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Abstract

Particular class of skew orthogonal polynomials are introduced and inves-
tigated, which possess Laurent symmetry. They are also shown to appear
as eigenfunctions of symplectic generalized eigenvalue problems. Further-
more, the modification of these polynomials gives some symplectic eigenvalue
problem and the corresponding symplectic matrix is equivalent to butterfly
matrix, which is a canonical form of symplectic matrices.
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1. Introduction

Orthogonal polynomials (OPs) obey and are characterized by local recur-
rence relations. It means that they are eigenvectors of structured matrices.
Such matrices appear in a variety of fields and they have been studied ex-
tensively. For example, OPs are related with tridiagonal matrices which are
called Jacobi matrices and such matrices appear in many fields including nu-
merical algorithm, stochastic process and so on. Hence OPs play important
roles in solving these problems [13, 20, 24].

In this paper, we focus on symplectic matrices, which appear in solving
the algebraic Riccati equation in control theory [16]. With respect to the
symplectic matrices, a canonical form exists and it is called (unreduced)
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butterfly form or butterfly matrix [3, 4], which is of the form

B =




b1
b2

.

.

.

bN

b1c1 − a−1
1 b1d2

b2d2 b2c2 − a−1
2

.

.

.

.

.

.

.

.

. bN−1dN
bNdN bN cN − a−1

N

a1
a2

.

.

.

an

a1c1 a1d2

a2d2 a2c2
.

.

.

.

.

.

.

.

. aN−1dN
aNdN aNcN




. (1)

The shape of this matrix is known to be invariant under the similarity trans-
formation using symplectic matrices. Therefore, the eigenvectors have par-
ticular structures although their properties, especially the relationship to
variants of OPs, have not been discussed yet.

The aim of this paper is to find generalized OPs which relate with the
symplectic matrix, especially butterfly matrix. To achieve that end, we pick
up skew orthogonal polynomials (SOPs). SOPs are originally introduced
in the context of random matrix theory [10, 17]. It is also reported that
SOPs (including their variants) are related with several integrable systems
[2, 9, 18]. Unlike OPs, the basic properties of SOPs have not been discussed
well and this is because SOPs do not hold local recurrence relations in general.
However, particular SOPs are known to be related with OPs and hold local
relations [1, 12, 14]. Especially in [14], they are shown to be related with
symplectic Lie algebra.

This paper is organized as follows. In section 2, the definition and basic
facts about SOPs are given and the properties of SOPs introduced in [14]
are explained. In section 3, new class of SOPs with local recurrence relations
is introduced and they are shown to be related with OPs. In section 4, the
finite analogue of the section 3 is considered and its relationship to symplectic
matrix pencil is discussed. In section 5, some modification of the new SOPs
are considered and they are shown to relate with the canonical symplectic
matrices. Concluding remarks will follow.
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2. Skew orthogonal polynomials (SOPs)

We begin with a brief review of SOPs. Let us consider the bilinear 2-form
〈·|·〉 : C[z]× C[z] → C with the skew symmetry:

〈f(z)|g(z)〉 = −〈g(z)|f(z)〉 , (2)

which we call skew inner product. Skew inner product appears in random
matrix theory and it is usually of the form

〈f(x)|g(x)〉 =
∫∫

R2

sgn(x− y)f(x)g(y)w(x)w(y)dxdy (3)

or

〈f(x)|g(x)〉 =
∫

R

(f ′(x)g(x)− f(x)g′(x))w(x)dx. (4)

Like orthogonal polynomials defined by a given inner product, a skew sym-
metric inner product defines SOPs.

Definition 1. Given a skew-symmetric inner product 〈·|·〉, SOPs {qn(z)}∞n=0

are defined as a polynomial sequence which satisfies the following skew-
orthogonality relation:

〈q2m(z)|q2n+1(z)〉 = κnδmn (∃κn 6= 0),

〈q2m(z)|q2n(z)〉 = 〈q2m+1(z)|q2n+1(z)〉 = 0,

deg(qn(z)) = n, (m,n ∈ Z≥0).

(5)

Remark 1. SOPs of even degree {q2n(z)}∞n=0 are uniquely determined up
to multiple constant. Monic SOPs of even degree are hence uniquely deter-
mined. However, the following map

q2n+1(z) 7→ q2n+1(z) + λnq2n(z), (∀λn ∈ C) (6)

does not change the skew-orthogonality relation (5) and hence SOPs of odd
degree are not uniquely defined even though they are monic.

In order to avoid the above ambiguity and define SOPs uniquely, we assume
SOPs be monic and the coefficient of 2n-th degree of q2n+1(z) be zero, i.e.

q2n+1(z) = z2n+1 +O(z2n−1) (7)

unless otherwise specified. Applying Gram-Schmidt skew orthogonalization
process to the monomial basis {1, z, z2, . . .}, we obtain SOPs and their Pfaf-
fian expression [2].
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Proposition 1. Monic SOPs {qn(z)} with respect to 〈·|·〉 are given as fol-

lows:

q2n(z) =
τn,z
τn

, q2n+1(z) =
σn,z

τn
, (8)

where

τn = Pf(0, 1, . . . , 2n− 1),

τn,z = Pf(0, 1, . . . , 2n, z),

σn,z = Pf(0, 1, . . . , 2n− 1, 2n+ 1, z)

(9)

and entries of Pfaffians are defined by

Pf(i, z) = zi, Pf(i, j) =
〈
zi|zj

〉
(i, j ∈ Z≥0). (10)

From the Pfaffian expression, it is straightforward to see SOPs exist iff
τn 6= 0 for all non-negative integer n and we hereafter assume this condition.
This expression also allows us to derive several properties of SOPs including
their spectral transformation [18].

One of the most important properties of OPs is the three term recurrence
relation although such relation does not hold for generic SOPs. However, par-
ticular class of SOPs exist that relate with OPs and hold recurrence relations
[1, 14]. Especially in [14], the skew inner product

〈f(z)|g(z)〉K =

∫

C

(f(z)g(−z)− f(−z)g(z))w(z)dz (11)

was considered and the corresponding SOPs {qKn (z)}∞n=0 are given as follows:

qK2n(z) = pKn (z
2),

qK2n+1 = zpKn (z
2), n = 0, 1, . . . ,

(12)

where {pKn (z2)} are monic OPs with the following orthogonality relation:
∫

C

pKn (z
2)pKm(z

2)zw(z)dz = 0 (m 6= n). (13)

Since {pKn (z2)} are OPS, they hold the three term recurrence relation

zpKn (z) = pKn+1(z) + anp
K
n (z) + bnp

K
n−1(z), (∃an, bn ∈ C) (14)

which amounts to the following recurrence relations for {qKn (z)}∞n=0:

zqK2n(z) = qK2n+1(z),

zqK2n+1(z) = qK2n+2(z) + anq
K
2n(z) + bnq

K
2n−2(z).

(15)
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3. Laurent SOPs

In this section, we shall introduce a new skew inner product 〈·|·〉 : C[z, z−1]×
C[z, z−1] → C that is of the form

〈f(z)|g(z)〉L =

∫

C

(
f(z−1)g(z)− f(z)g(z−1)

)
w(z)dz, (16)

where C ⊂ C is a complex domain. It is straightforward to see the skew
inner product (16) has a symmetry as follows:

〈f(z)|g(z)〉L =
〈
g(z−1)|f(z−1)

〉
L
. (17)

Therefore we call the skew inner product (16) as skew inner product with
Laurent symmetry and also the corresponding SOPs {qLn (z)}∞n=0 as Laurent
skew orthogonal polynomials (LSOPs). The (skew-)moments are given by

Pf(i, j) =
〈
zi|zj

〉
L
=

∫

C

(
zi−j − zj−i

)
w(z)dz. (18)

It should be remarked here that in case C is an unit circle, such Pfaffian
elements appear in random matrix theory and symmetrized random growth
model [11, eq.(10.139)]. In addition, since

〈
zi+k|zj+k

〉
L
=

〈
zi|zj

〉
L
, i, j, k ∈ Z, (19)

we can immediately obtain the following “shift formula”:

Pf(i1 + k, i2 + k, . . . , i2n + k) = Pf(i1, i2, . . . , i2n),

Pf(i1 + k, i2 + k, . . . , i2n−1 + k, z) = zkPf(i1, i2, . . . , i2n−1, z)
(20)

for ii, i2, . . . , i2n, k ∈ Z. Using this shift formula and the Pfaffian expression
(8), we find the recurrence relations for {qLn (z)}∞n=0 [23].

Proposition 2. Monic SOPs {qLn (z)}∞n=0 hold the following recurrence rela-

tion.

z(qL2n+1(z)− αn+1q
L
2n(z)) = qL2n+2(z)− qL2n(z),

z(qL2n(z)− βnq
L
2n−2(z)) = qL2n+1(z)− αnq

L
2n(z),

(21)

where

αn =
σn

τn
, βn =

τn+1τn−1

τ 2n
, σn = Pf(0, 1, . . . , 2n− 2, 2n). (22)
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Proof. Using (A.9) and (A.10), we see

Pf(1, 2, . . . , 2n, 0, 2n+ 1, 2n+ 2, z)Pf(1, 2, . . . , 2n)

= Pf(1, 2, . . . , 2n, 0, 2n+ 1)Pf(1, 2, . . . , 2n, 2n+ 2, z)

− Pf(1, 2, . . . , 2n, 0, 2n+ 2)Pf(1, 2, . . . , 2n, 2n+ 1, z)

+ Pf(1, 2, . . . , 2n, 0, z)Pf(1, 2, . . . 2n, 2n+ 1, 2n+ 2),

Pf(1, 2, . . . , 2n− 1, 0, 2n, z)Pf(1, 2, . . . , 2n− 1, 2n+ 1)

= Pf(1, 2, . . . , 2n− 1, 0, 2n, 2n+ 1)Pf(1, 2, . . . , 2n− 1, z)

− Pf(1, 2, . . . , 2n− 1, 0, 2n+ 1, z)Pf(1, 2, . . . , 2n− 1, 2n)

+ Pf(1, 2, . . . , 2n− 1, 2n, 2n+ 1, z)Pf(1, 2, . . . 2n− 1, 0).

(23)

From (20) and (A.3) these relations amount to

τnτn+1,z = zτn+1σn,z − zσn+1τn,z + τn+1τn,z,

σnτn,z = zτn+1τn−1,z + τnσn,z − zτnτn,z,
(24)

from which the recurrence relations (21) are straightforwardly obtained by
applying (8).

Deleting the LSOPs of odd degree in (21), we find the following recurrence
formula for the LSOPs of even degree:

(z2 + 1)qL2n(z) = qL2n+2(z) + z(αn+1 − αn)q
L
2n(z) + βnq

L
2n−2(z). (25)

Consider Laurent polynomial series RL
n(z) = z−nqL2n(z). The relation (25)

then becomes

(
z + z−1

)
RL

n(z) = RL
n+1(z) + (αn+1 − αn)R

L
n(z) + βnR

L
n−1(z). (26)

We immediately find from (26) that RL
n(z) is a polynomial of degree n in

w = z+z−1 and we write RL
n(z) = R̄L

n(w). Furthermore, since (26) is a three
term recurrence relation, Favard’s theorem in the theory of OPs [7] claims
that {R̄L

n(w)}∞n=0 are OPs, i.e. there exists some linear functional L such
that

L[R̄L
n(w)R̄

L
m(w)] = hnδmn (∃hn 6= 0).
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The explicit form of linear functional L is obtained from the skew orthogo-
nality relation (5). Using (19), we have for m ≥ n

rnδmn =
〈
qL2m(z)|zm−n+1qL2n(z)

〉
L

=
〈
z−mqL2m(z)|z−n+1qL2n(z)

〉
L

=
〈
RL

m(z)|zRL
n(z)

〉
L

=

∫

C

R̄L
m(z + z−1)R̄L

n(z + z−1)(z − z−1)w(z)dz.

(27)

To conclude, we obtain the following theorem.

Theorem 3. The Laurent polynomials {R̄L
n(w)}∞n=0 defined by

R̄L
n(w) = z−nqL2n(z), w = z + z−1 (28)

are monic OPs with respect to the following linear functional:

L[f(w)] =
∫

C

f(z + z−1)(z − z−1)w(z)dz. (29)

Since {R̄L
n(w)}∞n=0 are monic OPs, they can be expressed in terms of

determinants:

R̄L
n(w) =

∣∣∣∣∣∣∣∣∣

c0 c1 · · · cn−1 1
c1 c2 · · · cn w
...

...
. . .

...
...

cn cn+1 · · · c2n−1 wn

∣∣∣∣∣∣∣∣∣
/

∣∣∣∣∣∣∣∣∣

c0 c1 · · · cn−1

c1 c2 · · · cn
...

...
. . .

...
cn−1 cn · · · c2n−2

∣∣∣∣∣∣∣∣∣
, (30)

where ci = L[wi]. Recalling the Pfaffian expression of SOPs (8), we find the
non-trivial relationship between Pfaffians and determinants.

Corollary 4. The following identities hold:

τ̄n ≡

∣∣∣∣∣∣∣∣∣

c0 c1 · · · cn−1

c1 c2 · · · cn
...

...
. . .

...

cn−1 cn · · · c2n−2

∣∣∣∣∣∣∣∣∣
=

|µ1 µ2 · · · µ2n−1

µ1 · · · µ2n−2

. . .
...

µ1

∣∣∣∣∣∣∣∣∣
,

σ̄n ≡

∣∣∣∣∣∣∣∣∣

c0 c1 · · · cn−2 cn
c1 c2 · · · cn−1 cn+1
...

...
. . .

...
...

cn−1 cn · · · c2n−3 c2n−1

∣∣∣∣∣∣∣∣∣
=

|µ1 µ2 · · · µ2n−2 µ2n

µ1 · · · µ2n−3 µ2n−1

. . .
...

...

µ1 µ3

µ2

∣∣∣∣∣∣∣∣∣∣∣

,

(31)
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iff

µn =

⌊n−1

2
⌋∑

k=0

(−1)k
(
n− 1− k

k

)
cn−1−2k. (32)

Proof. Since {R̄L
n(w)}∞n=0 are OPs, the coefficients of the three term recur-

rence relation (26) is given by the ratio of determinants [7]:

αn+1 − αn =
σ̄n+1

τ̄n+1
− σ̄n

τ̄n
, βn =

τ̄n+1τ̄n−1

τ̄ 2n
. (33)

Therefore, we see from (22) τn = τ̄n and σn = σ̄n by taking τ0 = τ̄0 = 1, σ0 =
σ̄0 = 0. With respect to (32), the relation (16) shows

µn = Pf(0, n) = 〈1|zn〉L =

∫

C

(
zn − 1

zn

)
w(z)dz

=

∫

C

Tn−1

(
z + z−1

2

)
(z − z−1)w(z)dz,

(34)

where Tn(w) is the Chebyshev polynomials of the second kind defined by

Tn (w) =
sin((n+ 1) cos−1w)

sin(cos−1w)
=

⌊n

2
⌋∑

k=0

(−1)k
(
n− k

k

)
(2w)n−2k. (35)

Therefore we see from (16)

µn = L
[
Tn−1

(w
2

)]
= L



⌊n−1

2
⌋∑

k=0

(−1)k
(
n− 1− k

k

)
wn−1−2k




=

⌊n−1

2
⌋∑

k=0

(−1)k
(
n− 1− k

k

)
cn−1−2k.

(36)

This completes the proof.

It should be remarked here that the first equation in (31) is the same as
one in [22, Prop.2.3] although the proof is different.
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4. Finite Laurent SOPs and symplectic matrix pencil

It is well known that semi-infinite Jacobi matrix



a0 1
b1 a1 1

b2 a2 1
. . .

. . .
. . .


 (37)

can be diagonalized by (monic) OPs. We now assume that the weight func-
tion has finite support, i.e. consider the following linear functional

L[f(z)] =
N∑

k=1

f(zk)wk. (38)

The corresponding Jacobi matrix is reduced to finite matrix:




a0 1
b1 a1 1

. . .
. . .

. . .

bN−2 aN−2 1
bN−1 aN−1




. (39)

Remark 2. When we assume the linear functional L is positive definite and
consider orthonormal polynomials {p̃n(z)}∞n=0 instead of monic ones:

L[p̃n(z)p̃m(z)] =
N∑

k=1

p̃m(zk)p̃n(zk)wk = δmn (wk > 0), (40)

the corresponding Jacobi matrix becomes symmetric:




a0
√
b1√

b1 a1
√
b2

. . .
. . .

. . .√
bN−2 aN−2

√
bN−1√

bN−1 aN−1




. (41)
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Tridiagonal matrices appear in various areas and OPs thus play an impor-
tant role in analysing and solving related problems. Here we will investigate
a class of matrices related to LSOPs. In what follows, we restrict the skew
inner product (16) to finite dimension and the corresponding LSOPs are or-
thonormal. In other words, we shall consider the discrete LSOPs {q̃n(z)}2N−1

n=0

(we omit the superscript L for simplicity) satisfying

〈q̃2m(z)|q̃2n+1(z)〉L =

N∑

k=1

(q̃2m(z
−1
k )q̃2n+1(zk)− q̃2m(zk)q̃2n+1(z

−1
k ))w̃k = δmn,

〈q̃2m(z)|q̃2n(z)〉L = 〈q̃2m+1(z)|q̃2n+1(z)〉L = 0.

(42)

We also assume τn > 0 for n = 0, 1, . . . , N , which is equivalent to βn > 0
(and αn ∈ R). Then, for n = 0, 1, . . . , N − 1 and z = z1, z2, . . . , zN , the
LSOPs {q̃n(z)}2N−1

n=0 are given by

q̃2n(z) =

√
τn
τn+1

qL2n(z), q̃2n+1(z) =

√
τn
τn+1

qL2n+1(z) (43)

and the recurrence relation (21) is transformed into

z(q̃2n+1(z)− αn+1q̃2n(z)) =
√

βn+1q̃2n+2(z)− q̃2n(z),

z(q̃2n(z)−
√
βnq̃2n−2(z)) = q̃2n+1(z)− αnq̃2n(z),

(44)

where βN = 0 and the polynomial q̃2N (z) will be

q̃2N (z) ∝
N∏

k=1

(z − zk)(z − z−1
k ). (45)

The recurrence relations (44) can be cast in the following generalized eigen-
value problems:

Uv = zV v, z = z1, z2, . . . , zN ,

U =

(
H IN

−F T O

)
, V =

(
F O
G IN

)
,

(46)
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where

v = (q̃1(z), q̃3(z), . . . , q̃2N−1(z), q̃0(z), q̃2(z), . . . , q̃2N−2(z))
T

F =




1
−
√
β1 1

−
√
β2 1

. . .
. . .

−
√

βN−1 1




,

G = diag(α1, α2, . . . , αN), H = diag(0, α1, . . . , αN−1)

(47)

and IN is an identity matrix of size N . It is straightforward to see that finite
LSOPs appear as eigenvectors of generalized eigenvalue problem (46) which
has a specific structure as stated below.

Theorem 5. Matrix pencil (U, V ) in (46) is symplectic, i.e.

UJUT = V JV T , J =

(
O IN

−IN O

)
(48)

and V −1U ∈ Sp(N,C).

Remark 3. While the matrices U, V are sparse and non-symplectic, V −1U
is dense and symplectic.

As we have seen the relationship between LSOPs and OPs, we immediately
obtain the tridiagonal eigenvalue problem corresponding to (46).

Corollary 6. Consider the tridiagonal matrix

T =




α1

√
β1√

β1 α2 − α1

√
β2

. . .
. . .

. . .√
βN−2 αN−1 − αN−2

√
βN−1√

βN−1 αN − αN−1




. (49)

Its eigenvalues {λk}Nk=1 are expressed in terms of the generalized eigenvalues

{zk, z−1
k }Nk=1 of (46):

λk = zk + z−1
k , k = 1, 2, . . . , N. (50)
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5. New basis

In the previous section, we have seen that LSOPs appear as eigenfunctions
of the symplectic generalized eigenvalue problem (46) and also the equivalent
symplectic eigenvalue problem

V −1Uv = zv. (51)

While symplectic matrix V −1U related to LSOPs is dense and has 2N − 1
parameters, the butterfly matrix B given in (1), which is a canonical form of
symplectic matrices, is sparse and has 4N − 1 parameters. Therefore, it is
quite natural to examine whether the butterfly matrix is related with LSOPs.

The key observation to understand this problem is the relationship be-
tween orthogonal polynomials on the unit circle(OPUC) and CMV matrix
[8]. While Ordinary OPUC obtained by applying Gram-Schmidt process in
monomial basis {1, z, z2, . . .} are related with some generalized eigenvalue
problem, an eigenvalue problem associated with CMV five diagonal matrix
can be obtained by exchanging the basis.

Consider the following basis

{1, z−1, z, z−2, z2, . . .},
which is similar to alternate CMV basis. Applying Gram-Schmidt process
to skew inner product 〈·|·〉L in this basis, we obtain (finite) Laurent skew
orthonormal Laurent-polynomials (LSOLPs) {Qn(z)}2N−1

n=0 . In the same fash-
ion, we find the Pfaffian expression for {Qn(z)}2N−1

n=0 :

Q2n(z) ∝ Pf(0,−1, 1,−2, 2, · · · ,−n, n, z),

Q2n+1(z) ∝ Pf(0,−1, 1,−2, 2, · · · ,−n,−n− 1, z).
(52)

From the anti-symmetry of Pfaffians (A.3) and shift formula (20), we have
as a consequence

Qn(z) =

{
z−mq̃2m(z) (n = 2m)

−z−m−1q̃2m(z) (n = 2m+ 1)
. (53)

This can also be verified from the direct calculation. For instance, we have
for n ≥ m

〈Q2m(z)|Q2n+1(z)〉L =
〈
z−mq̃2m(z)| − z−n−1q̃2n(z)

〉
L

=
〈
z−n−1q̃2n(z)|z−mq̃2m(z)

〉
L

=
〈
q̃2n(z)|zn+1−mq̃2m(z)

〉
L
= δmn.

(54)

12



Similar calculations also show 〈Q2m+1(z)|Q2n+1(z)〉L = 〈Q2m(z)|Q2n(z)〉L =
0.

Remark 4. LSOLPs of odd degree Q2n+1(z) are tantamount to even degree
LSOLPs Q2n(z) although such correspondence does not hold for LSOPs in
monomial basis q̃n(z).

Since we have a recurrence relation for LSOPs (44), we obtain the recurrence
formula for {Qn(z)}2N−1

n=0 .

Theorem 7. The LSOLPs {Qn(z)}2N−1
n=0 hold the following recurrence rela-

tions:

zQ2n(z) =
√
βn+1Q2n+2(z) +Q2n+1(z) + αnQ2n(z) +

√
βnQ2n−2(z),

zQ2n+1(z) = −Q2n(z), n = 0, 1, . . . , N − 1, z = z1, z2, . . . , zN .
(55)

It seems that there are still only 2N − 1 parameters in (55) and we need
to add 2N more parameters to make a comparison with the butterfly matrix
(1). Such addition is possible since LSOLPs have two kinds of arbitrariness.
One is the non-uniqueness of odd degree SOPs mentioned in (6), which comes
from the definition of SOPs and still remains in case of LSOLPS. The other
is the constant multiple. To be more specific, the map

q2n(z) 7→ rnq2n(z), q2n+1(z) 7→ r−1
n q2n+1(z) (rn 6= 0) (56)

does not change skew-orthogonality relation (5).

Remark 5. In case of ordinary orthonormal polynomials, they also have the
multiple constant freedom. However, such constant is only allowed to be 1
or −1.

Using these two arbitrary properties, we have a following theorem.

Theorem 8. Introduce the new Laurent polynomials {Q̃n(z)}2N−1
n=0 by

Q̃2n(z) =
Q2n(z)

rn
,

Q̃2n+1(z) = rnQ2n+1(z) + λnQ2n(z).

(57)
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They are also LSOLPs and hold the following recurrence relations:

zQ̃2n(z) =

√
βn+1rn+1

rn
Q̃2n+2(z) +

1

r2n
Q̃2n+1(z)

+ (αn − λn)Q̃2n(z) +

√
βnrn−1

rn
Q̃2n−2(z),

zQ̃2n+1(z) = λn

√
βn+1rnrn+1Q̃2n+2(z) + λnQ̃2n+1(z)

+ r2n(αnλn − λ2
n − 1)Q̃2n(z) + λn

√
βnrn−1rnQ̃2n−2(z)

(58)

for n = 0, 1, . . . , N − 1 and z = z1, z2, . . . , zN .

The recurrence relations (58) can be cast in the following (symplectic)
eigenvalue problem:

Aw = zw,

A =




λ0

λ1

.

.

.

λN−1

f0 λ0e1

λ1e1 f1
.

.

.

.

.

.

.

.

. λN−2eN−1

λN−1eN−1 fN−1

1
r2
0

1
r2
1

.

.

.

1
r2
N−1

g0

√
β1r1
r0√

β1r0
r1

g1
.

.

.

.

.

.

.

.

.

√
βN−1rN−1

rN−2√
βN−1rN−2

rN−1
gN−1




,
(59)

where

w = (Q̃1(z), Q̃3(z), . . . , Q̃2N−1(z), Q̃0(z), Q̃2(z), . . . , Q̃2N−2(z))
T ,

ei =
√

βiri−1ri,

fi = r2i (αiλi − λ2
i − 1),

gi = αi − λi, i = 1, 2, . . . , N.

(60)

It should be pointed out that the matrix A in (59) coincides with the butterfly
matrix B in (1) if we set for i = 0, 1, . . . , N − 1

ai+1 =
1

r2i
, bi+1 = λi, ci+1 = r2i (αi − λi), di+1 = riri+1

√
βi+1, (61)
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which is an one-to-one mapping. In the fashion similar to Corollary 6, we
can relate LSOLPS with OPs and also the butterfly matrix with tridiagonal
matrix.

Corollary 9. Let ai, bi, ci, di+1 ∈ R and aiai+1 > 0 for i = 1, 2, . . . , N .

Consider the following tridiagonal symmetric matrix:




a1c1 + b1
√
a1a2|d2|

√
a1a2|d2| a2c2 + b2

. . .
. . .

. . .
√
aN−1aN |dN |√

aN−1aN |dN | aNcN + bN


 . (62)

Its eigenvalues λk, k = 1, 2, . . . , N are explicitly given in terms of those of

the butterfly matrix:

λk = zk + z−1
k k = 1, 2, . . . , N, (63)

where zk, z
−1
k are eigenvalues of the butterfly matrix (1). Conversely, the

eigenvalues of the butterfly matrix can be obtained from those of the tridiag-

onal matrix (62):

zk =
λk + (λ2

k − 4)
1

2

2
, z−1

k =
λk − (λ2

k − 4)
1

2

2
, k = 1, 2, . . . , N. (64)

6. Concluding Remarks

To sum up, we have introduced a new skew inner product with Lau-
rent symmetry which is different from one in [14] and examined the related
SOPs, which we call LSOPs. LSOPs hold local recurrence relations which
ordinary SOPs do not. This can be explained by the fact that LSOPs (of
even degree) are related with OPs and the new identities between Pfaffians
and determinants are derived as a by-product. Restricting the corresponding
inner product space to finite space, we obtain the finite LSOPs and their re-
currence relations are equivalent to a generalized eigenvalue problem, which
we have shown is symplectic. Furthermore, by exchanging the basis, we
have obtained LSOLPs and they are related with some symplectic matrix.
More interestingly, this symplectic matrix coincides with (unreduced) but-
terfly matrix, which is a canonical symplectic matrix. We will offer some
remarks below.
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Symplectic (generalized) eigenvalue problems appear in control theory
and some algorithms to solve these are proposed [5, 6]. Since butterfly matrix
is canonical, the relation between butterfly matrix and tridiagonal matrix
implies that the symplectic eigenvalue problems can be reduced to eigenvalue
problems. This will indicate the new efficient algorithm for the problem.

In [14], it is reported that the SOPs with respect to skew inner product
(11) in finite dimension are related with the symplectic Lie algebra sp(N,C).
It is well known that there exists a Cayley transformation, a map from sym-
plectic matrices to symplectic Lie algebra (and vice versa):

S = (I2N + s)(I2N − s)−1 (s ∈ sp(2N,C), S ∈ Sp(2N,C)). (65)

This will imply the relationship among these related SOPs, which is an in-
teresting problem for understanding SOPs and related fields more deeply.

As mentioned in section 3, the elements of Pfaffian (18) appear in random
matrix theory and symmetrized growth model. This implies the relationship
between LSOPs and such models. Furthermore, in random matrix theory,
(classical) SOPs are known to be derived from OPs by introducing a special
operator [1, 12] and similar techniques can be expected to introduce LSOPs.
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Appendix A. Pfaffians

We here give a useful definition and properties of Pfaffians (For further
details of elementary theory of Pfaffians, see e.g. [15, 19]). Pfaffians are
defined by:

Pf(i0, i1, . . . , i2n−1) :=
∑

σ∈S2n

sgn(σ)

n!2n

∏

0≤i≤n−1

Pf(iσ(2i), iσ(2i+1)), (A.1)

where the elements of Pfaffians Pf(i, j) are supposed to satisfy the skew-
symmetric relation:

Pf(i, j) = −Pf(j, i). (A.2)
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From this definition, it is not difficult to see

Pf(. . . , i, . . . , j) = −Pf(. . . , j, . . . , i, . . .). (A.3)

It is useful to define Pfaffians by the following recursive procedure:

Pf(i0, . . . , i2n−1) =

2n−2∑

k=0

(−1)kPf(ik, i2n−1) · Pf(i0, . . . îk, · · · , i2n−2), (A.4)

where ĵ means the deletion of j. For example,

Pf(0, 1, 2, 3) = Pf(0, 1)Pf(2, 3)− Pf(0, 2)Pf(1, 3)

+ Pf(0, 3)Pf(1, 2),

Pf(0, 1, 2, 3, 4, 5) = Pf(0, 1)Pf(0, 1, 2, 3)− Pf(0, 2)Pf(1, 3, 4, 5)

+ Pf(0, 3)Pf(1, 2, 4, 5)− Pf(0, 4)Pf(1, 2, 3, 5)

+ Pf(0, 5)Pf(1, 2, 3, 4).

(A.5)

Pfaffians are related to determinants in several points. One instance is that
the square of Pfaffians are equalt to the determinant of skew-symmetric ma-
trix:

Pf(i1, i2 . . . , i2n)
2 = det(Pf(ik, il))1≤k,l≤2n. (A.6)

Then it is sometimes convenient to express Pfaffians by

Pf(i1, i2, . . . , i2n) =

|Pf(i1, i2) Pf(i1, i3) · · · Pf(i1, i2n)
Pf(i2, i3) · · · Pf(i2, i2n)

. . .
...

Pf(i2n−1, i2n)

∣∣∣∣∣∣∣∣∣
. (A.7)

In several areas including integrable systems, identities of Pfaffians play an
important role. One of these identities is given as follows:

Pf(M)Pf(M, j0, j1, . . . , j2m−1)

=

2m−2∑

k=0

(−1)kPf(M, jk, j2m−1) · Pf(M, j0, . . . ĵk, · · · , j2m−2),
(A.8)

whereM = {i1, i2, . . . , i2n}. This relation can be obtained by applying golden
theorem [19] for Pfaffians to (A.4). If we take m = 2 and (j0, j1, j2, j3) =
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(a, b, c, d), the relation (A.8) becomes

Pf(i1, i2, . . . , i2n, a, b, c, d)Pf(i1, i2 . . . , i2n)

= Pf(i1, i2, . . . , i2n, a, b)Pf(i1, i2, . . . , i2n, c, d)

− Pf(i1, i2, . . . , i2n, a, c)Pf(i1, i2, . . . , i2n, b, d)

+ Pf(i1, i2, . . . , i2n, a, d)Pf(i1, i2, . . . , i2n, b, c).

(A.9)

Furthermore, if we takem = 3 and (j0, j1, j2, j3, j4, j5) = (i2n+1, i2n+1, a, b, c, d)
and use (A.3), we have

Pf(i1, i2, . . . , i2n+1, a, b, c)Pf(i1, i2, . . . , i2n+1, d)

= Pf(i1, i2, . . . , i2n+1, a, b, d)Pf(i1, i2, . . . , i2n+1, c)

− Pf(i1, i2, . . . , i2n+1, a, c, d)Pf(i1, i2, . . . , i2n+1, b)

+ Pf(i1, i2, . . . , i2n+1, b, c, d)Pf(i1, i2, . . . , i2n+1, a).

(A.10)

It should be mentioned that such kind of Pfaffian identieies are also known
as compound Pfaffian theorem or general Wick theorem [21].
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