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Abstract

The best uniform polynomial approximation of the checkmark function f(x) =
|x − α| is considered, as α varies in (−1, 1). For each fixed degree n, the
minimax error En(α) is shown to be piecewise analytic in α. In addition,
En(α) is shown to feature n − 1 piecewise linear decreasing/increasing sec-
tions, called V-shapes. The points of the alternation set are proven to be
piecewise analytic and monotone increasing in α and their dynamics are
completely characterized. We also prove a conjecture of Shekhtman that for
odd n, En(α) has a local maximum at α = 0.

1. Introduction

Our purpose is to study the best polynomial approximation (in the uni-
form norm) to the so–called checkmark function, i.e.

f(x) = f(x;α) = |x− α|, x ∈ [−1, 1], α ∈ (−1, 1). (1.1)

Given a nonnegative integer n and α ∈ (−1, 1) we denote by pn(x) =
pn(x;α) the best polynomial approximation of degree at most n to the func-
tion f(x) in (1.1). This pn(x;α) is known as the minimax polynomial and
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satisfies the condition

En(α) := ‖f − pn‖ = min
q∈Pn

‖f − q‖ , (1.2)

where Pn denotes the linear space of all polynomials of degree at most n
and ‖ · ‖ denotes the uniform (or Chebyshev) norm in the interval [−1, 1].

The study of the best polynomial or rational approximation to the par-
ticular case f(x; 0) = |x| is a classical problem in Approximation Theory
(see Bernstein [1, 2], Nikolsky [6], Petrushev and Popov [7], Stahl [10], and
Totik [11] among many others), since it is one of the simplest nontrivial
functions to be approximated. The case of f(x;α) is treated by Bernstein
[2]. In these classical treatments of the problem, the focus is on asymptotic
rates of approximation when the degrees of the polynomials (or rational
functions) tend to infinity. From these studies it is known that as n → ∞,
the value nEn(α) → σ

√
1− α2, where σ := limn→∞ nEn(0) ≈ 0.28 . . . is the

Bernstein constant (see [1]).
In contrast, our objective here is to consider the evolution of the solution

to the minimax problem for fixed degree n as α varies from −1 to +1. We
will be especially concerned with the smoothness and behavior of En(α),
and with the positions and phase transitions of the so-called ‘Chebyshev
alternation points,’ whose definition we now review.

It is well known that the best polynomial approximation in the uniform
norm to f of degree at most n is uniquely characterized by the following
equioscillation property. There exist at least n + 2 points z1, z2, · · · zN in
[−1, 1] such that the minimax error En(α) defined in (1.2) is attained with
alternating signs, that is,

en(zi;α) := f(zi;α) − pn(zi;α) = ǫ (−1)i ‖f − pn‖ = ǫ (−1)i En(α) , (1.3)

for i = 1, 2, · · · , N , where ǫ = ±1 . The points zi are called alternation
points. This characterization is the basis for the numerical algorithm to
compute the minimax polynomial, which is commonly known as the Remez
algorithm (see [8] or [7, Ch. 1]).

In [4, Lemma 3] it is proven that for the checkmark function the exact
number of alternation points is either n + 2 or n + 3, with α being always
an alternation point such that

pn(α;α) = En(α) . (1.4)

Hereafter, we denote by ui = ui(α) the alternation points located to
the left of α, and by vj = vj(α), those to the right. The ui and vj are
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enumerated by their distance to α. So, we write

An(α) := {uk+1(α) < · · · < u1(α) < α < v1(α) < · · · < vℓ+1(α)} , (1.5)

where k, ℓ ≥ 0. In particular, for α not in a so-called “V-shape” (see next
paragraph) we know from [4] that the alternation set An(α) contains exactly
n+2 alternation points, and {−1, α, 1} ⊂ An(α). In this case uk+1(α) = −1,
vℓ+1(α) = 1, and k + ℓ = n − 1. For convenience we define u0(α) := α =:
v0(α).

An interesting aspect of the error function En(α) as α varies from −1 to
1 is that it develops what we call V-shapes. We say En(α) has a V-shape on
the domain interval [a, b] if there is a c ∈ (a, b) such that En(α) is linear and
decreasing on [a, c], linear and increasing on [c, b], and continuous on [a, b].
If [a, b] is a maximal such interval, then we call the portion of the graph of
En(α) over [a, b] a V-shape, and we call the points (a,En(a)), (b,En(b)) in
the graph of En(α) the endpoints of the V-shape. The point (c,En(c)) we
call the tip of the V-shape. By a slight abuse of terminology we will also use
the term V-shape in reference to the domain alone (instead of the graph).
For instance, we might say [a, b] is a V-shape, whose endpoints are a, b, and
whose tip is c.

An important result previously established in [4, Theorem 2] asserts
that for values of α close to +1 (or similarly to −1, by the symmetry of the
problem), the error function En(α) can be described in terms of the classical
Chebyshev polynomials. And if (α3, 1] is the largest interval on which this
description by Chebyshev polynomials holds, then on a contiguous interval of
values α ∈ [α1, α3], the graph of En(α) has a V-shape with tip α2 ∈ (α1, α3).
The proof is based on the fact that for such range of values of α, the domain
endpoint x = +1 is a soft–endpoint, that is, the minimax polynomial for f
in [−1, 1] is also the minimax polynomial for intervals of the form [−1, b], for
b ≥ b0, with b0 < 1. This allows us to perform a simple linear transformation
of the problem from which the existence of the V-shape arises. As noted
in a Remark on p. 154 of [4] when the alternation set has n + 3 points for
some α then this α is a tip of a V-shape for En(α). In fact, on p. 151 of
[4] it is conjectured that the number of such V-shapes is exactly n− 1. Our
Theorem 4.9 below establishes this conjecture.

The simplest nontrivial cases are those of n = 2 and n = 3, which were
studied in [4]. It is illustrative to review these. It is easy to plot E2(α) and
E3(α) numerically as functions of α, yielding Figure 1. Observe that the
graph of E2(α) has a V-shape in a symmetric interval about α = 0, where
the “tip” of the V-shape is located. Outside the V-shape, E2(α) can be
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Figure 1: The graphs of E2(α) and E3(α).

determined using Chebyshev polynomials as mentioned above. The graph
of E3(α) is slightly more involved, showing two symmetric V-shapes, and
now α = 0 is a local and in fact absolute maximum. At α = 0, note that
the two graphs intersect, reflecting the fact that p2(x; 0) = p3(x; 0).

In Figure 2, we numerically plot En(α) for n = 1, 2, · · · , 7. As n in-
creases, it appears that more and more V-shapes arise at whose tips the
graphs of En(α) and En+1(α) coincide. To illustrate the asymptotic rate
of approximation, in Figure 3 we also show the plots of nEn(α) for various
values of n, noting that they tend to accumulate along σ

√
1− α2.

Figure 2: The graphs of En(α), for n = 1, 2, . . . , 7.
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Figure 3: The normalized graphs nEn(α), for n = 1, 2, . . . , 7 and the limit σ
√
1− α2.

As we said, our main concern is the study of En(α) as α varies in (−1, 1),
for a fixed nonnegative integer n. In the next section, the monotonicity of
the alternation points as functions of the parameter α is established. In
Section 3 we show piecewise analyticity of the minimax error En(α) and
the alternation nodes; the points where analyticity fails are the tips and
endpoints of V-shapes. We also prove a conjecture of Shekhtman [9] that
En(α) has a local maximum at α = 0 when n is odd. In Section 4, the
conjecture about the exact number of V-shapes in the graph of En(α), posed
in [4], is resolved, which also allows us to describe the phase transitions of
the alternation points. These phase transitions are illustrated in Figure 6
for n = 5.

2. Monotonicity of the alternation points

We start our analysis by discovering monotonicity of the alternation
points with respect to the parameter α, where α is not a tip of a V-shape.
First note the following fact about continuity.

Lemma 2.1. Given a nonnegative integer n, the minimax polynomial pn(x;α)
and the minimax error En(α) vary continuously in the parameter α ∈ [−1, 1].

The proof follows from the continuity of the best approximation operator
for subspaces of finite dimension (see e.g. [3, Th. 1.2, p. 60]).

Lemma 2.2. Suppose f(x) is a nonconstant continuous function on [a, b]
and differentiable on (a, b) and that f(a) ≥ 0 ≥ f(b) (resp. f(a) ≤ 0 ≤ f(b)).
Then there is a point z ∈ (a, b) such that f ′(z) < 0 (resp. f ′(z) > 0).
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Proof. This is a consequence of the Mean Value Theorem.

In what follows, it will be useful to have a notation for a normalized
error function. For each α ∈ (−1, 1), let us define the function

gα(x) :=
pn(x;α) − |x− α|

En(α)
. (2.1)

Thus, gα is normalized in such a way that |gα(x)| ≤ 1 , x ∈ [−1, 1] .

Theorem 2.3. On any interval of α values not including a tip of a V-shape,

the alternation points {ui(α)}ki=0 and {vj(α)}ℓj=0 are non-decreasing in α.

Proof. For α in a linear part of a V-shape the monotonicity follows from a
linear transformation (see [4, Remark on p. 154]). Assume henceforth that
α is not in a V-shape, a case described immediately after (1.5) (recall that
then uk+1 = −1 and vℓ+1 = +1). We shall prove first that the alternation
points in question are non-decreasing.

It is clear that g′α(ui(α)) = 0, i = 1, . . . , k and g′α(vj(α)) = 0, j = 1, ..., ℓ.
By Rolle’s theorem this accounts for a root of g′′α(x) in each of the n − 3
subintervals (ui+1(α), ui(α)), i = 1, . . . , k − 1, and (vj(α), vj+1(α)), j =
1, . . . , ℓ−1. This accounts for n−3 zeros of g′′α(x) (n−2 zeros if k or ℓ is zero).
Should g′′α vanish at any of the local extrema ui(α) or vj(α), then g′′′α will also
vanish there, which yields that g′′α(x) has more than n − 2 zeros, counting
multiplicity, a contradiction. Therefore, g′′α(u1(α)) > 0 and g′′α(v1(α)) > 0
(see (1.4)). Should g′′α(x) < 0 anywhere on (u1(α), v1(α)), we will obtain two
additional zeros of g′′α, which yields a contradiction. Therefore, g′α(α

−) > 0
(otherwise, the mean value theorem will imply that g′′α(ξ) < 0 for some
ξ ∈ (u1(α), α)).

Now, let us take β > α sufficiently close to α such that g′β(α) > 0 and

An(β) = {−1 < uk(β) < . . . < u1(β) < β < v1(β) < . . . < vℓ(β) < 1} .

Consider the function

G(x) = G(x;α, β) := gα(x) − gβ(x) , x ∈ R , (2.2)

with gα and gβ given by (2.1). As an illustration, Figure 4 depicts the case
n = 6 and the graphs of gα, gβ, and G for α = 0.4 and β = 0.43.

We note that G is a continuous and piecewise polynomial function dif-
ferentiable on R \ {α, β}, whose second derivative G′′(x) is a polynomial of
degree at most n−2 with removable singularities at α and β. By continuity,
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Figure 4: Graphs of functions gα (dash-dot), gβ (dash) and G (solid) for n = 6, α = 0.4,
and β = 0.43.

for β close to α we may assume that ui(β) is close to ui(α) and vj(β) is
close to vj(α), so that sign en(ui(α);α) = sign en(ui(β);β) , i = 1, . . . , k , as
well as sign en(vj(α);α) = sign en(vj(β);β) , j = 1, . . . , ℓ, where en( · ; · ) is
given by (1.3). Observe that G(−1) = G(1) = 0.

We will account for all the zeroes of G′′(x) and show that they are simple
and located in (−1, 1). Note first that G(u0(α)) = G(α) > 0. Indeed, by
(1.4) and (2.1), we have that gβ(x) is a polynomial on the interval [−1, β]
with gβ(x) ≤ 1. Since we chose α and β close enough to have g′β(α) > 0 and
gβ(α) ≤ 1, we guarantee that gβ(α) < 1.

Since G(u1(α)) ≤ 0, by Lemma 2.2 we have a point z0 ∈ (u1(α), u0(α)) at
which G′(z0) > 0. Similarly, because G(u2(α)) ≥ 0 and G(u1(α)) ≤ 0, there
is a point z1 ∈ (u2(α), u1(α)) at which G′(z1) < 0. (We remark that G(x)
cannot be a constant on (u2(α), u1(α)), because if it were, it would have to
be zero and the equality would hold on [−1, α], but we already established
that G(α) > 0.) Therefore, there is y1 ∈ (z1, z0) ⊂ (u2(α), u0(α)) such that
G′′(y1) > 0.

Continuing the argument in a similar fashion we derive the existence of
points zi ∈ (ui+1(α), ui(α)), i = 0, . . . , k, such that signG′(zi) = (−1)i,
which yields the existence of points yi ∈ (zi, zi−1) ⊂ (ui+1(α), ui−1(α)),
i = 1, . . . , k, such that signG′′(yi) = (−1)i−1. Observe that yi and yi+2

belong to distinct intervals and G′′(yi) and G′′(yi+1) have opposite signs,
hence all of the yi’s are distinct. Therefore, by the Intermediate Value
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Theorem there are at least k − 1 zeros of G′′(x) in the interval (yk, y1). We
note that if ℓ = 0, we have accounted for all (n− 2) zeros of G′′(x).

Analogously, we derive the existence of ζj ∈ (vj(β), vj+1(β)), j = 0, . . . , ℓ,
such that signG′(ζj) = (−1)j and points ηj ∈ (vj−1(β), vj+1(β)), j =
1, . . . , ℓ, such that signG′′(ηj) = (−1)j . This adds another ℓ − 1 zeros
of G′′(x) in the interval (η1, ηℓ). Finally, since G′′(y1) > 0 > G′′(η1) we
account for one more zero of G′′(x) in (y1, η1). In summary, all the zeroes
of G′′(x) are accounted for and belong to the interval (yk, ηℓ) ⊂ (−1, 1).

To prove that the alternation points are non-decreasing it suffices by sym-
metry to consider only the ui, i = 1, . . . , k. Suppose to the contrary that
there is a (smallest) index i, such that ui(β) < ui(α). Then signG(ui(α)) =
(−1)i and signG(ui(β)) = (−1)i+1. This implies there is a point ẑi ∈
(ui(β), ui(α)) such that signG′(ẑi) = (−1)i. Next, we modify the construc-
tion above to derive the existence of ẑj ∈ (uj(β), uj−1(β)), j = i+1, . . . , k+1,
such that signG′(ẑj) = (−1)j . Utilizing the alternating sign changes of
G′(x) on the set {ẑk+1, . . . , ẑi, zi−1, . . . , z0} we obtain at least n− 1 zeros of
G′′(x), which is a contradiction.

Remark 2.4. We reiterate for future use the fact arising from the proof
that G′(x) = G′(x;α, β) cannot change sign on either of the intervals
(−∞, zk) , (ζℓ,∞), where zk = zk(α, β) and ζℓ = ζℓ(α, β) are as in the proof
above.

Even more, we can derive existence and monotonicity of an additional
extremum of the function gα which lies outside the interval [−1, 1].

Proposition 2.5. Suppose that {±1} ⊂ An(α) and α is neither the tip of a

V-shape for En−1(α) nor part of a V-shape of En(α). Then, there exists a

unique critical point w = w(α) ∈ R \ [−1, 1] such that g′α(w) = 0. Moreover,

in the intervals of values of α where such w exists, it is also monotonically

increasing with respect to α.

Proof. Since α is not a tip of a V-shape for En−1(α) or En(α), we know
pn(x;α) is of degree n and An(α) has n+2 points. We also know that gα(x)
alternates monotonicity on the intervals (ui+1(α), ui(α)), i = 0, . . . , k, and
(vj(α), vj+1(α)), j = 0, . . . , ℓ, which implies g′α(x) changes sign at least k
times on (−1, α) and at least ℓ times on (α, 1) (in particular, sign g′α(x) =
(−1)k on (−1, uk(α))). Consequently the (n − 2)-degree polynomial g′′α(x)
has at least k − 1 zeros in (−1, α) and at least ℓ − 1 zeros in (α, 1). Since
{±1} ⊂ An(α), we have that gα(−1) = (−1)n+1gα(+1). Thus, there must
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be a unique additional extremum w = w(α) outside [−1, 1], because gα
behaves as a polynomial of degree n (even or odd) at ±∞.

Figure 5: {gα, gβ, G(x)} for n = 6, α = 0.4, and β = 0.43. (Dash, Dash-Dot, and Solid
graphs respectively)

To derive the monotonicity of w(α), let β > α be as in the proof of
Theorem 2.3 with the additional assumption that w(α) and w(β) are close
to each other and outside [−1, 1]. As we noted in Remark 2.4, G′(x) pre-
serves sign on (−∞, zk) and on (ζℓ,∞). This implies that G(x) preserves
monotonicity on these subintervals.

We first consider the case w(α), w(β) ∈ (−∞,−1) (see Figure 5 for
illustration). Observe that gα(x) and gβ(x) share alternating monotonicity
on the intervals (ui+1(β), ui(α)), i = 0, . . . , k. Recall also that signG′(zi) =
(−1)i, i = 0, . . . , k, zi ∈ (ui+1(α), ui(α)). As α is not part of a V-shape for
En(α), we must have g′α(−1) 6= 0. We may assume β > α is close enough
that g′β(−1) 6= 0 as well. Then the functions G, gα, and gβ have the same
monotonicity in neighborhoods of −1 (indeed, signG′(zk) = sign g′α(zk) =
(−1)k).

Without loss of generality we assume that the function G(x) is decreasing
on (−∞, zk), or G

′(x) < 0 in that interval. We have that gα(x) is decreasing
on (w(α),−1) and increasing on (−∞, w(α)). Similarly, we have that gβ(x)
is decreasing on (w(β),−1) and increasing on (−∞, w(β)). If we assume
that w(β) < w(α), as g′α(w(α)) = 0 one derives g′α(w(α))− g′β(w(α)) > 0, a
contradiction with G(x) being decreasing on (−∞,−1).

The case w(α), w(β) ∈ (1,∞) follows by considering the approximation
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of the checkmark functions f(x;−α) and f(x;−β) and the symmetry of the
minimax problem (see [4]).

This proves the proposition.

3. Analyticity of En(α) and Shekhtman’s Conjecture.

Throughout this section we will show that the minimax error En(α)
is an analytic function of the parameter α ∈ (−1, 1), except at tips and
endpoints of V-shapes (where analyticity actually fails). Furthermore, we
will see that En(α) has a continuous derivative on any interval excluding
tips of V-shapes. The same conclusions will hold for the coefficients of the
minimax polynomial pn(x;α), as well as the alternation points {ui} and
{vj}. At the end of the section we prove Shekhtman’s Conjecture that for
odd n, En(α) has a local maximum at α = 0.

For values of α in an interval which does not intersect with a V-shape, we
are in the situation described just after (1.5), and we label the alternation
points −1 = uk+1 < uk < uk−1 < · · · < u1 < α < v1 < v2 < · · · <
vℓ < vℓ+1 = 1. It is understood that the ui and vj depend on α, and that
k + ℓ = n − 1. Note that for each fixed α, gα(x) is smooth away from
x = α and has local extrema at each x = ui and x = vj. Let us say
pn(x;α) = cnx

n + · · ·+ c1x+ c0, where the coefficients cj depend on α.
In this case we can phrase the solution to the minimax problem in terms

of a system of 2n+1 equations in 2n+1 unknowns, with α as an independent
parameter. The first n+2 equations will describe the equioscillation at the
alternation points, and the final n− 1 equations will state that g′α vanishes
at the ui and vj . The unknowns are the cm, the ui, the vj and En.

n∑

m=0

cmumi − α+ ui + (−1)i+1En= 0, i = k + 1, k, . . . , 0;

n∑

m=0

cmvnj + α− vj + (−1)j+1En= 0, j = 1, . . . , ℓ+ 1;

n∑

m=1

mcmum−1
i + 0 + 1 + 0 = 0, i = k, k − 1, . . . , 1;

n∑

m=1

mcmvm−1
j + 0 − 1 + 0 = 0, j = 1, . . . , ℓ.

10



With an eye toward the analytic implicit function theorem (see [5, Theo-
rem 2.3.5]), differentiate each of the above equations with respect to each of
the unknowns. Gather these partial derivatives in a matrix, where the first
n + 1 columns contain the derivatives with respect to the cn, cn−1, · · · , c0;
column n+2 contains the derivatives with respect to En; and the last n− 1
columns contain derivatives with respect to the
uk, uk−1, · · · , u1, v1, v2, · · · , vℓ.

To be precise, let F = (F1, . . . , F2n+1) be the vector function F : R2n+2 →
R
2n+1 and y = (x, α) =

(
{cn−m}nm=0, En, {uk−i}k−1

i=0 , {vj}ℓj=1, α
)

∈ R
2n+2

in such a way that the above system has the vector form

F(y) = 0 , 0 ∈ R
2n+1 . (3.1)

To prove that (3.1) implies the existence of an implicit function

G : R → R
2n+1 , G(α) = x ,

we require that the Jacobian matrix

J = J (α) :=

[
∂F

∂x

]
(3.2)

be nonsingular. In that case, we would have
[
dG

dα

]

(2n+1)×1

= −J−1
(2n+1)×(2n+1) ·

[
∂F

∂α

]

(2n+1)×1

(3.3)

The Jacobian matrix J given in (3.2) may be written in block form:

J =

[
A(n+2)×(n+2) B(n+2)×(n−1)

C(n−1)×(n+2) D(n−1)×(n−1)

]

First note that B is the null matrix. Indeed, its first and last rows, and
all of its off-diagonal entries are 0 by inspection, and the remaining diagonal
entries are 1 + p′α(ui), i = k, k − 1, . . . 1; and −1 + p′α(vj), j = 1, 2, . . . , ℓ,
respectively. Each of these is 0 according to the final n− 1 equations in the
system.

The matrix D is diagonal by inspection, and its diagonal entries are
p′′α(ui), i = k, k − 1, . . . , 1; and p′′α(vj), j = 1, 2, . . . , ℓ, respectively. At this
point, we conclude that

det J = det A ·
k∏

i=1

p′′n(ui;α) ·
ℓ∏

j=1

p′′n(vj ;α). (3.4)
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Since g′α(x) vanishes at {w(α), uk , · · · , u1} and {v1, · · · , vℓ}, we can identify
by Rolle’s Theorem all n−2 roots of g′′α(x) = p′′n(x;α)/En(α) strictly between
these points (if w(α) > 1 then include it after vℓ instead of before uk). Hence,
the product of second derivatives in (3.4) is nonzero.

We also see that det A 6= 0, where

A =




(−1)n (−1)n−1 · · · −1 1 (−1)k+2

unk un−1
k · · · uk 1 (−1)k+1

...
...

. . .
...

...
...

un1 un−1
1 · · · u1 1 (−1)2

αn αn−1 · · · α 1 (−1)1

vn1 vn−1
1 · · · v1 1 (−1)2

...
...

. . .
...

...
...

vnℓ vn−1
ℓ · · · vℓ 1 (−1)ℓ+1

1 1 · · · 1 1 (−1)ℓ+2




.

If we let Â be the matrix obtained from A by reversing the order of its
columns, then the minors of Â formed along the first column are Vander-
monde matrices. We derive

det A = (−1)k · (−1)(n+2)(n+1)/2 ·




k+1∑

i=1

V (ui) + V (α) +
ℓ+1∑

j=1

V (vj)


 ,

where V (ui) , i = 1, . . . , k+1 , V (α) and V (vj) , j = 1, . . . , ℓ+1 , denote the
Vandermonde determinants obtained as minors by deleting the first column
and the row corresponding to ui, α or vj respectively in Â. Since each of
these V(·) is strictly positive, det A is non-zero.

We thus have the following theorem.

Theorem 3.1. The error function En(α) is analytic in α on (−1, 1), with
the exception of the endpoints and the tips of V-shapes. The same holds for

the alternation points and the coefficients of the minimax polynomial.

Proof. Suppose n ≥ 2 (direct computation shows E1(α) is quadratic). Con-
sider α in an open interval excluding the tips and endpoints of the V-shapes
of En(α). If the interval is within a V-shape, analyticity follows from the
fact that the minimax problem is solved by a linear transformation.

For intervals outside of any V-shape, the analytic implicit function theo-
rem can be applied as described just before the statement of the theorem.
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We will see later that as α passes into or out of a V-shape, an alternation
point may enter the interval [−1, 1] from the left, or an alternation point may
exit the interval to the right. The details will be explained in Section 4, with
the conclusion that at a left endpoint of a V-shape w(α) = uk+1(α) = −1
and as α increases uk+1(α) will move into (−1, 1) as the leftmost alternation
point. At the right endpoint of a V-shape, vℓ will reach x = 1, and then
vℓ−1 will become the rightmost interior alternation point. (Consequently, vℓ
will thereafter fail to exist according to our numbering convention.)

With this in mind, we can elaborate on the previous theorem. Namely,
on any interval excluding tips of V-shapes, we will conclude C1 smoothness
for En(α), the cm, and any of the ui and vj which exist on the whole interval.

Given the theorem above, we need only show that the derivatives of these
quantities are continuous at the endpoints of V-shapes. Let γ be the left
endpoint of a V-shape (the case of a right endpoint can be treated similarly.)
For α < γ and close to γ, let the minimax problem be described exactly as
laid out above in (3.1)-(3.4).

For α > γ, x = −1 is no longer an alternation point, and instead an
extra interior alternation point uk+1 < uk appears. We can still describe the
minimax problem as a system of equations, with the following modifications.
In the system above we used uk+1 := −1; but now allow uk+1 to be another
unknown in its own right. We also append an extra equation to the system:
g′α(uk+1) = 0. Let this modified system be denoted F̃(ỹ, α) : R

2n+3 →
R
2n+2. Correspondingly, we let the Jacobian of the new system be formed

by placing derivatives with respect to uk+1 into column 2n+2, and call the
matrix J̃ (α), namely

J̃ (α) :=

[
J (α) 0
r(uk+1) p′′n(uk+1)

]
, (3.5)

where r(uk+1) = [nun−1
k+1 , . . . , 1, 0, . . . , 0] is a 2n + 1-dimensional row vector

and 0 is the (2n+1)-dimensional column zero vector. Let Ã(α) be the same
as matrix A(α), except with uk+1 replacing −1 in the relevant entries of the
first row. From Section 4, Ã(γ) = A(γ), since at that point uk+1 = −1.

In (3.3), note that

[
∂F

∂α

]T
=

[
−1 · · · −1 p′n(α;α) 1 · · · 1 0 · · · 0

]
,

where −1, 1 and 0 are repeated k + 1, ℓ + 1 and n − 1 times, respectively.

The matrix
[
∂F̃
∂α

]T
is of exactly the same form, except with one extra 0 entry

on the right.

13



For notational convenience, let

F′(γ) := lim
α→γ−

[
∂F

∂α

]
=

[
−1 · · · −1 p′n(γ; γ) 1 · · · 1 0 · · · 0

]

and similarly let

F̃′(γ) := lim
α→γ+

[
∂F̃

∂α

]
=

[
−1 · · · −1 p′n(γ; γ) 1 · · · 1 0 · · · 0

]
,

where the vector F̃′(γ) has an extra 0 entry on the right in comparison to
F′(γ). In Section 4 we will see that as α → γ, the external extremum w(α)
of gα(x) reaches x = −1 to coincide with (and in fact become) uk+1. We
have seen already that the roots of p′′n(x;α) are strictly between the critical
points of gα(x), and so p′′n(uk+1;α) 6= 0. From (3.5) we have

det J̃ (α) = p′′n(uk+1;α) detJ (α) 6= 0,

so J̃ (α) is invertible as well. Direct inspection reveals that

J̃ (α)−1 =

[
J (α)−1 0

−p′′n(uk+1)
−1r(uk+1)J (α)−1 p′′n(uk+1)

−1

]
,

Moreover, J (α) and J̃ (α) remain invertible even for α = γ.
At this point, we have

G′(γ−) := lim
α→γ−

G′(α) = −J−1(γ) · F′(γ),

G̃′(γ+) := lim
α→γ+

G̃′(α) = −J̃−1(γ) · F̃′(γ).

Since limα→γ− A(α) = limα→γ+ Ã(α), the entries of G′(γ−) are identical to

the first 2n+ 1 entries of G̃′(γ).
Hence En(α), the cm, the ui and the vj for i = 1, 2, . . . , k; j = 1, 2, . . . , ℓ

have continuous derivative in α, even at the point α = γ. We state this as
a theorem

Theorem 3.2. On any interval of α values excluding tips of V-shapes,

En(α) has a continuous derivative with respect to α, as do the minimax

coefficients {cm} and the alternation points {ui}, {vj} whenever they exist.
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As an immediate corollary, we can strengthen Theorem 2.3 to conclude
strict monotonicity of the alternation points ui, vj with respect to α.

Corollary 3.3. On any interval of α values excluding tips and endpoints

of V-shapes, the alternation points ui, vj , i = 1, 2 . . . , k; j = 1, 2, . . . , ℓ are

strictly increasing in α.

Proof. By analyticity, if any ui were to be constant on an interval of α values,
then this ui would be constant for all α up to the next (or previous) endpoint
γ of a V-shape. But we know by linear transformation that within the V-
shape, u′i(α) will be a non-zero constant. This contradicts the continuity of
u′i(α) at α = γ. Similarly for the vj .

We now turn to Shekhtman’s conjecture, to establish that En(α) has a
local maximum at α = 0 for n odd. As above, the Implicit Function Theorem
also allows us to find an expression for E′

n(α) in terms of the alternation
points. From (3.3) we have

E′

n(α) = −Rn+2

[
∂F

∂α

]
, (3.6)

where Rn+2 stands for the (n+ 2)–row of matrix J −1.
By Cramer’s Rule, this can be written E′

n(α) = det An+2 /det A, where
An+2 is the matrix obtained from A by replacing the final column with

[
1 1 · · · 1 −p′n(α;α) −1 · · · −1

]T
.

Denoting by Ân+2 the matrix obtained from An+2 by reversing the order
of the columns, we can represent E′

n(α) as

E′

n(α) =
det Ân+2

det Â
.

But notice now that by taking an appropriate linear combination of
columns 2 through n + 1 in Ân+2, we can produce values of the derivative
of the minimax polynomial. Adding this linear combination of columns to
the first column will not change the determinant of the matrix, but the new
first column will be

[
(p′n(−1;α) + 1) 0 0 · · · 0 (p′n(1;α) − 1)

]T
.

Then by expansion on this column,

det Ân+2 = (p′n(−1;α) + 1) · V(−1) + (−1)n+3 (p′n(1;α) − 1) · V(1)
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So at this point we have the following formula for the derivative of the error
function:

E′

n(α) =
(p′n(−1;α) + 1) · V(−1) + (−1)n+1(p′n(1;α) − 1) · V(1)

(−1)k
(∑k+1

i=1 V (ui) + V (α) +
∑ℓ+1

j=1 V (vj)
) (3.7)

Observe that V(1) and V(−1) share as a common factor the product
of mutual distances among the ui, α, vj . This itself is the Vandermonde
determinant of uk, · · · , u1, α, v1, · · · , vℓ, which we denote by µ(α).

The remaining factors of V(1) and V(−1) are the products of the dis-
tances of each alternation point to either −1 or 1 respectively. We give
names to these as well:

δ−1(α) := (α+ 1) ·
k∏

i=1

(ui + 1) ·
ℓ∏

j=1

(vj + 1),

δ1(α) := (1− α) ·
k∏

i=1

(1− ui) ·
ℓ∏

j=1

(1− vj).

Thus we have
V(−1) = µ(α) · δ1(α),
V(1) = µ(α) · δ−1(α).

For convenience, we also let ∆ denote the quantity

∆(α) =
µ(α)

∑k+1
i=1 V (ui) + V (α) +

∑ℓ+1
j=1 V (vj)

.

In order to prove Shekhtman’s conjecture, it will be advantageous to
divide (3.7) through by En(α), to get the following expression for the loga-
rithmic derivative of the error function:

E′

n(α)

En(α)
= (−1)k ·∆(α) ·

[
g′α(−1) δ1(α) + (−1)n+3 g′α(1) δ−1(α)

]
(3.8)

With this we are ready to prove the conjecture.

Theorem 3.4. For each odd n, the function En(α) has a local maximum at

α = 0.
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Proof. For n odd, (3.8) takes the form

E′

n(α)

En(α)
= (−1)k ·∆(α) ·

[
g′α(−1) δ1(α) + g′α(1) δ−1(α)

]
.

As Lemma 4.5 below will indicate, since α = 0 is a tip of a V-shape for
En−1(α) (cf. [4]), it follows that α = 0 is not within a V-shape of En(α).
If α = 0 were the endpoint of a V-shape for En(α), then by symmetry it
would be a tip of a V-shape, which was just excluded. So by Theorem 3.1,
En(α) is analytic at α = 0 and the use of (3.8) is justified.

We note that ∆(α) is always positive, and by symmetry E′

n(0) = 0,
g′0(−1) = −g′0(1) 6= 0, and δ1(0) = δ−1(0). Furthermore, by symmetry at
α = 0 we have k = ℓ, and this persists for α sufficiently close to 0.

Now we use the first derivative test. We have just mentioned that
E′

n(0) = 0, so if we can establish that E′

n(α) < 0 for small positive α,
then the symmetry of the problem will ensure E′

n(α) > 0 for small α < 0,
and then the critical point α = 0 will necessarily be a local maximum of
En(α). So we only need to establish that for small α > 0, we have

(−1)k
[
g′α(−1) δ1(α) + g′α(1) δ−1(α)

]
< 0.

To demonstrate this, for a fixed α > 0 close to 0, consider the func-
tion G(x) = g0(x) − gα(x) as in (2.2). In the proof of Theorem 2.3, we
demonstrated the existence of points zi ∈ (ui+1(0), ui(0)), i = 0, 1, · · · , k
where signG′(zi) = (−1)i, and points ζj ∈ (vj(α), vj+1(α)), j = 0, 1, · · · , ℓ
where signG′(ζj) = (−1)j . These in turn led to the existence of points yi ∈
(zj+1, zj) and ηj ∈ (ζj , ζj+1) where signG′′(yi) = (−1)i−1 and signG′′(ηj) =
(−1)j . We saw also that all the roots of G′′(x) are in the interval (yk, ηℓ).

We have that signG′(−1) = signG′(zk) = (−1)k (see Remark 2.4).
In other words

sign (−1)k(g′0(−1)− g′α(−1)) = 1,

or
(−1)kg′0(−1) > (−1)kg′α(−1).

And since k = ℓ, we similarly get

(−1)kg′0(1) > (−1)kg′α(1).

By continuity

sign g′0(−1) = sign g′α(−1) = (−1)k
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and
sign g′0(1) = sign g′α(1) = (−1)k+1.

At this point we have

| g′α(−1) | = (−1)k g′α(−1) < (−1)k g′0(−1) = | g′0(−1)|

as well as

−| g′α(1) | = (−1)k g′α(1) < (−1)k g′0(1) = −| g′0(1) |.

We have also seen by symmetry that |g′0(−1)| = |g′0(1)|, and the monotonic-
ity of alternation points in Corollary 3.3 makes it clear that δ1(α) < δ1(0) =
δ−1(0) < δ−1(α). So finally, combining this all together we have

(−1)k
[
g′α(−1) δ1(α) + g′α(1) δ−1(α)

]
< | g′0(−1) | · δ1(α)− | g′0(1) | · δ−1(α),

and the right hand side of this inequality is clearly negative.

Having established Shekhtman’s conjecture, we formulate the following
complementary one.

Conjecture. For all natural numbers n, the function En(α) is concave
outside of its V-shapes. For odd n, En(α) has an absolute maximum at
α = 0.

4. The V-shapes and the Phase diagram

We now turn to proving the conjecture of [4] that n − 1 is the exact
number of V-shapes in the graph of En(α). This will follow from a string of
lemmas based on studying the dynamics of the external extremum w(α) =
w(α;n) of gα(x) = gα,n(x). Since degrees n−1 and n shall appear together,
the explicit dependence on degree is added for clarity.

Lemma 4.5. A tip of a V-shape of En−1(α) cannot be within a V-shape of

En(α).

Proof. At the tip of a V-shape of En−1(α), ( pn−1(x;α)− |x− α| ) will have
(n−1)+3−3 = n−1 turning points in the interval [−1, 1]. This is because in
case only n− 2 turning points were in the interval, no linear transformation
of the domain would preserve the minimax property, in contradiction to
being at the tip of a V-shape. Similarly in a V-shape of En(α), there must
be n turning points for ( pn(x;α) − |x− α| ) in the interval [−1, 1].
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Lemma 4.6. Let α0 be a tip of a V-shape from En−1(α). Let w(α;n) be

the extremum of gα,n(x) which lies outside [−1, 1], when such exists. Then

limα→α+

0

w(α;n) = −∞ and limα→α−

0

w(α;n) = +∞.

Proof. By Lemma 4.5 α0 is not within a V-shape of En(α).Therefore, we
know that w(α;n) exists for all α in a punctured neighborhood of α0, and
that it is monotone increasing in α on either side of α0 .

Assume now that w(α;n) > 1, and let qα,n(x) :=
p′n(x;α)−1
En(α)

. For x > α

we have g′α,n(x) = qα,n(x), and in particular qα,n(w(α;n)) = 0.
Since the coefficients of the minimax polynomial along with the minimax

error are analytic in α in a neighborhood of α0, we know that for some
analytic functions bj(α;n), j = 0, 1, · · · , n − 1, we have for all x:

qα,n(x) =

n−1∑

j=0

bj(α;n)x
j . (4.9)

In the proof of Proposition 2.5 we established that g′′α,n(x), a polynomial
of degree n − 2, has n − 3 roots in (−1, 1). Since gα,n has an extremum at
w(α;n), if w(α;n) is a root of g′′α,n(x), it has to be of multiplicity at least
two, which is a contradiction. Therefore, g′′α,n(w(α;n)) = q′α,n(w(α;n)) 6= 0.
Together with (4.9), this implies that w(α;n) is analytic in α when it exists.

As w(α;n) is monotone, we also know that ω = limα→α−

0

w(α;n) exists.

Assume for contradiction that ω were finite. In that case, we should have:

qα0,n(ω) =
n−1∑

j=1

bj(α0;n)ω
j = lim

α→α−

0

n−1∑

j=1

bj(α;n)w(α;n)
j

= lim
α→α−

0

qα,n(w(α;n)) = lim
α→α−

0

0 = 0.

Hence gα0,n has a critical point outside [−1, 1], which is impossible at
the tip of a V-shape (recall that in this case gα0,n ≡ gα0,n−1). So we must
have limα→α−

0

w(α;n) = +∞. The remaining cases are handled similarly.

Lemma 4.7. Given a V-shape of En(α) with left endpoint γ and right end-

point β, we have

lim
α→β+

w(α;n) = 1,

and

lim
α→γ−

w(α;n) = −1.
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Proof. Note that gβ,n(x) must have a local extremum at x = 1. For if
|gβ,n(1)| < 1, then by either shrinking or expanding the domain slightly
by a linear transformation we could keep the needed number of alternation
points within the interval [−1, 1]. Then β would be an interior point of a
linear part of a V-shape, instead of an endpoint.

Thus, without loss of generality, assume gβ,n(1) = 1. Observe that there
is ǫ > 0 such that for α ∈ (β − ǫ, β) we have g′α,n(x) = qα,n(x) < 0 for
x ∈ [1, (β+1+ ǫ)/(β+1− ǫ)]. Continuity of the coefficients bj(α;n) in (4.9)
implies g′β,n(x) = qβ,n(x) ≤ 0 in this subinterval. Therefore, we conclude
that g′β,n(1) = 0 and x = 1 is a local maximum for gβ,n(x).

Now since w(α, n) is monotone in the interval (β, β + ǫ) for any small
ǫ, we have that limα→β+ w(α, n) exists. By continuity of the minimax poly-
nomial coefficients, and since gα,n has only one external extremum for such
α, we must conclude that limα→β+ w(α) = 1, to match the location of the
extremum of gβ,n at x = 1.

The other limit in the statement of the Lemma may be analyzed similarly.

Next we derive an interlacing property of the V-shapes of En−1(α) and
En(α).

Lemma 4.8. The following hold:

• Between any two consecutive tips of V-shapes of En(α), there is a tip

of a V-shape of En−1(α).

• Between any two consecutive tips of V-shapes of En−1(α), there is a

tip of a V-shape of En(α).

• Between the rightmost V-shape of En−1(α) and α = 1, there is a V-

shape of En(α).

• Between α = −1 and the leftmost V-shape of En−1(α), there is a V-

shape of En(α).

Proof. The proof hinges on tracking the progress of w(α, n), the external
extremum of gα,n, as α increases.

For the first statement, let α0 and α1 be consecutive tips of V-shapes of
En(α). As we let α grow from α0, it will eventually exit the V-shape of α0,
and then we will observe w(α;n) growing monotonically from a value of 1.
But as α approaches α1, it will enter the V-shape of α1 from the left side,
and so we observe w(α;n) growing monotonically to a value of −1. Hence,
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there must have been a discontinuity of w(α;n) somewhere in between. But
w(α;n) is analytic wherever it exists, and it exists everywhere outside the
V-shapes of En(α), except at tips of V-shapes of En−1(α). So, we must
conclude that there occurred a tip of a V-shape of En−1(α), where w(α;n)
jumped from +∞ to −∞.

For the second statement, let α0 and α1 now be two consecutive tips of
V-shapes of En−1(α). As α grows from α0 to α1, we see from Lemma 4.7
that w(α;n) starts from −∞ at α0, and tends to +∞ at α1. Somewhere in
between, we see by continuity that w(α;n) = −1, and we enter a V-shape
of En(α).

The third statement follows directly from [4, Theorem 2] where the lo-
cation of the rightmost V-shape of En(α) is determined explicitly and the
fourth statement follows by the even symmetry of the problem.

Now we may finally establish the number of V-shapes of En.

Theorem 4.9. For each n ∈ N, the number of V-shapes in the graph of

En(α) is exactly n− 1.

Proof. For each j ∈ N, define N (j) to be the number of V-shapes in the
graph of Ej(α). The case N (1) = 0 is immediate since E1(α) is quadratic,
and the cases N (2) = 1 and N (3) = 2 are established in [4].

Now consider an integer n ≥ 4. For induction, assume that N (n− 1) =
n − 2, and let the corresponding tips of V-shapes of En−1(α) be called
α1 < α2 < · · · < αn−2. By Lemma 4.8 there is at least one V-shape of En(α)
in each of the intervals (−1, α1), (α1, α2), · · · , (αn−2, 1). HenceN (n) ≥ n−1.

Likewise, between any two V-shapes of En(α) must occur at least one
of the αk. By the pigeon-hole principle N (n) ≤ n − 1, which finishes the
induction.

To finish, we use Theorem 2.3 and Proposition 2.5 to completely describe
the phase transitions of the alternation points as α increases from −1 to +1.

The following pattern repeats through each of the V-shapes of En(α).
Throughout a V-shape, an external extremum w(α) will cross x = −1, and
replace −1 as the leftmost alternation point. Then at the tip of the V-shape,
−1 will again become an alternation point, making for n + 3 alternation
points. Then x = +1 loses its status as an alternation point, until at the
end of the V-shape, x = +1 will again become an alternation point as an
external extremum w(α) emerges from x = +1 and moves to the right. After
this process, the rightmost vℓ will have exited the interval and fail to exist,
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Figure 6: Phase transitions of the alternation points and the external extremum w(α)
(red) in terms of α. Values of α are plotted vertically from -1 to +1; at each value of
α the locations of the corresponding alternation points are marked horizontally together
with w(α) when it exists.

and we will have gained one more uk+1. En route to the next V-shape,
there will come a point where the previous degree error En−1(α) has a tip
of its V-shape intersecting the graph of En(α). At this point, the external
extremum w(α) increases without bound and jumps from +∞ to −∞. Then
w(α) moves in toward x = −1 to begin another phase transition.

These transitions for n = 5 are pictured in Figure 6. The values of α are
plotted vertically from α = −1 to α = +1 in increments of 0.01. At each
value of α, the positions of the alternation points and of w(α) are marked
horizontally between x = −1.7 and x = +1.7. (For reference, the diagonal
line through the origin is the alternation point α itself and the vertical bars
appear whenever ±1 are alternation points.)
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