0 as t → ∞, i.e. the nodes λk = λk(t)
in (38) tend to z = 0 as t grows. A similar behaviour of nodes is observed in [12, 14] in
numerical differentiation formulas based on amplitude and frequency sums and h-sums.
Unfortunately, there is a compensation of this phenomenon: µ = t → ∞ as t → ∞.

Furthermore, we deduce for |z| < t1/n/(2n + 1) from Theorem 4 that

|Rn(z)| 6
2t|(2n + 1)t−1/nz|n+1

(1− (2n + 1)t−1/n|z|)2 =
2t−1/n|(2n + 1)z|n+1

(1− (2n + 1)t−1/n|z|)2 , n > 2.

Say, if t = 2n, then it holds for (38) and |z| < 1/(n + 1
2) that

max
k=1,...,n

|λk| 6 n+ 1
2 , |Rn(z)| 6

|(2n+ 1)z|n+1

(1− (n + 1
2 )|z|)2

.

Formulas similar to (38) are obtained in [8,13]. Again, they require more arithmetic op-
erations than (38), although have almost the same interpolation rate, O(zn). An analogous
problem for amplitude and frequency sums (with the remainder O(z2n)) is not solvable at
all and can be managed only after proper regularisation [12, Section 5].

4. Prony interpolation by Hn

Now we use the results and remarks given above for the most important part of our
exposition — the Prony-type interpolation by usual (i.e. not generalized) exponential sums
with equal weights. Recall that interpolation by exponential sums has many practical
applications, e.g. in analysis of time series, and is now widely studied (see [2,3,5,12,21,24,25]
and references therein).

4.1. Main theorem about the Prony interpolation by Hn. Recall that we deal with
the sums (1), where h(z) = exp(z), i.e. with the sums (9):

Hexp
n (z) =

µ

n

n
∑

k=1

exp(λkz).

Within this framework, we aim to interpolate the table (10):

{m, g(m)}nm=0 , g(0) 6= 0,

where the sequence {g(m)}nm=0 is generated by a complex-valued function g, see (11).
Before moving forward, recall the original Prony exponential interpolation (32) and the
information around (32).
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Theorem 5. Given a table (10), there always exist uniquely determined (up to a period

of the complex exponent) numbers µ 6= 0 and Λn = {λk}nk=1, with λk ∈ C, such that

(39) Hexp
n (m) =

µ

n

n
∑

k=1

exp(λkm) = g(m), m = 0, . . . , n.

More precisely, the numbers can be determined as follows:

µ = g(0) and exp(λk) = lk, k = 1, . . . , n,

where lk ∈ C, k = 1, . . . , n, are the solutions to the Newton-type moment problem

(40)

n
∑

k=1

lmk =
n

g(0)
g(m), m = 1, . . . , n.

Additionally,

(a) if |g(m)| 6 |g(0)|
n am for some a > 0 and all m = 1, . . . , n, then3

max
k=1,...,n

|lk| 6 (1 + εn)a ⇒ −∞ 6 Reλk 6 ln a+ εn;

(b) if |g(m)| 6 |g(0)|
n γmam for some γ > 0 and a > 0 for all m = 1, . . . , n, then

max
k=1,...,n

|lk| 6 (1 + 2γ)a ⇒ −∞ 6 Reλk 6 ln a+ ln(1 + 2γ).

Proof. From (39) with m = 0 we immediately get µ = g(0) 6= 0. Then for m = 1, . . . , n in
(39) we use the idea from the original Prony method consisting in the exchange exp(λk) = lk
to obtain the system (40). This is actually the system (16) with sm = n

g(0) g(m) that always

has a unique (complex) solution {lk}nk=1. We may then determine λk by assuming

(41) λk :=

{

−∞, lk = 0,
ln lk, lk 6= 0,

k = 1, . . . , n.

The clauses (a) and (b) follows from Theorems 1 and 2 and that |lk| = eReλk . �

Let us emphasize that we are unaware of any results similar to Theorem 5 although the
idea behind it is very close to Prony’s one.

4.2. Comparison with the original Prony exponential interpolation problem.
Summarising the previous subsection, the Prony interpolation problem (11) is always solv-

able in a unique way. What is more, |eλk |, |µ| and |λk| can be efficiently estimated under
several natural assumptions on the sequence {g(m)}.

This is in sharp contrast to the original Prony problem (32). Recall that by the exchange
exp(λk) = lk one can easily come from (32) to the polynomial (28) and the system (29),
where sm should be exchanged for g(m). Consequently, the Prony problem (32) can be
unsolvable in the general case, as follows from the discussion in Section 3.2. Then the
numerical methods, mentioned in Section 3.2, hardly can help as the corresponding iterative
processes become divergent if the corresponding error (residual) is required to vanish.
Several theoretical examples can be found in [12, Section 7] to confirm this statement.
Indeed, there are examples of sm such that |sm| 6 1+ε, where ε > 0, and µ1 = µ1(ε) → ∞
or λ1 = λ1(ε) → ∞ as ε → 0. Some general results on this can be also found in [2].

Furthermore, in spite of the huge bibliography related to the Prony method and gen-
eralized exponential sums (see [2, 3, 5, 12, 21, 24, 25] and references therein), we could not
find any more or less general estimates for amplitudes and frequencies similar to those in
Theorem 5. Probably, they just do not exist because of the above-mentioned divergence
examples from [12, Section 7] and the results from [2]. As for particular cases, several
estimates were obtained in [12, Sections 5 and 6] for special sequences. Moreover, some

3One can take into account the periodicity of the exponential function to suppose that |Imλk| 6 π.
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conclusions about µk and λk (e.g. that they are real, positive or belonging to the segment
[0, 1]) can be made if g(m) satisfies the criteria due to Hamburger, Stieltjes or Hausdorff,
related to the classical moment problems [1], see also [7, Chapter VI, §3]. Furthermore,
some nice estimates can be directly derived from properties of the roots of some classical
orthogonal polynomials of the form (28) generated by properly chosen sequences {sm}, see
e.g. [21] for the connection of (2) and classical orthogonal polynomials.

4.3. Examples and further remarks. We start with several simple examples.

Example 1 (Chebyshev’s quadrature nodes). Let us interpolate the table
{

m,
1 + (−1)m

m+ 1

}n

m=0

by exponential sums Hexp
n . By Theorem 5, we get µ = 2 and thus need to solve the system

n
∑

k=1

lmk =
n

2

1 + (−1)m

m+ 1
, m = 1, . . . , n.

We have already considered it above, see (34). Indeed, lk are then the nodes in Chebyshev’s
quadrature (35). Then by (41) we obtain Λn.

Example 2. If g(z) = 1/(z + 1), then the table to interpolate is

{m, 1/(m+ 1)}nm=0 .

Clearly, µ = 1 and sm = n
m+1 , m = 1, . . . , n. We considered this {sm} already around

(36) and mentioned that the corresponding solution to (16) is produced by the nodes of
shifted Chebyshev’s quadrature (37). Moreover, the behaviour of the nodes was completely
studied in [20]. In particular4, one can deduce from [20, §7] that for n > n0,

max
k=1,...,n

|lk| 6 1 +
3 lnn

n
⇒ −∞ 6 Reλk 6

3 ln n

n
.

Consequently, with these λk,

1

z + 1
= Hexp

n (z) =
1

n

n
∑

k=1

exp(λkz), z = 0, 1, . . . , n.

Thus we constructed exponential sums for the function g(z) = 1/(z+1) with z > 0. This
problem, especially for exponential sums Hn(z; exp), attracts much attention of different
authors, see e.g. [4,17] and references therein. It is an independent interesting question to
compare the above-mentioned interpolants Hexp

n with the ones based on other exponential
sums.

Example 3. If g(z) = c, where c 6= 0 is a constant, then

µ = c, sm = n, m = 1, . . . , n.

Clearly, then lk = 1 for k = 1, . . . , n, and thus Λn = {0}nk=1 and Hexp
n (z) ≡ c.

Note that the original Prony problem (32) is not solvable in this case under the assump-
tion that µk 6= 0 and λk are pairwise distinct. If the assumption is relaxed though, one
gets the same result.

Example 4. Let g(z) = z + 1. Thus the table to interpolate is

{m,m+ 1}nm=0 .

4Very roughly speaking, Re lk ∈ (−3
√
lnn/n, 1 + 3

√
lnn/n) and Im lk ∈ (− 1

4
, 1
4
).
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Clearly, µ = 1 and sm = n(m+1) for m = 1, . . . , n. From this we can find Λn to construct
the required Hexp

n . From Theorem 5(b) for γ = 2n and a = 1 we get the estimates

max
k=1,...,n

|lk| 6 1 + 4n ⇒ −∞ 6 Reλk 6 ln(1 + 4n).

These estimates however are quite pessimistic as computer experiments suggest. For in-
stance, for n 6 50 calculations show that maxk=1,...,n |lk| < 9/2 and Reλk ∈ (0, 3/2). What
is more, lk seem to be settled on a kind of cardioid with a cusp at the origin as n → ∞.

Note that the Prony problem (32) is not solvable for the table under consideration.

To finish the discussion, we make several remarks.

Remark 1. For h-sums of the form (3) with η = 1, 2, . . . and z = m we get

H∗
η,n(m; exp) =

n
∑

k=1

λη
k exp(λkm), m = 0, 1, . . . .

Unfortunately, in this case the exchange exp(λk) = lk does not lead to any familiar system
of equations and the corresponding interpolation problem remains unsolved. This is another
advantage of Hn over H∗

η,n within the Prony problem context.

Remark 2. In the case of the table {xm, g(m)}nm=0 for n+ 1 equidistant nodes xm :=
a+ (b− a)mn ∈ [a, b], m = 0, . . . , n, one should consider the sums

Hexp
n (z; [a, b]) :=

µ

n

n
∑

k=1

exp

(

λk
n(z − a)

b− a

)

instead of Hexp
n . Indeed,

Hexp
n (xm; [a, b]) =

µ

n

n
∑

k=1

exp(λkm) = g(m), m = 0, . . . , n,

and one can proceed as in Theorem 5.

Remark 3. Since the Newton moment problem (16) always has a unique solution, in
contrast to the system (30), one can possibly use/adapt the numerical methods for (30)
(e.g. ESPRIT or MUSIC, see [2, 5, 24, 25]) for solving (16). Recall that then there is no
divergence problem as for unsolvable systems (30).

Furthermore, as in the case of overdetermined systems (30), i.e. with M > 2n equations
instead of 2n, one can use numerical methods (see [2,5,24,25]) to find approximate solutions
to overdetermined systems (27) with M > n equations. This would allow to approximately
solve an overdetermined interpolation problem of type (10) for the sums (1).

The above-mentioned are interesting practical questions that are however out of scope
of the current paper as we deal only with analytical methods here.

Remark 4. It is recently shown in [19] that for any sequence {g̃(m)}nm=1 and sufficiently
large n there exist pairwise distinct numbers lk, k = 1, . . . , n, such that

2n+1
∑

k=1

lmk = g̃(m), m = 1, . . . , n, and |lk| = 1, k = 1, . . . , 2n + 1.

This implies in the context of our exponential interpolation that there are {φk}2n+1
k=1 such

that φk ∈ [0, 2π) and any table {m, g(m)}nm=0 with g(0) 6= 0 can be interpolated by

µ

2n+ 1

2n+1
∑

k=1

exp(φkiz) =
µ

2n+ 1

2n+1
∑

k=1

(cos(φkz) + i sin(φkz)) .
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5. The proof of Theorem 1

We first recall the following result.

Lemma 1 (see [8]). If |Sm| 6 am for some a > 0 and all m = 1, . . . , n, then

(42) max
k=1,...,n

|λk| 6 (1 + εn)a,

where εn ∈ (0, 1) and satisfies the equation

(43) ε2n − (1− εn)
n+1 = 0.

There exist several estimates for εn in (43). In particular, it was shown in [8] that
εn = o(n−β), n → ∞, for any fixed β ∈ (0, 1). Later on, it was proved in [14] that
εn < n−1 ln2 n, n > 10. Further estimates were announced (with some gaps in the proof
though) in the manuscript [10].

Our purpose now is to obtain final estimates for εn. We start with the following lemma
that contains the first part of Theorem 1.

Lemma 2. It holds for εn in (43) that

(44) εn 6
2(ln n− ln lnn)

n
<

2 lnn

n
, n > 2, εn ∼ 2 lnn

n
, n → ∞.

Proof. Let us prove the inequality in (44) for n > 2. For this, consider the function

E(x) := x2 − (1− x)n+1, x ∈ [0, 1].

Since E′(x) = 2x + (n + 1)(1 − x)n > 0 for x ∈ [0, 1], the function E monotonically
increases in the segment [0, 1]. Moreover, E has different signs at the ends of the segment.
Consequently, in order to obtain the required estimate, it is sufficient to prove the inequality

E

(

2 ln(n/ lnn)

n

)

> 0.

Take into account that 1− x 6 e−x and (1− x)n+1 6 (1− x)n for x ∈ [0, 1]. Thus

E

(

2 ln(n/ lnn)

n

)

>

(

2 ln(n/ ln n)

n

)2

− e−n·
2 ln(n/ lnn)

n =

(

2 ln(n/ ln n)

n

)2

−
(

lnn

n

)2

=

(

ln
(

n
lnn

)2
+ lnn

)

·
(

ln
(

n
lnn

)2 − lnn
)

n2
=

ln n3

(lnn)2
· ln n

(lnn)2

n2
> 0, n > 2.

To prove εn ∼ 2 lnn
n , n → ∞, we approximately solve the equation (43) with respect to εn.

Let εn = Cn
lnn
n . From the inequality in (44) that we just proved it follows that 0 < Cn < 2

for n > 2. Substituting the expression for εn into (43) and taking the logarithm of the
equality obtained leads to

2 (lnCn + ln lnn− lnn) = (n + 1) ln

(

1− Cn lnn

n

)

.

Therefore for n → ∞,

O(1) + 2 ln lnn− 2 ln n = (n+ 1)

(

−Cn lnn

n
+ o

(

lnn

n

))

.

Dividing both parts by lnn implies after several simplifications that Cn = 2− o(1) and

εn =
2 lnn

n
− o

(

lnn

n

)

, n → ∞.

Thus we are done. �

The second part of Theorem 1 is covered by the following result that was first announced
in the manuscript [10].
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Lemma 3. For odd n > n0 there exists Λn such that |Sm(Λn)| 6 am and

(45)

(

1 +
1

10n

)

a 6 |λ1| 6
(

1 +
1

n

)

a.

Proof. By changing variables we come to the case a = 1. For n > 2 consider the polynomial
(19) with the roots Λn whose power sums are defined by

Sm = 1, m = 1, . . . , n − 1, Sn = (−1)n.

It can be easily seen that for even n (we do not consider this case below) one has

pn(λ) := λn − λn−1,

whose roots lie in the disc |λ| 6 1. For odd n,

Sm = 1, m = 1, . . . , n− 1, Sn = −1,

and, by (18),
σ1 = 1, σ2 = . . . = σn−1 = 0, σn = −2/n.

Consequently,
Pn(λ) := λn−1(λ− 1) + 2/n.

Let us show that one of the roots of this polynomial, say, λ1, satisfies (45). Below we use
the notation

D(r) := {λ : |λ| < r}, γ(r) := ∂D(r), l(r) := pn(γ(r)), L(r) := Pn(γ(r)).

We first prove the right hand side inequality in (45). By Rouché’s theorem, for n > 5
the polynomials Pn and pn have the same number of roots in the disc D (1 + 1/n). Indeed,
for λ ∈ γ (1 + 1/n) we have

|Pn(λ)− pn(λ)| = 2
n <

(

1 + 1
n

)n−1 1
n 6 |pn(λ)|, n > 5.

Consequently, for odd n the roots of Pn satisfy the estimate

max
k=1,...,n

|λk| < 1 + 1
n , n > 5.

It is clear geometrically that the argument of the vector w1 = pn(λ) is monotonically
growing while moving around the circle γ(r) with r > 1 in the positive direction. Moreover,
the length of the vector w1 is growing while λ moves around the upper semicircle γ(r)∩C

+

in the positive direction. The image l(r) of the circle γ(r) is symmetric with respect to
the real axis and has n self-intersection points, belonging to the axes. These points divide
the curve l(r) into n connected components (loops), each containing the origin. Note also
that the image of L(r) is the curve l(r) shifted to the right by 2/n. Consequently, the
corresponding loops of the image L (1 + 1/n) still contain the origin.

Now we are going to show that at least one of the loops of the image L (1 + 1/(10n))
of the circle γ (1 + 1/(10n)) does not contain the origin. This means that the argument
increment of the vector w2 = Pn(λ) does not exceed 2π(n−1) on the circle γ (1 + 1/(10n)),
and thus at least one of the roots of the polynomial Pn lie outside the circle, i.e. the left
hand side estimate in (45) is true. Consider the arc

γ∗ :=
{

λ ∈ γ
(

1 + 1
10n

)

: − 17
10n 6 arg λ 6 17

10n

}

.

Let us find the argument increment over this arc for the continuous branch of the argument
of w1. It is equal to the sum of the argument increments for each factor in pn, i.e.

∆γ∗ argw1 = ∆γ∗ argλn−1 +∆γ∗ arg(λ− 1).

It can be easily seen that ∆γ∗ arg λn−1 = 17
5 (1 − 1/n) > 1.08π(1 − 1/n). Moreover, the

increment ∆γ∗ arg(λ − 1) > 2 arctan 16 > 0.96π for sufficiently large n. This follows from
the fact that, for λ ∈ γ∗ and ϕ = ± 17

10n , we have 0 < Re (λ−1) 6 1/(10n) and |Im (λ−1)| 6
18/(10n), where Im (λ−1) has the same sign as ϕ. Thus the total increment of the argument
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of ∆γ∗ argw1 > 2π for sufficiently large n. This implies that the image pn(γ
∗) includes a

loop that contains the origin inside.
Now let us prove that that the analogous loop of the image Pn(γ

∗) already does not
contain the origin inside. To do so, let us note that the image pn(γ

∗) entirely lies in the
disc |λ| < 2/n. Indeed, for λ ∈ γ∗ and sufficiently large n we have

|λ|n−1 6
(

1 + 1
10n

)n−1
< 10

√
e,

|λ− 1| 6
√

(

1 + 1
10n

)2 − 2
(

1 + 1
10n

)

cos 17
10n + 1

6

√

1
(10n)2

+
(

17
10n

)2 (
1 + 1

10n

)

< 18
10n .

Consequently, |pn(γ∗)| < 18 10
√
e/(10n) < 2/n for sufficiently large n and therefore the

image Pn(γ
∗) entirely lies in the disc |λ− 2/n| < 2/n that does not contain the origin.

Summarising, for odd n > n0 the power sums of the roots of Pn satisfy the inequalities
|Sm| 6 1 for m = 1, . . . , n, and one of the roots meets the estimate (45). �
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Tchebycheff, Izv. Akad. Nauk SSSR Ser. Mat., 2:4 (1938), 427–444

http://arxiv.org/abs/1308.0753
http://arxiv.org/abs/1807.06499


GENERALIZED EXPONENTIAL SUMS WITH EQUAL WEIGHTS 17

[21] Y.I. Lyubich, The Sylvester–Ramanujan system of equations and the complex power moment problem,
Ramanujan J. 8 (2004) 23–45.

[22] I.P. Natanson, Constructive function theory, Volume III, Interpolation and Approximation Quadra-
tures, New York, Ungar, 1964.

[23] Yu.M. Nigmatyanova, Numerical analysis of the method of differentiation by means of real h-sums, J.
Math. Sci., 224:5 (2017), 735–743.

[24] G. Plonka, M. Tasche, Prony methods for recovery of structured functions. GAMM-Mitt. 37 (2014),
no. 2, 239–258.

[25] D. Potts, M. Tasche, Parameter estimation for nonincreasing exponential sums by Prony-like methods,
Linear Algebra Appl. 439 (2013), no. 4, 1024–1039.

[26] V.V. Prasolov, Polynomials, Algorithms and Computation in Mathematics, Volume 11, Springer, 2004.

National Center for Cognitive Technologies, ITMO University (Saint Petersburg, Rus-
sia)


	1. Introduction
	1.1. Statement of the problem

	2. Estimates for power sums and their components
	3. Padé interpolation by Hn
	3.1. Main theorem about the Padé interpolation by Hn
	3.2. The number of arithmetic operations. Comparison with other Padé-type problems for amplitude and frequency sums
	3.3. Applications of the Padé interpolation and corresponding estimates

	4. Prony interpolation by Hn
	4.1. Main theorem about the Prony interpolation by Hn
	4.2. Comparison with the original Prony exponential interpolation problem
	4.3. Examples and further remarks

	5. The proof of Theorem 1
	References

