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Abstract

In this paper, we study the sequence of orthogonal polynomials {Sn}∞
n=0 with respect to

the Sobolev-type inner product

〈 f ,g〉=
∫ 1

−1
f (x)g(x)dµ(x)+

N

∑
j=1

η j f (d j)(c j)g(d j)(c j),

where µ is in the Nevai class M(0,1), η j > 0, N,d j ∈ Z+ and {c1, . . . ,cN} ⊂ R \ [−1,1].
Under some restriction of order in the discrete part of 〈·, ·〉, we prove that for sufficiently
large n the zeros of Sn are real, simple, n−N of them lie on (−1,1) and each of the mass
points c j “attracts” one of the remaining N zeros.

The sequences of associated polynomials {S[k]n }∞
n=0 are defined for each k ∈ Z+. We

prove an analogous of Markov’s Theorem on rational approximation to a function of certain
class of holomorphic functions and we give an estimate of the “speed” of convergence.
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1 Introduction
Let µ be a finite positive Borel measure whose support supp(µ) ⊂ [−1,1] contains an infinite
set of points, and {Pn}n≥0 be the sequence of monic orthogonal polynomials with respect to µ ,
defined by the relations

〈xk,Pn〉µ =
∫ 1

−1
xk Pn(x)dµ(x) = 0, k = 0,1, . . . ,(n−1). (1)

These polynomials satisfy the three-term recurrence relation

Pn+1(z) =(z−bn)Pn(z)−a2
nPn−1(z), n≥ 0, (2)

P−1(z) = 0 and P0(z) = 1;

where a0 6= 0 is an arbitrary constant, an = ‖Pn‖µ/‖Pn−1‖µ for n > 0, bn = 〈Pn,x Pn〉µ/‖Pn‖2
µ

and ‖ · ‖µ =
√
〈·, ·〉µ . Usually, an inner product is called standard if the multiplication operator

is symmetric with respect to the inner product, i.e., 〈x f ,g〉µ = 〈 f ,xg〉µ . Clearly, (1) is standard
and (2) is an immediate consequence of (1) , which turns out to be an essential tool in the theory
of standard orthogonal polynomials.

We say that a measure µ with support [−1,1] is in the Nevai class M(0,1), µ ∈M(0,1), if
the corresponding sequence of orthogonal polynomials {Pn}n≥0 satisfies the recurrence relation
(2), when lim

n→∞
an = 1/2 and lim

n→∞
bn = 0. The condition µ ′ > 0 a.e. on [−1,1] is a sufficient

condition for µ ∈M(0,1) (c.f. [14, 16]). The class M(0,1) has been thoroughly studied in
[11], where it is proved that µ ∈M(0,1) is equivalent to

Pn+1(z)
Pn(z)

⇒
n

ϕ(z)
2

, K ⊂Ω = C\ [−1,1], (3)

where ϕ(z) = z+
√

z2−1 (
√

z2−1 > 0 for z > 1) is the function which maps the comple-
ment of [−1,1] onto the exterior of the unit circle. Throughout this paper, we use the notation
fn ⇒

n
f ; K ⊂U when the sequence of functions fn converges to f uniformly on every compact

subset K of the region U .
Let us denote by P[1]

n the usually called nth polynomial associated to Pn, defined by the
expression

P[1]
n (z) =

∫ 1

−1

Pn+1(z)−Pn+1(x)
z− x

dµ(x).

Note that P[1]
n is a polynomial of degree n with leading coefficient equal to µ([−1,1]), which

satisfies the three-term recurrence relation

P[1]
n+1(z) =(z−bn+1)P

[1]
n (z)−a2

n+1P[1]
n−1(z), n≥ 0, (4)

P[1]
−1(z) = 0 and P[1]

0 (z) = µ([−1,1]).

As it is known, some particular families of orthogonal polynomials were studied in detail
before a general theory existed. One of the starting points of this theory is closely related to the
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study of the convergence of certain sequences of rational functions, as can be seen in the first
treatises on the subject [17, Ch. I-§4,] and [18, §3,5]. The analysis of the convergence of these
sequences entails essential difficulties. One of the first, and most remarkable, general results in
this sense is the following theorem established by A. A. Markov in 1895.

Markov’s Theorem ([12, Th. 6.1]). Let µ be a finite positive Borel measure supported in
[−1,1]. Then

P[1]
n (z)

Pn+1(z)
⇒
n

µ̂(z), K ⊂Ω∞ = C\ [−1,1],

where µ̂(z) =
∫ 1

−1

dµ(x)
z− x

is known as Markov’s function of µ .

Note that µ̂(z) is well defined and holomorphic in Ω∞ ( µ̂ ∈ H(Ω∞) for short). Some
examples can be seen in [12, p. 64]. This classical theorem admits several generalizations,
some of which are discussed in [1, 2, 3, 5] and references therein.

We define the discrete Sobolev inner product through the expression

〈 f ,g〉=
∫ 1

−1
f (x)g(x)dµ(x)+

N

∑
j=1

d j

∑
i=0

η j,i f (i)(c j)g(i)(c j); (5)

where µ is as above, N ≥ 0, η j,i ≥ 0, η j,d j > 0, c j ∈ R\ [−1,1], d j ∈ Z+ and f (i) denotes the
ith derivative of a function f .

For n ∈ Z+ we denote by Sn the monic polynomial of lowest degree satisfying

〈xk,Sn〉= 0, for k = 0,1, . . . ,n−1. (6)

It is easy to see that for every n ∈ Z+, there exists a unique polynomial Sn of degree n. In fact,
the existence of such polynomials is deduced by solving a homogeneous linear system with n
equations and n+ 1 unknowns. Uniqueness follows from the minimality of the degree for the
polynomial solution.

We refer the reader to [9, 10] for a review of this type of non-standard orthogonality. As
is well known, most arguments for the standard theory of orthogonal polynomials fail in the
Sobolev case. As shown in the next examples, it is no longer true that the zeros lie on the
convex hull of the support of the measures involved in the inner product.

Examples.

1. Set 〈 f ,g〉=
∫ 1

−1
f (x)g(x)dx+ f ′(3)g′(3)+ f ′′(2)g′′(2), then

S5(x) = x5 +
11282625
1995289

x4 +
202236410
1795760

x3 +
28506900
1995289

x2− 438413755
41901069

x− 11758825
1995289

,

whose zeros are approximately ξ1 ≈ 0.4, ξ2 ≈ −0.7, ξ3 ≈ 1.1+ 2i, ξ4 ≈ 1.1− 2i and
ξ5 ≈ 3.8. Note that three of them are out of [−1,1] and two are not real numbers.
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2. Set 〈 f ,g〉=
∫ 1

−1
f (x)g(x)(1− x)dx+ f ′(3)g′(3)+ f ′′(2)g′′(2), then

S5(x) = x5 +
57943145
27312164

x4− 242237045
13656082

x3− 522277585
20484123

x2− 53214815
40968246

x+
220912645
52141404

,

whose zeros are approximately ξ1 ≈ 0.3, ξ2 ≈−0.6, ξ3 ≈−1.1, ξ4 ≈ 3.9 and ξ5 ≈−4.7.
Note that three zeros are out of [−1,1] and two of them, escape to the opposite side where
the mass points are found.

Definition 1. Let {(r j,ν j)}M
j=1⊂R×Z+ be a finite sequence of M ordered pairs and A ⊂ R.

We say that {(r j,ν j)}M
j=1 is sequentially-ordered with respect to A, if

1. 0≤ ν1 ≤ ν2 ≤ ·· · ≤ νM.

2. rk /∈ Ch (A∪{r1,r2, . . . ,rk−1}) for k = 1,2, . . . ,M; where Ch (B) denotes the convex hull
of an arbitrary set B⊂ C.

If A = /0, we say that {(r j,ν j)}M
j=1 is sequentially-ordered for brevity.

We say that the discrete Sobolev inner product (5) is sequentially-ordered, if the set of or-
dered pairs {(c j, i) : 1 ≤ j ≤ N,0 ≤ i ≤ d j and η j,i > 0} may be arranged to form a finite
sequence of ordered pairs which is sequentially ordered with respect to (−1,1).

From the second condition of Definition 1, the coefficient η j,d j is the only coefficient η j,i
(i = 0,1, . . . ,d j) different from zero, for each j = 1,2, . . . ,N. Hence, (5) takes the form

〈 f ,g〉=
∫ 1

−1
f (x)g(x)dµ(x)+

N

∑
j=1

η j,d j f (d j)(c j)g(d j)(c j). (7)

Note that the inner products involved in the previous examples are not sequentially-ordered.
In most of our work, we will restrict our attention to sequentially-ordered discrete Sobolev inner
products. The following theorem shows our reasons for this assumption.

Theorem 1. If (7) is a sequentially-ordered discrete Sobolev inner product, then Sn has at least
n−N changes of sign on (−1,1).

The previous Theorem is still true if c j = −1 or c j = 1, for some j. Furthermore, if N = 1
in (7), from Theorem 1 we get that all the zeros of Sn are real, simple, and at most one of them
is outside of (−1,1).

If n≤ N, Sn can have changes of sign on (−1,1) or not. For example, if ∑
N
j=1 η j,0 = 0, for

all n ≥ 1, we have 〈Sn,1〉 = 〈Sn,1〉µ = 0, which yields that Sn has at least one sign change on
(−1,1). On the other hand, if 〈 f ,g〉=

∫ 1
−1 f (x)g(x)dx+ f (6)g(6), then S1(z) = z−2, which is

negative on (−1,1).
As will be seen in Lemma 3.4, for sequentially-ordered discrete Sobolev inner products, the

corresponding orthogonal polynomial Sn with degree n sufficiently large, has all its zeros real
and simple, each sufficiently small neighborhood of c j ( j = 1, . . . ,N) contains exactly one zero
of Sn, and from the Theorem 1 the remaining n−N zeros lie on (−1,1).
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Let {Qn}n≥0 be the sequence of monic orthogonal polynomials with respect to the inner
product

〈 f ,g〉ρ =
∫ 1

−1
f (x) g(x) dµρ(x), where ρ(z) = ∏

c j<−1

(
z− c j

)d j+1
∏

c j>1

(
c j− z

)d j+1 (8)

and dµρ(x) = ρ(x)dµ(x).

Note that ρ is a polynomial of degree d = N +∑
N
j=1d j and positive on [−1,1].

Now, we associate to the sequence {Sn}∞
n=0 the next sequences of polynomials

S[k]n (z) =
∫ 1

−1

Sn+k(z)−Sn+k(x)
z− x

Qk−1(x) dµρ(x), (9)

for k ∈ N and n ≥ 0. Additionally, we adopt the convention S[0]n = Sn. We call
{

S[k]n

}∞

n=0
the

sequence of kth polynomials associated to {Sn}∞

n=0.
As far as we know, the only extension of Markov’s Theorem for Sobolev orthogonal poly-

nomials appears in [8, Th. 5.5], when the inner product (5) is such that N = 1, d1 = 1, c1 = 0,
η1,0 = 0, and η1,1 > 0. The main aim of the present paper is to prove the following theorem,
which provides a natural extension of the Markov’s Theorem for the Sobolev case.

Theorem 2 (Extended Markov’s Theorem). Let (7) be a sequentially-ordered discrete Sobolev
inner product with µ ∈M(0,1). Then, for k ∈N,

R[k]
n =

S[k]n (z)
Sn+k(z)

⇒
n

µ̂k(z) =
∫ 1

−1

Qk−1(x)
z− x

dµρ(x), K ⊂Ω
∗
∞ = Ω∞ \{c1,c2, . . . ,cN}. (10)

We call µ̂k the kth Markov-type function associated with µρ .

Also, in Corollary 2.1, we give the following estimate for the degree of convergence of the
sequence of rational functions {R[k]

n } to the corresponding Markov-type function µ̂k.

limsup
n

∥∥∥µ̂k−R[k]
n

∥∥∥1/2n

K
≤ ‖ϕ‖−1

K < 1, where ‖ f‖K = sup
z∈K
| f (z)|.

The rest of the paper is organized as follows. The next section is devoted to the consequences
of the quasi-orthogonality of Sn with respect to the measure µ . Sections 3 and 5 contain the
proofs of Theorems 1 and 2 respectively, as well as some of their consequences. The Section 4
deals with the auxiliary results for the proof of the main result (Theorem 2).

2 Recurrence relations
Unlike the rest of the paper, the inner product (5) does not necessarily have to be sequentially-
ordered in this section.
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If n > d, from (6), we have that Sn satisfies the following quasi-orthogonality relations with
respect to dµρ

〈Sn, f 〉ρ = 〈Sn,ρ f 〉µ =
∫ 1

−1
Sn(x) f (x)ρ dµ(x) = 〈Sn,ρ f 〉= 0, (11)

for all f ∈Pn−d−1, where Pn is the linear space of polynomials with real coefficients and degree
at most n ∈ Z+. Hence, the polynomial Sn is quasi-orthogonal of order d with respect to dµρ

and by this argument we get the next result.

Proposition 2.1. Let Sn be the n-th orthogonal polynomial with respect to (5) and n > d, then
Sn has at least (n−d) changes of sign on (−1,1).

Proposition 2.2. Let S[k]n be the kth associated polynomial defined by (9). Then S[k]n is a polyno-
mial of degree n and leading coefficient equal to ‖Qk−1‖2

µρ
.

Proof. Let Sn+k(x) =
n+k

∑
i=0

θi xi where θn+k = 1, then

S[k]n (z) =
∫ 1

−1

Sn+k(z)−Sn+k(x)
z− x

Qk−1(x) dµρ(x) =
n+k

∑
i=1

θi

∫ 1

−1

zi− xi

z− x
Qk−1(x) dµρ(x)

=
n+k

∑
i=1

θi

∫ 1

−1

(
i−1

∑
j=0

zi−1− jx j

)
Qk−1(x) dµρ(x)

=
n+k

∑
i=1

θi

i−1

∑
j=0

zi−1− j
(∫ 1

−1
x j Qk−1(x) dµρ(x)

)
=

n+k

∑
i=1

θi

i−1

∑
j=k−1

〈x j,Qk−1〉ρ zi−1− j

=
n+k−1

∑
j=k−1

〈x j,Qk−1〉ρ zn+k−1− j +
n+k−1

∑
i=1

θi

i−1

∑
j=k−1

〈x j,Qk−1〉ρ zi−1− j

=〈xk−1,Qk−1〉ρ zn + fn−1(z) = ‖Qk−1‖2
µρ

zn + fn−1(z).

where fn−1 is a polynomial of degree at most n−1.

In the standard case of orthogonality, where the polynomials {Pn} satisfy the three terms
recurrence relation (2), the sequence of associated polynomials {P[1]

n } can be generated by the
recurrence relation (4). The following proposition is an analogous result for the sequence of
associated polynomials {S[k]n }.

Proposition 2.3 (Recurrence relation). For n≥ 2d−1, the sequences {S[k]n }∞
n=0 satisfy the fol-

lowing 2d +1 term recurrence relation

ρ(z)S[k]n (z) =
n+d

∑
j=n−d

an+k, j+k S[k]j (z), where an+k, j+k =
〈Sn+k,ρS j+k〉
〈S j+k,S j+k〉

. (12)
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Proof. It is straightforward to obtain (12) for k = 0 as a consequence of (11), i.e.,

ρ(z)Sn(z) =
n+d

∑
j=n−d

an. j S j(z), where an. j =
〈Sn,ρS j〉
〈S j,S j〉

. (13)

Hence, if k > 0

ρ(z)Sn+k(z)−ρ(x)Sn+k(x)
z− x

Qk−1(x) =
n+d

∑
j=n−d

an+k. j+k
S j+k(z)−S j+k(x)

z− x
Qk−1(x),

∫ 1

−1

ρ(z)Sn+k(z)−ρ(x)Sn+k(x)
z− x

Qk−1(x)dµρ(x) =
n+d

∑
j=n−d

an+k. j+k S[k]j (z).

As n≥ 2d−1, from (11), we get
∫ 1

−1
Sn+k(x)

ρ(z)−ρ(x)
z− x

Qk−1(x)dµρ(x) = 0. Hence,

ρ(z)S[k]n (z) =
∫ 1

−1

ρ(z)(Sn+k(z)−Sn+k(x))
z− x

Qk−1(x)dµρ(x)

+
∫ 1

−1
Sn+k(x)

ρ(z)−ρ(x)
z− x

Qk−1(x)dµρ(x)

=
∫ 1

−1

ρ(z)Sn+k(z)−ρ(x)Sn+k(x)
z− x

Qk−1(x)dµρ(x),

and we get (12).

Remember that {Qn}n≥0 is the sequence of monic orthogonal polynomials with respect to
dµρ , which was defined in (8). As it is known, this sequence satisfies the three-term recurrence
relation

Qn+1(z) = (z−βn)Qn(z)−α
2
n Qn−1(z), n≥ 0, (14)

where Q−1 = 0, Q0 = 1, ‖ · ‖2
µρ

= 〈·, ·〉ρ , βn = 〈Qn,xQn〉ρ/‖Qn‖2
µρ

, αn = ‖Qn‖µρ
/‖Qn−1‖µρ

and α
2
0 =

∫ 1

−1
dµρ(x).

Following [19], we define its kth sequence of associated polynomials {Q[k]
n } (k ∈ Z+) as

Q[k]
n (z) =

∫ 1

−1

Qn+k(z)−Qn+k(x)
z− x

Qk−1(x)dµρ(x), (15)

where Q[0]
n = Qn. Note that Q[k]

n is a polynomial in z of degree n. From [19, (1.3) and (2.13)]

Q[k]
n+1(x) = (x−βn+k)Q

[k]
n (x)−α

2
n+kQ[k]

n−1(x). (16)

The next proposition is analogous to [19, (2.5)] for the Sobolev case.

Proposition 2.4. For n≥ d−1, the sequences {S[k]n }∞
n=0, for k ≥ 2, hold the following relation

S[k]n (z) = (z−βk−2)S
[k−1]
n+1 (z)−α

2
k−2S[k−2]

n+2 (z). (17)
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Proof. From (14)-(15),

S[k]n (z) =
∫ 1

−1

Sn+k(z)−Sn+k(x)
z− x

(
(x−βk−2)Qk−2(x)−α

2
k−2Qk−3(x)

)
dµρ(x)

=


∫ 1

−1

Sn+k(z)−Sn+k(x)
z− x

xQk−2(x) dµρ(x)−βk−2S[k−1]
n+1 (z)−α

2
k−2S[k−2]

n+2 (z), if k ≥ 3,∫ 1

−1

Sn+2(z)−Sn+2(x)
z− x

xdµρ(x)−β0S[1]n+1(z), if k = 2.

(18)

From orthogonality,

∫ 1

−1

Sn+k(z)−Sn+k(x)
z− x

(z− x) Qk−2(x) dµρ(x) =

{
0, if k ≥ 3,
α2

0 Sn+2(z), if k = 2.

Therefore,

∫ 1

−1

Sn+k(z)−Sn+k(x)
z− x

xQk−2(x)dµρ(x) =

{
zS[k−1]

n+1 (z), if k ≥ 3,

zS[1]n+1(z)−α2
0 Sn+2(z), if k = 2.

(19)

Substituting (19) into (18), we get (17).

3 Proof of Theorem 1
In the remainder of the paper, we assume that (5) is sequentially-ordered. Therefore, we can
rewrite (5) as (7) with 0 ≤ d1 ≤ d2 ≤ ·· · ≤ dN . The next lemma is an extension of [7, Lemma
2.1].

Lemma 3.1. Let L be a polynomial with real coefficients of degree ≥ m ∈N, {∆i}m
i=0 be a set

of intervals on the real line, and Ik = Ch
(
∪k

i=0∆i
)

for k = 0,1, . . . ,m. If

Ik−1∩∆k = /0, k = 1,2, . . . ,m; (20)

then
m

∑
i=0

N0

(
L(i);∆i

)
≤N0

(
L(m); Im

)
+m≤ deg(L), (21)

where for a given non-null polynomial f and A ⊂ R the symbol N0( f ;A) denotes the total
number of zeros (counting multiplicities) of f on A.

Proof. For m = 0, it is straightforward that N0(L;∆0) ≤ N0(L;∆0) + 0 ≤ deg(L). We now
proceed by induction on m. Suppose that we have κ +1 intervals {∆i}κ

i=0 that satisfy (20), and
that (21) is true for the first κ−1 intervals.
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From Rolle’s Theorem, N0( f ;A)≤N0( f ′;A)+1, where A is an interval of the real line and
f ′ a non-null polynomial with real coefficients. Therefore,

κ

∑
i=0

N0

(
L(i);∆i

)
=

κ−1

∑
i=0

N0(L(i);∆i)+N0

(
L(κ);∆κ

)
≤N0

(
L(κ−1); Iκ−1

)
+(κ−1)+N0

(
L(κ);∆κ

)
≤N0

(
L(κ); Iκ−1

)
+1+N0

(
L(κ);∆κ

)
+(κ−1)

≤N0

(
L(κ); Iκ−1∪∆κ

)
+κ ≤N0

(
L(κ); Iκ

)
+κ ≤ deg(L).

Lemma 3.2. Let {(ri,νi)}M
i=1 be a sequence of M ordered pairs which is sequentially-ordered.

Then, there exists a unique monic polynomial UM of minimal degree, such that

U (νi)
M (ri) = 0 for i = 1,2, . . . ,M. (22)

Furthermore, the degree of UM is κM = min IM − 1, where IM = {i : 1 ≤ i ≤ M and νi ≥
i}∪{M+1}.
Proof. The existence of a not identically zero polynomial with degree ≤ M satisfying (22)
reduces to solving a homogeneous linear system of M equations on M+1 unknowns (its coeffi-
cients). Thus, a non trivial solution always exists. In addition, if we suppose that there exist two
different minimal monic polynomials UM and ŨM, then the polynomial ÛM = UM−ŨM is not
identically zero, it satisfies (22), and deg(ÛM) < deg(UM). So, if we divide ÛM by its leading
coefficient, we reach a contradiction.

The rest of the proof runs by induction on the number of points M. For M = 1, the result
follows taking

U1(x) =

{
x− r1 , if ν1 = 0,
1 , if ν1 ≥ 1.

Suppose that, for each sequentially-ordered sequence of M ordered pairs, the corresponding
minimal polynomial UM has degree κM.

Let {(ri,νi)}M+1
i=1 be a sequentially-ordered sequence of M + 1 ordered pairs. Obviously,

{(ri,νi)}M
i=1 is also sequentially-ordered, deg(UM+1) ≥ deg(UM), and from the induction hy-

pothesis deg(UM) = κM. Now, we shall divide the proof in two cases:

1. If κM+1 = M+1, then for all 1≤ i≤M+1 we have νi < i, which yields

deg(UM+1)≥ deg(UM) = κM = M ≥ νM+1. (23)

Let ∆k = Ch ({ci : νi = k}) for k = 0,1,2, . . . ,νM+1. As {(ri,νi)}M+1
i=1 is sequentially-

ordered, the set of intervals {∆k}
νM+1
k=0 satisfy (20). Therefore, from (23) and Lemma 3.1

we get

M+1≤
νM+1

∑
i=0

N0

(
U (i)

M+1;∆i

)
≤ deg(UM+1),

which implies that deg(UM+1) = M+1 = κM+1.
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2. If κM+1 ≤M, then there exists a minimal j (1≤ j ≤M+1), such that ν j ≥ j, and νi < i
for all 1≤ i≤ j−1. Therefore, κM+1 = j−1 = κM. From the induction hypothesis

deg(UM) = κM = j−1≤ ν j−1≤ νM+1−1,

which gives U (νM+1)
M ≡ 0. Hence, UM+1 ≡UM and deg(UM+1) = deg(UM) = κM = κM+1.

Observe that, in Lemma 3.2, the assumption of {(ri,νi)}M
i=1 being sequentially-ordered is

necessary for asserting that the polynomial UM has degree κM. In fact, if we consider the
non sequentially-ordered sequence {(−1,0),(1,0),(0,1)}, we get U3 = x2− 1 and κ3 = 3 6=
deg(U3).

Proof of Theorem 1. From the sequentially-ordered conditions, the intervals

∆0 = Ch ((−1,1)∪{ci : di = 0}) , ∆k = Ch ({ci : di = k}) for k = 1,2, . . . ,N,

satisfy (20).
Let ξ1 < ξ2 < · · · < ξ` be the points on (−1,1) where Sn changes sign and suppose that

` < n−N. Let {(ri,νi)}N+`
i=1 be the sequentially-ordered sequence

(ri,νi) =

{
(ξi,0), if i = 1,2, . . . , `;
(ci−`,di−`), if i = `+1, `+2, . . . , `+N.

From Lemma 3.2, there exists a unique monic polynomial UN+` of minimal degree, such that

U (νi)
N+`(ri) = 0; for i = 1, . . . ,N + `.

Furthermore,
deg(UN+`) = min IN+`−1≤ N + `, (24)

where IN+` = {i : 1 ≤ i ≤ N + ` and νi ≥ i}∪ {N + `+ 1}. Now, we need to consider the
following two cases.

1. If deg(UN+`)< N+ `, from (24), there exists 1≤ j ≤ N+ ` such that deg(UN+`) = j−1,
ν j ≥ j and νi ≤ i−1 for i = 1,2, . . . , j−1. Hence, ν j−1 +1≤ j−1 = deg(UN+`). Thus,
from Lemma 3.1,

j−1≤
ν j−1

∑
k=0

N0

(
U (k)

N+`;∆k

)
≤ deg(UN+`) = j−1,

2. If deg(UN+`) = N + `, from (24), we get deg(UN+`) = N + ` ≥ ν`+N + 1 = dN + 1 and
from Lemma 3.1,

N + `≤
dN

∑
k=0

N0

(
U (k)

N+`;∆k

)
≤ deg(UN+`) = N + `,
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In both cases, we obtain that UN+` has simple zeros on (−1,1)⊂ ∆0 and has no other zeros than
those given by construction. Now, since deg(UN+`)≤ `+N < n, we arrive at the contradiction

0 = 〈Sn,UN+`〉=
∫ 1

−1
Sn(x)UN+`(x)dµ(x)+

N

∑
j=1

η j,d jS
(d j)
n (c j)U

(d j)
N+`(c j)

=
∫ 1

−1
Sn(x)UN+`(x)dµ(x) 6= 0.

The following Lemma is a direct consequence of [6, (1.10)], when instead of the inner
product [6, (1.1)], we consider (7).

Lemma 3.3. Consider the sequentially-ordered inner product (7) with µ ∈M(0,1). Then,

Sn(z)
Pn(z)

⇒
n

N

∏
j=1

(ϕ(z)−ϕ(c j))
2

2ϕ(z) (z− c j)
, K ⊂ C\ [−1,1], (25)

where ϕ is as in (3).

Now, combining Theorem 1 and Lemma 3.3, we get the following useful lemma.

Lemma 3.4. If (7) is a sequentially-ordered Sobolev inner product such that µ ∈M(0,1), then:

1. For all n sufficiently large, each sufficiently small neighborhood of c j; j = 1, . . . ,N; con-
tains exactly one zero of Sn, and the remaining n−N zeros lie on (−1,1).

2. For all n sufficiently large, the zeros of Sn are real and simple.

3. The set of zeros of {Sn}∞
n=1 is uniformly bounded.

Proof. The first assertion of the lemma is a direct consequence of (25) and Rouché’s Theorem
(see [4, Th. 9.2.3]). Note that Sn is a polynomial with real coefficient. Therefore, the second
and third sentences are consequences of the first assertion and Theorem 1.

4 Auxiliary lemmas
Let Sn be the n-th orthogonal polynomial with respect to the sequentially-ordered inner product
(7). Taking into consideration the Theorem 1, let {ξn,i}n−N

i=1 be the n−N simple zeros of Sn
on (−1,1) for all sufficiently large n and let {ξn,n−N+i}N

i=1 be the remaining N zeros of Sn.
Obviously, Sn admits the representation

Sn(x) = Sn,1(x) Sn,2(x), where Sn,1(x) =
n−N

∏
i=1

(x−ξn,i) and Sn,2(x) =
N

∏
i=1

(x−ξn,n−N+i). (26)
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From Lemma 3.4, for all sufficiently large n, the last N zeros of Sn are real and simple. Further-
more, the sign of Sn,2 is constant on [−1,1] and equal to (−1)ν , where ν is the number of c j
greater than 1. Thus, the polynomial S+n,2(x) = (−1)νSn,2(x) is positive on [−1,1].

The following Lemma is an analogous of the Gauss-Jacobi quadrature formula for the
sequentially-ordered Sobolev inner product, when n is sufficiently large.

Lemma 4.1. Let Sn and {ξn,i}n−N
i=1 as above. If n is sufficiently large, then for every polynomial

T with deg(T )≤ 2n−d−N−1,∫ 1

−1
T (x)S+n,2(x)dµρ(x) =

n−N

∑
i=1

λn,i S+n,2(ξn,i)T (ξn,i), (27)

where λn,i =
∫ 1

−1

Sn(x)
S′n(ξn,i)(x−ξn,i)

dµρ(x).

Moreover, the number of positive coefficients λn,i is greater than or equal to
(
n− d+N

2

)
. We call

Christoffel-type coefficients to the numbers {λn,i}n
i=1.

Proof. Let T be an arbitrary polynomial of degree at most 2n−d−N−1 and denote by L the
Lagrange polynomial interpolating T at the points ξn,1, . . . ,ξn,n−N (deg(L )< n−N), i.e.,

L (z) =
n−N

∑
i=1

T (ξn,i)
Sn,1(z)

S′n,1(ξn,i)(z−ξn,i)
.

Then, T −L = f Sn,1 where deg( f )≤ n−d−1. From (11)∫ 1

−1
(T −L )(x)Sn,2(x)dµρ(x) =

∫ 1

−1
f (x)Sn(x)dµρ(x) = 0.

Hence, ∫ 1

−1
T (x)Sn,2(x)dµρ(x) =

∫ 1

−1
L (x)Sn,2(x)dµρ(x),

=
∫ 1

−1

(
n−N

∑
i=1

T (ξn,i)
Sn,1(x)

S′n,1(ξn,i)(x−ξn,i)

)
Sn,2(x)dµρ(x),

=
n−N

∑
i=1

(∫ 1

−1

Sn(x)
S′n,1(ξn,i)(x−ξn,i)

dµρ(x)

)
T (ξn,i),

which establishes (27). Assume that n is fixed, let I+ = {1≤ i≤ n−N : λn,i > 0} and Λ
2
+(x) =

∏
i∈I+

(x−ξn,i)
2. If deg(Λ2

+)< 2n−d−N, from (27),

0 <
∫ 1

−1
Λ

2
+(x) S+n,2(x)dµρ(x) =

n−N

∑
i=1

i6∈I+

λn,i Λ
2
+(ξn,i) S+n,2(ξn,i)≤ 0,

which is a contradiction and the second assertion is established.
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Let us denote for k ∈N

R[k]
n,1(z) =

S[k]n,1(z)

Sn+k,1(z)
, where S[k]n,1(z) =

∫ 1

−1

Sn+k,1(z)−Sn+k,1(x)
z− x

Qk−1(x) dµρ,n(x) (28)

and dµρ,n(x) = S+n+k,2(x) ρ(x) dµ(x).

From Lemma 3.4, it is straightforward to see that:

1. If n is sufficiently large, S+n+k,2(x) ρ(x)> 0 for all x ∈ [−1,1].

2. There exists a constant Mρ > 0, such that for all n ∈ Z+

µρ,n([−1,1]) =
∫ 1

−1
S+n+k,2(x) ρ(x) dµ(x)≤Mρ . (29)

Lemma 4.2 (Principal Lemma). Let {Sn}∞
n=0 be the monic orthogonal polynomial sequence

with respect to a sequentially-ordered Sobolev inner product (7). Then, for n sufficiently large

R[k]
n,1(z) =

n+k−N

∑
j=1

S+n+k,2(ξn+k, j) λn+k, j

(z−ξn+k, j)
. (30)

Furthermore, {R[k]
n,1} is uniformly bounded on each compact subset K ⊂ C\ [−1,1].

Proof. Let n and k be fixed. For simplicity of notation, we write ξ j instead of ξn+k, j. Then,
{ξ j}n+k−N

j=1 is the set of zeros of Sn+k on (−1,1).
From Theorem 1, for n sufficiently large, we have that the zeros of Sn+k are simple and

n+ k−N of them lie on (−1,1). Thus, S′n+k(ξ j) 6= 0 for j = 1, . . . ,n+ k−N; and

R[k]
n,1(z) =

n+k−N

∑
j=1

b j

z−ξ j
,

where

b j = lim
z→ξ j

(z−ξ j)R
[k]
n,1(z) = lim

z→ξ j

(z−ξ j)

Sn+k,1(z)
lim

z→ξ j
S[k]n,1(z)

=Sn+k,2(ξ j)
∫ 1

−1

(−1)νSn+k(x)Qk−1(x)dµρ(x)
S′n+k(ξ j)(x−ξ j)

= S+n+k,2(ξ j) λn+k, j,

and we get (30).
The second part of this proof, as [15, Lemma 1], is based on the second proof of Chebyshev-

Markov-Stieltjes’s Separation Theorem in [18, §3.41]. Through the proof, we use the following
notations:

dϑ(x) =
n+k−N

∑
j=1

λn+k, j S+n+k,2(ξ j)δξ j(x), δξ j(x) =

{
1, x = ξ j,

0, x 6= ξ j.
,

ϑ(x) =
∫ x

−1
dϑ(t), uρ,n(x) =

∫ x

−1
dµρ,n(t) and ω(x) = uρ,n(x)−ϑ(x).
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Let us recall that the function uρ,n is monotone nondecreasing on [−1,1]. Set ξ0 = −1 and
ξn+k−N+1 = 1. Then, ϑ is a step-function, which is constant on each interval (ξ j,ξ j+1) for
j = 0,1, . . . ,n+ k−N. Hence, ω is monotone nondecreasing on each of these open intervals.

With these notations, we can rewrite (27) as∫ 1

−1
T (x) dω(x) = 0, for any polynomial T of degree at most (2(n+ k)−d−N−1). (31)

As ω(−1) = uρ,n(−1)−ϑ(−1) = 0 and

ω(1) = uρ,n(1)−ϑ(1) = µρ,n([−1,1])−µρ,n([−1,1]) = 0,

integrating by parts in (31), we get ∫ 1

−1
ω(x) T ′(x) dx = 0. (32)

We use the symbol N1(q; I) to denote the number of points of sign change of the function q
on the interval I ⊂ R. Obviously, in (32), the polynomial T ′ can be replaced by any other
polynomial of degree at most (2(n + k)− d −N − 2) and consequently, we can assert that
N1(ω;(−1,1))≥ 2(n+ k)−d−N−1.

Note that N1(ω;(ξ0,ξ1)) = N1(ω;(ξn+k−N ,ξn+k−N+1)) = 0. Take into account that ω is
monotone nondecreasing on each interval (ξ j,ξ j+1), j = 1, . . . ,n+ k−N−1. Hence, it has at
most one sign change on each of them. Therefore, we can conclude that the total number of sign
changes of ω on

⋃n+k−N−1
j=1 (ξ j,ξ j+1) is not greater than (n+ k−N−1). On the other hand, ω

could change sign at each of the n+ k−N points ξ j. In conclusion,

2(n+ k−N)− (d−N)−1≤N1(ω;(−1,1))≤ 2(n+ k−N)−1.

It thus follows that the number of intervals (ξ j,ξ j+1) where ω does not change sign is at most
(d−N). Indeed, if the number of intervals (ξ j,ξ j+1) where ω does not change sign is at least
(d−N +1), then 2(n+ k)−d−N−1≤N1(ω;(−1,1))≤ 2(n+ k)−1−d−N−2, which is
a contradiction.

We say that ξ j ∈ E1 if the function ω changes sign in each of the consecutive intervals
(ξ j−1,ξ j) and (ξ j,ξ j+1). In any other case, we say that ξ j ∈ E2.

Observe that if ω does not change sign on (ξ j,ξ j+1), then ξ j,ξ j+1 ∈ E2. From the previ-
ous considerations, the number of interval, where ω does not change sign is at most (d−N).
Therefore, E2 cannot contain more than 2(d−N) elements.

Suppose that λ j ≤ 0. If ξ j ∈ E1, we know that ω changes sign in each of the consecutive
intervals (ξ j−1,ξ j) and (ξ j,ξ j+1). Let x1 ∈ (ξ j−1,ξ j) such that ω(x1)> 0 and let x2 ∈ (ξ j,ξ j+1)
such that ω(x2)< 0. As uρ,n(x) is monotone nondecreasing on (−1,1), we get

0 < ω(x1)−ω(x2) =
(
uρ,n(x1)−uρ,n(x2)

)
+λ j S+n+k,2(ξ j)≤ 0.

This contradiction proves that ξ j ∈ E1 implies that λ j > 0 (i.e., the Christoffel coefficients
corresponding to the zeros ξ j ∈ E1 are positive).
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Now, let ξ j ∈E1, x1 ∈ (ξ j−1,ξ j) such that ω(x1)≤ 0 and x2 ∈ (ξ j,ξ j+1) such that ω(x2)≥ 0.
Recalling again that uρ,n(x) is monotone nondecreasing on (−1,1), then 0≥ ω(x1)−ω(x2) =(
uρ,n(x1)−uρ,n(x2)

)
+ λ j S+n+k,2(ξ j) and λ j S+n+k,2(ξ j) ≤ uρ,n(x2)− uρ,n(x1) ≤ µρ,n(ξ j+1)−

µρ,n(ξ j−1). From the last inequality, we get

∑
ξ j∈E1

|λ j S+n+k,2(ξ j)|= ∑
ξ j∈E1

λ j S+n+k,2(ξ j)≤ 2µρ,n([−1,1]). (33)

Set K ⊂ C\ [−1,1] compact and m= min
x∈[−1,1]

z∈K

|x− z|> 0, then

∑
ξ j∈E1

∣∣∣∣∣S
+
n+k,2(ξ j) λn+k, j

(z−ξ j)

∣∣∣∣∣≤ 2µρ,n([−1,1])
m

≤
2Mρ

m
, (34)

where Mρ was defined in (29).

The aim of the last step of the proof is to show that the sum G2(z)= ∑
ξ j∈E2

S+n+k,2(ξ j) λn+k, j

(z−ξ j)
is

uniformly bounded on K. We renumber the zeros of Sn+k,1 in such a way that E2 = {ξ1, . . . ,ξm}
and E1 = {ξm+1, . . . ,ξn+k−N}. From the previous result, m≤ 2(d−N).

Firstly, we introduce several notations. Let ση be the η th elementary symmetric polynomi-
als evaluated in (ξ1, . . . ,ξm) (see [13, (1.2.4)]), i.e.,

σ0 = σ0(ξ1, . . . ,ξm) =1,

ση = ση(ξ1, . . . ,ξm) = ∑
1≤v1<···<vη≤m

η

∏
l=1

ξvl , for η = 1, . . . ,m.

The symbol ση , j = ση(ξ1, . . . ,ξ j−1,ξ j+1, . . . ,ξm) denotes the η th elementary symmetric
polynomial evaluated in (ξ1, . . . ,ξ j−1,ξ j+1, . . . ,ξm). It is straightforward to see that ση , j =
ση −ξ jση−1, j for η = 1, . . . ,m−1, and iteratively applying this equality η times, we have

ση , j =
η

∑
l=0

(
−ξ j

)l
ση−l.

For simplicity of notation, we write ρn+k. j = S+n+k,2(ξ j) λn+k, j. Hence, for i = 1, . . . ,m,

m

∑
j=1

ρn+k. j σi, j =
m

∑
j=1

ρn+k. j

(
i

∑
l=0

(
−ξ j

)l
σi−l

)
=

i

∑
l=0

σi−l

(
m

∑
j=1

ρn+k. j
(
−ξ j

)l

)
.

From Lemma 4.1 we have for l ≤ 2(d−N)

∫ 1

−1
(−x)l dµρ,n(x) =

n+k−N

∑
j=1

ρn+k. j (−ξ j)
l =

m

∑
j=1

ρn+k. j (−ξ j)
l +

n+k−N

∑
j=m+1

ρn+k. j (−ξ j)
l.
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Thus, from (34)∣∣∣∣∣ m

∑
j=1

ρn+k. j (−ξ j)
l

∣∣∣∣∣≤
∣∣∣∣∣n+k−N

∑
j=m+1

ρn+k. j (−ξ j)
l

∣∣∣∣∣+
∣∣∣∣∫ 1

−1
(−x)l dµρ,n(x)

∣∣∣∣≤ m+2
m

µρ,n([−1,1]).

As {ξ1, . . . ,ξm} ⊂ [−1,1], it is straightforward to see that |ση | ≤m for all η = 0, . . . ,m. There-
fore, for i = 1, . . . ,m∣∣∣∣∣ m

∑
j=1

ρn+k. j σi, j

∣∣∣∣∣≤ i

∑
l=0
|σi−l|

∣∣∣∣∣ m

∑
j=1

ρn+k. j
(
−ξ j

)l

∣∣∣∣∣≤ m2 (m+2)
m

µρ,n([−1,1]). (35)

Using the previous notation, we write

G2(z) =
m

∑
j=1

ρn+k. j

(z−ξ j)
=

Lm−1(z)
∏

m
j=1(z−ξ j)

where Lm−1(z) =
m

∑
j=1

ρn+k. j

m

∏
i=1
i6= j

(z−ξi).

From the classical Formula of Viète,
m

∏
i=1
i6= j

(z−ξi) =
m−1

∑
i=0

(−1)i
σi, j zm−1−i (see [13, (1.2.2)]) and

Lm−1(z) =
m

∑
j=1

ρn+k. j

(
m−1

∑
i=0

(−1)i
σi, j zm−1−i

)
=

m−1

∑
i=0

(−1)i

(
m

∑
j=1

ρn+k. j σi, j

)
zm−1−i.

Let M= max
z∈K
|z|. According to (35), for all z ∈ K,

|Lm−1(z)| ≤
m−1

∑
i=0

∣∣∣∣∣ m

∑
j=1

ρn+k. j σi, j

∣∣∣∣∣ |z|m−1−i ≤
m2 (m+2) µρ,n([−1,1])

m

m−1

∑
i=0
|z|m−1−i,

≤m+2
m

m3 max{Mm−1,1} µρ,n([−1,1])≤ m+2
m

m3 max{Mm−1,1}Mρ =M1.

|G2(z)|=
|Lm−1(z)|

∏
m
j=1

∣∣z−ξ j
∣∣ ≤ M1

mm . (36)

Finally, (34) and (36) establish the second assertion.

5 Proof of Theorem 2

Denote R[k]
n = S[k]n (z)

Sn+k(z)
and let µ̂k(z) =

∫ 1
−1

Qk−1(x)
z−x dµρ(x) be the kth Markov-type function as-

sociated to µρ (k ∈ N) as in (10). Note that µ̂k(z) is well defined and holomorphic in Ω∞ (
µ̂k ∈H(Ω∞) for short) and µ̂k(∞) = 0.

For the remainder
(

µ̂k(z)−R[k]
n (z)

)
, the following formulas take place.

16



Lemma 5.1. Let µ be a positive Borel measure supported on [−1,1] and Sn(z) and S[k]n (z)
defined as above. Then,

µ̂k,n(z)−R[k]
n,1(z) = S+n+k,2(z)

(
µ̂k(z)−R[k]

n (z)
)
= O

(
1

z2(n+1)+k−d−N

)
, (37)

where µ̂k,n(z) =
∫ 1

−1

Qk−1(x)
z− x

dµρ,n(x).

Proof. From the definition of S[k]n , we get

S[k]n (z) =
∫ 1

−1

Sn+k(z)−Sn+k(x)
z− x

Qk−1(x)dµρ(x)

=Sn+k(z)
∫ 1

−1

Qk−1(x)
z− x

dµρ(x)−
∫ 1

−1

Sn+k(x) Qk−1(x)
z− x

dµρ(x)

=Sn+k(z)µ̂k(z)−
∫ 1

−1

Sn+k(x) Qk−1(x)
z− x

dµρ(x).

Then, we have

µ̂k(z)−R[k]
n (z) =

∫ 1

−1

Sn+k(x) Qk−1(x)
Sn+k(z) (z− x)

dµρ(x). (38)

On the other hand, from the orthogonality condition (6)

0 =

〈
Sn+k(x),

(Sn−d+1(z)−Sn−d+1(x)) Qk−1(x)ρ(x)
z− x

〉
=
∫ 1

−1
Sn+k(x)

Sn−d+1(z)−Sn−d+1(x)
z− x

Qk−1(x)dµρ(x).

Hence, it follows that∫ 1

−1

Sn+k(x)Sn−d+1(z)
z− x

Qk−1(x)dµρ(x) =
∫ 1

−1

Sn+k(x)Sn−d+1(x)
z− x

Qk−1(x)dµρ(x),

and from (38), we obtain

µ̂k(z)−R[k]
n (z) =

∫ 1

−1

Sn+k(x)
Sn+k(z)

Qk−1(x)
z− x

dµρ(x) =
∫ 1

−1

Sn+k(x)Sn−d+1(x)
Sn+k(z)Sn−d+1(z)

Qk−1(x)
z− x

dµρ(x)

=O

(
1

z2(n+1)+k−d

)
The second equality in (37) is a direct consequence of the above equality. Lastly, we compute

S+n+k,2(z)µ̂k(z) =
∫ 1

−1

S+n+k,2(z) Qk−1(x)

z− x
dµρ(x)

=
∫ 1

−1

S+n+k,2(z)−S+n+k,2(x)

z− x
Qk−1(x)dµρ(x)+ µ̂k,n(z), (39)
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and

S+n+k,2(z)R
[k]
n (z) =

(−1)νS[k]n (z)
Sn+k,1(z)

=
(−1)ν

Sn+k,1(z)

∫ 1

−1

Sn+k(z)−Sn+k(x)
z− x

Qk−1(x) dµρ(x),

=
∫ 1

−1

Sn+k,1(z)S+n+k,2(z)−Sn+k,1(x)S+n+k,2(x)

Sn+k,1(z)(z− x)
Qk−1(x) dµρ(x),

=R[k]
n,1(z)+

∫ 1

−1

S+n+k,2(z)−S+n+k,2(x)

z− x
Qk−1(x) dµρ(x).

(40)

The first equality now follows by subtracting (40) from (39).

Proof of Theorem 2. Let K be any compact set on Ω∞ and consider the level curve `τ defined
by

`τ = {z ∈ C : |ϕ(z)|= τ}, where τ > 1 and ϕ as in (3).

Since ϕ(K) is a compact set, we can take τ sufficiently close to 1 such that 1 < τ < min |ϕ(K)|
(remember that ϕ is the conformal map of the exterior of [−1,1] onto the exterior of the unit
circle). From Lemma 4.2 and (29), the sequences {µ̂k,n} and {R[k]

n,1} are uniformly bounded
over `τ . Then, there exists a constant Lτ , independent of n, such that for all z ∈ `τ∣∣∣(µ̂k,n(z)−R[k]

n,1(z)
)

ϕ
2(n+1)+k−d−N(z)

∣∣∣≤ Lτ τ
2(n+1)+k−d−N . (41)

Taking into account that ϕ has a simple pole at ∞, from (37), we have((
µ̂k,n−R[k]

n,1

)
ϕ

2(n+1)+k−d−N
)
∈H(Ω∞).

Now, from the maximum modulus principle the bound (41) also holds on K. Consequently, we
have ∣∣∣µ̂k,n(z)−R[k]

n,1(z)
∣∣∣≤ Lτ

(
τ

|ϕ(z)|

)2(n+1)+k−d−N

z ∈ K.

Hence

sup
z∈K

∣∣∣µ̂k,n(z)−R[k]
n,1(z)

∣∣∣≤ Lτ

(
τ

min |ϕ(K)|

)2(n+1)+k−d−N

−→
n→∞

0, (42)

which is equivalent to say that R[k]
n,1(z)⇒

n
µ̂k,n(z) K ⊂Ω∞.

As before, Ω∗∞ = Ω∞ \{c1,c2, . . . ,cN}. For the rest of the proof we assume that the compact
set K is a subset of Ω∗∞. From Lemma 3.4, there exists a constant L2 > 0, independent of n,
such that L2 ≤ |Sn+k,2(z)| for all z ∈ K. Therefore, taking into account (37), we get

sup
z∈K

∣∣∣µ̂k(z)−R[k]
n (z)

∣∣∣≤ Lτ

L2

(
τ

min |ϕ(K)|

)2(n+1)+k−d−N

−→
n→∞

0, (43)
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As a complement of Theorem 2, we have the following estimate for the degree of conver-
gence (“speed”) of R[k]

n to µ̂k.

Corollary 2.1. Under the same hypotheses of Theorem 2, we have

limsup
n

∥∥∥µ̂k−R[k]
n

∥∥∥1/2n

K
≤ ‖ϕ−1‖K < 1. (44)

Proof. Taking the 2nth root in (43), we get

∥∥∥µ̂k−R[k]
n

∥∥∥1/2n

K
≤
(
Lτ

L2

)1/2n (
τ

min |ϕ(K)|

)(2(n+1)+k−d−N)/(2n)

. (45)

Since τ < min |ϕ(K)|, (44) follows from (45).
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morphic functions and asymptotic properties of the orthogonal polynomials generated by
them, Lecture Notes in Math., 1171 (1985), Springer, Berlin, 309–316.
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[17] J. Shohat, Théorie générale des polynomes orthogonaux de Tchebichef, Gauthier-Villars,
Paris. (1934).

[18] G. Szegő, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ. Series vol. 23,
Amer. Math. Soc., Providence, RI. (1975).

[19] W. Van Assche, Orthogonal polynomials, associated polynomials and functions of the
second kind, J. Comput. Appl. Math. 37 (1991), 237–249.

20


	Introduction
	Recurrence relations
	Proof of Theorem 1
	Auxiliary lemmas
	Proof of Theorem 2



