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Abstract

Let K ⊂ R be a regular compact set and let g(z) = gC\K(z,∞) be the Green

function for C \K with pole at infinity. For δ > 0, define

G(δ) := max{g(z) : z ∈ C, dist(z,K) ≤ 2δ}.

Let {xn}∞n=0 be a Leja sequence of points of K. Then the uniform norm
‖Tn‖ = Λn, n = 1, 2, . . . of the associated interpolation operator Tn, i.e., the
n-th Lebesgue constant, is bounded from above by

min
δ>0

2n

[
diam(K)

δ
enG(δ)

]9/8

.

In particular, when K is a uniformly perfect subset of R, the Lebesgue
constants grow at most polynomially in n.

To the best of our knowledge, the result is new even when K is a finite
union of intervals.

Key Words: Leja points, Green’s function, interpolation, uniformly perfect
sets.
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1. Introduction

Let K ⊂ R be any compact set. We say that a sequence of points {xn}∞n=0

in K is a Leja sequence if for every k ≥ 1, xk is a point of global maximum
of the product

∏
j:j<k |x − xj| on K (x0 ∈ K can be arbitrary). Let C(K)

be the space of continuous on K functions f : K → C endowed with the
uniform norm ‖ · ‖ and let Tn : C(K)→ C(K) be the Lagrange interpolation
operator associated with the points x0, . . . , xn−1, i.e.,

Tnf(x) =
n−1∑
k=0

f(xk)Lk,n(x)

where

Lk,n(x) =
∏

j:0≤j≤n−1,j 6=k

x− xj
xk − xj

.

A natural question is for what classes of functions we have Tnf → f in
C(K) and what is the rate of convergence. In [5, 6, 2, 4] the reader can find
known results, a discussion of the rich history of this question, and further
references.

Let Em(f) := inf{‖f − p‖ : p is a polynomial of degree ≤ m} be the error
of the best approximation of f by polynomials of degree at most m on K
and let Λn = ‖Tn‖ be the n-th Lebesgue constant. Then, denoting by p∗n−1

the polynomial of best approximation of degree at most n − 1 and taking
into account that Tnp

∗
n−1 = p∗n−1, we can write

‖f − Tnf‖ = ‖(f − p∗n−1)− Tn(f − p∗n−1)‖

≤ (1 + Λn)‖f − p∗n−1‖ = (1 + Λn)En−1(f).

Thus, the condition ΛnEn−1(f) → 0 as n → ∞ is sufficient for the conver-
gence. Many natural classes of functions can be described in terms of the
rate at which En(f) tends to 0. For instance, let I ⊃ K be a closed interval.
Then, for every fixed k ∈ N, the condition that the function f is a restric-
tion to K of a function having continuous k-th derivative on I implies that
En(f) = O(n−k). So knowing a good upper bound for Λn and comparing
it to the rate of decay of En(f) can help one to decide quickly if the Leja
interpolation scheme is guaranteed to converge.
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Another reason to care about Λn is that often even if we do know a priori
that f is very good, the actual data we interpolate may be noisy, the noise
coming either from the measurement errors, or simply from rounding in the
numerical computations. In this case, we technically want to estimate not
‖f − Tnf‖, but rather ‖f − Tn(f + ∆f)‖ where ∆f is the noise. Then, even
when the former is small, the latter may be huge because ‖Tn∆f‖ is large.
Since the noise can be completely arbitrary, it is hard to control the norm
‖Tn∆f‖ by anything better than Λn‖∆f‖, so, again, having a reasonably
clear idea of what Λn is allows one to estimate a priori what level of noise is
acceptable.

It is worth noting that in practice Λn can be evaluated a posteriori once
the points x0, . . . , xn−1 have been chosen, so the a priori theoretical bounds
are not necessarily a must, especially when they fall far short from what is
really observed in the computations. Still, we believe that they may hold
some value, if not as a prediction, then, at least, as an explanation of the
pretty decent efficiency of the Leja interpolation scheme.

2. Main results

Let K ⊂ R be a regular compact set, i.e., the Green function g(z) =
gC\K(z,∞) of C \K with pole at infinity is continuous on C (by definition,
g|K = 0).

For δ > 0, let

G(δ) := max{g(z) : z ∈ C, dist(z,K) ≤ 2δ}.

Theorem 1. Let x0, . . . , xn−1 ∈ K be a Leja sequence. Then, for every
δ > 0,

Λn ≤ 2n

[
diam(K)

δ
enG(δ)

]9/8

.

This bound, though, probably, still suboptimal for a general K, is fairly
decent.

Indeed, on the one hand, it shows that for any regular compact subset
K ⊂ R, Λn is subexponential. To see this, just take any ε > 0 and choose
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δ > 0 so that G(δ) < (8/9)ε to obtain

lim sup
n→∞

log Λn

n
< ε.

This already vastly extends the class of compact sets for which the subexpo-
nential upper bound was known.

On the other hand, consider a uniformly perfect set K. Recall that accord-
ing to Beardon and Pommerenke [1] it means that there exists a constant
0 < γK < 1 such that for every x ∈ K and every r ∈ (0, diam(K)), we have

K ∩ {ζ ∈ R : γKr ≤ |x− ζ| ≤ r} 6= ∅.

Any finite union of closed intervals is uniformly perfect as well as the classical
Cantor set. If K ⊂ R is uniformly perfect, then G(δ) = O(δβ) as δ → 0 for
some β > 0 (see [3, pp. 562-563]) and, choosing δ = n−1/β, we conclude that
Λn = O(n1+(9/8)/β). In particular, when K is a finite union of intervals, we
have β = 1/2 and Λn = O(n13/4).

The disadvantage of our technique is that it is unclear how to generalize it
to the complex setting. The main obstacle is that the Key Lemma (Lemma 2)
fails for complex points and we do not know a good substitute for it.

While Theorem 1 seems quite satisfactory from the purely theoretical point
of view, in practice the issue is further complicated by the fact that one
can find the maximum of a polynomial only with a certain precision, so to
ensure that the Leja interpolation scheme is robust, we must also show that
a small error in the maximization problem at each step does not result in
high instability of the bound given by Theorem 1. To formalize this small
error possibility, we shall make the following

Definition. Let 0 < τ ≤ 1. A sequence x0, . . . , xn−1 ∈ K is called τ -quasi
Leja if for every k = 1, . . . , n− 1, we have∏

j:j<k

|xk − xj| ≥ τ max
x∈K

∏
j:j<k

|x− xj|.

In the ideal theoretical case τ = 1, while in practice it can be made very
close to 1 but, strictly speaking, the value τ = 1 is unattainable.
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Theorem 2. If x0, . . . , xn−1 ∈ K is τ -quasi Leja, then for every δ > 0,

Λn ≤
2

τ 2
n

[
diam(K)

τδ
enG(δ)

]9/8+2λ−1 log(1/τ)

,

where λ = 0.24565978 . . . is the positive root of the equation ee
λ
(eλ − 1) = 1.

Theorem 2 thus shows that the Leja scheme can exhibit at most moderate
numerical instability: for τ close to 1, the theoretical bound of Theorem 1 is
just raised to some power slightly bigger than 1.

3. The idea of the proof of Theorem 2

It is well known that

Λn = sup
x∈K

n−1∑
k=0

|Lk,n(x)| ≤ n sup
x∈K,0≤k≤n−1

|Lk,n(x)|.

Thus the main issue is to get a good bound for |Lk,n(x)| for individual k.
The question here is how to use the τ -quasi Leja condition in a simple but
reasonably efficient way. Our suggestion is just to notice that for every n′

with k ≤ n′ < n, we can use the τ -quasi Leja property of xn′ to write∏
j:j<n

|x− xj| =
∏
j:j<n′

|x− xj|
∏

j:n′≤j<n

|x− xj|

≤ τ−1
∏
j:j<n′

|xn′ − xj|
∏

j:n′≤j<n

|x− xj|.

Repeating this trick several times, we see that if x0, . . . , xn−1 ∈ K are τ -quasi
Leja and x = xn ∈ K is arbitrary, then for every sequence k = n0 < n1 <
. . . < nm = n, we have∏

j:j<n

|x− xj| ≤ τ−m
∏
j:j<k

|xk − xj|
m−1∏
l=0

∏
j:nl≤j<nl+1

|xnl+1
− xj|.

Now,

|Lk,n(xn)| =

∏
j:0≤j≤n−1,j 6=k |xn − xj|∏
j:0≤j≤n−1,j 6=k |xk − xj|

=

∏
j:0≤j≤n−1 |xn − xj|∏
j:0≤j≤n,j 6=k |xk − xj|

.
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The above observations imply that we can replace the numerator on the
right hand side with any product of differences similar to the one marked
by arcs on Figure 1, in which we can change the current “reference point”
(initially xn) to the last subtracted point any time at the cost of an extra
τ−1 factor.

xk = xn0 xn1 xn2 xn3 xn4 = xnx0 = 0

Figure 1

Note that the order of points xj on this picture has nothing to do with
their actual order on R.

Thus, |Lk,n(xn)| ≤ Iτ (xk, . . . , xn), where for arbitrary x0, . . . , xq ∈ R,

Iτ (x0, . . . , xq) = min
0=n0<...<nm=q

τ−m
∏m−1

l=0

∏
j:nl≤j<nl+1

|xnl+1
− xj|∏q

j=1 |x0 − xj|
.(3.1)

This inequality makes one tempted to forget completely about the Leja (or
τ -quasi Leja) property from this point on and just bound Iτ (x0, . . . , xq) for
an arbitrary sequence x0, . . . , xq of pairwise distinct real numbers.

Unfortunately, this strategy does not quite work as it can be seen by ex-
amining the sequence x0 = 0, xj = (−Λ)j−1, j ≥ 1 with Λ = 1 + τ−1 being
the positive root of the equation Λ2 − 1 = τ−1(Λ + 1).

For this sequence, it is beneficial to switch at every step, resulting in

Iτ (x0, . . . , xq) = τ−q
q∏
j=1

|xj − xj−1|
|xj − x0|

= τ−q
(

1 +
1

Λ

)q−1

=
1

τ

(
1

τ
+

1

τ + 1

)q−1

,

which is exponential in q. However, as we shall see in Section 5, it still does
yield a universal bound

Iτ (x0, . . . , xq) ≤
1

τ

(
2

τ

)q−1
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and the subsequent bounds

|Lk,n(x)| ≤ 1

τ

(
2

τ

)n−k−1

, x ∈ K,

and

Λn ≤
1

τ

(
2

τ

)n
.

To go below an exponential bound, we need some more information about
the points x0, . . . , xn−1. Fortunately, we do not need to know too much in
the case K ⊂ R and the following simple Separation Lemma already suffices.

Lemma 1. If K is a regular compact set and x0, . . . , xn−1 ∈ K is a τ -quasi
Leja sequence, then for every δ > 0,

|xi − xj| ≥ ∆ = τδe−nG(δ), i, j = 0, . . . , n− 1; i 6= j.

Combined with the Key Lemma below, it immediately yields Theorem 2
and, thereby, Theorem 1 as well.

Lemma 2. Let x0, . . . , xq ∈ R. Assume that |x0 − xj| ≤ D for all j =
1, . . . , q, and that |x0 − xj| ≥ ∆ for j = 1, . . . , q − 1 with some D ≥ ∆ > 0.
Then for every τ ∈ (0, 1], we have

Iτ (x0, . . . , xq) ≤
2

τ 2

(
D

∆

)9/8+2λ−1 log(1/τ)

,

where, as before, λ is the positive root of the equation ee
λ
(eλ − 1) = 1.

Note that we require no separation for xq in the assumptions of Lemma 2!

It remains to prove the two lemmas now.
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4. Proof of the Separation Lemma

Let k satisfy 1 ≤ k ≤ n− 1. Let p(z) =
∏

j:j<k(z − xj), z ∈ C. Finally, let
M = maxx∈K |p(x)|, so |p(xk)| ≥ τM.

Consider the function u(z) = log(M−1|p(z)|) on C \ K. It is harmonic
in C \ K and satisfies u(z) = k log |z| + O(1) < ng(z) as z → ∞ and
lim supz→K u(z) ≤ 0. Thus, by the classical maximum principle, u(z) ≤
ng(z) on C \K. This inequality, clearly, holds on K as well, so we get

|p(z)| ≤Meng(z) ≤MenG(δ)

for every z ∈ C with |z − xk| ≤ 2δ.

By the Cauchy bound, it follows that |p′(z)| ≤Mδ−1enG(δ) when |z−xk| ≤
δ. In particular, when |z − xk| < τδe−nG(δ) = ∆, we get

|p(z)| ≥ |p(xk)| −Mδ−1enG(δ)|z − xk| > τM − τM = 0,

so no root xj, j = 0, . . . , k − 1 of p can lie at distance smaller than ∆ from
xk. This completes the proof of Lemma 1.

5. Proof of the Key Lemma

Replacing xj by xj − x0, we can assume without loss of generality that
x0 = 0. Then, replacing xj by −xj if needed, we can assume that xq > 0.
The ratio of the products participating in the definition of Iτ (x0, . . . , xq) can
be written as

|X0|
|Xq−1|

q−1∏
j=1

|Xj − xj|
|xj|

,

where Xj is the reference point at the moment of subtracting xj, i.e., Xj =
xnl+1

when nl ≤ j < nl+1. We start with Xq−1 = xq and then, when going
from j to j − 1, can either keep the reference point (i.e., put Xj−1 = Xj), or
switch it to the point subtracted at the previous step (i.e., put Xj−1 = xj).
The number m in the prefactor τ−m is just the number of switches plus 1.

Our task is to find a good switching strategy, which, on the one hand, will
allow us to control the total number of switches and, on the other hand, will

9



keep the majority of the ratios |Xj − xj|/|xj| small. The naive switching
strategy is to switch every time when |xj| < |Xj|. It guarantees that for each
j = 1, . . . , q − 1 where the reference point is kept, we have

|Xj − xj|
|xj|

≤ 2 = 2
|Xj|
|Xj−1|

and at each switch,

|Xj − xj|
|xj|

=
|Xj − xj|
|Xj|

|Xj|
|xj|

=
|Xj − xj|
|Xj|

|Xj|
|Xj−1|

≤ 2
|Xj|
|Xj−1|

as well.

Thus, the full product of the ratios is at most

|X0|
|Xq−1|

q−1∏
j=1

(
2
|Xj|
|Xj−1|

)
= 2q−1.

Since with this strategy we may, in principle, switch at every step, the total
number of switches cannot be bounded by anything better than q− 1, so we
only get the bound Iτ (0, x1, . . . , xq) ≤ τ−q2q−1 mentioned earlier.

The switching strategy (or, rather, the family of switching strategies) we
will consider instead is the following. Let, as before, λ be the positive root of
the equation ee

λ
(eλ− 1) = 1. Let q′ be the largest index for which xq′ < 0 or

0 if the sequence x1, . . . , xq contains only positive numbers. Set Xq−1 = xq.
For j with q′ < j ≤ q − 1, put Xj−1 = Xj if xj ≥ e−λXj and Xj−1 = xj
if xj < e−λXj. That is, when going over the positive tail, we switch the
reference point if it becomes more than eλ times smaller after the switch and
keep it otherwise.

If q′ = 0, or, which is the same, xj > 0 for all j = 1, . . . , q, then we always
have

|Xj − xj|
|xj|

≤ |Xj|
|Xj−1|

, 1 ≤ j ≤ q − 1.

Indeed, if we made no switch, then the right hand side is 1, while the left
hand one is either (xj −Xj)/xj < 1 if xj ≥ Xj, or

Xj − xj
xj

≤ (1− e−λ)Xj

e−λXj

= eλ − 1 < 1

10



if e−λXj ≤ xj < Xj.

On the other hand, if we switch, then |xj| = |Xj−1| and, since 0 < xj <
e−λXj, we have

|Xj − xj| = Xj − xj < Xj = |Xj|,
so the inequality holds again.

Also, since each switch makes the reference point eλ times smaller, we
cannot have more than λ−1 log(D/∆) switches. This is clear if xq ≥ ∆. But
if xq < ∆, then we cannot have any switches at all, so the estimate is still
valid.

Thus, in this case

Iτ (0, x1, . . . , xq) ≤ τ−(λ−1 log(D/∆)+1) |X0|
|Xq−1|

q−1∏
j=1

|Xj|
|Xj−1|

=
1

τ

(
D

∆

)λ−1 log(1/τ)

.

Otherwise, for j = q′, keep both options (switching to xq′ and staying with
Xq′) available. Denote the corresponding reference points by b1 = Xq′ > 0
and −a1 = xq′ < 0.

From this step on, we shall always have two options for the current reference
point with the switching rules as follows. When going left from q′ − 1, if
xj 6∈ (−e−λa1, e

−λb1), just keep the reference point as it was (either −a1 or
b1, whichever was chosen as Xq′−1).

However, if xj ∈ (−e−λa1, e
−λb1) and xj > 0, then force the switch from

b1 to b2 = xj and allow the switch from −a1 to b2, so, beyond this step,
we shall have the options b2 and −a1 instead of b1 and −a1. For notational
convenience, we will denote them −a2 and b2, a2 being just the same as a1.
Similarly, if xj < 0, then xj becomes −a2, b2 stays the same as b1, and the
switch from −a1 to −a2 is forced while the switch from b1 to −a2 is optional.

Now repeat the same procedure with the interval (−e−λa2, e
−λb2) instead

of (−e−λa1, e
−λb1), and so on until we reach j = 0 with two options −al or bl

for X0 with some l > 0. Our first task will be to bound the total number of
switches. Consider first the case when xq ≥ ∆. Then as long as we go along
the positive tail, each switch decreases Xj at least eλ times, so the number
of switches made during this part of the strategy is at most

λ−1 log
Xq−1

Xq′
≤ λ−1 log

D

Xq′
.

11



Then there may be one switch to xq′ . Beyond that, every time we allow a
switch, the product asbs decreases at least eλ times, so the remaining number
of switches is at most

λ−1 log
a1b1

albl
≤ λ−1 log

DXq′

∆2
.

Adding everything up, we conclude that in this case we can have at most
2λ−1 log(D/∆) + 1 switches, so

τ−m ≤ τ−(2λ−1 log(D/∆)+2) =
1

τ 2

(
D

∆

)2λ−1 log(1/τ)

.(5.1)

Now suppose that xq < ∆. Then we have no switches in the positive tail and
b1 = Xq′ = xq. We still may have one switch to xq′ . After that we cannot
decrease b1, so every time we switch, we decrease as at least eλ times and the
remaining number of switches is at most λ−1 log(a1/al) ≤ λ−1 log(D/∆).

Thus, in this case we can have at most λ−1 log(D/∆) + 1 switches and

τ−m ≤ τ−(λ−1 log(D/∆)+2) =
1

τ 2

(
D

∆

)λ−1 log(1/τ)

,

which is an even stronger bound than that in (5.1).

Now it is time to estimate

|X0|
|Xq−1|

q−1∏
j=1

|Xj − xj|
|xj|

.

The same argument as in the positive case shows that∏
j:j>q′

|Xj − xj|
|xj|

≤ Xq−1

Xq′
=
Xq−1

b1

.

For j = q′, we have
|Xj−xj |
|xj | = a1+b1

a1
. Thus

1

|Xq−1|
∏
j:j≥q′

|Xj − xj|
|xj|

≤ a1 + b1

a1b1

.(5.2)
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This leaves us with |X0|
∏q′−1

j=1 (|Xj−xj|/|xj|). The product here is not unique:
we have a whole family of admissible strategies, not a single one. So we shall
estimate some multiplicative average of this quantity over all of them.

Let q2 > . . . > ql be the indices at which the values of as and bs change,
i.e., xqs+1 ∈ (−e−λas, e−λbs) while xj 6∈ (−e−λas, e−λbs) for qs+1 < j < qs, s =
1, . . . , l (we set q1 = q′, ql+1 = 0 here). Let

αs =
bs

as + bs
, βs =

as
as + bs

.

Then for every j with qs+1 < j < qs, we have(
| − as − xj|
|xj|

)αs ( |bs − xj|
|xj|

)βs
≤ 1

(see Elementary Inequality 1 in the Appendix).

Thus, if we denote

P s =
∏

j:qs+1<j<qs

| − as − xj|
|xj|

, Qs =
∏

j:qs+1<j<qs

|bs − xj|
|xj|

,

we have P
αs
s Q

βs
s ≤ 1 as well.

Consider now j = qs+1. If s < l, then two cases are possible: xj = −as+1

or xj = bs+1.

Assume that xj = −as+1. Then, since Xj is either −as or bs, we have |Xj−
xj|/|xj| equal to either (as − as+1)/as+1 or (bs + as+1)/as+1. By Elementary
Inequality 2,[

as − as+1

as+1

]αs [bs + as+1

as+1

]βs
≤ as

as+1

[
min(as, bs)

min(as+1, bs)

]1/8

=
asbs

as+1bs+1

[
min(as, bs)

min(as+1, bs+1)

]1/8

(recall that in this case bs+1 = bs). The case xj = bs+1 is symmetric to the
considered one and results in the same bound.

13



Thus, putting

Ps = P s
as − as+1

as+1

, Qs = Qs

bs + as+1

as+1

,

we get

Pαs
s Qβs

s ≤
asbs

as+1bs+1

[
min(as, bs)

min(as+1, bs+1)

]1/8

, s = 1, . . . , l − 1.

For s = l, we just need to add |X0| to the product
∏ql−1

j=1 (|Xj−xj|/|xj|), which

results in either Pl = P lal or Ql = Qlbl. Thus in this case Pαl
l Q

βl
l ≤ aαll b

βl
l .

Multiplying these estimates out, we get

l∏
s=1

(Pαs
s Qβs

s ) ≤ a1b1

albl

[
min(a1, b1)

min(al, bl)

]1/8

aαll b
βl
l

=
a1b1

aβll b
αl
l

[
min(a1, b1)

min(al, bl)

]1/8

.(5.3)

Now observe that for every admissible strategy under our rules, the product

|X0|
q′−1∏
j=1

|Xj − xj|
|xj|

equals to
∏l

s=1Rs where each Rs is either Ps or Qs and we can start with
both P1 and Q1, after which we can always follow Ps by Ps+1 and Qs by
Qs+1, but we also can follow Qs by Ps+1 if as+1 < as, bs+1 = bs and Ps by
Qs+1 if as+1 = as, bs+1 < bs.
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In other words, possible products correspond to the paths on a diagram
like the one on Figure 2.

P1

Q1

P2

Q2

P3

Q3

P4

Q4

P5

Q5

P6

Q6

a 2
<
a 1

a 3
<
a 2

a 5
<
a 4

b
4 <

b
3

b
6 <

b
5

Figure 2

For a path π on the diagram, let Γπ be the corresponding product of P ′s
and Q′s. For instance, if π is the path following the thick edges on Figure 2,
then Γπ = Q1P2P3Q4Q5Q6.

We want to show that a certain multiplicative average
∏

π Γωππ with some

ωπ > 0,
∑

π ωπ = 1 is exactly
∏l

s=1(Pαs
s Qβs

s ) in the sense that if Ps and Qs

on the diagram are viewed as free variables, then the equality∏
π

Γωππ =
l∏

s=1

(Pαs
s Qβs

s )

becomes an algebraic identity. We prove it by induction on the length l of
the diagram.

If l = 1, then the only paths are P1 and Q1, so we can just put ωP1 =
α1, ωQ1 = β1.

Suppose now that the statement holds for l − 1. Note that if we remove
P1 and Q1 from a diagram of length l (together with three edges coming out
of them), we shall get a diagram of the same kind but of length l − 1 and
starting with P2 and Q2. Thus, by the induction assumption, we can find
weights ωπ′ , ωπ′′ > 0 with

∑
π′ ωπ′ +

∑
π′′ ωπ′′ = 1, where π′ and π′′ run over

all paths starting with P2 and Q2 respectively, such that∏
π′

Γ
ωπ′
π′

∏
π′′

Γ
ωπ′′
π′′ =

l∏
s=2

(Pαs
s Qβs

s ).

Comparing the powers at P2 and Q2, we see that we must have
∑

π′ ωπ′ = α2

and
∑

π′′ ωπ′′ = β2. Now if a2 < a1, say (i.e., if the switch from Q1 to P2 is
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allowed), we have α2 > α1 and the admissible paths π in the full diagram
are P1π

′, Q1π
′ and Q1π

′′. Put

ωP1π′ =
α1

α2

ωπ′ , ωQ1π′ =

(
1− α1

α2

)
ωπ′ , ωQ1π′′ = ωπ′′ .

Then in the product
∏

π Γωππ for the full diagram, the power of P1 is
α1

α2

∑
π′

ωπ′ =
α1

α2

α2 = α1,

the power of Q1 is(
1− α1

α2

)∑
π′

ωπ′+
∑
π′′

ωπ′′ =

(
1− α1

α2

)
α2+β2 = α2+β2−α1 = 1−α1 = β1,

and the powers of Ps and Qs with s ≥ 2 are exactly the same as in the
product

∏
π′ Γ

ωπ′
π′
∏

π′′ Γ
ωπ′′
π′′ , i.e., αs and βs respectively.

The case when b2 < b1 (so β2 > β1 and the switch from P1 to Q2 is possible)
is similar just with the roles of P ′s and Q′s as well as α′s and β′s swapped.

The upshot is that combining (5.2) and (5.3), we conclude that there exists
a switching strategy in our family such that

|X0|
|Xq−1|

q−1∏
j=1

|Xj − xj|
|xj|

≤ a1 + b1

aβll b
αl
l

[
min(a1, b1)

min(al, bl)

]1/8

.(5.4)

Now consider two cases.

Case 1: xq ≥ ∆. Then al, bl ≥ ∆ and the right hand side of (5.4) is at
most

2D

∆

(
D

∆

)1/8

= 2

(
D

∆

)9/8

.

Case 2: xq < ∆. Then b1 = bl = xq < ∆, so the second factor on the right
hand side equals 1, while the first one can be estimated as

a1 + b1

aβll b
αl
l

=
al + bl

aβll b
αl
l

a1 + bl
al + bl

≤ 2
a1 + bl
al + bl

≤ 2
a1

al
≤ 2

D

∆

(see Elementary Inequality 3).

Thus, in both cases, the right hand side of (5.4) does not exceed 2(D/∆)9/8.
Combining this estimate with the previously obtained bound (5.1), we get
the statement of the lemma.
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6. Appendix: Elementary inequalities

Elementary Inequality 1. Let a, b > 0, x 6∈ (−e−λa, e−λb). Then[
|x+ a|
|x|

]b/(a+b) [ |x− b|
|x|

]a/(a+b)

≤ 1.

Since the statement does not change if we multiply x, a and b by any positive
number, we can assume that a+ b = 1. Our inequality then becomes[

|x+ a|
|x|

]b [ |x− b|
|x|

]a
≤ 1.

If x 6∈ [−a, b], we can just use the concavity of the function t 7→ log t for t > 0
to write [

|x+ a|
|x|

]b [ |x− b|
|x|

]a
≤ b
|x+ a|
|x|

+ a
|x− b|
|x|

= 1.

Suppose now that x ∈ [−a, b] \ (−e−λa, e−λb) = [−a,−e−λa] ∪ [e−λb, b].

Since the inequality does not change if we replace the triple (a, b, x) by
(b, a,−x), we can assume without loss of generality that x ∈ [−a,−e−λa],
i.e., x = −ae−Λ with 0 ≤ Λ ≤ λ.

Then we want to prove that[
a(1− e−Λ)

ae−Λ

]b [
b+ ae−Λ

ae−Λ

]a
= [eΛ − 1]b

[
1 +

b

a
eΛ

]a
≤ 1.

However, since 1 + t ≤ et for every t ≥ 0, this follows from

[eΛ − 1]be(b/a)eΛa = [(eΛ − 1)ee
Λ

]b ≤ [(eλ − 1)ee
λ

]b = 1.

Elementary Inequality 2. Let A,B > 0, 0 < a < A. Then[
A− a
a

]B/(A+B) [
B + a

a

]A/(A+B)

≤ A

a

[
min(A,B)

min(a,B)

]1/8

.

Since the statement does not change if we multiply A,B, a by any positive
number, we can assume without loss of generality that A = 1. Multiplying
both sides by a, we see that we need to prove that

(1− a)B/(1+B)(B + a)1/(1+B) ≤
[

min(1, B)

min(a,B)

]1/8

.
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Since

(1− a)B/(1+B)(1 + aB)1/(1+B) ≤ B

1 +B
(1− a) +

1

1 +B
(1 + aB) = 1

by the concavity of logarithm, it is enough to show that[
B + a

1 + aB

]1/(1+B)

≤
[

min(1, B)

min(a,B)

]1/8

.

If B ≤ 1, then 1 + aB − (B + a) = (1−B)(1− a) ≥ 0, so the left hand side
is at most 1 and the right hand side is at least 1.

Otherwise min(1, B) = 1,min(a,B) = a and we arrive at[
B + a

1 + aB

]1/(1+B)

≤
[

1

a

]1/8

, 0 < a < 1, B > 1.

Put a = 1− t, 0 < t < 1, and rewrite the inequality as

1

1 +B

[
log

(
1− t

B + 1

)
− log

(
1− Bt

B + 1

)]
≤ 1

8
log

1

1− t
,

or
1

1 +B

[
ϕ

(
Bt

B + 1

)
− ϕ

(
t

B + 1

)]
≤ 1

8
[ϕ(t)− ϕ(0)] ,

where ϕ(t) = − log(1−t). The left hand side is then B−1
(1+B)2 t times the average

of ϕ′ over the interval
[

t
B+1

, Bt
B+1

]
, while the right hand side is t times the

average of ϕ′ over the interval [0, t]. Since the intervals are concentric and
ϕ′(t) = 1/(1− t) is convex, the latter average is greater, so it suffices to show
that

B − 1

(B + 1)2
≤ 1

8
.

However (B + 1)2 = (B − 1 + 2)2 ≥ (2
√

2(B − 1))2 = 8(B − 1) and we are
done.

Elementary Inequality 3. Let a, b > 0. Then

a+ b

a
a
a+b b

b
a+b

≤ 2.
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Again, the inequality is invariant under the multiplication of a, b by any
positive number, so we can assume that a + b = 1. Then b = 1 − a and we
are to prove that

1

aa(1− a)1−a ≤ 2.

However a 7→ a log a+(1−a) log(1−a) is a convex function on (0, 1) symmet-
ric around a = 1/2, so its minimum is attained at 1/2 and equals log(1/2).

Elementary Inequality 4. The positive root λ of the equation ee
λ
(eλ−1) =

1 satisfies λ > 1/5.

Indeed, since the function is increasing, it suffices to prove that ee
1/5

(e1/5−
1) < 1. Note that e−1/5 > 1 − 1/5 = 4/5, so e1/5 < 5/4. Thus, it is enough
to show that e5/4 < 4. Since e < 3, we may check that 35/4 < 4 instead.
However 35 = 243 < 256 = 44 and the result follows.
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