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Abstract. We consider a new way of factorizing the transition probability matrix of a discrete-time birth-death

chain on the integers by means of an absorbing and a reflecting birth-death chain to the state 0 and viceversa.
First we will consider reflecting-absorbing factorizations of birth-death chains on the integers. We give conditions

on the two free parameters such that each of the factors is a stochastic matrix. By inverting the order of the

factors (also known as a Darboux transformation) we get new families of “almost” birth-death chains on the
integers with the only difference that we have new probabilities going from the state 1 to the state −1 and

viceversa. On the other hand an absorbing-reflecting factorization of birth-death chains on the integers is only

possible if both factors are splitted into two separated birth-death chains at the state 0. Therefore it makes
more sense to consider absorbing-reflecting factorizations of “almost” birth-death chains with extra transitions

between the states 1 and −1 and with some conditions. This factorization is now unique and by inverting the
order of the factors we get a birth-death chain on the integers. In both cases we identify the spectral matrices

associated with the Darboux transformation, the first one being a Geronimus transformation and the second

one a Christoffel transformation of the original spectral matrix. We apply our results to examples of chains with
constant transition probabilities.

1. Introduction

This paper is a continuation of our work [11] about stochastic factorizations of the transition probability
matrix P of a discrete-time birth-death chain on the integers Z (doubly infinite tridiagonal matrix) and the
relation between the spectral matrices after performing the so-called discrete Darboux transformation (inverting
the order of the factors). In [11] we considered UL and LU stochastic factorizations of P . That means that each
of the factors represents either a pure-birth or a pure-death chain. We consider here a new approach consisting
of having one of the factors as a reflecting birth-death chain on Z from the state 0 and the other factor as an
absorbing birth-death chain on Z to the state 0 (see (2.5) and (2.6) below). We will name them RA or AR
factorizations, respectively. In the case of birth-death chains on the nonnegative integers Z≥0 (see [8]) there is
no difference between UL (LU) stochastic factorizations and RA (AR) factorizations, but when the state space
is Z these factorizations represent different chains. The main motivation for these stochastic factorizations is to
divide the probabilistic model into two different and simpler experiments, and combine them together to obtain
a simpler description of the original probabilistic model (see applications to urn models in [8, 9]).

The importance of having the spectral matrices is that it is easy to analyze the corresponding Markov chains
in terms of polynomials which arise as a solution of the eigenvalue equation. For the case of birth-death chains
on Z≥0 this was first done in a series of papers by S. Karlin and J. McGregor in the 1950s (see [14, 15, 16]).
Apart from an explicit expression of the n-step transition probabilities and the invariant measure, it is possible
to study some other probabilistic properties using spectral methods such as recurrence, absorbing times, first
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return times or limit theorems. In the last section of [16] one can find the first attempt to perform the spectral
analysis of a discrete-time birth-death chain on Z using orthogonal polynomials. We will recall this approach
in Section 2.1. After that, apart from [1], there are not so many references concerning the spectral analysis
of doubly infinite tridiagonal (or Jacobi) operators acting on `2π(Z). In [21], W.E. Pruitt studied the case of
bilateral birth-and-death processes. An example of this approach can be found in the last section of [13]. For a
more theoretical work about the spectral theory of doubly infinite tridiagonal operators see [18, 3].

In Section 2 we analyze the conditions under which we can perform a stochastic RA factorization of the form
P = PRPA. There are two important differences with our previous work in [11]. First, we will have now two
free parameters, while in the case of UL or LU factorizations there was only one. As in [11] (see also [8]) we
will show that these two free parameters have to be bounded from below by certain continued fractions if we
want to guarantee that the factors are still stochastic matrices. Second, after relabeling the states, P will be
equivalent to a semi-infinite 2× 2 block tridiagonal matrix P (see (2.2) and (2.3) below). The RA factorization
of P is not a UL factorization, but after relabeling, the corresponding matrix factorization of P , denoted by
P = PRPA (see (2.8) below), will be a UL block matrix factorization. However, in [11], the corresponding
matrix factorization of P did not preserve the UL block structure of the original factorization of P . This fact
will allow us to use techniques from the area of matrix-valued orthogonal polynomials, something that we could
not do in [11]. After that we perform a discrete Darboux transformation. The two-parameter family of new

matrices P̃ = PAPR are also stochastic but they are not strictly tridiagonal matrices since there will be new

probability transitions between the states 1 and −1. Nevertheless the block Darboux transformation P̃ = PAPR
will preserve the block tridiagonal structure of P . We will obtain a relation between the spectral matrices Ψ

and Ψ̃ associated with P and P̃ , respectively, even if P̃ is not tridiagonal. This relation is given by

Ψ̃(x) = S0ΨU (x)ST0 ,

for certain constant matrix S0 and ΨU (x) is a Geronimus transformation of the original spectral matrix Ψ(x)
(see Theorem 2.3 below). We apply our results to the simplest discrete-time birth-death chain on Z with
constant transition probabilities (also known as a random walk).

In Section 3 we perform the same analysis but considering a stochastic AR factorization of the form P = P̃AP̃R.
The first thing we realize is that the case where P is a birth-death chain on Z is not interesting since both

factors P̃A and P̃R will be splited into two separated birth-death chains at the state 0. Therefore it will be
better to start with an “almost” birth-death chain similar to the one mentioned in the previous paragraph, i.e.,
with extra probability transitions between the states 1 and −1. These transition probabilities must be related
with the nearest transition probabilities between the −1, 0 and 1 states (see (3.9) below). Although now P
is not tridiagonal, the equivalent block matrix P after relabeling will be a block tridiagonal matrix and the

corresponding matrix factorization of P , denoted by P = P̃AP̃R, will be a LU block matrix factorization. We
then analyze under what conditions we get a stochastic AR factorization and show that we also need some
bounds related with certain continued fractions. An important difference in this case is that the stochastic
factorization, if possible, is unique and there will be no extra free parameters. After that we consider the

Darboux transformation P̂ = P̃RP̃A which it is now a tridiagonal matrix, i.e., a birth-death chain on Z.

Similarly the Darboux transformation P̂ = P̃RP̃A will preserve the block tridiagonal structure of P . Again

we will obtain a relation between the spectral matrices Ψ and Ψ̂ associated with P and P̂ , respectively. This
relation is given by a Christoffel transformation of Ψ(x) of the form

Ψ̂(x) = xS̃−10 Ψ(x)S̃−10 ,

for certain constant matrix S̃0 (see Theorem 3.3 below). Finally we apply our results to an “almost” birth-
death chain with constant transition probabilities. The main difficulty now is to compute the spectral matrix
Ψ(x). However, using the block tridiagonal structure of P , we will be able to use some results of the theory of
matrix-valued orthogonal polynomials to obtain an explicit expression of the spectral matrix.
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2. Reflecting-absorbing factorization

Let {Xt : t = 0, 1, . . .} be an irreducible discrete-time birth-death chain on the integers Z with transition
probability matrix given by

P =



. . .
. . .

. . .

c−1 b−1 a−1

c0 b0 a0

c1 b1 a1
. . .

. . .
. . .


. (2.1)

Since the birth-death chain is irreducible, i.e., it is possible to get to any state from any state, then 0 < an, cn <
1, n ∈ Z. Also, since P is stochastic, it has nonnegative entries and

cn + bn + an = 1, n ∈ Z.

A diagram of the transitions between the states is given by It is possible to relabel the states in such a way

that all the information of P is collected in a semi-infinite block tridiagonal matrix P with blocks of size 2× 2.
Indeed, after the new labeling

{0, 1, 2, . . .} → {0, 2, 4, . . .}, and {−1,−2,−3, . . .} → {1, 3, 5, . . .}, (2.2)

we have that P (doubly infinite tridiagonal) is equivalent to a semi-infinite 2× 2 block tridiagonal matrix P of
the form

P =



b0 c0 a0 0

a−1 b−1 0 c−1

c1 0 b1 0 a1 0

0 a−2 0 b−2 0 c−2

c2 0 b2 0 a2 0

0 a−3 0 b−3 0 c−3
. . .

. . .
. . .


=


B0 A0

C1 B1 A1

C2 B2 A2

. . .
. . .

. . .

 , (2.3)
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where

B0 =

 b0 c0

a−1 b−1

 , Bn =

bn 0

0 b−n−1

 , n ≥ 1,

An =

an 0

0 c−n−1

 , n ≥ 0, Cn =

cn 0

0 a−n−1

 , n ≥ 1.

(2.4)

The Markov chain generated by P takes values in the two-dimensional state space Z≥0 × {1, 2}. These type of
processes are called discrete-time quasi-birth-and-death processes. In general these processes allow transitions
between all two-dimensional adjacent states (see [17, 20] for a general reference). The spectral analysis of these
processes has been considered for instance in [4, 5, 6, 7, 12].

In [11] we considered stochastic UL and LU factorizations of P , which means that each of the factors can
be viewed as a pure-birth or a pure-death chain, corresponding to the U or L matrix in the factorization,
respectively. We consider here a different approach, given by a stochastic factorization of P where the first
factor is a reflecting birth-death chain from the state 0 and the second factor is an absorbing birth-death chain
to the state 0. From now on we will call this factorization an RA factorization. Therefore we are looking for a
stochastic factorization of the transition probability matrix P in (2.1) of the form P = PRPA where

PR =



. . .
. . .

. . .

x−2 y−2 0

x−1 y−1 0

α y0 x0

0 y1 x1
. . .

. . .
. . .


, (2.5)

and

PA =



. . .
. . .

. . .

0 s−2 r−2

0 s−1 r−1

0 1 0

r1 s1 0

. . .
. . .

. . .


. (2.6)

Observe that we have to add a new probability α in (2.5) in order to connect the reflecting birth-death chain
from the state 0 to the state −1. Also the state 0 is an absorbing state in the chain (2.6). Diagrams of the
possible transitions between the states of both birth-death chains are given by
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If we relabel the states as in (2.2), then the matrix PR is equivalent to a semi-infinite 2×2 upper block matrix
PR of the form

PR =



y0 α x0 0

0 y−1 0 x−1

y1 0 x1 0

0 y−2 0 x−2
. . .

. . .


,

while PA is equivalent to a semi-infinite 2× 2 lower block matrix PA of the form

PA =



1 0

r−1 s−1

r1 0 s1 0

0 r−2 0 s−2
. . .

. . .


.

If we call

Y0 =

y0 α

0 y−1

 , Yn =

yn 0

0 y−n−1

 , n ≥ 1, Xn =

xn 0

0 x−n−1

 , n ≥ 0,

S0 =

 1 0

r−1 s−1

 , Sn =

sn 0

0 s−n−1

 , n ≥ 1, Rn =

rn 0

0 r−n−1

 , n ≥ 0,

(2.7)
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then we can write PR and PA as

PR =


Y0 X0

Y1 X1

Y2 X2

. . .
. . .

 , PA =


S0

R1 S1

R2 S2

. . .
. . .

 . (2.8)

The RA factorization P = PRPA, which is not a UL factorization, is equivalent to the block matrix factorization
P = PRPA, which is a UL block matrix factorization. This is one of the main differences between this approach
and the one we used in [11], where we performed a UL factorization of P while, after relabeling, the equivalent
factorization for P did not have a UL block structure.

A direct computation from P = PRPA shows that

An = XnSn+1, n ≥ 0,

Bn = YnSn +XnRn+1, n ≥ 0,

Cn = YnRn, n ≥ 1,

(2.9)

or equivalently, using P = PRPA, we obtain

an = xnsn+1, n ≥ 0, a−n = y−nr−n, n ≥ 1, (2.10)

bn = ynsn + xnrn+1, n ≥ 1, b0 = y0 + x0r1 + αr−1, b−n = y−ns−n + x−nr−n−1, n ≥ 1,

cn = ynrn, n ≥ 1, c0 = αs−1, c−n = x−ns−n−1, n ≥ 1. (2.11)

Now we will see under what conditions we have that PR and PA are also stochastic matrices, i.e., all entries are
nonnegative and

α+ x0 + y0 = 1, xn + yn = 1, sn + rn = 1, n ∈ Z \ {0}. (2.12)

If we fix α then we can compute s−1, r−1, y−1, x−1, s−2, . . . recursively using (2.10), (2.12) and (2.11). On
the other hand, for positive values of the indices, we need to fix a second parameter, say x0, in order to obtain
recursively s1, r1, y1, x1, s2, . . . using again (2.10), (2.12) and (2.11). Using the same arguments as in [11] we
will see under what conditions on the free parameters α and x0 we have that both matrices PR and PA are also
stochastic matrices. For that consider H and H ′ the continued fractions

H =
a0

1
−

c1

1
−

a1

1
−

c2

1
− · · · , H ′ =

c0

1
−

a−1

1
−

c−1

1
−

a−2

1
− · · · (2.13)

For each continued fraction, consider the corresponding sequence of convergents (hn)n≥0 and (h′−n)n≥0, given
by

hn =
An
Bn

, h′−n =
A′−n
B′−n

. (2.14)

We refer to [7, 11] to find more information about the notation and definitions on continued fractions.

Proposition 2.1. Let H and H ′ be the continued fractions defined by (2.13) and the corresponding convergents
hn and h−n defined by (2.14). Assume that

0 < An < Bn, and 0 < A′−n < B′−n, n ≥ 1.

Then both H and H ′ are convergent. Moreover, let P = PRPA and assume that H + H ′ ≤ 1. Then, both PR
and PA are stochastic matrices if and only if we choose α and x0 in the following ranges

α ≥ H ′, x0 ≥ H.
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Proof. The proof follows the same lines as the proof of Theorem 2.1 of [11] and will be omitted (see also Theorem
2.1 of [8]). �

2.1. Stochastic Darboux transformation and the associated spectral matrix. We have shown above
under what conditions a doubly stochastic matrix P like in (2.1) can be decomposed as an RA factorization,
where both factors are still stochastic matrices. This factorization comes with two free parameters. Once we
have this factorization it is possible to perform what is called as a discrete Darboux transformation, consisting
of inverting the order of the factors. The Darboux transformation has a long history but probably the first
reference of a discrete Darboux transformation like we study here appeared in [19] in connection with the Toda
lattice.

If P = PRPA as in (2.5) and (2.6), then, by inverting the order of the factors, we obtain another stochastic

matrix of the form P̃ = PAPR, since the multiplication of two stochastic matrices is again a stochastic matrix.

This matrix P̃ is not tridiagonal but pentadiagonal, so we do not obtain again a birth-death chain on Z, as in
the case of UL (or LU) factorization in [11]. However we obtain a two-parameter family of new Markov chains

on Z, which we denote by {X̃t : t = 0, 1, . . .}, which is “almost” a birth-death chain. The only difference is
that we have new transition probabilities between the state 1 to the state −1 and viceversa. The tridiagonal

coefficients of P̃ are given by

ãn = snxn, ã−n−1 = y−nr−n−1, n ≥ 0,

b̃0 = y0, b̃−1 = r−1α+ s−1y−1, b̃n = rnxn−1 + snyn, b̃−n = r−nx−n+1 + s−ny−n, n ≥ 1, (2.15)

c̃0 = α, c̃n = rnyn−1, c̃−n = s−nx−n, n ≥ 1,

while the probability transitions between the state 1 and −1 are given by

d̃1 = P(X̃1 = −1|X̃0 = 1) = r1α, d̃−1 = P(X̃1 = 1|X̃0 = −1) = r−1x0. (2.16)

A diagram of the transitions between the states of this new family of Markov chains is given by

Another way to obtain these coefficients is by considering the block matrix factorization P = PRPA, where P
is given by (2.3) (see also (2.4)) and PR and PA are given by (2.8) (see also (2.7)). The Darboux transformation



8 MANUEL D. DE LA IGLESIA AND CLAUDIA JUAREZ

will be given by P̃ = PAPR, i.e.,

P̃ =


B̃0 Ã0

C̃1 B̃1 Ã1

C̃2 B̃2 Ã2

. . .
. . .

. . .

 =


S0

R1 S1

R2 S2

. . .
. . .




Y0 X0

Y1 X1

Y2 X2

. . .
. . .

 . (2.17)

A direct computation shows

Ãn = SnXn, n ≥ 0,

B̃0 = S0Y0, B̃n = RnXn−1 + SnYn, n ≥ 1,

C̃n = RnYn−1, n ≥ 0.

(2.18)

Using the notation in (2.4) we can obtain again the probabilities (2.15) and (2.16). Since P = PRPA is a block

UL matrix factorization then P̃ = PAPR will be also a block tridiagonal matrix, and will be again a family of
discrete-time quasi-birth-and-death processes.

Now let us focus on the following question: given the spectrum of the doubly infinite matrix P , how can we

compute the spectrum of the Darboux transformation P̃ of the RA factorization? We will see that this will be
related with what is called a Geronimus transformation. Before that let us introduce some notation to study
the spectral measures associated with the original birth-death chain P on Z.

We will follow the last section of [16] (see also [11]). For P like in (2.1) consider the eigenvalue equation
xqα(x) = Pqα(x) where qα(x) = (· · · , Qα−1(x), Qα0 (x), Qα1 (x), · · · )T , α = 1, 2. For each x real or complex there
exist two polynomial families of linearly independent solutions Qαn(x), α = 1, 2, n ∈ Z, depending on the initial
values at n = 0 and n = −1. These polynomials are given by

Q1
0(x) = 1, Q2

0(x) = 0,

Q1
−1(x) = 0, Q2

−1(x) = 1, (2.19)

xQαn(x) = anQ
α
n+1(x) + bnQ

α
n(x) + cnQ

α
n−1(x), n ∈ Z, α = 1, 2.

Observe that

deg(Q1
n) = n, n ≥ 0, deg(Q2

n) = n− 1, n ≥ 1,

deg(Q1
−n−1) = n− 1, n ≥ 1, deg(Q2

−n−1) = n, n ≥ 0.

Let us define the potential coefficients as

π0 = 1, πn =
a0a1 · · · an−1
c1c2 · · · cn

, π−n =
c0c−1 · · · c−n+1

a−1a−2 · · · a−n
, n ≥ 1. (2.20)

These coefficients are defined as the solutions of the symmetry equations Pijπi = Pjiπj normalized by the
condition π0 = 1. In particular we have that πP = π, i.e., π = (πn)n∈Z is an invariant vector of P . As a
consequence of these symmetry equations, the matrix P gives rise to a self-adjoint operator of norm ≤ 1 in the
Hilbert space `2π(Z), which we will denote by P , abusing the notation. Applying the spectral theorem we obtain
three unique measures ψαβ , α, β = 1, 2 (ψ12 = ψ21), which are supported on the interval [−1, 1] such that we
have the following orthogonality relation

2∑
α,β=1

∫ 1

−1
Qαi (x)Qβj (x)dψαβ(x) =

δi,j
πj

, i, j ∈ Z. (2.21)
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For more details see [11, 16, 18]. The measures ψ11 and ψ22 are positive (in fact ψ11 is a probability measure but

ψ22 is not, since
∫ 1

−1 dψ22(x) = 1/π−1). The measure ψ12 is a signed measure satisfying 0 =
∫ 1

−1 dψ12(x). For
simplicity let us assume that the three measures are continuously differentiable with respect to the Lebesgue
measure, i.e., dψαβ(x) = ψαβ(x)dx, α, β = 1, 2, abusing the notation. These 3 measures can be written in
matrix form as the 2× 2 matrix

Ψ(x) =

ψ11(x) ψ12(x)

ψ12(x) ψ22(x)

 , (2.22)

so that the orthogonality relation (2.21) can be written in matrix form as∫ 1

−1

(
Q1
i (x), Q2

i (x)
)
Ψ(x)

Q1
j (x)

Q2
j (x)

 dx =
δi,j
πj

, i, j ∈ Z.

The matrix Ψ(x) in (2.22) is called the spectral matrix associated with P . The orthogonality conditions are
valid for any indexes i, j ∈ Z. With this information we can compute the n-step transition probabilities of the
random walk {Xt : t = 0, 1, . . .}, given by the so-called Karlin-McGregor integral representation formula (see
[16])

P
(n)
ij

.
= P(Xn = j |X0 = i) = πj

∫ 1

−1
xn
(
Q1
i (x), Q2

i (x)
)
Ψ(x)

Q1
j (x)

Q2
j (x)

 dx, i, j ∈ Z.

If we define the matrix-valued polynomials

Qn(x) =

 Q1
n(x) Q2

n(x)

Q1
−n−1(x) Q2

−n−1(x)

 , n ≥ 0, (2.23)

then we have

xQ0(x) = A0Q1(x) +B0Q0(x), Q0(x) = I2×2,

xQn(x) = AnQn+1(x) +BnQn(x) + CnQn−1(x), n ≥ 1,
(2.24)

where I2×2 denotes the 2 × 2 identity matrix and (An)n≥0, (Bn)n≥0 and (Cn)n≥1 are given by (2.4). If we
denote Q = (QT

0 ,Q
T
1 , · · · )T then we have xQ = PQ, where P is given by (2.3). The matrix orthogonality is

defined in terms of the (matrix-valued) inner product∫ 1

−1
Qn(x)Ψ(x)QT

m(x)dx = Π−1n δnm,

where AT is the transpose of a matrix A and

Πn =

πn 0

0 π−n−1

 , n ≥ 0, (2.25)

where π = (πn)n∈Z are given by (2.20). An alternative way of writing Πn, which solves the symmetry equations
for P , is given by (see [10])

Πn = (CT1 · · ·CTn )−1Π0A0 · · ·An−1, n ≥ 1.

Therefore we have (see [4, 5]) the Karlin-McGregor integral representation formula where the 2× 2 block entry
(i, j) is given by

P
(n)
ij =

(∫ 1

−1
xnQi(x)Ψ(x)QT

j (x)dx

)
Πj , i, j ∈ Z≥0.
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Remark 2.2. In several references (see for instance [3, 18, 21]) the two families of polynomials (Qαn)n∈Z, α = 1, 2,
generated by the three-term recurrence relation (2.19) are denoted in a different way and have different initial
conditions. If we denote by (P βn )n∈Z the families defined in those papers, then the initial conditions are given
by P βn = δnβ for n, β = 0, 1. We prefer to use our notation (and follow [16] or [1]) since in this case, and after
relabeling, the sequence (Qn)n≥0 in (2.23) is a proper family of matrix-valued polynomials, i.e., degQn = n
and have nonsingular leading coefficient, something that will not occur if we perform the same labeling to the
family (P βn )n∈Z. In this way we make a direct connection between the theory of orthogonal polynomials on the
integers and the theory of 2× 2 matrix-valued orthogonal polynomials.

Consider now the matrix-valued polynomials

U0(x) = S0Q0(x) = S0,

Un(x) = RnQn−1(x) + SnQn(x), n ≥ 1,
(2.26)

where (Sn)n≥0 and (Rn)n≥1 are defined by (2.7). If we denote U = (UT
0 ,U

T
1 , · · · )T , then we have that

U = PAQ, where PA is given by (2.8). Therefore, from the RA factorization of P , we get PRU = PRPAQ =
PQ = xQ, or in other words

xQn(x) = YnUn(x) +XnUn+1(x), n ≥ 0. (2.27)

Finally, using the Darboux transformation (2.17), we have

P̃U = PAPRPAQ = xPAQ = xU .

Evaluating at x = 0 in (2.27) we can easily get

Un(0) = (−1)nX−1n−1Yn−1 · · ·X
−1
0 Y0S0. (2.28)

As a consequence we also have

Un+1(0)U−1n−k(0) = (−1)k+1X−1n Yn · · ·X−1n−kYn−k, k = 0, 1, . . . , n.

We can also solve (2.27) recursively in which case we have, using the previous notation,

Un(x) = Un(0)

[
I + x

n−1∑
k=0

U−1k+1(0)X−1k Qk(x)

]
. (2.29)

From (2.26) we have that deg(Un(x)) = n, n ≥ 0, but U0(x) = S0 6= I2×2. We will be interested in a new family

of matrix-valued polynomials (Q̃n)n≥0 where Q̃0 = I2×2. Since S0 is a constant matrix and has an inverse, this
new family can be defined as

Q̃n(x) = Un(x)S−10 . (2.30)

Finally, if we define (Π̃n)n≥0 as the solution of the symmetry equations for P̃ in (2.17), given by

Π̃n = (C̃T1 · · · C̃Tn )−1Π̃0Ã0 · · · Ãn−1, n ≥ 1,

then, using (2.9), (2.18) and the previous equation, we get

Π̃n = Y Tn ΠnS
−1
n , n ≥ 0. (2.31)

Computing Π̃0 using (2.10) and (2.11), we get

Π̃0 =

y0 0

0 α/r−1

 .

Therefore (Π̃n)n≥0 are always diagonal matrices. We are ready to prove the main result of this section.



AR FACTORIZATIONS FOR BIRTH-DEATH CHAINS ON Z 11

Theorem 2.3. Let {Xt : t = 0, 1, . . . } be the birth-death chain on Z with transition probability matrix P given

by (2.1) and {X̃t : t = 0, 1, . . . } be the Markov chain generated by the Darboux transformation of P = PRPA

with transition probabilities given by (2.15) and (2.16). Assume that M−1 =

∫ 1

−1
x−1Ψ(x)dx is well-defined

(entry by entry), where Ψ(x) is the original spectral matrix (2.22). Then the matrix-valued polynomials (Q̃n)n≥0
defined by (2.30) are orthogonal with respect to the following spectral matrix

Ψ̃(x) = S0ΨU (x)ST0 , (2.32)

where the constant matrix S0 is defined by (2.7) and

ΨU (x) =
Ψ(x)

x
+

 1

y0

 1 −r−1/s−1
−r−1/s−1 (r−1/s−1)2 + y0r−1/αs

2
−1

−M−1

 δ0(x). (2.33)

Moreover, we have ∫ 1

−1
Q̃n(x)Ψ̃(x)Q̃T

m(x)dx = Π̃−1n δn,m,

where (Π̃n)n≥0 are defined by (2.31).

Proof. For n ≥ 1 and j = 1, . . . , n− 1, we have∫ 1

−1
Q̃n(x)Ψ̃(x)xjdx =

∫ 1

−1
Un(x)ΨU (x)xjST0 dx =

∫ 1

−1
[RnQn−1(x) + SnQn(x)]Ψ(x)xj−1ST0 dx

=

∫ 1

−1
RnQn−1(x)Ψ(x)xj−1ST0 dx+

∫ 1

−1
SnQn(x)Ψ(x)xj−1ST0 dx = 02×2,

where for the first equality we have used (2.30) and (2.32), for the second equality we have used (2.26) and
(2.33), and finally we have used the orthogonality of the family (Qn)n≥0. Now, for n ≥ 1 we have, using (2.29),
that ∫ 1

−1
Q̃n(x)Ψ̃(x)dx =

∫ 1

−1
Un(x)ΨU (x)ST0 dx =

∫ 1

−1
Un(0)

[
I + x

n−1∑
k=0

U−1k+1(0)X−1k Qk(x)

]
ΨU (x)ST0 dx

= Un(0)

[∫ 1

−1
ΨU (x)dx+

n−1∑
k=0

U−1k+1(0)X−1k

∫ 1

−1
Qk(x)Ψ(x)dx

]
ST0 .

The second part of the previous sum vanishes for k = 1, . . . , n−1. Therefore the only nonzero term is for k = 0,

i.e., U−11 (0)X−10

∫ 1

−1 Ψ(x)dx = U−11 (0)X−10 Π−10 . A direct computation using (2.28), (2.7), (2.25) and (2.20)
shows that

U−11 (0)X−10 Π−10 = −S−10 Y −10 Π−10 = − 1

y0

 1 −r−1/s−1
−r−1/s−1 (r−1/s−1)2 + y0r−1/αs

2
−1

 .

From the definition of ΨU (x) in (2.33) we obtain that
∫ 1

−1 Q̃n(x)Ψ̃(x)dx = 02×2.
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Finally, for n ≥ 0, and using (2.30), (2.32), (2.27), (2.26) and the orthogonality properties, we have∫ 1

−1
Q̃n(x)Ψ̃(x)Q̃T

n (x)dx =

∫ 1

−1
Un(x)S−10 S0ΨU (x)ST0 S

−T
0 UT

n (x)dx

=

∫ 1

−1
Y −1n [xQn(x)−XnUn+1(x)] ΨU (x)UT

n (x)dx

= Y −1n

∫ 1

−1
xQn(x)ΨU (x)UT

n (x)dx

= Y −1n

∫ 1

−1
Qn(x)Ψ(x) [RnQn−1(x) + SnQn(x)]

T
dx

= Y −1n

[∫ 1

−1
Qn(x)Ψ(x)QT

n (x)dx

]
STn

= Y −1n Π−1n STn = (S−Tn ΠnYn)−1 = Π̃−Tn = Π̃−1n ,

where in the last steps we have used the formula (2.31) and the fact that (Π̃n)n≥0 are diagonal matrices. �

Remark 2.4. Observe that the derivation of the spectral matrix Ψ̃(x) for the matrix-valued polynomials (Q̃n)n≥0
is not restricted to the case where we start with a birth-death chain on Z with transition probability matrix
P . For any tridiagonal block matrix P as in (2.3) with N ×N blocks, if we are able to find a factorization of
the form P = PRPA where PR and PA are given by (2.8), then we can follow the same steps to compute the

spectral matrix associated with the Darboux transformation P̃ = PAPR. Assuming that we have computed
the spectral matrix Ψ(x) associated with P (which is not always possible, see Theorem 2.1 of [4]) and that

M−1 =
∫ 1

−1 x
−1Ψ(x)dx is well-defined (entry by entry), the spectral matrix Ψ̃(x) associated with P̃ will be

given by

Ψ̃(x) = S0

(
Ψ(x)

x
+
[
(Π0Y0S0)−1 −M−1

]
δ0(x)

)
ST0 .

This is what is called a Geronimus transformation of the original spectral matrix Ψ(x). Observe that Ψ̃(x)
is not necessarily a proper weight matrix even if Ψ(x) is. For that we need the matrix (Π0Y0S0)−1 −M−1 to
be a positive semi-definite matrix. In the case we are treating in this paper we have that Π0Y0S0 is a positive
definite matrix (see (2.33)).

2.2. Example: random walk on Z. Let us consider an irreducible birth-death chain on Z with transition
probability matrix P as in (2.1) with constant transition probabilities

an = a, bn = b, cn = c, n ∈ Z, a+ b+ c = 1, a, c > 0, b ≥ 0.

This discrete-time birth-death chain is usually called a random walk. If we consider an RA factorization we
have that the continued fractions (2.13) can be explicitly computed and in this case they are given by

H =
1

2

(
1 + a− c−

√
(1 + c− a)2 − 4c

)
, H ′ =

1

2

(
1 + c− a−

√
(1 + c− a)2 − 4c

)
,

with a ≤ (1−
√
c)2 (to ensure convergence). Following Proposition 2.1 we have that the RA stochastic factori-

zation is possible if and only if we take α ≥ H ′ and x0 ≥ H bearing in mind that α + x0 ≤ 1. Observe that if
we choose α = H ′ and x0 = H, then we get

s−n = H, r−n = H, y−n = 1−H ′, x−n = H ′, n ≥ 1,

sn = 1−H ′, rn = H ′, yn = 1−H, xn = H, n ≥ 1,
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and y0 = 1 −H −H ′, s0 = 1 and r0 = 0. In this case the coefficients of the Darboux transformation remain
“almost” invariant, i.e., ãn = a, b̃n = b and c̃n = c for all n except for ã−1, ã0, b̃0, c̃0, c̃1.

The spectral matrix associated with this example is given by only an absolutely continuous part, i.e.,

Ψ(x) =
1

π
√

(x− σ−)(σ+ − x)

 1
x− b

2c
x− b

2c
a/c

 , x ∈ [σ−, σ+], σ± = 1−
(√
a∓
√
c
)2
. (2.34)

For details on how to compute this spectral matrix see Section 4.1 of [11]. Also a straightforward computation
shows that the moment M−1 of Ψ is given by

M−1 =


1

√
σ−σ+

1

2c

(
1− b
√
σ−σ+

)
1

2c

(
1− b
√
σ−σ+

)
a

c
√
σ−σ+

 .

In order for M−1 to be well-defined we need to assume that σ− > 0, i.e.,
√
a +
√
c < 1, or, in other words

a < (1 −
√
c)2, which is the condition for convergence of the continued fractions H and H ′. Once we have

this information it is possible to compute the spectral matrix associated with the Darboux transformation

P̃ = PAPR at the beginning of Section 2.1, which we recall it is an “almost” birth-death chain except for the
states 1 and −1 (see (2.15) and (2.16)) and two free parameters, α and x0. In this case we have

S0 =

 1 0

1− c/α c/α

 .

Following Theorem 2.3 we have that the spectral matrix associated with P̃ is given by (after some computations)

Ψ̃(x) =
1

πx
√

(x− σ−)(σ+ − x)
[Ã + B̃x] + M̃−1δ0,

where

Ã =

 1
2α+H −H ′ − 1

2α

2α+H −H ′ − 1

2α

(α−H ′)(H + α− 1)

α2

 , B̃ =
1

2α

0 1

1
2(α− c)

α

 ,

M̃−1 =


x0 −H + α−H ′

y0(1−H −H ′)
H ′ − α

α(1−H −H ′)
H ′ − α

α(1−H −H ′)
− (α−H ′)(1−H − α)

α2(1−H −H ′)

 .

Observe that in the case that α = H ′ and x0 = H we have that M̃−1 = 02×2.

3. Absorbing-reflecting factorization

In this section we will use the same notation as in Section 2, but replacing all parameters, matrices, etc.
in the RA factorization by a tilde superscript. For instance yn, xn, sn, rn, α in (2.5) and (2.6) will be replaced

by ỹn, x̃n, s̃n, r̃n, α̃, respectively, PR,PA, Yn, Xn, Sn, Rn in (2.8) will be replaced by P̃R, P̃A, Ỹn, X̃n, S̃n, R̃n,
respectively, and so on.

As we saw at the beginning of Section 2.1 the multiplication of matrices of the form P̃AP̃R, where P̃A and

P̃R are given by (2.6) and (2.5), gives rise to Markov chain which is “almost” a birth-death chain, except for
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the states 1 and −1 where it is possible to go from 1 to −1 and viceversa (see (2.16)). Hence it will not be
interesting to start from a birth-death chain P and consider an absorbing-reflecting (or AR) factorization of the

form P = P̃AP̃R, since this will imply that both P̃A and P̃R will be splited into two separated birth-death chains
at the state 0. Therefore it will make more sense to start with an irreducible Markov chain {Xt : t = 0, 1, . . .}
on Z with transition probability matrix

P =



. . .
. . .

. . .

c−2 b−2 a−2

c−1 b−1 a−1 d−1

c0 b0 a0

d1 c1 b1 a1

c2 b2 a2
. . .

. . .
. . .


. (3.1)

A diagram of the transitions of this Markov chain is similar to the one given in Section 2.1. If we perform the
same labeling as in (2.2) then P is equivalent to a semi-infinite 2× 2 block tridiagonal matrix P of the form

P =



b0 c0 a0 0

a−1 b−1 d−1 c−1

c1 d1 b1 0 a1 0

0 a−2 0 b−2 0 c−2

c2 0 b2 0 a2 0

0 a−3 0 b−3 0 c−3
. . .

. . .
. . .


, (3.2)

where the only difference with the coefficients in (2.4) is the triangular shape of the matrices A0 and C1, given
by

A0 =

 a0 0

d−1 c−1

 , C1 =

c1 d1

0 a−2

 .

Now, using the same notation as in (2.8) (see also (2.7)), let us consider the block matrix factorization P =

P̃AP̃R, which in this case is a LU block matrix factorization. A direct computation shows

An = S̃nX̃n, n ≥ 0,

Bn = S̃nỸn + R̃nX̃n−1, n ≥ 1, B0 = S̃0Ỹ0,

Cn = R̃nỸn−1, n ≥ 1,

(3.3)
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or equivalently, using P = P̃AP̃R, we obtain

an = x̃ns̃n, n ≥ 1, a0 = x̃0, a−n = ỹ−n+1r̃−n, n ≥ 1, (3.4)

bn = ỹns̃n + x̃n−1r̃n, n ≥ 1, b0 = ỹ0, b−n = ỹ−ns̃−n + x̃−n+1r̃−n, n ≥ 1, (3.5)

cn = ỹn−1r̃n, n ≥ 1, c0 = α̃, c−n = x̃−ns̃−n, n ≥ 1, (3.6)

d−1 = r̃−1x̃0, d1 = r̃1α̃, (3.7)

with P̃A and P̃R stochastic matrices, i.e., all entries are nonnegative and

α̃+ x̃0 + ỹ0 = 1, x̃n + ỹn = 1, s̃n + r̃n = 1, n ∈ Z \ {0}. (3.8)

Observe that, from (3.7) and (3.4), we have r̃−1 = d−1/x̃0 = a−1/ỹ0 and r̃1 = d1/α̃ = c1/ỹ0. Therefore, from
(3.4) and (3.5), we get that the factorization is posible if and only if

d−1 =
a−1a0
b0

, d1 =
c0c1
b0

. (3.9)

This means that, in order to have a stochastic AR factorization, the Markov chain (3.1) is not a general one
but restricted to the conditions (3.9). Additionally we need to have that 0 < d−1, d1 < 1, so we have to assume
that b0 > max{a−1a0, c0c1}. Once we have all the previous considerations it is possible to get the coefficients
ỹ0, r̃1, s̃1, x̃1, ỹ1, . . . recursively using (3.5), (3.6) and (3.8) in that order. On the other hand it is possible to
get ỹ0, r̃−1, s̃−1, x̃−1, ỹ−1, r̃−2, . . . recursively using (3.5), (3.4) and (3.8) in that order. In this case we also

have that x̃0 = a0 and α̃ = c0. Therefore there is no free parameter and the factorization is unique. Let H̃ and

H̃ ′ be the following continued fractions

H̃ =
c1

1
−

a1

1
−

c2

1
−

a2

1
− · · · , H̃ ′ =

a−1

1
−

c−1

1
−

a−2

1
−

c−2

1
− · · · (3.10)

For each continued fraction, consider the corresponding sequence of convergents (h̃n)n≥0 and (h̃′−n)n≥0, given
by

h̃n =
Ãn

B̃n
, h̃′−n =

Ã′−n

B̃′−n
. (3.11)

Again, we refer to [7, 11] to find more information about the notation and definitions on continued fractions.

Proposition 3.1. Let H̃ and H̃ ′ be the continued fractions given by (3.10) and the corresponding convergents

h̃n and h̃−n defined by (3.11). Assume that

0 < An < Bn, and 0 < A′−n < B′−n, n ≥ 1.

Then both H̃ and H̃ ′ are convergent. Moreover, let P = P̃AP̃R. Then, both P̃A and P̃R are stochastic matrices
if and only if

b0 > max{H̃, H̃ ′}.

Proof. The proof follows the same lines as the proof of Theorem 2.1 of [11] and will be omitted (see also Theorem
2.1 of [8]). �

Remark 3.2. Observe that the condition of the previous proposition implies that b0 ≥ H̃ and b0 ≥ H̃ ′. Also, if

b0 ≥ H̃, then in particular b0 > c1 and since we know that 0 < c0 < 1, then we have b0 > c1 > c0c1. Similarly,

if b0 ≥ H̃ ′, in particular we have b0 > a−1 and since 0 < a0 < 1, then we get b0 > a−1 > a0a−1. This allows us

to conclude that if b0 ≥ max{H̃, H̃ ′}, then b0 ≥ max{a−1a0, c0c1} and therefore 0 < d1, d−1 < 1. Observe that
this does not mean that the factorization is always possible since we need to have (3.9).
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3.1. Stochastic Darboux transformation and the associated spectral matrix. As we did in Section 2.1,

if P = P̃AP̃R (or equivalently P = P̃AP̃R) then we can perform a Darboux transformation given by P̂ = P̃RP̃A
(or P̂ = P̃RP̃A). In block matrix form we have

P̂ =


B̂0 Â0

Ĉ1 B̂1 Â1

Ĉ2 B̂2 Â2

. . .
. . .

. . .

 =


Ỹ0 X̃0

Ỹ1 X̃1

Ỹ2 X̃2

. . .
. . .




S̃0

R̃1 S̃1

R̃2 S̃2

. . .
. . .

 . (3.12)

A direct computation shows

Ân = X̃nS̃n+1, n ≥ 0,

B̂n = X̃nR̃n+1 + ỸnS̃n, n ≥ 0,

Ĉn = ỸnR̃n, n ≥ 1.

(3.13)

An important difference now is that P̂ is in this case a discrete-time birth-death chain on Z (without transitions

between the states 1 and −1). As in Section 2.1 we are interested in the spectral matrix associated with P̂ given
that we have information about the spectral matrix associated with P . In principle we can not guarantee that
there exists a weight matrix associated with P . But it is possible to see, using Theorem 2.1 of [4], that there
exists a spectral matrix Ψ such that the polynomials (Qn)n≥0 defined by the three-term recurrence relation
(2.24) are orthogonal with respect to the spectral matrix dΨ(x). The sequence of nonsingular matrices (Rn)n≥0
in that theorem is given by

Rn =

√πn 0

0
√
π−n−1

 , n ≥ 0,

where π = (πn)n∈Z are the potential coefficients given by (2.20). A direct computation using (3.9) shows that
RnBnR

−1
n , n ≥ 0, are always symmetric matrices and that RTnRn = (CT1 · · ·CTn )−1RT0 R0A0 · · ·An−1, n ≥ 1.

Therefore we have RTnRn = Πn where Πn is defined by (2.25).

Consider now the matrix-valued polynomials

Q̄n(x) = ỸnQn(x) + X̃nQn+1(x), n ≥ 0,

where (Ỹn)n≥0 and (X̃n)n≥0 are defined by (2.7). If we denote Q̄ = (Q̄T
0 , Q̄

T
1 , · · · )T , then we have that

Q̄ = P̃RQ. Therefore, from the AR factorization of P , we get P̃AQ̄ = P̃AP̃RQ = PQ = xQ, or in other words

xQ0(x) = S̃0Q̄0(x),

xQn(x) = R̃nQ̄n−1(x) + S̃nQ̄n(x), n ≥ 1.

From the previous equation we have that Q̄0(x) = xS̃−10 Q0(x) = xS̃−10 and by induction we can prove that
Q̄n(x) = xTn(x), where (Tn)n≥0 is a family of matrix-valued polynomials with deg(Tn(x)) = n, n ≥ 0, and
nonsingular leading coefficient. We can rewrite the previous two formulas in terms of the polynomials (Tn)n≥0.
Indeed,

xTn(x) = ỸnQn(x) + X̃nQn+1(x), n ≥ 0, (3.14)

and

Q0(x) = S̃0T0(x),

Qn(x) = R̃nTn−1(x) + S̃nTn(x), n ≥ 1.
(3.15)
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Since T0(x) = S̃−10 6= I2×2, let us define a new family (Q̂n)n≥0 such that Q̂0 = I2×2, i.e.,

Q̂n(x) = Tn(x)S̃0. (3.16)

Finally, if we define (Π̂n)n≥0 as the solution of the symmetry equations for P̂ in (3.12), given by

Π̂n = (ĈT1 · · · ĈTn )−1Π̂0Â0 · · · Ân−1, n ≥ 1.

Then, using (3.3), (3.13) and the previous equation, we get

Π̂n = Ỹ −Tn ΠnS̃n, n ≥ 0. (3.17)

Computing Π̂0 using (3.4) and (3.6), we have

Π̂0 =
1

ỹ0

1 0

0 α̃s̃−1

ỹ−1r̃−1

 .

Therefore, as in the RA factorization, (Π̂n)n≥0 are always diagonal matrices. We are ready to prove the main
result of this section.

Theorem 3.3. Let {Xt : t = 0, 1, . . . } be the Markov chain on Z with transition probability matrix P given by

(3.1) and {X̃t : t = 0, 1, . . . } the birth-death chain generated by the Darboux transformation of P = P̃AP̃R. Then

the matrix-valued polynomials (Q̂n)n≥0 defined by (3.16) are orthogonal with respect to the following spectral
matrix

Ψ̂(x) = xS̃−10 Ψ(x)S̃−T0 , (3.18)

where the constant matrix S̃0 is defined by (2.7) and Ψ(x) is the original spectral matrix associated with P .
Moreover, we have ∫ 1

−1
Q̂n(x)Ψ̂(x)Q̂T

m(x)dx = Π̂−1n δn,m,

where (Π̂n)n≥0 are defined by (3.17).

Proof. For n ≥ 1 and j = 0, . . . , n− 1, we have∫ 1

−1
Q̂n(x)Ψ̂(x)xjdx =

∫ 1

−1
xTn(x)Ψ(x)xjS̃−T0 dx =

∫ 1

−1
[ỸnQn(x) + X̃nQn+1(x)]Ψ(x)xjS̃−T0 dx

= Ỹn

∫ 1

−1
Qn(x)Ψ(x)xjS̃−T0 dx+ X̃n

∫ 1

−1
Qn+1(x)Ψ(x)xjS̃−T0 dx = 02×2,

where for the first equality we have used (3.16) and (3.18), for the second equality we have used (3.14), and
finally we have used the orthogonality of the family (Qn)n≥0. Finally, for n ≥ 0, and using (3.14), (3.15), (3.17)
and the orthogonality properties, we have∫ 1

−1
Q̂n(x)Ψ̂(x)Q̂T

n (x)dx =

∫ 1

−1
Tn(x)xΨ(x)T T

n (x)dx =

∫ 1

−1
[ỸnQn(x) + X̃nQn+1(x)]Ψ(x)T T

n (x)dx

= Ỹn

∫ 1

−1
Qn(x)Ψ(x)T T

n (x)dx = Ỹn

∫ 1

−1
Qn(x)Ψ(x)[S̃−1n Qn(x)− S̃−1n R̃nTn−1(x)]T dx

= Ỹn

∫ 1

−1
Qn(x)Ψ(x)QT

n (x)S̃−Tn dx = ỸnΠ−1n S̃−Tn = (S̃TnΠnỸ
−1
n )−1 = Π̂−Tn = Π̂−1n ,

where in the final step we have used the fact that (Π̂n)n≥0 are diagonal matrices. �
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Remark 3.4. The weight matrix Ψ̂(x) in (3.18) is called a Christoffel transformation of the original spectral
matrix Ψ(x).

3.2. Example: random walk with transitions between the states 1 and −1. Let us consider an irre-
ducible Markov chain on Z with transition probability matrix P as in (3.1) where

an = a, n ∈ Z \ {−1}, bn = b, n ∈ Z, cn = c, n ∈ Z \ {1},

and as usual a + b + c = 1, a, c > 0, b ≥ 0. From (3.9) the values of a−1, d−1, c1, d1 must be given in terms of
a, b, c. Indeed,

a−1 =
ab

1− c
, d−1 =

a2

1− c
, c1 =

bc

1− a
, d1 =

c2

1− a
.

Since 1 − c > 0 and 1 − a > 0, this implies that a−1, d−1, c1, d1 > 0. Now, observe that a + c ≤ 1 and ab < a
since 0 ≤ b < 1. Then we have ab + c < a + c ≤ 1, which implies that ab < 1 − c and therefore a−1 < 1. In
the same way but using a2 < a, bc < c and c2 < c we get d−1 < 1, c1 < 1 and d1 < 1, respectively. Therefore,
independently of the choice of a, b and c, P is always a stochastic matrix.

If we consider the AR factorization we have that the continued fractions in (3.10) can be explicitly computed
and in this case they are given by

H̃ =
bc

J(1− a)
, H̃ ′ =

ab

J ′(1− c)
,

where

J =
1

2

(
1 + c− a+

√
(1 + c− a)2 − 4c

)
, J ′ =

1

2

(
1 + a− c+

√
(1 + c− a)2 − 4c

)
. (3.19)

Therefore we get

H̃ =
b

2(1− a)

(
1 + c− a+

√
(1 + c− a)2 − 4c

)
, H̃ ′ =

b

2(1− c)

(
1 + a− c+

√
(1 + c− a)2 − 4c

)
,

with a ≤ (1−
√
c)2 (to ensure convergence). With this condition we immediately have that b > H̃, b > H̃ ′ and

then b > max{H̃, H̃ ′}. Therefore, according to Proposition 3.1, we have that the AR stochastic factorization of
P is always possible.

Let us now compute the spectral matrix Ψ(x) associated with this example. Since P is not tridiagonal we
do not have a birth-death chain on the integers Z, so we can not apply the same methodology as we did in the
previous section. However we can consider the block tridiagonal structure of P given by P in (3.2) and use the
theory of matrix-valued orthogonal polynomials to compute the spectral matrix Ψ(x). P is given in this case
by

P =



b c a 0

ab
1−c b a2

1−c c

bc
1−a

c2

1−a b 0 a 0

0 a 0 b 0 c

c 0 b 0 a 0

0 a 0 b 0 c

. . .
. . .

. . .


.

Let us now use Theorem 2.1 of [2] to obtain a relation between the Stieltjes transform of the spectral matrix Ψ,

given by definition by B(Ψ; z) =
∫ 1

−1(z − x)−1dΨ(x), and the Stieltjes transform of the spectral matrix Ψ0 of
the 0-th associated process P0, which is constructed by removing the first block row and column of P . Observe
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that P0 has constant diagonal block entries. Therefore, using Theorem 2.1 of [2], it is easy to compute the
corresponding Stieltjes transform B(Ψ0; z), given by

B(Ψ0; z) =

z − b±
√

(z − σ+)(z − σ−)

2ac
0

0
z − b±

√
(z − σ+)(z − σ−)

2c2

 , z ∈ C \ [σ−, σ+],

where σ± are given by (2.34). Now using again Theorem 2.1 of [2] we have that the Stieltjes transform B(Ψ; z)
of P satisfies the algebraic equation

B(Ψ; z)ΠΨ [zI2×2 −B0 −A0B(Ψ0; z)ΠΨ0C1] = I2×2, (3.20)

where

A0 =

 a 0

a2

1−c c

 , B0 =

 b c

ab
1−c b

 , C1 =

 bc
1−a

c2

1−a

0 a

 ,

and ΠΨ and ΠΨ0 are the inverses of the 0-th norms of each spectral matrix, given in this case by

ΠΨ =

1 0

0 c(1−c)
ab

 , ΠΨ0
=

1 0

0 c/a

 .

Solving (3.20) and after some tedious but straightforward computations we have that

B(Ψ; z) =

B(ψ11; z) B(ψ12; z)

B(ψ12; z) B(ψ22; z)

 ,

where

B(ψij ; z) =
pij(z) + qij(z)

√
(z − σ+)(z − σ−)

rij(z)
, z ∈ C \ [σ−, σ+],

and pij(z), qij(z), rij(z) are polynomials given by

p11(z) = 2(1− a)(1− c)z3 − 4b(1− a)(1− c)z2 + γ11z − b2((a− c)2 − a− c),
q11(z) = b [−2(1− a)(1− c)z − a(1− a)− c(1− c)] ,
r11(z) = 2(1− a)(1− c)z4 − 4b(1− a)(1− c)z3 + (γ11 − b2(2ac− a− c))z2 + 4ab2cz − 2ab2c,

p12(z) = b
[
−(1− a)(1− c)z3 + b(1− a)(2− 3c)z2 + γ12z − bc((1− c)2 − a(1 + c))

]
q12(z) = b

[
−(1− a)(1− c)z2 + (1− a)(1 + 2c2 − a− 3c)z + bc(1− c)

]
(3.21)

r12(z) = cr11(z),

p22(z) = b2
[
−(1− a)z3 + (1− a)(b+ 2(1− c))z2 + γ22z − b(ac− c2 + a+ 2c− 1)

]
q22(z) = b

[
−(1− a)(1− c+ a)z2 + 2b(1− a)(1− c)z − b2(1− c)

]
r22(z) = cr11(z),

where

γ11 = 2(1− a)3 + 2(1− c)3 − 2 + 2ac(2 + a+ c− 4ac) + b2(2ac− a− c),
γ12 = a3 + a2(2c2 + 2c− 3) + a(1− c)(2c2 − 4c+ 3)− (1− c)2(1− 3c),

γ22 = −2a2(1 + c) + a(2c2 − 5c+ 5)− 3(1− c)2.
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Therefore the Stieltjes transform B(Ψ; z) can be written as

B(Ψ; z) =

√
(z − σ+)(z − σ−)

cr11(z)

cq11(z) q12(z)

q12(z) q22(z)

+
1

cr11(z)

cp11(z) p12(z)

p12(z) p22(z)

 .

Observe that r11(z) is a polynomial of degree 4, so the Stieltjes transform may have at most 4 real poles. We
have not been able to compute an explicit expression of these zeros, but if we assume that c = a then it is
possible to have an explicit expression of them.

So let us assume from now on that c = a. Then b = 1 − 2a and the polynomial r11(z) has now a simpler
expression:

r11(z) = 2(1− z)(z(1− a) + a)[(a− 1)z2 + b2z − ab2].

The zeros of r11(z) are given by

1, − a

1− a
,

b(b±
√

2b2 − 1)

1 + b
. (3.22)

If
√

2/2 < b < 1, i.e., 0 < a < (2 −
√

2)/4, there can be at most 4 different real zeros. This means that the
spectral matrix will consist of a continuous density plus possibly some Dirac delta masses located at these zeros
with certain weights. Let us write the spectral matrix as Ψ(x) = Ψc(x) + Ψd(x). Using the Stieltjes-Perron
inversion formula the continuous part of the spectral matrix is given by

Ψc(x) =

√
(σ+ − x)(x− σ−)

cπr11(x)

cq11(x) q12(x)

q12(x) q22(x)

 , x ∈ [σ−, σ+] = [1− 4a, 1], (3.23)

where

q11(x) = −2(1− 2a)(1− a)(x(1− a) + a),

q12(x) = −(1− 2a)(1− a)(x(1− a) + a)(x− 1 + 2a),

q22(x) = −(1− 2a)(1− a)(x2 − 2(1− a)(1− 2a)x+ (1− 2a)2).

The discrete masses come from the residues at the simple poles of B(Ψ; z), given by (3.22). It is possible to see
that these zeros (if real) are in [−1, 1] \ (σ−, σ+). A straightforward computation shows that all these discrete
masses are identically 02×2. Therefore Ψd(x) = 02×2 and Ψ(x) = Ψc(x). As a consequence the spectral matrix
only have a continuous part given by (3.23). In the general case (if c 6= a) we have extensive computational
evidences that the spectral matrix has again only a continuous part, given by (3.23).

Now let us consider the stochastic Darboux transformation of the AR factorization. As we said in Section 3
(just before (3.10)), there is no free parameter and the factorization is unique. The Darboux transformation is

then given by P̂ in (3.12) (in block matrix form), but if we consider it as a Markov chain on Z, the matrix P̂
is now a discrete-time birth-death chain on Z. The transition probabilities of this birth-death chain are highly
nontrivial and they can be computed from (3.13). Let us call J the continued fraction

J =
c

1
−

a

1
−

c

1
−

a

1
− · · ·

and jn = αn/βn the corresponding convergents. Observe that J is convergent as long as a ≤ (1−
√
c)2 and the

limit is given by (3.19). The sequences αn and βn of the convergents jn can be computed recursively using the
following relations:

α2n = α2n−1 − aα2n−2, n ≥ 1, α2n+1 = α2n − cα2n−1, n ≥ 0, α−1 = 1, α0 = 1,

β2n = β2n−1 − aβ2n−2, n ≥ 1, β2n+1 = β2n − cβ2n−1, n ≥ 0, β−1 = 0, β0 = 1.
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The first few convergents are given by

j0 = 0, j1 = c, j2 =
c

1− a
, j3 =

c(1− c)
b

, j4 =
cb

b− a(1− a)
, j5 =

c(b− c(1− c))
b(1− c)− a(1− a)

, . . .

A straightforward computation using (3.4) and (3.6) shows that the coefficients x̃n, ỹn, r̃n, s̃n, n ∈ Z, can be
written in terms of the convergents jn. Indeed,

x̃n =
a

1− j2n
, n ≥ 0, ỹn = 1− x̃n, n ≥ 1, ỹ0 = b, α̃ = c, x̃−n = j2n+1, ỹ−n = 1− j2n+1, n ≥ 1,

r̃n = j2n, s̃n = 1− j2n, n ≥ 0, r̃−n =
a

1− j2n−1
, s̃−n = 1− r̃−n, n ≥ 1.

Therefore, the coefficients ân, b̂n, ĉn, n ∈ Z, of the birth-death chain P̂ are given by

ân =
a(1− j2n+2)

1− j2n
, n ≥ 0, â−n =

a(1− j2n+1)

1− j2n−1
, n ≥ 1,

ĉn =
j2n(1− a− j2n)

1− j2n
, n ≥ 0, ĉ−n =

j2n+1(1− a− j2n+1)

1− j2n+3
, n ≥ 1,

b̂n =1− ân − ĉn, n ∈ Z.

Although these coefficients are highly nontrivial it is possible to compute the spectral matrix Ψ̂ of the birth-

death chain P̂ using Theorem 2.3. Indeed, the spectral matrix is given by

Ψ̂(x) = xS̃−10 Ψ(x)S̃−T0 ,

where Ψ(x) is given by (3.23) and

S̃−10 =

 1 0

−a/b (1− c)/b

 .

In other words,

Ψ̂(x) =
x
√

(σ+ − x)(x− σ−)

cπr11(x)

 cq11(x) −acb q11(x) + 1−c
b q12(x)

−acb q11(x) + 1−c
b q12(x) a2c

b2 q11(x)− 2a(1−c)
b2 q12(x) + (1−c)2

b2 q22(x)

 ,

where qij(x) are given by (3.21).
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