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SIGN INTERMIXING FOR RIESZ BASES AND FRAMES

MEASURED IN THE KANTOROVICH–RUBINSTEIN NORM

NIKOLAI NIKOLSKI AND ALEXANDER VOLBERG

Abstract. We measure a sign interlacing phenomenon for Bessel sequences

(uk) in L
2 spaces in terms of the Kantorovich–Rubinstein mass moving norm

‖uk‖KR. Our main observation shows that, quantitatively, the rate of the

decreasing ‖uk‖KR −→ 0 heavily depends on S. Bernstein n-widths of a com-

pact of Lipschitz functions. In particular, it depends on the dimension of the

measure space.

1. What this note is about.

Let (Ω, ρ) be a metric space, and m a finite continuous (with no point masses)

Borel measure on Ω. It is known [NV2019] that for every frame (uk)k≥1 in L
2
R
(Ω,m),

the “l2-masses” of positive and negative values u±k (x) are infinite:

∑

k u
+
k (x)

2 =
∑

k u
−
k (x)

2 = ∞ a.e. on Ω

(and moreover, ∀f ∈ L2
R
(Ω), f 6= 0 ⇒ ∑

k(f, u
±
k )

2
L2 = ∞), where as usual

u±k (x) = max(0,±uk(x)), x ∈ (0, 1). So, at almost every point x ∈ Ω, there are

many positive and many negative values uk(x). Here, we show that for a fixed k,

positive and negative values are heavily intermixed.

Precisely, we show that the measures u±k dm should be closely interlaced, in the

sense that the Kantorovich-Rubinstein (KR) distances ‖uk‖KR = ‖u+k − u−k ‖KR

(see below) must be small enough. It is easy to see that if the supports supp(u±k )

are distance separated from each other than ‖uk‖KR ≈ ‖uk‖L1(m), whereas in

reality, as we will see, these norms are much smaller, and so, the sets {x : u+(x) >

0} and {x : u+(x) < 0} should be increasingly mixed. In this connection, it is

interesting to recall one of the first (and classical) results in this direction, that

of O. Kellogg [Ke1916], showing that on the unit interval Ω = I =: (0, 1), the

consecutive supports supp(u±k ) are interlacing under quite general hypothesis on
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an orthonormal sequence (uk). (Later on, the sign interlacing phenomena were

intensively studied for (orthogonal) polynomials (starting from P. Chebyshev, and

earlier, see any book on orthogonal polynomials), so that, quite a recent survey

[Fi2008] counts about 780 pages and hundreds references; many new quantitative

results are also presented).

Our results are most complete for the classical case Ω = Id (d ≥ 1) in Rd,

I = (0, 1), and m = md the Lebesgue measure and ρ the Euclidean distance on the

cube. They also suggest that in general, the magnitudes of
∥

∥

∥
uk

∥

∥

∥

KR
are defined by

certain (unknown) interrelations between m and ρ, and by a kind of the dimension

of Ω. In fact, all depends on and is expressed in terms of a compact subset Lip1 of

Lipschitz functions in L2(Ω,m).

Plan of the rest:

2. Definitions and comments

3. Statements on the generic behaviour of
∥

∥

∥
uk

∥

∥

∥

KR
4. Proofs

5. Further examples and comments; numerical examples to Theorem 3.2; direct

comparisons
∥

∥

∥
uk

∥

∥

∥

KR
with Bernstein widths bk(Lip1); an explicit expression for

∥

∥

∥
u
∥

∥

∥

KR
.

6. The fastest rates of decreasing
∥

∥

∥
uk

∥

∥

∥

KR
ց 0 for frames/bases on L2(Id).

Main results are Theorem 3.1, Theorem 3.2, and Theorem
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2. Definitions and comments

In order to simplify the statements, we always assume that our sequences (uk)k≥1

(frames, bases, etc) lay in an one codimensional subspace

L2
0(Ω,m) = {f ∈ L2

R
(Ω,m) :

∫

Ω fdm = 0}.

The most of results below are still true for all Bessel sequences u = (uk)k≥1 in

L2
0, i.e. the sequences with

∑

k

∣

∣

∣
(f, uk)

∣

∣

∣

2

≤ B(u)2‖f‖22, ∀f ∈ L2
0
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where B(u) > 0 stands for the best possible constant in such inequality. Recall also

that a frame (in L2
0) is a sequence having

b‖f‖22 ≤
∑

k

∣

∣

∣
(f, uk)

∣

∣

∣

2

≤ B‖f‖22, ∀f ∈ L2
0,

with some constants 0 < b,B <∞, and a Riesz basis is (by definition) an isomorphic

image of an orthonormal basis.

We always assume that the space (Ω, ρ) is compact (unless the contrary explicitly

follows from the context) and the measure m is finite and continuous (has no point

masses).

Below, ‖u‖KR stands for the Kantorovich–Rubinstein (also called Wasserstein)

norm (KR) of a zero mean (
∫

udm = 0) signed measure udm; that norm evaluates

the work needed to transport the positive mass u+dm into the negative one u−dm.

In fact, the KR distance d(u+k dx, u
−
k dx) between measures u±k dx (first invented by

L. Kantorovich as early as in 1942, see [K1942]) is a partial case of a more general

setting. Namely, given nonnegative measures µ, ν on Ω of an equal total mass,

µ(Ω) = ν(Ω), the KR-distance d(µ, ν) is defined as the optimal ”transfer plan” of

the mass distribution µ to the mass distribution ν:

d(µ, ν) = inf
{

∫

Ω×Ω

ρ(x, y)dψ(x, y) : ψ ∈ Ψ(µ, ν)
}

,

where the family Ψ(µ, ν) consists of all ”admissible transfer plans” ψ, i.e. nonneg-

ative measures on Ω × Ω satisfying the balance (marginal) conditions ψ(Ω × σ) −
ψ(σ×Ω) = (µ−ν)(σ) for every σ ⊂ Ω (the value ψ(σ×σ′) has the meaning of how

many mass is supposed to transfer from σ to σ′). The KR-norm of a real (signed)

measure µ = µ+ − µ−, µ(Ω) = 0, is defined as

‖µ‖KR = d(µ+, µ−).

It is shown in Kantorovich–Rubinstein theory (see, for example [KR1957] or

[KA1977], Ch.VIII, §4) that the KR-norm of a real (signed) measure µ, µ(Ω) = 0,

is the dual norm of the Lipschitz space

Lip := Lip(Ω) = {f : Ω −→ R : |f(x)− f(y)| ≤ cρ(x, y)}

modulo the constants, where the least possible constant c defines the norm

Lip(f). Namely,

‖µ‖KR = d(µ+, µ−) = sup
{

∫

I

fdµ : Lip(f) ≤ 1
}

,

where, in fact, it suffices to test only functions f ∈ lip, lip := {f ∈ Lip : |f(x) −
f(y)| = o(ρ(x, y)) as ρ(x, y) −→ 0}. Of course, one can extend the above definition

to an arbitrary real valued measure µ setting ‖µ‖ = ‖µ−µ(Ω)‖KR+|µ(Ω)|. It makes
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possible to apply our results to L2
R
spaces instead of L2

R,0 (using that in the case

of Bessel sequences, the sequence
∫

Ω
ukdm = (1, uk) is in l2). The KR-norm and

its variations (with various cost function h(x, y) instead of the distance ρ(x, y)) are

largely used in the Monge/Kantorovich transportation problems, in ergodic theory,

etc. We refer to [KA1977] for a basic exposition and references, and to [BK2012],

[BKP2017] for extensive and very useful surveys of the actual state of the fields.

It is clear from the above definitions that, for measuring the sign intermixing of

ukdm for a Bessel sequence (uk) ⊂ L2
0, one can employ certain size characteristics

of the following compact subset of L2(Ω,m),

Lip1 =
{

f : Ω −→ R :
∣

∣

∣
f(x)− f(y)

∣

∣

∣
≤ ρ(x, y), f(x0) = 0

}

,

where x0 ∈ Ω stands for a fixed point of Ω (it will be easily seen that the choice of

x0 does not matter). Below, we do that making use of the known Bernstein width

numbers bn(Lip1), or - in the case when there exists a linear Hilbert space operator

T for which Lip1 is the range of the unit ball - simply the singular numbers sn(T ).

Namely, S.Bernstein n-widths bn(A,X) of a (compact) subset A ⊂ X (convex,

closed and centrally symmetric) of a Banach space X are defined as follows (see

[Pi1985]):

bn(A,X) = sup
Xn+1

sup
{

λ : λB(Xn+1) ⊂ A, λ ≥ 0
}

,

where Xn+1 runs over all linear subspaces in X of dimXn+1 = n+1, and B(Xn+1)

stands for the closed unit ball of Xn+1. A subspace Xn+1(A) where supXn+1
is

attained, is called optimal; it does not need to be unique (in general). In the case of a

Hilbert spaceH (as everywhere below), if A is the image of the unit ball with respect

to a linear (compact) operator T , A = TB(H), we have bn(A,H) = sn(T ), where

sk(T ) ց 0 (k = 0, 1, ...) stands for the k-th singular number of T ; optimal subspaces

Hn+1(T ) are simply the linear hulls of y0, ..., yn from the Schmidt decomposition

of T ,

T =
∑

k≥0

sk(T )(·, xk)yk,

(xk) and (yk) being orthonormal sequences in H .

3. Statements

Recall that (Ω, ρ) stands for a compact metric space (unless the other is claimed

explicitly), and m is a finite Borel measure on Ω having no point masses (for con-

venience normalized to 1).
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Lemma 1 below shows what kind of the intermixing of signs we have for free,

for every Bessel sequence (uk). Lemma 2 shows that in no cases, one can have an

intermixing better than l2 smallness of ‖uk‖KR. All intermediate cases can occur,

following the widths properties of the compact Lip1 ⊂ L2(Ω,m), see Theorems

3.1,3.2 and the comments below.

Lemma 1. For every Bessel sequence (uk)k≥1 in L2
R
(Ω,m), we have

limk ‖uk‖KR = 0.

Lemma 2. For every compact measure triple (Ω, ρ,m) (with the above condi-

tions) and every sequence (ǫk)k≥1, ǫk ≥ 0, such that
∑

k ǫ
2
k < ∞, there exists an

orthonormal sequence (uk)k≥1 in L2
R
(Ω,m) satisfying

‖uk‖KR ≥ cǫk, k = 1, 2, ... (c > 0).

In particular, there exists an orthonormal sequence (uk)k≥1 in L2
R
(Ω,m) such

that

∑

k

‖uk‖2−ǫ
KR = ∞, ∀ǫ > 0.

Lemma 3. For every sequence (ǫk)k≥1, ǫk > 0, with limk ǫk = 0, there exists

a compact measure triple (Ω, ρ,m) (with the above conditions) and an orthonormal

sequence (uk)k≥1 in L2
R
(Ω,m) such that

‖uk‖KR = cǫk, k = 1, 2, ... ( 1
2
√
2
≤ c ≤ 2

√
2

π ).

Theorem 3.1. (1) Given a Bessel sequence (uk)k≥1 in L2
R
(I, dx), I = (0, 1),

we have

∑

k

‖uk‖2KR <∞.

(2) Given a Bessel sequence (uk)k≥1 in L2
R
(Id, dx), d = 2, 3, ..., we have

∑

k

‖uk‖d+ǫ
KR <∞, ∀ǫ > 0.

(3) For the Sin orthonormal sequence (un)n∈2Nd in L2
R
(Id, dx),

un(x) = 2d/2Sin(πn1x1)Sin(πn2x2)...Sin(πndxd) (n = (n1, ..., nd) ∈ (2N)d),

we have
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∑

n

‖un‖dKR = ∞.

Remark. For a generic Bessel sequence (or, an orthonormal sequence), the

l2-convergence property (1) is a best possible result (see Lemma 2). However, for

certain specific sequences, (1) can be much sharpen. For example, let u ∈ L2
R,0(T)

and

un(ζ) = u(ζn), n = 1, 2, ...

Then, as it easy to see,

‖un‖KR ≤ 1
n‖u‖KR

(in fact, there is an equality), and so
∑

n

‖un‖1+ǫ
KR < ∞ (∀ǫ > 0). Such a di-

lated sequence (un)n is Bessel if, and only if, the Bohr transform of u, Bu(ζ) =
∑

n û(n)ζ
α(n), ζα = ζα1

1 ζα2 ... (n = 2α13α2 ... stands for for Euclid prime representa-

tion of n ∈ N) is bounded on the multitorus ζ = (ζ1, ζ2, ...) ∈ T∞, see for instance

[Ni2017].

In fact, Theorem 3.1, is an immediate corollary of the next Theorem 3.2. We

extend the property (‖uk‖KR) ∈ l2 to any ”one dimensional smooth manifolds”,

see Proposition 5.1 for the exact statement. Lemma 2 shows that this condition

describe the fastest decrease of the KR-norms for a generic Bessel sequence. On

the spaces Ω, ρ of ”higher dimensions” the property fails.

In Theorem 3.2, we develop the approach mentioned at the end of Section 2: we

compare the compact set Lip1 with the T -range T (B(L2))of the unit ball for an

appropriate compact operator T . For a direct comparison ‖un‖KR with Bernstein

numbers bn(Lip1) see Section 5 below.

Theorem 3.2. Let T be compact linear operator

T : L2
R
(Ω,m) −→ L2

R
(Ω,m),

and ϕ : [0,∞) −→ [0,∞) be a continuous increasing function on [0,∞) whose

inverse ϕ−1 satisfies

ϕ−1(x) = x1/2r(1/x−1/2) ∀x > 0

with a concave (or, pseudo-concave) function x 7−→ r(x) on (0,∞).

(1) If Lip1 ⊂ T (B(L2
R
(Ω,m))) and

∑

k ϕ(sk(T )) < ∞, then, for every Bessel

sequence (uk) ⊂ L2
R
(Ω,m),

∑

k≥1 ϕ(a‖uk‖KR) <∞ (for a suitable a > 0).
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(2) If Lip1 ⊃ T (B(L2
R
(Ω,m))), then there exists an orthonormal sequence (uk)k≥0 ⊂

L2
R
(Ω,m), such that

‖uk‖KR ≥ sk(T ), k = 0, 1, ...

In particular (in order to compare with (1)),
∑

k h(‖uk‖KR) = ∞ for every h

for which
∑

k h(sk(T )) = ∞.

Remark. See Section 5.III below for a version of Theorem 3.2, point (2),

employing the Bernstein widths bn(Lip1) instead of sn(T ) (T does not need to exist

for the compact set Lip1).

Corollary. Let Lip1 = T (B(L2
R
(Ω,m))) and p(T ) := inf{α :

∑

k sk(T )
α < ∞}.

(1) If p(T ) < 2, then
∑

k ‖uk‖2 <∞, for every Bessel sequence (uk) ⊂ L2
R
(Ω,m).

On the other hand, there exists T with p(T ) = 1 and an orthonormal sequence such

that
∑

k ‖uk‖2−ǫ
KR = ∞ (∀ǫ > 0) (see Lemma 2 above)

(2) If
∑

k sk(T )
p < ∞, p ≥ 2, then

∑

k ‖uk‖pKR < ∞ for every Bessel sequence

(uk) ⊂ L2
R
(Ω,m).

Remark. As we will see, Theorem 3.1, in fact, is a consequence of the last

Corollary. Some concrete examples to Theorem 3.2 are presented below, in Section

5.

4. Proofs

I. Proof of Lemma 1. Since (uk)k≥1 is a Bessel sequence, it tends weakly to

zero: (uk, f) −→ 0 as k −→ ∞, for every f ∈ L2
R
(Ω,m). On a (pre)compact set

f ∈ Lip1, the limit is uniform:

lim
k

‖uk‖KR = lim
k

sup
{

∫

Ω

ukfdµ : f ∈ Lip1

}

= 0 .

II. Proof of Lemma 2. The Borel measure m being continuous satisfies the

Menger property: the values mE, E ⊂ Ω fill in an interval [0,m(Ω)]; if m is nor-

malized - the interval [0, 1] (see [Ha1950], §41 (with many retrospective references,

the oldest one is to K.Menger, 1928), and for a complete and short proof [DN2011],

Prop. A1, p.645). Below, we use that property many times.

Let Ei ⊂ Ω be disjoint Borel sets, E1

⋂

E2 = ∅, mEi = 1/2, and further, Ki ⊂
Ei be compacts such that mKi = 1/3 (i = 1, 2). Denote δ = dist(K1,K2) > 0,

and set

f(x) = (1− 2
δdist(x,K1))

+ − (1 − 2
δdist(x,K2))

+, x ∈ Ω.

Then, f ∈ Lip(Ω, ρ), Lip(f) ≤ 2/δ and f(x) = 1 for x ∈ K1, f(x) = −1 for

x ∈ K2.
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Now, using the Menger property, one can find two sequences (∆1
k), (∆

2
k), k =

1, 2, ..., of pairwise disjoint sets such that ∆i
k ⊂ Ki, ∆

i
k

⋂

∆i
j = ∅ (i = 1, 2, k 6= j),

and m∆1
k = m∆2

k = a2ǫ2k, where a > 0 is chosen in such a way that a2
∑

k≥1 ǫ
2
k ≤

1/3. Setting

uk = ck(χ∆1
k
− χ∆2

k
), k = 1, 2, ...,

with ‖uk‖22 = 2c2km∆1
k = 1, we obtain an orthonormal sequence (uk) ⊂ L2(Ω,m)

such that

‖uk‖KR ≥
∫

Ω

uk(
δ

2
f)dm =

δ

2
2ckm∆1

k =
δ√
2

√

m∆1
k =

δa√
2
ǫk.

III. Proof of Lemma 3. Let Ω = T∞, the infinite topological product of

compact abelian groups T × T × ..., endowed with its normalized Haar measure

m∞ = m × m × .... The product topology on Ω is metrizable by a variety of

metrics, we choose ρ = ρǫ, ǫ = (ǫk)k≥1 defined by

ρǫ(ζ, ζ
′) = maxk≥1ǫk|ζk − ζ′k|, ζ′, ζ = (ζk)k≥1 ∈ T∞.

Setting

uk(ζ) =
√
2Re(ζk), ζ ∈ T

∞,

we define an orthonormal sequence in L2(T∞,m∞) with |uk(ζ)−uk(ζ′)| ≤
√
2

ǫk
ρ(ζ, ζ′),

and so Lip(uk) ≤
√
2/ǫk.

Further, we need the following notation: let f ∈ Lip1(T
∞), f(ζ) = f(ζk, ζ) where

ζ = (ζk, ζ) ∈ T∞ = T× T∞, ζ consists of variables different from ζk, and

uk(ζk) =
√
2Re(ζk), ζk ∈ T,

(in fact, this is one and the same function eiθ 7−→
√
2Cos(θ) for every k). Finally,

we set f(ζk) :=

∫

T∞

f(ζk, ζ)dm∞(ζ) and observe that Lip(f) ≤ ǫk:

∣

∣

∣
f(ζk)− f(ζ′k)

∣

∣

∣
≤

∫

T∞

∣

∣

∣
f(ζk, ζ)− f(ζ′k, ζ)

∣

∣

∣
dm∞(ζ) ≤

≤
∫

T∞

ǫk

∣

∣

∣
ζk − ζ′k

∣

∣

∣
dm∞(ζ) = ǫk

∣

∣

∣
ζk − ζ′k

∣

∣

∣
.

Now,
∫

T∞

uk(ζ)f(ζk, ζ)dm∞(ζ) =

∫

T

uk(ζk)

∫

T∞

f(ζk, ζ)dm∞(ζ)dm(ζk) =

=

∫

T

uk(ζk)f(ζk)dm(ζk) ≤ ǫk‖uk‖KR(T),

and hence ‖uk‖KR(T∞) ≤ ǫk‖uk‖KR(T).
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Conversely, if h ∈ Lip1(T) and h(ζ) := h(ζk) for ζ ∈ T
∞, then

∣

∣

∣
h(ζk)− h(ζ′k)

∣

∣

∣
≤

1
ǫk ρ(ζ, ζ

′), and so

∫

T

ukhdm(ζk) =

∫

T∞

dm∞(ζ)

∫

T

uk(ζk)h(ζk)dm(ζk) =

∫

T∞

uk(ζ)h(ζ)dm∞(ζ) ≤

≤ 1
ǫk ‖uk‖KR(T∞),

which entails ‖uk‖KR(T) ≤ 1
ǫk ‖uk‖KR(T∞). Finally, ‖uk‖KR(T∞) = ǫk‖uk‖KR(T).

Moreover, since Lip(uk) ≤
√
2,

1
2
√
2
=

∫

T

uk(uk/
√
2)dm(ζk) ≤ ‖uk‖KR(T) ≤ ‖uk‖L1(T) =

2
√
2

π
.

Remark. For the same space L2(T∞,m∞), but with a non-compact (bounded)

metric ρ(ζ,ζ′) = supk≥1 |ζk−ζ′k|, we have ‖uk‖KR ≥ 1 for uk(ζ) = Sinπxk, ζ=

(eix1 , eix2 , ..., eixk , ...) ∈ T∞, so that (‖uk‖KR)k≥1 does not tend to zero.

IV. Proof of Theorem 3.1. (1) Since uk ∈ L2
R,0(I, dx),

∫

I ukdx = 0. Taking

a smooth function f with Lip(f) ≤ 1 (which are dense in the unit ball of lip) and

vk(x) = Juk(x) :=
∫ x

0
ukdx, we get vk(0) = vk(1) = 0, and hence

∫

I

fukdx = (fvk)
1
0 −

∫

I

vkf
′dx = −

∫

I

vkf
′dx.

Making sup over all f with |f ′| ≤ 1, we obtain ‖uk‖KR = ‖vk‖L1 . But the

mapping

J : L2(I) −→ L2(I)

is a Hilbert-Schmidt operator, and hence
∑

k

‖Juk‖2L2 < ∞, and so
∑

k

‖uk‖2KR =

∑

k

‖Juk‖2L1 <∞.

The penultimate inequality is obvious if (uk) is an orthonormal (or only Riesz)

sequence, but is still true for every Bessel sequence (uk)k≥1. Indeed, taking an

auxiliary orthonormal basis (ej)j≥1 in L2
R
(I, dx), we can write

∑

k

‖Juk‖2L2 =
∑

k

∑

j

∣

∣

∣
(Juk, ej)

∣

∣

∣

2

=
∑

j

∑

k

∣

∣

∣
(uk, J

∗ej)
∣

∣

∣

2

≤

≤
∑

j

const · ‖J∗ej‖2 <∞,

since the adjoint J∗ is a Hilbert-Schmidt operator.

(2) This is a d-dimensional version of the previous reasoning. Anew, we use the

dual formula for the KR norm,
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‖uk‖KR = sup{
∫

Id

fukdx : f ∈ C∞,Lip(f) ≤ 1,

∫

fdx = 0},

the last requirement does not matter since Lip(f) = Lip(f + const). Notice that

for f ∈ C∞(Id), Lip(f) ≤ 1 ⇔ |∇f(x)| ≤ 1 (x ∈ Id), where ∇f stands for the

gradient vector ∇f = ( ∂f
∂xj

)1≤j≤d . Now, define a linear mapping on the set P0 of

vector valued trigonometric polynomials of the form
∑

n∈Zd cn∇ei(n,·) ∈ L2(Id,Cd)

with the zero mean (c0 = 0) by the formula

A(∇ei(n,x)) =
∣

∣

∣
n
∣

∣

∣
ei(n,x), n ∈ Zd\{0}.

It is clear that A extends to a unitary operator

A : closL2(Id,Cd)(∇P0) −→ L2
0(I

d).

Further, let M : L2
0(I

d) −→ L2
0(I

d) be a (bounded) multiplier,

M(ei(n,x)) = 1
|n|e

i(n,x), n ∈ Zd\{0},

and finally, T (∇f) = f , f ∈ C∞
0 (Id). Then,

∫

Id

fukdx =

∫

Id

(T (∇f))ukdx =

∫

Id

∇f · (T ∗uk)dx,

T ∗ being the adjoint between L2 Hilbert spaces. It follows

‖uk‖KR ≤ sup
{

∫

Id

∇f(T ∗uk)dx :
∣

∣

∣
∇f

∣

∣

∣
≤ 1

}

≤ ‖T ∗uk‖L1(Id,Cd) ≤

≤ ‖T ∗uk‖L2(Id,Cd).

Moreover, T =MA, where A is unitary (between the corresponding spaces) and

M in a Schatten-von Neumann class Sp for every p, p > d (since M is diagonal and
∑

n∈Zd\{0}

1

|n|p < ∞ ⇔ p > d). Using the dual definition of the Bessel sequence as

‖∑akuk‖2 ≤ c (
∑

a2k) for every real finite sequence (ak), we can write (uk) as the

image uk = Bek of an orthonormal sequence (ek) under a linear bounded map B.

This gives

‖uk‖KR ≤ ‖T ∗Bek‖L2 .

For every p > d, this implies
∑

k

‖uk‖pKR ≤
∑

k

‖T ∗Bek‖pL2 <∞ since T ∗B ∈ Sp

and d ≥ 2 (see Remark below).

Remark. For the last property, see for example [GoKr1965]. Here is a simple

explanation: given a linear bounded operator S : H −→ K between two Hilbert
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spaces and an orthonormal sequence (ek) in H , define a mapping j : S −→ (Sek);

then, j is bounded as a map S2 7−→ l2(K) and as a map S∞ 7−→ c0(K) (compact

operators); by operator interpolation, j : Sp 7−→ lp(K) is also bounded for 2 < p <

∞.

For 1 ≤ p ≤ 2, the things go differently: the best summation property
∑

k

‖Sek‖α <

∞, which one can generally have for S ∈ Sp, is only for α = 2 (look at rank one

operators S = (·, x)y). This claim explains the strange behavior in exponent from

2 + ǫ for dimension 2 to exactly 2 for dimension 1 (and not 1 + ǫ as one would

expect).

(3) We use anew the duality formula

‖un‖KR = sup
{

∫

Id

fundµ : Lip(f) ≤ 1
}

.

Taking f = un/Lip(un) we get ‖un‖KR ≥ 1/Lip(un) where Lip(un) ≤ max|∇un(x)| ≤
2d/2|n|, and so

∑

n

‖un‖dKR ≥ 2−d2/2
∑

n∈(2N)d

∣

∣

∣
n
∣

∣

∣

−d

= ∞.

V. Proof of Theorem 3.2. Let T =
∑

k≥0 sk(T )(·, xk)yk be the Schmidt

decomposition of a compact operator T acting on a Hilbert space H , sk(T ) ց 0

being the singular numbers. Let further, A : H −→ H be a bounded operator, and

(ek)k≥0 an arbitrary (fixed) orthonormal basis. Given a sequence α = (αj)j≥0 of

real numbers, α ∈ l∞, define a bounded operator

Tα =
∑

k≥0 αk(·, xk)yk,

and then a mapping

j : α 7−→ (T ∗
αAek)k≥0,

a H-vector valued sequence in l∞(H).

We are using a (partial case of a) J. Gustavsson–J. Peetre interpolation theorem

[GuP1977]for Orlicz spaces. Recall that, in the case of sequence spaces, an Orlicz

space lϕ, where ϕ : R+ −→ R+ = (0,∞) is increasing, continuous, and meets the

so-called ∆2-condition ϕ(2x) ≤ Cϕ(x), x ∈ R+, is the vector space of real sequences

c = (ck) satisfying
∑

k ϕ(a|ck|) <∞ for a suitable a > 0. Similarly, a vector valued

Orlicz space consists of sequences c = (ck), ck ∈ H having
∑

k ϕ(a‖ck‖) < ∞ for

a suitable a > 0. We need the Hilbert space valued spaces only. The Gustavsson–

Peetre interpolation theorem (theorem 9.1 in [GuP1977]) implies that if mappings

j : l∞ −→ l∞(H) and j : l2 −→ l2(H) are bounded, then

j : lϕ −→ lϕ(H)



12 N. NIKOLSKI AND A. VOLBERG

is bounded whenever the measuring function ϕ satisfies the conditions given in

Theorem 3.2.

(1) Now, in the notation and the assumptions of statement (1), the Bessel se-

quence (uk) is of the form uk = Aek, where A is a bounded operator and (ek) an

orthonormal sequence. It follows

‖uk‖KR = supf∈Lip1

∣

∣

∣
(Aek, f)

∣

∣

∣
≤ supf∈T (B(L2))

∣

∣

∣
(Aek, f)L2

∣

∣

∣
= ‖T ∗Aek‖L2.

For every α ∈ l2, Tα ∈ S2 (Hilbert-Schmidt), and then T ∗
αA ∈ S2, and hence

j(α) ∈ l2(H). By Gustavsson–Peetre, α ∈ lϕ ⇒ j(α) ∈ lϕ(H). Applying this

with α = (sk(T )), we get
∑

k ϕ(a‖uk‖KR) ≤
∑

k ϕ(a‖T ∗Aek‖) < ∞ for a suitable

a > 0.

(2) In the assumptions of (2), and with the Schmidt decomposition

T =
∑

k≥0

sk(T )(·, xk)yk ,

set uk = yk k ≥ 0. Then

‖uk‖KR = supf∈Lip1

∣

∣

∣
(yk, f)

∣

∣

∣
≥ supf∈T (B(L2))

∣

∣

∣
(yk, f)

∣

∣

∣
= ‖T ∗yk‖2 = sk(T ).

5. Further examples and comments

I. Fastest and slowest rates of decreasing ‖uk‖KR ց 0. Lemma 2 shows

that, the KR-norms of a generic Bessel sequence don’t have to be smaller than

required by the condition
∑

k

‖uk‖2KR <∞.

On the other hand, point (1) of Theorem 3.1 gives an example of (Ω, ρ, dx),

where every Bessel sequence meets that property.

Now, we extend this result to measure spaces over (almost) arbitrary 1-dimensional

”smooth manifold” of finite length, as follows.

As to the fastest possible decreasing of
∥

∥

∥
uk

∥

∥

∥

KR
for frames/bases, we treat the

question in Section 6 below for the classical spaces L2(Id).

Proposition 5.1. Let ϕ : I −→ X be a continuous injection of I = [0, 1] in a

normed space X differentiable a.e. (with respect to Lebesgue measure dx), and the

distance on I be defined by

ρ(x, y) = ‖ϕ(x)− ϕ(y)‖X , x, y ∈ I.

Let further, µ be a continuous (without point masses) probability measure on I,

satisfying

∫

I

dµ(y)

∫ 1

y

‖ϕ′(x)‖Xdx =: C2(µ, ϕ) < ∞.
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Then, every Bessel sequence u = (uk) in L
2(µ) =: L2

0((I, µ) fulfills

∑

k

‖uk‖2KR ≤ B2C(µ, ϕ) < ∞,

where B(u) > 0 comes from the Bessel condition.

Proof. Following the proof of Theorem 3.1(1) and using that for f ∈ C∞,

Lip(f) ≤ 1 ⇔ |f(x)− f(y)| ≤ ‖ϕ(x) − ϕ(y)‖ ⇔ |f ′(x)| ≤ ‖ϕ′(x)‖X (x ∈ I),

we obtain, for every h ∈ L2
0(µ) and Jµ(h)(x) :=

∫ x

0 hdµ,

‖h‖KR = sup
{

∫

I

f hdµ : f ∈ C∞,Lip(f) ≤ 1
}

=

= sup
{

∫

I

f ′Jµ(h)dx :
∣

∣

∣
f ′(x)

∣

∣

∣
≤ ‖ϕ′(x)‖X

}

=

∫

I

∣

∣

∣
Jµ(h)

∣

∣

∣
· ‖ϕ′(x)‖Xdx ≤

≤ ‖Jµ(h)‖L2(I,vdx),

where v(x) = ‖ϕ′(x)‖X . A mapping Th := Jµ(h), Th(x) :=
∫

I
k(x, y)h(y)dµ

acting as T : L2(µ) −→ L2(I, vdx) is in the Hilbert-Schmidt class S2 if and only if

‖T ‖22 =
∫ ∫

I×I

∣

∣

∣
k(x, y)

∣

∣

∣

2

dµ(y)v(x)dx =

∫ 1

0

dµ(y)

∫ 1

y

v(x)dx =: C2(µ, ϕ) <∞.

If u = (uk) is Bessel (with
∑

k |(h, uk)|2 ≤ B(u)2‖h‖2, ∀h ∈ L2
w), and the last

condition is fulfilled, then uk = Aek where (ek) is orthonormal and ‖A‖ ≤ B(u),

and hence

∑

k

‖uk‖2KR ≤
∑

k

‖(TA)ek‖22 ≤

‖TA‖22 ≤ ‖T ‖22‖A‖2 ≤ B2(u)C2(µ, ϕ).

Remark. In particular, the following (known?) formula appeared in the proof:

‖h‖KR =

∫

I

∣

∣

∣
Jµ(h)

∣

∣

∣
· ‖ϕ′(x)‖Xdx;

see also comments below.

II. Examples of interpolation spaces appearing conspicuously in The-

orem 3.2. Lemma 3 above suggests that all decreasing rates of ‖uk‖KR can really

occur, and so all cases of convergence/divergence of
∑

k ϕ(‖uk‖KR) are different

and non empty. The following partial cases are of interest.
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(1) The most known interpolation space between l2 and l∞ is lp, 2 < p < ∞,

which is included in Theorem 3.2 with

r(t) = t1−
2
p ;

it serves for the case of power-like decreasing of bn(Lip1), or sn(T ) (if Lip1 =

T (B(L2))), and consequently of ‖un‖KR:

log 1
sn

≈ log(n), n −→ ∞.

In particular, point (2) of Theorem 3.1 (where Ω = Id, d ≥ 2) can be seen now as

a partial case of Theorem 3.2 since, in the hypotheses of 3.1(2), Lip1 = TB(L∞) ⊃
TB(L2) and T ∈ ⋂

p>d Sp(L
2 −→ L2) (which was already observed in the proof of

Theorem 3.1).

(2) The following spaces lϕ of slowly decreasing sequences (sn) are conjectured

to appear as s-numbers (or Bernstein n-widths) of Lip1 for partial cases of the

triples Ω = T∞, ρ = ρǫ, m∞ described in the proof of Lemma 3 above:

-
∑

n

s
C log log 1

sn
n < ∞ (corresponding to log 1

sn
≈ log(n)

log log(n) ; the case is included

in Theorem 3.2 with

r(t) = t · exp
{

− 1
C · log(t2)

log log(t2)
(1 + o(1)

}

, as t −→ ∞

(follows from the known b−1(y) = y
log(y) (1 + o(1)) for b(x) = x · log(x)), which is

eventually concave (since t 7−→ r(t) = o(t) for t −→ ∞ and lies in the Hardy fields,

see [Bou1976], L’Appendice du Ch.V);

-
∑

n

s
C(log 1

sn )α

n < ∞, α > 1 (corresponding to log 1
sn

≈ (log(n))1/α; the case is

included in Theorem 3.2 with

r(t) = t · exp
{

− ( 1C · log(t2))1/α
}

,

which is eventually concave as t −→ ∞ (by the same argument as above);

-
∑

n

e
− C
sβn <∞, β > 0 (corresponding to log 1

sn
≈ (c+ 1

β log log(n)); the case is

included in Theorem 3.2 with

r(t) = Ct/(log(t2))1/β ,

which is eventually concave as t −→ ∞ (by the same argument as above).
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III. In terms of the Bernstein n-widths. It is quite easy to see that a part

of Theorem 3.2, namely point (2), is still true with a (slightly?) relaxed hypothesis:

we replace the assumption that Lip1 is of the form Lip1 ⊃ T (B(L2)) for a com-

pact T with a hypothesis that the optimal subspaces for Bernstein widths bn(Lip1)

are ordered by inclusion (see Section 2 above for the definitions): Hn(Lip1) ⊂
Hn+1(Lip1), n = 1, 2, ... Namely, the following property holds.

Proposition 5.2. Let Ω, ρ,m be a compact probability triple for which there

exist Bernstein optimal subspaces Hn(Lip1) ⊂ L2(Ω,m) such that

Hn(Lip1) ⊂ Hn+1(Lip1), n = 1, 2, ...

Then there exists an orthonormal sequence (uk)k≥0 ⊂ Lip(Ω) ⊂ L2
R
(Ω,m), such

that

‖un‖KR ≥ bn(Lip1), n = 1, 2, ...

Proof. Let e1 ∈ H1, ‖e1‖2 = b1, and assume that ek, k ≤ n are chosen in a

way that ek ∈ Hn, ek ⊥ ej (k 6= j) and ‖ek‖2 = bk. Since bn+1B(Hn+1) ⊂ Lip1,

there exists a vector en+1 ∈ Hn+1⊖Hn ⊂ Lip(Ω) with ‖en+1‖2 = bn+1 (and hence,

en+1 ∈ Lip1). For the constructed sequence (en), we set

un = en/bn

and obtain an orthonormal sequence (un) ⊂ Lip(Ω) such that Lip(un) ≤ 1/bn,

and hence ‖un‖KR ≥
∫

Ω
unendm = bn(Lip1).

IV. Remark: an “uncertainty inequality” for ‖u‖KR. As it is already

used several times (in particular in the proof of 5.2 above), for a smooth function

u ∈ Lip(Ω) the following inequality holds

‖u‖KR Lip(u) ≥ ‖u‖22.

Indeed, ‖u‖KR ≥
∫

Ω
u(u/Lip(u))dm.

As a consequence, one can observe that for every normalized Bessel sequence

(uk), its Lip norms must be sufficiently large, so that
∑

k ϕ(
1

Lip(uk)
) < ∞ for any

monotone increasing function ϕ ≥ 0 for which
∑

k ϕ(‖uk‖) < ∞ (compare with the

statements of Section 3).

V. Remark: an explicit formula for ‖u‖KR. There are some cases where the

norm ‖ ·‖KR can be explicitly expressed in term of the triple Ω, ρ,m. In particular,

if Lip1 = T (B(L∞(Ω,m)) then
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‖u‖KR = ‖T ∗u‖L1(Ω,m), ∀u ∈ L1(Ω,m).

Indeed,

‖u‖KR = sup
{

∫

Ω

ufdm : f ∈ Lip1

}

= ‖T ∗u‖L1(Ω,m).

In particular, such a formula holds for (Ω,m) = (Id,md), as it is mentioned in

the proof of Theorem 3.1 (the corresponding T (
∑

k 6=0 cke
i(k,x)) =

∑

k 6=0 |k|ckei(k,x)
is a multiplier on Lp

0); for d = 1, the formula is mentioned in [Ver2004].

VI. Yet another characteristic of a compact set. The following compact-

ness measure seems to be closely related to the estimates of ‖un‖KR:

t(n) = sup
{

r > 0 : ∃xj ∈ Lip1, xi ⊥ xk(i 6= k), ‖xj‖ ≥ r, 1 ≤ j ≤ n
}

, n ≥ 1.

It is easy to see that
√
nbn(Lip1) ≥ t(n) ≥ bn(Lip1), and in principle, we can use

t(n) instead of bn in the proof of Proposition 5.2. We can also derive the existence

of finite orthonormal sequences (ej)
n
j=1 ⊂ Lip(Ω) such that

∑n
j=1 ϕ(‖ej‖KR) ≥

nϕ(bn(Lip1)), n = 1, 2, ...

6. A summary, and the best KR-norms behavior for frames/bases in

L2(Id).

(A) A summary of the worst (generic) behavior of the KR-norms (all

these claims are already proved above). For every Bessel sequence (uk) in L
2(Id),

we have for d = 1:
∑

k

∥

∥

∥
uk

∥

∥

∥

2

KR
< ∞, and for d > 1:

∑

k

∥

∥

∥
uk

∥

∥

∥

d+ǫ

KR
< ∞, ∀ǫ > 0.

These claims are sharp: for every compact triple (Ω,ρ,m) and for every se-

quence (ǫk)k≥1, ǫk ≥ 0, such that
∑

k ǫ
2
k<∞, there exists an orthonormal sequence

(uk)k≥1 in L2
R
(Ω,m) such that

∥

∥

∥
uk

∥

∥

∥

KR
≥ cǫk, k = 1, 2, ... (c > 0), and in L2(Id)

there exists an orthonormal sequence (uk) such that
∑

k

∥

∥

∥
uk

∥

∥

∥

d

KR
= ∞.

For a generic compact triple Ω,ρ,m, we can only claim limk

∥

∥

∥
uk

∥

∥

∥

KR
= 0 for

every Bessel sequence in L2
R
(Ω,m). The property is sharp in the following sense:

for every sequence (ǫk)k≥1, ǫk> 0, with limk ǫk= 0, there exists a compact triple

(Ω,ρ,m) (with usual properties) and an orthonormal sequence (uk)k≥1 in L2
R
(Ω,m)

such that
∥

∥

∥
uk

∥

∥

∥

KR
= cǫk, k = 1, 2, ... ( 1

2
√
2
≤ c ≤ 2

√
2

π ).

(B) Bases/frames with the least possibleKR-norms. For the best possible

behavior of
∥

∥

∥
uk

∥

∥

∥

KR
we replace the words “for every Bessel sequence” by the words

“there exists Bessel sequence”, meaning that we look for the fastest rate of decrease

of {
∥

∥

∥
uk

∥

∥

∥

KR
}. Then for bases/frames/Bessel sequences on L2(Id), we have different

summation properties, and for d = 1 the threshold is 2/3 (and not 2 as above), as

follows.
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Theorem 6.1. Let d = 1, 2, ... and α = 2d
d+2 (α < 2). Then, (1) there exists

an orthonormal basis (uk) in L2(Id) such that
∑

k

∥

∥

∥
uk

∥

∥

∥

α+ǫ

KR
< ∞, ∀ǫ > 0, but (2)

∑

k

∥

∥

∥
uk

∥

∥

∥

α

KR
= ∞, for every frame (uk) in L2(Id) (in particular, for every Riesz

basis).

Let (un) be the Haar basis in L2
0(I

d) enumerated with the following notation:

h = χ(0,1/2) − χ(1/2,1)

stands for the Haar basic wavelet on I ⊂ R; taking a subset σ ⊂ D := {1, 2, ..., d},
σ 6= ∅, and a multiindex k = (k1, k2, ..., kd) ∈ Z

d
+, where 0 ≤ ks < 2j for every s

and j ∈ Z+, define the Haar functions (un) := (hj,k,σ) as

hj,k,σ(x) = 2dj/2
∏

s∈σ

h(2jxs − ks)
∏

s∈D\σ
χ(0,1)(2

jxs − ks),

where x = (x1, x2, .., xd) ∈ Id. Then (see for example, [Me1992], Section 3.9),

(un) forms an orthonormal basis in L2
0(I

d) (j and k run over all mentioned above

values, σ runs a finite set of 2d − 1 elements). Obviously,

supp(hj,k,σ) = Qj,k := {x ∈ R
d : 2jx− k ∈ Id} =

∏d
s=1[ks2

−j, (ks + 1)2−j ].

Lemma. Let u ∈ L∞(Id), supp(u) ⊂ Qj,k and
∫

Id udx = 0. Then,

∥

∥

∥
u
∥

∥

∥

KR
≤ d

2‖u‖∞2−(d+1)j.

Proof Since
∫

Id udx = 0, we can restrict ourselves in the formula

∥

∥

∥
u
∥

∥

∥

KR
= sup

{

∫

I

ufdx : Lip(f) ≤ 1
}

to the functions f with f(l) = 0, Lip(f) ≤ 1 where l = (ks2
−j)ds=1, and so

|f(x)| ≤ |l − x|, x ∈ Qj,k. Changing variables, we have

∥

∥

∥
u
∥

∥

∥

KR
≤

∫

Qj,0

∥

∥

∥
u
∥

∥

∥

∞

∣

∣

∣
x
∣

∣

∣
dx ≤

∫

Qj,0

∥

∥

∥
u
∥

∥

∥

∞

d
∑

s=1

xsdx =

=
∥

∥

∥
u
∥

∥

∥

∞
d
22

−2j2−j(d−1) =
∥

∥

∥
u
∥

∥

∥

∞
d
22

−j(d+1).

Proof of Theorem 6.1

(1) Applying Lemma to u = hj,k,σ,

∥

∥

∥
hj,k,σ

∥

∥

∥

KR
≤ 2jd/2 d22

−j(d+1).

Summing up (with a γ > α, α = 2d
d+2), we get
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∑

n

∥

∥

∥
un

∥

∥

∥

γ

KR
≤

∑

σ

∑

j≥0

∑

k

∥

∥

∥
hj,k,σ

∥

∥

∥

γ

KR
≤

∑

σ

∑

j≥0

2jd
(

2jd/2
d

2
2−j(d+1)

)γ

< ∞.

(2) Recall that the space L1
0(I

d) endowed with the KR-norm is isometrically

embedded into the dual space (Lip0)
∗ (with respect to the standard duality (u, f) =

∫

Id ufdm).

The plan of the proof (suggested by E. Gluskin) is the following: consider

some metric properties of the embedding

E∗ : L2
0(I

d) −→ (Lip0)
∗

and its predual embedding

E : Lip0 −→ L2
0(I

d)

from two different points of view. Namely, assuming that there exists a frame

(uk) in L
2
0(I

d) such that
∑

k

∥

∥

∥
uk

∥

∥

∥

α

KR
< ∞, we show that

(I) embeddings E, E∗ are 2-nuclear operators (see below) and the 2-nuclear

approximation numbers a
(2)
N (E∗) decrease as o(1/N1/d) when N −→ ∞;

(II) on the other hand, one can see that - at least for N = 2jd, j = 1, 2, ... - the

numbers a
(2)
N (E) (which coincide with a

(2)
N (E∗)) cannot be less than cN−1/d.

The above contradiction shows property (2) of Theorem 6.1.

Proof of point (I). A linear operator T : X −→ Y between Banach spaces X

and Y is said p-nuclear if Tx =
∑

k Tkx, x ∈ X (weak convergence), rank(Tk) ≤
1 and

∑

k ‖Tk‖p < ∞; inf
{(

∑

k

∥

∥

∥
Tk

∥

∥

∥

p)1/p

: over all such representations
}

=:

∥

∥

∥
T
∥

∥

∥

N(p)
is called its p-norm. N -th p-nuclear approximation number of T (N =

1, 2, ...) is

a
(p)
N (T ) := inf

{
∥

∥

∥
T −A

∥

∥

∥

N(p)
: A : X −→ Y, rank(A) < N

}

.

Assume now that there exists a frame (uk) in L
2
0(I

d) such that
∑

k

∥

∥

∥
uk

∥

∥

∥

α

KR
<

∞ where α = 2d
d+2 . Let Sf =

∑

k(f, uk)uk be the frame operator on L2
0(I

d); S is an

isomorphism S : L2
0(I

d) −→ L2
0(I

d), and E∗S : L2
0(I

d) −→ (Lip0)
∗ is a 2-nuclear

operator,

E∗Sf =
∑

k≥1(f, uk)E
∗uk,

since ‖E∗uk‖(Lip0)∗ = ‖uk‖KR and α < 2. Moreover, letting (uk) in the de-

creasing order of
∥

∥

∥
uk

∥

∥

∥

KR
, we get

∥

∥

∥
uk

∥

∥

∥

α

KR
= o(1/k) (as k −→ ∞), and hence
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a
(2)
N (E∗S)2 ≤

∑

k≥N

∥

∥

∥
uk

∥

∥

∥

2

KR
≤

∥

∥

∥
uN

∥

∥

∥

2−α

KR

∑

k≥N

∥

∥

∥
uk

∥

∥

∥

α

KR
= o(

1

N2/α−1
),

and a
(2)
N (E∗S) = o( 1

N1/α−1/2 ) = o( 1
N1/d ), as N −→ ∞ and 1/α = 1/2 + 1/d.

Since S is invertible, and
∥

∥

∥
UTV

∥

∥

∥

N(p)
≤ ‖U‖ · ‖T ‖N(p) · ‖V ‖ for every T, U, V , we

have

a
(2)
N (E∗) = o( 1

N1/d ), as N −→ ∞.

Proof of point (II). (The proof was suggested by E. Gluskin). We need to

show that there exists a constant c > 0 such that for every operator AN : Lip0 −→
L2
0(I

d), rank(AN ) < N = 2jd (j = 1, 2, ...), one has ‖E −AN‖N(2) ≥ cN−1/d. To

this end, we construct two linear mappings V = VN : RN −→ Lip0 and U = UN :

L2
0(I

d) −→ R
N such that

UEV = idRN , ‖V : RN −→ Lip0‖ ≤ CN
1
2
+ 1

d , ‖U : L2
0(I

d) −→ RN‖ = 1,

where C > 0 does not depend on N .

Having these mappings at hand, we get U2N(E − AN )V2N = idR2N − BN ,

where rank(BN ) < N and so

‖U2N(E −AN )V2N‖N(2) = ‖idR2N− BN‖N(2) ≥ N1/2,

and on the other hand,

‖U2N(E − AN )V2N‖N(2) ≤ ‖U2N‖ · ‖E − AN‖N(2)‖V2N‖ ≤ C(2N)
1
2
+ 1

d ‖E −
AN‖N(2), which gives ‖E −AN‖N(2) ≥ cN−1/d.

Construction of the mappings V = VN : RN −→ Lip0 and U = UN :

L2
0(I

d) −→ RN , N = 2jd, j = 1, 2, .... We use the similar scaling procedure as in

the above proof of part (1) of Theorem 6.1: let ψ be a smooth function on Rd such

that supp(ψ) ⊂ Q0 = Id, ‖ψ‖L2(Id) = 1,
∫

Id ψdm = 0, and, for every j ∈ Z+,

ψk = ψj,k(x) := 2jd/2ψ(2jx− k), k ∈ Kj,

where Kj = {k = (k1, ..., kd) ∈ Zd
+: 0 ≤ ks < 2j (1 ≤ s ≤ d)}. Then, ψk

(k ∈ Kj) have pairwise disjoint supports and form an orthonormal family in L2
0(I

d),

card(Kj) = 2jd := N . Now, setting

V a =
∑

k∈Kj
akψk, a ∈ RN ,

we obtain
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∥

∥

∥
V a

∥

∥

∥

Lip
≤ c · supx∈Id

∣

∣

∣
∇(V a)(x)

∣

∣

∣
= c ·maxk∈Kj

supx∈Id

∣

∣

∣
ak∇ψk(x)

∣

∣

∣
≤ C2jd/22j

∥

∥

∥
a
∥

∥

∥

RN
,

where c > 0, C > 0 depend only on d (and the choice of ψ), which gives the needed

‖V : RN −→ Lip0‖ ≤ CN
1
2
+ 1

d .

For U = UN : L2
0(I

d) −→ RN , we let Uf = ((f, ψk))k∈Kj
, and obviously get

UEV = idRN and ‖U : L2
0(I

d) −→ R
N‖ = 1.
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