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Concentration Inequalities for
Cross-validation in Scattered Data
Approximation

Felix Bartel Ralf Hielscher

Choosing models from a hypothesis space is a frequent task in approxima-
tion theory and inverse problems. Cross-validation is a classical tool in the
learner’s repertoire to compare the goodness of fit for different reconstruction
models. Much work has been dedicated to computing this quantity in a fast
manner but tackling its theoretical properties occurs to be difficult. So far,
most optimality results are stated in an asymptotic fashion. In this paper we
propose a concentration inequality on the difference of cross-validation score
and the risk functional with respect to the squared error. This gives a pre-
asymptotic bound which holds with high probability. For the assumptions we
rely on bounds on the uniform error of the model which allow for a broadly
applicable framework.

We support our claims by applying this machinery to Shepard’s model,
where we are able to determine precise constants of the concentration inequal-
ity. Numerical experiments in combination with fast algorithms indicate the
applicability of our results.
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1 Introduction

The general problem in scattered data approximation is the reconstruction of a function
f:Q — Y based on discrete samples z = (z;)I" = (@, f(x;)); € (2 xY)". The
nodes x; are independent and identically distributed according to p on ). Extensive
work has been done to develop reconstruction algorithms Ry,: (2 x Y)" — Y which
propose candidates for the approximation. Here, h resembles one of the various methods
with possible parameters. Using multiple reconstruction algorithms Ry, h € H we end
up with a hypothesis space {Ry,(2) : h € H} € Y. Even given a precise application,
it remains difficult to choose reconstruction algorithms Ry, h € H which yields the best
reconstruction Ry (z) of f.



In order to find an optimal Ry (z), h € H, we would like to rank the reconstructions
with respect to their goodness of fit. This is quantified by the risk functional. In this
paper we consider the risk functional with respect to the squared loss

E(Rh(Z))Z/Q\(Rh(z))(w)—f(w)IQ dp(z). (1.1)

Even though this is theoretically appealing we would need to know the underlying dis-
tribution p and the function f to compute this quantity. Since this is not the case, we
seek for an alternative which only relies on the given data. The concept which struck our
attention is called cross-validation, was initially introduced in [14], and has been widely
used since then, cf. [411 [7, 31}, 35, 9]. The basic idea consists of subdividing the data into
a training set and a validation set for estimating the error. Doing this multiple times we
obtain a reasonable estimator for the risk functional. A special case is where the partition-
ings seclude single nodes, then the training sets become z_; = (21, ..., 2i—1, Zit1, - - - 2n)
and the validation sets {z;}. This leads to the so called leave-one-out cross-validation
score

n

CV(z, ) = 3 (Ralz-i)) @) — (i) (12)

i=1

An immediate drawback is given by the numerical complexity of computing the n ap-
proximations Ry (z_;). However, this is circumvented in many cases with ideas including
Monte Carlo approximations [10], matrix decomposition methods [43] 38|, Krylow space
methods [29], or Fourier analysis [2].

One is interested in a theoretical foundation of the cross-validation score. By the
Bakushinskii veto, cf. [I], we know that there exists a realization of the samples, such that
purely data-driven regularization methods have no guarantee for a good approximation
without incorporating further information. One still has propositions about the goodness
of the cross-validation score in asymptotic cases, cf. [27, 17, 28] [16], on average, cf. [14]
4, 5], or by restriction of noise, cf. |21, 22].

In this paper we bound the difference of cross-validation and risk pre-asymptotically,
which supports the choice of cross-validation for model selection. To circumvent the
Bakushinskil veto our results will hold with high probability as it is common in learning
theory. We use mild assumptions on the uniform error of the reconstruction algorithm,
which allow for a broadly applicable framework. These bounds improve on the results
from [17, Chapter 8] in a more general setting. Other pre-asymptotic results can be found
in [19, 24], where the algorithmic stability, a variance-like concept, of the cross-validation
score is examined.

As for the structure of this paper, in Section [2] we repeat on an extension of McDi-
armid’s concentration inequality, as it will be of importance later on. The main part is
Section [3, where we present our general framework. Therefore, we prove in Theorems [3.4]
and concentration inequalities for the risk functional and the cross-validation
score with respect to the data z. These concentration inequalities are used to sur-
round the expected values of the risk functional £(Rp(-)) and the cross-validation score



CV (-, h) by narrow intervals in which nearly all realizations of these quantities lie. In
Lemma we show that the expected values of E(Ry(-)) and CV(-,h) coincide. Even-
tually, this leads us to our main result in Theorem [3.8 which bounds the difference of
risk functional and cross-validation score with high probability and, therefore, justifies
the usage of cross-validation for choosing models and parameters. To exemplify the ap-
plicability of our results and reason for the stated conditions to make sense we apply
the framework to Shepard’s model in Section As before, we bound the difference
of cross-validation score and risk with high probability, now with precise constants in
Theorem We confirm our results with numerical experiments.

2 McDiarmid’s concentration inequality

Since it will be of fundamental importance, we dedicate this section to an extension of
McDiarmid’s concentration inequality. We consider random variables X = (X1,..., X},)
on a probability space (2", A4, P). As usual we denote with

E{15X}
P{B}

the conditional probability and expected value, respectively. To state McDiarmid’s the-
orem we need the following concept.

and E{X|B} =

Definition 2.1. A function f: Q" — R is said to be c-bounded on = C Q" for ¢ =
(c1y...,¢n) €10,00)" if and only if

() = f(2))] < de(, @)

for alle = (x1,...,2y,) and ' = (2}, ..., 2)) € 2 where the distance d. is defined by
de(z, ') = Z Ci.

Note, that a function is e-bounded if changing a single variable z;, 1 < i < n changes
f(x) only by ¢, i.e.,

‘f(xla"'axn)_f(xb'"afxiflal';axwrl;-'wxn)‘ <¢

for all (z1,...,zy), (2),...,2}) € E.
McDiarmid’s inequality, cf. [30], is a generalization of Hoeffding’s inequality. We will
not state the original theorem, but an extension from [§].

Theorem 2.2. Let X = (Xy,...,X,) be a vector of independent random wvariables
taking values in a set . Furthermore, let f: Q" — R be c-bounded on = C Q", m =
E{f(X)|X € =} be the expected value of f restricted to =, and v =1 —P{X € =} the
probability of X not being in =.

Then we have for e > v||c||1 the concentration of f(X) around its expected value

2(6-7|CH1)2>

P — | > e} <20+ 2emp (<2220
2
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(a) Concentration of the risk (b) Concentration of the cross- (¢) Connection via their ex-
functional. validation score. pected values.

Figure 3.1: Intuition of Theorems , and

3 General framework

Throughout this section we consider an arbitrary domain 2 equipped with some proba-
bility measure p and a function f: 2 — Y which we want to approximate from a finite
sampling z = (z;, f(x;))7~,;. We consider the sampling z € (2 X Y)" as a realization
of the random variable Z = (X, f(X;))Y, with X; being independently and identi-
cally p-distributed random variables with values in 2. This includes the generality of
data-driven approximation methods.

The goal of this section is to relate, for an arbitrary approximation operator Rp: (£2 x
Y)" — Y9, the risk functional and the cross-validation score (L.2). This is done in
three steps: First we prove concentration inequalities for the risk functional and cross-
validation score in Theorem and respectively. For every reconstruction algorithm
Ry, this restricts their values to an interval around their expected values with high
probability as depicted in Figure (a) and (b). In Lemma [3.7] we state the connection
of these two expected values. These three facts allow us to overlap the two concentrations,
cf. Figure (c), and lead to Theorem which is a concentration inequality for the
difference of risk functional and cross-validation score.

Dealing with reconstruction algorithms Ry,: (2 x Y)™ — Y in scattered data approx-
imation settings, there may exist possible realizations z € (2 x Y)" of the samples such
that we cannot bound the error of the approximation in a small manner. An example
for that would be polynomial interpolation where all nodes x; coincide. To handle these
outliers we define a subset of all samples excluding the outliers without uniform bound
on the reconstruction error.

Definition 3.1. For a reconstruction method Ry, we define a subset of all possible samples
E=2(h,C1,Co)={z€ (QxY)": (i) and (i) hold },
where the two stated conditions are:

(i) The uniform error of the reconstruction Rp(z) is bounded, i.e., for 1 <i<mn

|Rh(2—i) — flloo < Ch.



(it)

Changing one node will not do much damage, i.e., for all € € Q we assume for
every 1 < i < n the Col-boundedness of z_; — Rp(z—_;)(x).

Remark 3.2. (i) Note that, by applying the triangle inequality, we could use Cy < 2C

(i)

and only rely on the first assumption. For that reason we will state all results in two
ways: one version using only C1 for simplicity and another using both constants to
allow for fine-tuning of the bounds.

For many reconstruction methods one has a bound on the uniform error in a prob-
abilistic fashion in the form of

P{||Rp(Z") = flloc > C1} <

for some small vy, e.g. [40, Section 6.3 and 6.4] or one of [25, 26,54, [23]. To extend
this to the context of assumption (i), we apply this bound for Z_; and 1 < i < n.
Union bound then gives

P{Z ¢ =(h,e,2e)} = P{31 < i <n: |Rp(Z-i) — flloe > C1}
<Y P{|R(Z-i) — flloo > C1}
=1

< ny.

For instance, in reconstructing functions via least squares, it has been shown that
decays faster than 1/n and the overall probability gets small, cf. [3]|]. This supports
the sanity of the stated set.

We now want to show the e-boundedness of the risk functional on = in order to apply
Theorem [2.2] for a concentration inequality.

Lemma 3.3. Let Z = =(h,C},Cy) be the set of samples from Definition and ¢ =
2C1C21 € R™. Then the risk functionals z — E(Ry(z—;)) are c-bounded.

Proof. We have to check what happens if we change one component. For that let z and

P

= be such that they differ in one sample. By the definition of the risk functional

and the third binomial formula we have

|E(Rp(2-4)) — 5(Rh(Zii))|

Ru(z_)(x) — f(@)[? dp(x) / Ri(2)(@) — f(@)] do(e)

Q

< | IBu(ZL)(@) = f(2) + Br(z-:) = f(@)] - |Ba(213) (@) — Bu(z-i)(z)] dp(a).

Q

Using property (i) and (ii) of = leads to

E(RA(4) — E(Rn(21))| < 20102/de(:¢).



Since p is a probability measure the above integral evaluates to one and we obtain the
desired constant of 2C7C5.

In E(Rp(z—;)) the variable z; does not occur and, therefore, the corresponding ¢; is
arbitrary. To have a general ¢ for all 1 < i < n, we use ¢; = 2C'1Cy anyways and obtain
the assertion. |

Now we state the theorem on the concentration of the risk functional.

Theorem 3.4. Let Z = (X;, f(X;))j-, with X; distributed independent and identically
according to p on Q. Further, let

m =E{E(Ry(Z_:))|Z € =},

be the expected value of the risk functionals E(Ry(Z_;)) restricted to = = Z(h, Cy, C?)
from Deﬁm’tion and v =1—P{Z € E} the probability of Z not being in Z.
Then for e > 2ynC1Cs and 1 < i < n we obtain the concentration of the risk function-

als
_ \/ﬁ,y> 2)

2
€
<2y+2exp | — <\/%C% - \/2n7>

Proof. Lemma [3.3] in combination with Theorem yields for ¢ > 2ynC,Cy the first
inequality

P{IE(Rh(Z-1)) —m| > e} <27+ 2exp <‘ (mgclcz

P{|Ez {(E(RM(Z')} - E(RA(2))] > £} <27+ 2exp (—2“‘ - 2””0102>2) .

4nC3C3
The second inequality is due to Remark (1). [ |

Next, we tackle the related problem with respect to the cross-validation score. First
we take care of its e-boundedness on Z.

Lemma 3.5. Let = = =(h,C1,Cy) be the set of samples from Definition and ¢ =
C1(C1/n+2C9)1 € R™. Then the cross-validation score z — CV(z, h) is c-bounded.

Proof. We have to check what happens if we change one component. For symmetry
reasons we only have a look at what happens if we change the first sample. Let z,2’ €
be such that

z=(21,...,2,) and 2 = (zi,zg,...,zn).
By the triangle inequality we have
|CV(2z,h) — CV(2', h)]

< = [IRu(z- @) = f(@) = |Ratz-0)(@) - £

* %Z |Rn(z—i) (@) — f (@) + Ra(2L) (@) — f@:)| |Rn(z—)(2i) — Ra(2;) (@) -
=2



Using the properties of Z and |a? — b?| < max{a?, b?}, we further estimate

2 _
OV (=) — OV (2 )| < SEE DISIEE

< C1(C1/TZ+ 202).

The corresponding concentration result looks as follows.

Theorem 3.6. Let Z = (X, f(X;))l, with X; distributed independent and identically
according to p on ). Further, let

m =E{CV(Z,h)|Z € E},

be the expected value of the cross-validation score CV(Z, h) restricted to = = Z(h, Cy, C2)
from Definition and v =1—P{Z € E} the probability of Z not being in Z.
Then for e > 2ynC,Cy +~C? we obtain the concentration of the cross-validation score

C1(C1/v/n+ 24/nCs)

2
€

(eteeae )
P{|CV(Z,h) —m|>e} <2y+2exp | — —V2ny

where the second inequality holds for n > 5.

Proof. Applying Lemma [3.5] and Theorem [2.2] gives the first inequality. The second one
is obtained by using Remark (i), n > 5, and basic calculus. [ |

Next, we prepare the connection of the two previous theorems by connecting the ex-
pected values of the risk functional and the cross-validation score.

Lemma 3.7. The expected value of the risk functional for n — 1 nodes is equal to the
expected value of the cross-validation score for n nodes, i.e.,

Ez {E(Rn(Z))} = Bz {CV(Z,h)}

for Z' = (X!, f(X])i=] representingn—1 samples and Z = (X;, f(X;))I, representing
n samples where X;, X[ are distributed independent and identically according to p.

Proof. Since for all 1 <7 < n the Z_; have the same distribution as Z’ we write

Bz {E(RU(Z)} =~ S By {E(RA(Z-0) .
i=1



Instead of using £z ,, we use Ez since Z; does not occur in the corresponding terms

By {E(RA(Z)) = & ZEZ{g Ru(Z-)} =~ S Bz {IRu(Z (@) — f(@)}.
=1

By linearity of the expected value we obtain the assertion

Ez {E(RW(Z'))} = Ez {711 i |Ri(Z-i) (i) — f(wi)IQ} =Ez{CV(Z,h)}.

Having all the necessary tools, we state a central theorem bringing together risk func-
tional and cross-validation score.

Theorem 3.8. Let Z = (X, f(X;))i, with X; distributed independent and identically
according to p on Q and Ry,: (Q x Y)* = Y be a reconstruction method. Further, let

M= sup |Bu((i, f()!7 )]0

T1,..,n—1€

be a uniform bound on the reconstruction for arbitrary nodes and v =1—P{Z € =} the
probability of Z not being in = = E(h, C1,C2) C (Q x Y)" from Definition [3.1]

Then for ¢ > 2ymax{4nC1Cs + C3, (M + || flls)?} we have the concentration bound
of the difference of cross-validation score CV(Z,h) and risk functional E(Rp(Z-1))

P {|CV(Z,h) ~ E(Ry(Z-1))| > £}
e 2
= 2ytzew (‘ (\/icucl/\/m 4/nCy) my) )

< 2y 4 2exp (— (12\FC2 \/TV> )

where the second inequality holds for n > 3. In particular, for 6 > 0, we have with
probability larger than 1 — 2(y + 9)

|CV(Z,h) = E(Rp(Z-1))|
< max{Q’y(M—i— [ £lloo)?, <\fC1 <\f +4\f02)>) <\/ﬁ7+ \/—10g6>}
< max {27(M + 1| flloo)?, 124/nC? (\/ﬁv ++/—log 5)} :

Proof. By the triangle inequalityﬂ we have for fixed z € (2 x Y)"
‘ CV(z,h) — S(Rh(z_l))|
< |CV(z,h) — E(Rp(z-1)) —E{CV(Z,h) — E(RL(Z-1))|Z € =E}|
+[E{CV(Z,h) — E(Rn(Z-1))|Z € E}|.

!One might argue that using triangle inequality with the expected values one looses all information
on the specific sample z, which worsens the bound. However, [3] suggests that CV(-, h) estimates
E{E(Rn(Z))} rather than £(Ry(z)) itself, which reasons for our approach.



By Lemma [3.7| we have E{CV(Z,h) — E(R,(Z_1))} = 0 and, thus, estimate the second

summand by
[E{CV(Z,h) - E(Rn(Z1))|Z € E} = E{CV(Z,h) — E(Rn(Z-1))}]

g/ OV (2, h) — E(Ru(21))| dz
(QxY)"\Z

< [ L ISl)? 2
< (M +Iflloo)®
where the last inequality follows from P{Z ¢ =} < ~. Thus, we obtain
P{ICV(Z,h) — E(Rn(Z-1))| > €}
< P{|OV(z,h) ~ E(Ru(z-1) ~ E{CV(Z,h) — E(RW(Z-1))|Z € Z} > |

+P{(M + /)7 > 5}

By the assumption on € the latter probability evaluates to zero.

It is left to bound the first summand. Similar to the proofs of Lemmata and
we will bound the remaining concentration by Theorem For z and 2’ € 2, which
differ in one component, we have

|CV(z,h) — E(Rp(2-1)) — CV(2',h) + E(Rp(2"1))]
< |CV(z,h) = CV(2', h)| + |E(Ru(2-1)) — E(Rn(2]1))]
C2
<4010y + 1,
n
i.e., CV(z,h) — E(Rn(z-1)) is c-bounded. Thus, with Theorem [2.2f we obtain

P{|CV(z,h) — E(Rn(z-1)) —E{CV(z,h) + E(Rn(2-1))}| > ¢}

2
=2 2ew <_ <ﬂ01(01/\/ﬁ+4ﬁ02> B \/%> )

for & > 2y(4nC1Cy + C?). [ |

Remark 3.9. (i) If, for a specific reconstruction method Ry, we have
e a uniform bound M on the reconstructions Ry(z), z = (s, f(x;))lq € (X
Y)" and
e a bound Cy on the reconstructions error of Rp(z) which holds with probability
1- e
then Theorem states, that with slightly smaller probability 1—2(y+9), computing

the cross-validation score CV(z, h) is the same as computing the risk E(Rp(z)) up
to a small additive constant € that can be computed explicitly from Ci1, M, v, and

J.



(it) For now we have a statement for one reconstruction method Ry. But we easily
obtain error guarantees for the parameter hoy minimizing the cross-validation score

CV(z,-):
Let h* be the minimizer of h— E(Ry(z)). By using

P{E(Rney (Z-1)) — E(Rp+(Z-1)) > €}
< PAE(Rhey (Z-1) = CV(Z, hov) + CV(Z,1%) = E(Riye (Z-1)) > €}
< P {|E(Bioy (Z-1)) = CV(Z.hev)| > -} + P{ICV(Z,h") = (B (Z-0))] > 5}

we apply Theorem [3.8§ twice and have that with high probability minimizing the
cross-validation score is just € worse in terms of the risk.

Remark 3.10. In order to derive asymptotic rates out of Theorem[3.8, we fix the proba-
bility 0 and assume that the reconstruction error of Ry, decays asymptotically as Cy ~ n~"

with probability at least 1 — n=2". Then the difference of cross-validation score CV and
the risk functional E(Ry(z)) decays like n'/?=2",

4 Application using Shepard’s model

Since this paper was motivated by [I7, Chapter 8|, where Shepard’s model was used in the
context of binary kernels, it seemed natural to start off with this application. Shepard’s
model or the Nadaraya-Watson estimator is a special case of moving least squares. It was
introduced in [32, 42 37] and is now-days widely used for solving PDEs [33] 6], manifold
learning [39], or computer graphics [36]. Introductory information about this topic can
be found in [12].

The crucial ingredient in Shepard’s model is a, often locally supported, kernel function
Kj,. Given a sampling z = (z;, f(z;))_; the model has the form

Z?;l K h('v xl)
A one-dimensional example for differently localized kernels is shown in Figure which
emphasizes the importance of the kernel choice. In this section we propose cross-
validation as a method for choosing an optimal kernel and give an explicit error bound
for the difference of risk functional ([I.1)) and cross-validation score (|1.2). This is verified

with numerical examples.

4.1 Theory

For simplicity, we restrict the domain to be the one-dimensional torus 2 = T and Y = R.
A common assumption on which we rely is to use positive, radial kernels, i.e.

Kp(z,2") = kp(d(z,2"))

10



(a) wide support (b) medium support (¢) narrow support

Figure 4.1: Shepard’s model for different widths of the kernel support

for d(-,-) being the usual periodic distance on T and kj,: [0,00) — [0,00) a family of
kernel functions with local support, i.e.,

supp kp, = {t € [0,00) : kx(t) # 0} = [0,1/h].

Note, that the range of the function Rp(z) is contained within the convex hull of all
f(z;). Therefore, for samples z from a bounded function f: T — R, we have

M= sup |[Ra((zi, f(2i))iZ1)lloo < 1 lloo- (4.2)

L1, ,LnEQ

Deterministic bounds on the approximation error are given in [12, Chapter 25|. These
are based on the mesh norm

Ofzr,...on} = Max min d(z,z;).

For simplicity, we shall use only a simple bound which relies on stronger assumptions
compared to [I12, Chapter 25]. However, this still attains the same order in terms of the
mesh norm.

Lemma 4.1. Let kj, be supported on [0,1/h] and f be Lipschitz continuous with constant
L. Furthermore, we assume 6y, . 5.1 <1/h. Then

L
<.

Proof. By the assumption on the mesh norm and the support of K we have

[BA(2) = flloo <

n
Z Kp(x,z;) >0
=1

for all x € T. Thus, we will not divide by zero in the following estimate. By the definition
of Shepard’s method we have

)| = | i Bn(@ ) (i)
|B(2)(z) — f(z)| = ST Kn(w f(x)

_ S K, ml ) ~ f(@)
N 2111 Kh(xvxi) .

11



Using the Lipschitz condition and the local support we obtain

Dvsclo—1/hat1/n) K (@ @i)|zi — 2|
Z:{:ie[aﬁfl/h,x+l/h] Kh(xa xz)
< ézﬂcie[z—l/h,w-i-l/h] Kn(z, x;) L

TR e haryn Bnlz ) R

[Bn(2)(x) = f(z)| < L

As we draw samples randomly, we cannot guarantee an upper bound on the mesh
norm &gy, . 4.}, but aim for a probabilistic result. Furthermore, in order to bound the
approximation errors C from Definition [3.1| we actually need a bound for the mesh norms
where single nodes are secluded, i.e., for oy, 2} and 1 <4 < n. To this end
we define

Ti—15T44 1500

E = {(x’h f(xl))’Zn;l : 6{931,...,:)31',1,:E»L'Jrl,...,mn} < 1/h fOI' 1 S Z S n} ° (43)

By the previous lemma we know, that for samples in = the reconstruction error is bounded
by L/h = C;. With the following lemma we will show that the constructed set is in the
paradigm of Definition and v =1 — P{z € E} is close to zero.

Lemma 4.2. For x1,...,xy, € T drawn uniformly at random, we have
L7] n k n—1
, _ 1 k+1
P {El I<i<n: 5{1‘17--~’Ii—1uzi+1,~~@n} > ﬁ} < ;(1) (/ﬁ) <1 B 2h> '

Proof. The given event on the mesh norm is equivalent to saying the distance of x; to
Zi4+2 will not exceed 1/h. This is certainly fulfilled for nodes where the distance of z; to
x;4+1 will not exceed 1/(2h). Therefore,

77777

This probability has been calculated in [I8, Theorem 2.1] which gives the assertion. M

Remark 4.3. (i) Note that similar techniques, involving e-nets, can be applied to ob-
tain results for more general domains, cf. [15)].

(1) Figure depicts the probability of all mesh norms ¢y, i | 2iir,wn}y L<S1SM
being bigger than 1/h for n = 10000 nodes estimated from numerical experiments.
The critical point s around 1000, where the probability increases away from zero.
The theoretical bound from Lemma 18 not optimal and has its critical point
around 700.

(iti) The binomial bound in Lemmal[{.4 is difficult to evaluate. In [11] it was show that
for n — oo it converges to the Gumbel distribution, i.e.,

B () (- £) " -eolcreol-)

k=1

12
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h

Figure 4.2: The probability of all mesh norms 6y, o w1 n)s 1 < @ < n being
bigger than 1/h for n = 10000 nodes. The solid line displays the numerical
estimates from 1000 experiments, the dashed line the upper bound from

Lemma and the gray line the asymptotic behaviour from Remark (ii).

In Figure[{.4 we see that, already for 10000 nodes, we are very close to this Gumbel
distribution.

Now we have the necessary constants: the bound on the reconstruction M and the
uniform bound on the reconstruction error C with its fail probability v and are able
to use the machinery of Section [3| to concentrate the difference of risk functional and
cross-validation score.

Theorem 4.4. Let Z = (X1, f(X1)),...,(Xn, f(Xy)) represent n samples from a func-
tion f: T — R with Lipschitz constant L, and Rp(Z) the reconstruction via Shepard’s
model, defined by (4.1)), where the kernel ky, is supported on [0,1/h]. Further, let

n—1
y = Z k+1< ) (1 — 2]2> and &> 2ymax{(4n + 1)L2/h2a4||f||go}'

Then we have the concentration bound of the difference of cross-validation score CV(Z, h)
and risk functional E(Rp(Z))

2
P{[CV(Z,h) — E(Rp(Z-1))| > e} < 27+ 2exp (- <12?sz ﬁ’Y) )

In particular for 6 > 0 we have with probability larger than 1 — 2(y + 9)

|cv<z,h>—s<Rh<z1>>|§max{4v||f||2 LN (F 7+ v/~ Togh )}

Proof. By equation (4.2]) we have M < || f|loo. With = asin we have by Lemmata

and [4.2]
L] -1
L s k"
Ci< and 7 < Z - o .
Using these constants in Theorem gives the assertion. |

13



Remark 4.5. In order to interpret the error bounds in Theorem asymptotically for
n — 0o we have to fix the desired probability 6. Furthermore, we relate the kernel support
1/h and the number of samples n via h = « -n. By Lemma and Remark we
approximate the fail probability by

v 5 exp(—e V).

Inserting this bound into Theorem we obtain with probability 1 —2(exp(—e~Y%n)+4)
that
—1/a

|CV(Z,h) — E(Ru(Z-1))| ~ max {exp(—e_l/an), eXp(_‘;/”) + n_3/2} <n73/2,
Remark 4.6. The trade off between the constants C1,Cs, and the fail probability ~ is
controlled by the construction of Z. In general, a larger set = leads to a smaller fail
probability v but worse constants C1 and Cy.

In the extreme case we have v = 0 and = consists of all possible data realizations,
ie., 2 = {(xs, f(xi))q : x1,...,2n € Q}. Then we have the bound C1 = 2| f|« as
m equation . For the specific case of binary kernels, the estimate Cy ~ 1/n can be
found in [17, page 118] (with slight adaptions, as there is an individual Cy for every node
x; and one more assumption). With that, analogously to Theorem we obtain with
probability 1 — 20

|CV(Z, h) — E(Rp(Z_1))| ~ max {o, 0+ n_1/2} <72,

So, ignoring the restriction to binary kernels, the cost of improving to v = 0 s loosing
one order in n. This reasons for the construction of Z being a real subset of all possible
data realizations.

4.2 Implementation

Before presenting our numerical experiments in Section [£.3] we give a brief discussion
on the computational complexity of evaluating the model as well as computing the
cross-validation score CV(z,h). Evaluating the model (4.1) in nodes Z1,...,Z; needs
two matrix-vector multiplications with

(Kh (26, T5))i=1,....55, j=1,....n-

In [I3] a method is proposed to compute in a fast manner using the nonequispaced
fast Fourier transform [20] which works for global kernels. Since we are dealing with
locally supported kernels, we use sparse matrices for an efficient implementation. To
compute the cross-validation score we need to compute Rp(z_;)(z;) for 1 < i < n. To
circumvent setting up n models we use the following trick. For fixed i, we obtain

ettt Knlxg, zi) f(2;)

2 ettt Kn(zs, i)
B Zj 1 Kn(@j, @) f(25) — kn(0) f (i)
a Z] 1Kh($jaxz)_kh(0) '

ri = Rp(z_i, h)(x;) =

14



This favors the Algorithm [I] to compute the cross-validation score.

Algorithm 1 Fast cross-validation for Shepard’s model

Input: data z € (T x R)"

Output: cross-validation score CV(z, h)

1: fori=1,...,ndo

2 ng o Kn(zg,2i) f(z5) {numerator of Shepard’s model}
3 di < Y Kl @) {denominator of Shepard’s model}
4: end for

5. fori=1,...,n do

6: i = (ni — kn(0)f(2:))/(di — kn(0))

7: end for

8 CV(z,h) =257 |r; — f(a)

In terms of complexity we obtain the same as for evaluating the model, namely, two
matrix-vector multiplications.

4.3 Numerics

To exemplify our findings, we present some numerical experiments. We use the function
f(z) = V2sin(2rz) on T with Il = 1, [[fllee = V2, and Lipschitz constant
L = /2. Further, we choose the simple hat kernel function

kp(t) = max{0,1 — ht}.
We then repeat the following experiment 1000 times for 50 different parameters h:
(i) Choose n = 10000 uniformly random nodes z1, ..., Zy,.
(ii) Compute function samples z = (z;, f(x;)) ;-

(iii) Compute the reconstruction Rj(z) and approximate the risk £(Rp(z)) by using
evaluations in equispaced nodes.

(iv) Compute the cross-validation score CV(z, h) via Algorithm [1]

Figure (a) shows the risk £(Rp(z)) and (b) the cross-validation CV(z,h) score for
every experiment as a single dot. We observe, that both graphics resemble each other
quite nicely. Both, the risk £(Rp(z)) and the cross-validation CV(z,h), increase for
small A and become increasingly unstable for h > 1500 as the support of K} gets too
small.

In order to summarize the statistical behaviour we depicted in Figure (¢) the corre-
sponding mean values and the intervals where 90% of the outcomes landed with respect
the parameter h. The dashed lines depict our concentration bounds from Theorems [3.4]

15



and [3:06] Setting the probability to 0.9, as in the experiment, we obtain the concentration
bounds

e < ai’z <\/§m + \/nlog (g - 7)) (4.4)

for the risk functional with o = v/8 and the cross-validation score with o« = 3. For the fail
probability v we used the numerical estimate from Remark [£.3] instead of the theoretical
value from Lemma [£.2]

Finally, we depicted in Figure (d) the 90%-quantile of the difference between the
cross-validation score and risk functional. It illustrates that the risk functional and the
cross-validation score coincide very well in the parameter region 200 < h < 1500 of
interest. Our main result in Theorem [£.4] confirms this by a theoretical bound on this
90%-quantile. The theoretical bound has exactly the form with @ = 12 and is
plotted as a dashed line.

In Figure[4.3](c) and (d) our theoretical bounds rise rapidly at h ~ 1500 which coincides
with the beginning of instability in the computation of Shepard’s model.

5 Conclusion

In this paper we presented a framework for obtaining bounds for the difference of cross-
validation score and risk functional with high probability. This speaks for the use of
cross-validation in parameter choice questions. In contrast to most previous results, we
obtain a pre-asymptotic statement.

Along the way we proved concentration inequalities for the cross-validation score and
risk functional, respectively. Connecting their expected values, we were able to combine
both concentration inequalities and build a machinery to bound their difference with
high probability. All those results are based on uniform bounds of the reconstruction
method, which must hold in a subset of all possible samples. Estimates of this type are
broadly available in learning theory.

For demonstration purposes we used Shepard’s model on the one-dimensional torus
with a rather simple bound of the uniform error. Numerical examples with a fast imple-
mentation support our results.
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