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We consider the approximation of manifold-valued functions by embed-
ding the manifold into a higher dimensional space, applying a vector-valued
approximation operator and projecting the resulting vector back to the man-
ifold. It is well known that the approximation error for manifold-valued
functions is close to the approximation error for vector-valued functions.
This is not true anymore if we consider the derivatives of such functions.
In our paper we give pre-asymptotic error bounds for the approximation of
the derivative of manifold-valued function. In particular, we provide explicit
constants that depend on the reach of the embedded manifold.
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1. Introduction

Approximating functions f : Ω → M with values in some D-dimensional Riemannian
manifold M has attracted lots of interest during the last years. The central challenge
is that with M not being linear, the function spaces over Ω with values in M are not
linear as well and hence, all the well established linear approximation methods do not
have a straight forward generalization to manifold-valued functions.

One successful approach to manifold-valued approximation is to consider the problem
locally. Either one maps the function values locally to some linear approximation space
or one uses local averaging based on the geodesic distance. These approaches allow
to generalize subdivision schemes [32, 33, 9, 10, 29], moving least squares [12], quasi-
interpolation [11] or splines [30] to the manifold-valued setting.

A different approach is to embed the manifoldM into some higher dimensional linear
space Rd by a map E : M→ Rd. Note, that according to Nash’s embedding theorem [21]

∗Faculty of Mathematics and Informatics, TU Bergakademie Freiberg, Germany.
E-mail: ralf.hielscher@math.tu-chemnitz.de

†Faculty of Mathematics, Chemnitz University of Technology, Germany.
E-mail: laura.lippert@math.tu-chemnitz.de

1

ar
X

iv
:2

10
2.

12
56

2v
4 

 [
m

at
h.

N
A

] 
 2

1 
O

ct
 2

02
2

mailto:ralf.hielscher@math.tu-chemnitz.de
mailto:laura.lippert@math.tu-chemnitz.de


such a mapping always exists and can be guaranteed to be locally isometric provided the
dimension d is at least D(3D+11)/2, where D denotes the dimension ofM. Embedding
based approximation methods can be summarized as follows

i) Transfer f ∈ C(Ω,M) via the embedding E into the linear function space C(Ω,Rd).
Since often a manifold is described by vectors in Rd, we will use the notation f for
the function in both function spaces.

ii) Use a linear approximation operator IRd : C(Ω,Rd)→ C(Ω,Rd) to find an approx-
imant IRdf in the embedding.

iii) Project the resulting Rd-valued function back to the manifold IMf = PM ◦ (IRdf)
using some projection operator PM : Rd →M.

Because of its generality and simplicity this approach has already been widely inves-
tigated [11, 7] and applied [20, 27]. In particular it has been shown in [7] that the
approximation order of the embedding based approximation operator IMf is the same
as the approximation order of its linear counterpart IRd . It is important to note, that
the projection operator PM is in general only defined in some neighborhood U ⊃ M
of the manifold. Hence, the pre-asymptotic behavior of the approximation operator
IM strongly depends on the size of this neighborhood which is directly related to the
so-called reach of the embedded manifold.

The aim of this paper is to analyze the pre-asymptotic behavior of the approximation
operator IM with respect to the reach of the embedded manifold. While for the error
IMf − f the reach only controls the required linear approximation error IRdf − f that
allows for a meaningful approximation IMf , the situation is completely different for the
error of the derivatives d(IMf) − df . In this case the chain rule has to be used for
the derivative d(IMf) of a concatenation of approximation in Rd and projection on the
manifoldM. The derivative of the projection onM leads to pre-asymptotic constants,
which depend on the reach of the manifold.

Our paper is organized as follows. In section 2 we will first show some general dif-
ferential geometric properties of submanifolds of Rd. Most importantly, we identify in
Lemma 2.1 the projection operator PM with an orthogonal projection in the normal
bundle over the manifold M. This is only possible within some tubular neighborhood
of the manifold M that is controlled by the reach of M. The relationship between the
reach of the manifold M and its curvature or second fundamental form is addressed
in section 2.2. In Theorem 2.7 we make use of these relationships to describe the dif-
ferential of the projection operator PM in terms of the second fundamental form. In
section 2.4 we end up with the main results of this chapter, that is we show in Theo-
rem 2.10 that the derivative dPM(x) of the projection operator at some point x ∈ Rd

satisfies a Lipschitz-condition with respect to x. As our Lipschitz bound is with respect
to the Euclidean distance in the embedding it is more sharp then the bound reported in
[3] that relies on the geodesic distance.

Section 3 is dedicated to manifold-valued approximation. We show that the approach
of using a linear approximation operator on an embedded manifold M in Rd and then
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projecting back on the manifold inherits the approximation order of the linear approxi-
mation. Our main result is stated in Theorem 3.2 and gives a pre-asymptotic bound for
the approximation error of the first derivative that relies exclusively on the reach of the
embedded manifold. This result is illustrated in Theorem 3.4 for a specific approximation
operator, the Fourier partial sum operator.

In the final section 4 we consider two real world examples for approximating mani-
fold valued data. The first example deals with functions from the two-sphere into the
two-dimensional projective space that describe the dependency between the propaga-
tion direction and the polarization directions of seismic waves. The second example is
from crystallographic texture analysis where the local alignment of the atom lattice is
described by a map with values in the quotient SO(3)/S of the rotation group SO(3)
modulo some finite symmetry group S. The derivative of this map has important con-
nections microscopic and macroscopic material properties.

2. Submanifolds

In this section we will consider smooth compact Riemannian submanifolds M of Rd.
We will show some differential geometric properties of submanifolds as well as some
estimations for the projection PM and the differential of this projection. We will use
these results for estimating some approximation errors in section 3.

2.1. The Projection Operator

Throughout our work we denote byM⊂ Rd a smooth compact Riemannian submanifold
of Rd. For every point m ∈M we denote the tangent space TmM as well as the normal
space NmM. Furthermore, we denote by PM : Rd → M the projection operator onto
M defined as the solution of the minimization problem

PM(x) = argmin
m∈M

‖x−m‖2 . (2.1)

In general, this minimization problem does not posses a unique solution for every x ∈
Rd, since there is an ambiguity to which branch of the manifold the point should be
attributed. However, if we restrict the domain of the definition of PM to some open
neighborhood U ⊂ Rd of M uniqueness can be granted.

In order to find such a neighborhood U we define on the normal bundle

NM = {(m,v) ∈ Rd × Rd : m ∈M,v ∈ NmM}

of M the smooth map

E : NM→ Rd, E(m,v) = m+ v,

that maps every normal space NmM to an affine linear subspace through m ∈ Rd.
Since we assumedM to be compact and smooth, there exist a maximum constant τ > 0
such that the mapping E restricted to the open subset

V = {(m,v) ∈ NM : ‖v‖2 < τ}
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of the normal bundle is injective, cf. [17, 6.24]. Setting U = E(V ) defines the so-called
tubular neighborhood of M and the restriction E : V → U becomes a diffeomorphism.
The constant τ is commonly called reach and its inverse 1/τ is the condition number of
the manifold. The reach τ is affected by two factors: the curvature of the manifold and
the width of the narrowest bottleneck-like structure of M, which quantifies how far M
is from being self-intersecting. An estimate on the relationship between the reach and
the curvature of the manifold M will be given in Lemma 2.4.

Using the mapping E we may now give an explicit definition of the projection operator
PM.

Lemma 2.1. Let u ∈ U and let π : NM→M, (m,n) 7→m be the canonical projection
operator. Then

PM(u) = π ◦ E−1(u)

is the unique solution of the minimization problem (2.1).

Proof. Let u ∈ U and PM(u) = m ∈ M. We show that u−m ∈ NmM. We assume
the opposite and decompose u−m in one part in Nm M and a part t in TmM . Then
there is a curve γ(s) in M with γ(0) = m and γ̇(0) = t. If we go along this curve,
we obtain for sufficient small ε > 0 that u − γ(ε) < u − γ(0) = u −m. That is a
contradiction to the definition of PM. Since the projection PM should be unique, we
have to show that π◦E−1 is also unique. For that reason we assume that for u ∈ U there
holds π◦E−1 = m ∈M and π◦E−1 = m′ ∈M. This would imply u = m+v = m′+v′

with v ∈ NmM and v ∈ Nm′M. That is a contradiction to the uniqueness of E−1 in
the tubular neighborhood U .

Let us illustrate this by a simple example.

Example 2.2. Let the manifold M be the (d− 1)-dimensional unit sphere, embedded
in Rd. These manifolds can be described by

Sd−1 =
{
x ∈ Rd : ‖x‖2 = 1

}
.

The projection PSd−1 easily reads

PSd−1 : Rd\{0} → Sd−1, PSd−1(x) =
x

‖x‖2
.

This map is well-defined and smooth.

2.2. Curvature and Reach of Submanifolds

For any point m ∈ M ⊂ Rd on the manifold we can decompose Rd as the direct sum
Rd = TmM⊕ NmM of the tangential space TmM and the normal space NmM. Let
us denote by PT : Rd → TmM and PN : Rd → NmM the corresponding orthogonal
projections. Then the canonical connection ∇ on Rd defines a connection ∇M onM by

∇MX = PT∇X(PTY ) + PN∇X(PNY ), (2.2)
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where X : M→ TM is a tangential and Y : M→ Rd a general vector field on M.
If Y is a tangential vector field as well, the first summand PT∇X(PTY ) = PT∇XY

in (2.2) is just the Levi-Cevita-connection on M, whereas its orthogonal complement

II(X,Y ) = PN(∇XY )

is the second fundamental form on M.
We call a vector field Y : M→ Rd parallel along a curve γ if∇Mγ̇ Y = 0. For a geodesic

γ with γ(0) = m, γ̇(0) = t ∈ TmM and an arbitrary vector y ∈ TmM⊕ NmM = Rd

we shall use the abbreviation
∇ty = ∇tY (0)

where Y is the parallel transport of the vector y along the curve γ.
For a fixed point m ∈ M and a normal direction n ∈ NmM we define the operator

Bn : TmM→ TmM on the tangent space by

〈Bnx,y〉 = 〈n,∇xy〉 , x,y ∈ TmM. (2.3)

We may also express Bnx as the tangential part of the covariant derivative of n in
direction x.

Lemma 2.3. Let n ∈ NmM be a normal and x ∈ TmM a tangential vector. Then

Bnx = −PT∇xn.

Proof. Let γ be a geodesics in M with γ(0) = m and γ̇(0) = x and let N be the
parallel transport of n along γ. Let furthermore, Y be an arbitrary tangent vector field
parallel along γ. Then we have

0 =
d

ds
〈N (s),Y (s)〉|s=0 = 〈∇xN (0),Y (0)〉+ 〈N (0),∇xY (0)〉.

This yields
〈Bnx,y〉 = 〈n,∇xy〉 = −〈∇xn,y〉.

Since the vector field Y was arbitrary, this yields the assertion.

The operator Bn describes the extrinsic curvature of the manifold in the point m and
the normal direction n. Its norm is bounded by the condition number 1

τ
of M. More

precisely the following result is shown in [22, Proposition 6.1].

Lemma 2.4. Let τ be the reach of M, m ∈ M be an arbitrary point on the manifold
and n ∈ NmM be a normal vector. Then the operator Bn defined in (2.3) is symmetric
and bounded by 1

τ
, i.e., we have for tangential vectors x,y ∈ TmM the inequality

〈Bnx,y〉 ≤
1

τ
‖n‖ ‖x‖ ‖y‖ . (2.4)

The next lemma bounds the covariant derivative of parallel vector fields by the con-
dition number 1

τ
of the manifold.

5



Lemma 2.5. Let Y be a parallel vector field along a geodesic γ inM. Then its covariant
derivative in Rd is bounded by

‖∇γ̇Y ‖2 ≤
1
τ
‖Y ‖2 ‖γ̇‖2 .

Proof. Let Y = T +N be the decomposition of Y into a tangent vector field T and
a normal vector field N . Since Y is parallel along γ we have

0 = ∇Mγ̇ Y = PT∇γ̇T + PN∇γ̇N

and, hence,
∇γ̇Y = PN∇γ̇T + PT∇γ̇N .

Let n = PN∇γ̇(s)T (s). Then we obtain by Lemma 2.4

‖n‖2 =
〈
n,∇γ̇(s)T (s)

〉
= 〈Bnγ̇(s),T (s)〉 ≤ 1

τ
‖γ̇‖ ‖n‖ ‖T (s)‖ .

For the tangential part we have by Lemma 2.3

‖PT∇γ̇(s)N (s)‖2 = ‖BN(s)γ̇(s)‖2 ≤
1
τ
‖γ̇‖ ‖N (s)‖ .

The assertion follows now from Parsevals inequality.

2.3. The Differential of the Projection Operator.

The differential dPM(m) : Rd → TmM of the projection PM : Rd → M is especially
easy to compute at points m ∈ M on the manifold. In this case it is simply the linear
projection PTmM : Rd → TmM onto the tangential space attached to m, i.e.

dPM(m) = PTmM. (2.5)

We can verify this by observing that for normal vectors n ∈ NmM we have

dPM(m)n = lim
h→0

PM(m+ hn)− PM(m)

h
= lim

h→0

m−m
h

= 0,

while for tangent vectors t ∈ TmM we obtain

dPM(m) t = lim
h→0

PM(m+ ht)− PM(m)

h
= lim

h→0

m+ exp(ht)−m
h

= lim
h→0

exp(ht)

h
= t,

where exp denotes the exponential map to the manifold.
The differential dPM(m+ v), v ∈ NmM at a point not in the manifold is a little bit

more tricky. We start by observing that the tangential T(m,v)NM⊂ R2d of the normal
bundle at a point (m,v) ∈ NM is

T(m,v)NM = {(0,n) | n ∈ NmM}⊕ {(t,∇tv) | t ∈ TmM}
= {(t,u) | t ∈ TmM, PTu = ∇tv}.

The following lemma describes the differential dPM(m+ v).
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Lemma 2.6. Let m ∈ M be an arbitrary point on the manifold M and v ∈ NmM be
a normal vector with ‖v‖2 < τ , i.e. m + v is in the tubular neighborhood of M. Then
the derivative dPM(m+ v) satisfies for every tangent direction t ∈ TmM,

(dPM(m+ v)) (t+∇tv) = t.

while it vanishes for any normal direction n ∈ NmM, i.e.

dPM(m+ v)n = 0.

Proof. According to Lemma 2.1 we have PM = π◦E−1, where π : NM→M, (m,v) 7→
m is the projection operator. Its differential at the point (m,v) ∈ NM is the projection

dπ(m,v) : T(m,v)NM→ TmM, (t,u) 7→ t.

The differential of the mapping E : NM→ Rd in a point (m,v) ∈ NM is given by

dE(m,v) : T(m,v)NM→ Rd, (t,u) 7→ t+ u.

Since m+v is within the tubular neighborhood ofM, E is invertible in some neighbor-
hood of m+ v. Then dE(m,v) is invertible as well and we have for any normal vector
n ∈ NmM

dE−1(m+ v)n = (0,n)

and for any tangent vector t ∈ TmM

dE−1(m+ v) (t+∇tv) = (t,∇tv).

Together with the chain rule this implies the assertion.

The image of dPM(m + v) is contained in the tangential space TmM, especially
dPM(m + v) is the projection PTmM up to a factor matrix. We will write this lin-
ear operator dPM(m + v) in another way, to see the difference to the linear operator
dPM(m).

Theorem 2.7. Let m ∈ M be a point on the manifold, let v ∈ NmM be a normal
vector with ‖v‖ < τ and let Bv : TmM → TmM be the symmetric operator defined in
(2.3), extended to Bv : Rd → Rd by Bvn = 0 for all normal vectors n ∈ NmM. Then
the derivative of the projection operator PM satisfies

dPM(m+ v) = PTmM(I −Bv)−1 = dPM(m)−Bv (I +Bv)−1 ,

where I : Rd → Rd is the identity.

Proof. Using Lemma 2.6 we obtain for all tangential vectors t ∈ TmM,

PTmMt = t = (dPM(m+ v)) (t+∇tv)

= (dPM(m+ v)) (t−Bvt) = (dPM(m+ v)) (I −Bv) t.
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and for all normal vectors n ∈ NmM,

0 = PTmMn = (dPM(m+ v)) (I −Bv)n.

Consequently, we have
PTmM = dPM(m+ v) (I −Bv) .

By our assumption and (2.4) we have ‖Bv‖ ≤ 1
τ
‖v‖ < 1 and hence, the operator I−Bv

is invertible. This yields the first part of the assertion. For the second part we use (2.5)
and compute

dPM(m+ v) = PTmM (I −Bv)−1

= PTmM
(
I +Bv (I −Bv)−1

)
= dPM(m) + PTmMBv (I −Bv)−1

= dPM(m) +Bv (I −Bv)−1 ,

where the last equality follows from the fact that the image of Bn is in the tangent
space TmM, so the projection on TmM is unnecessary.

We consider again the manifold from example 2.2.

Example 2.8. For M = Sd−1 ⊂ Rd any normal vector v ∈ NmSd−1 has the repre-
sentation v = vm. Let {ti}d−1i=1 ⊂ TmSd−1 be an orthonormal basis of TmSd−1. Then
∇tim = tj and hence

Bv = −v
d−1∑
i=1

tit
>
i .

By Theorem 2.7 and the orthonormality of {m} ∩ {ti}d−1i=1 of we obtain for v > −1 and
x = m+ vm,

dPSd−1(x) =
1

1 + v

d−1∑
i=1

tit
>
i =

1

‖x‖2

(
Id×d −

x

‖x‖2

(
x

‖x‖2

)>)
.

2.4. Deviation of the Projection Operator

In this section we are interested in the change of the derivative dPM(m) of the projection
operator for small deviations of m. We shall show that for two points m and z on M
and v ∈ NmM with ‖v‖2 < τ we can bound the difference ‖ dPM(m+ v)− dPM(z)‖2
by a multiple of the Euclidean distance ‖m+ v − z‖2.

As usual we start with the case that both points are on the manifold. According to
[3, Lemma 6] the difference of the differentials is then bounded by

‖ dPM(m)− dPM(z)‖2 ≤
1

τ
d(m, z),

where d(m, z) denotes the geodesic distance between the points m, z ∈ M. If the
Euclidean distance between the two points is bounded by ‖m− z‖2 ≤ 2τ we have by
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[3, Lemma 3] and the fact that arcsin(x) ≤ π
2
x for 0 ≤ x ≤ 1, the following estimate

between geodesic distance and Euclidean distance in the embedding

d(m, z) ≤ π

2
‖m− z‖2 , (2.6)

which leads to the local estimate

‖ dPM(m)− dPM(z)‖2 ≤
π

2τ
‖m− z‖2 .

In the following Theorem we prove a sharper and global bound for this difference.

Theorem 2.9. For all m, z ∈M the difference between the projection operators PTmM
and PTzM onto the respective tangential spaces is bounded by

‖PTmM − PTzM‖2 ≤
1

τ
‖m− z‖2 .

Proof. First of all we note that for ‖m− z‖2 ≥ 2 τ the assertion is immediately satisfied
since ‖PTmM − PTzM‖2 ≤ 2 independently of m, z ∈ M. We may therefore assume
‖m− z‖2 < 2 τ for the rest of the proof.

In order to estimate the difference between the two projection operators we consider
a geodesic γ with γ(0) = m, γ(t) = z and ‖γ̇‖2 = 1. Furthermore, we consider an
orthonormal basis {ti}Di=1 in TmM and an orthonormal basis {nj}d−Dj=1 in NmM. The
parallel transport of these basis vectors along γ defines a rotation R ∈ SO(d) that maps
the tangent space TmM onto the tangent space TzM. Using the rotation R we may
rewrite the difference between the projection operators as

PTmM − PTzM = PTmM −RPTmMRT .

By Lemma A.1 in the appendix we obtain

‖PTmM − PTzM‖2 = ‖PTmMR−RPTzM‖2 ≤ ‖I −R‖2 (2.7)

and hence, it suffices to bound for any normalized x ∈ Rd

‖(I −R)x‖22 = 2− 2 〈x,Rx〉 . (2.8)

By definition Rx is the result of the parallel transport of x along the curve γ in
γ(t) = z. Let us denote by X(s) the parallel transport of x along γ for all times
s ∈ [0, t]. Viewing s 7→ X(s) as a curve on Sd−1 with velocity bounded according to
Lemma 2.5 by ‖Ẋ(s)‖ = ‖∇γ̇(s)X(s)‖2 ≤

1
τ
, we conclude that

∠(X(η),X(ξ)) ≤ 1

τ
|η − ξ|, η, ξ ∈ [0, t]. (2.9)

Since γ is a geodesic we can set in (2.9), X = γ̇. As |η − ξ| ≤ t and t is the geodesic
distance between z and m we can use (2.6) and our assumption ‖m− z‖2 < 2τ to
bound the right hand side of (2.9) by

∠(γ̇(ξ), γ̇(η)) ≤ 1

τ
|η − ξ| ≤ t

τ
≤ π

2τ
‖z −m‖2 ≤ π.
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Making use of the monotonicity of the cosine this implies

cos∠(γ̇(ξ), γ̇(η)) > cos ξ−η
τ
, ξ, η ∈ [0, t]. (2.10)

Considering again the general vector field X we use (2.9) and (2.10) to bound (2.8) by

2− 2 〈X(0),X(t)〉 = 2− 2 cos(∠(X(0),X(t)))

≤ 2− 2 cos t
τ

=
1

τ 2

∫ t

0

∫ t

0

cos ξ−η
τ

dη dξ

≤ 1

τ 2

∫ t

0

∫ t

0

cos∠(γ̇(ξ), γ̇(η)) dη dξ

=
1

τ 2

∫ t

0

∫ t

0

〈γ̇(ξ), γ̇(η)〉 dη dξ =
1

τ 2
‖m− z‖22 .

In combination with (2.7) and (2.8) this proves

‖PTmM − PTzM‖2 ≤
1

τ
‖m− z‖2 .

Using the example of the unit circle it can be easily verified that our new bound is
sharp.

So far we bounded the variation of the projection operator for points on the manifold.
For the general case that only one point is on the manifold we have the following result.

Theorem 2.10. Let m, z ∈M and v ∈ NmM with ‖v‖2 < τ . Then

‖dPM(m+ v)− dPM(z)‖2 ≤
1

τ
‖m− z‖2 +

1

τ − ‖v‖2
‖v‖2

≤
(

2

τ
+

1

τ − ‖v‖2

)
‖m+ v − z‖2 .

Proof. Using Theorem 2.7 and Theorem 2.9 we find

‖dPM(m+ v)− dPM(z)‖2 ≤ ‖dPM(m+ v)− dPM(m)‖2 + ‖PTmM − PTzM‖2
≤ ‖Bv (I +Bv)−1‖2 + 1

τ
‖m− z‖2 .

From Lemma 2.4 we know that ‖Bv‖ ≤ ‖v‖2
τ

< 1. This allows us to bound the second
term by

‖Bv (I +Bv)−1‖2 ≤
‖Bv‖

1− ‖Bv‖
≤ ‖v‖2
τ − ‖v‖2

,

which implies the first inequality of the theorem

‖dPM(m+ v)− dPM(z)‖2 ≤
1

τ
‖m− z‖2 +

1

τ − ‖v‖2
‖v‖2 . (2.11)

Since ‖v‖2 < τ the point m + v is within the tubular neighborhood of M and, hence
‖v‖2 ≤ ‖m+ v − z‖2. Together with the triangle inequality this gives us ‖m− z‖2 ≤
2 ‖m+ v − z‖2. Including these two inequalities into (2.11) we obtain the assertion.

We observe that the constants in Theorem 2.10 become large if either the reach of
the manifold becomes small or the point m+ v is close to the boundary of the tubular
neighborhood of M.
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3. Manifold-valued Approximation

In this section we generalize arbitrary approximation operators for vector valued func-
tions to approximation operators for manifold-valued functions. To this end we consider
for an arbitrary domain Ω a generic approximation operator IRd : C(Ω,Rd)→ C(Ω,Rd).
For an embedded manifold M⊂ Rd with reach τ and projection operator

PM : U →M, U = {y ∈ Rd | min
m∈M

‖y −m‖ < τ},

we define the approximation operator IM : C(Ω,M) → C(Ω,M) for manifold-valued
functions as

IMf = PM ◦ IRdf.

It is important to note that IM is not defined for all functions f ∈ C(Ω,M), but only for
those for which IRdf(x) is within the reach of the manifoldM, i.e., ‖f(x)− IRdf(x)‖2 ≤
τ for all x ∈ Ω.

It is straight forward to see that operator IM has the same order of approximation as
IRd , c.f. [7].

Theorem 3.1. Let f ∈ C(Ω,M) be a continuous M-valued function such that for all
x ∈ Ω, IRdf(x) is contained in the reach of M. We then have for all x ∈ Ω

‖IMf(x)− f(x)‖2 ≤ 2 ‖IRdf(x)− f(x)‖2 . (3.1)

Proof. Since f has function values onM, it follows from the definition of PM in equa-
tion (2.1) for all x ∈ Ω that

‖IMf(x)− IRdf(x)‖2 ≤ ‖f(x)− IRdf(x)‖2 .

Because of the triangle inequality and the definition of IM we have

‖IMf(x)− f(x)‖2 ≤ ‖IMf(x)− IRdf(x)‖2 + ‖IRdf(x)− f(x)‖2 , x ∈ Ω.

As we will see later, considering the error of the differential, things become more
complicated.

3.1. Approximation Order of the Differential

In this section we are interested in the approximation error ‖ dIMf − df‖2 between
the differential of the manifold-valued approximation dIMf and the original differential
df . To this end we assume from now on that both, f : Ω → Rd and the vector-valued
approximation f̃ = IRdf , are differentiable.

While the error bound for IMf is independent of the geometry of the manifold M,
we will see that this is not true for the differential dIMf of the manifold-valued approx-
imation. Moreover, it is not sufficient to ensure that f̃ is contained in the reach of M,
but instead, it must be bounded away from the reach by some positive constant.
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Theorem 3.2. Let τ be the reach of the manifold M, ε < τ and f ∈ C1(Ω,M), such
that f̃(x) = IRdf(x) satisfies for all x ∈ Ω,

‖f(x)− f̃(x)‖2 ≤ ε

and, consequently, is contained in the ε-tubular neighborhood of M. Then we have for
all x ∈ Ω the following upper bound on the approximation error of the differential dIMf ,

‖ dIMf(x)− d f(x)‖2 ≤ ‖ df̃(x)− df(x)‖2 + C ‖f(x)− f̃(x)‖2 (3.2)

where C is given by

C =

(
2

τ
+

1

τ − ε

)
(‖ df̃(x)− df(x)‖2 + ‖ df(x)‖2) .

Proof. By the chain rule we obtain for all x ∈ Ω,

dIMf(x) = dPM(f̃(x)) ◦ df̃(x)

and from PMf = f ,

df(x) = d(PMf)(x) = dPM(f(x)) ◦ df(x).

Using the expansion

d(IMf)(x)− df(x) =dPM(f̃(x)) ◦ df̃(x)− dPM(f(x)) ◦ df(x)

=(dPM(f̃(x))− dPM(f(x))) ◦ df̃(x)

+ dPMf(x) ◦ ( df̃(x)− df(x))

we conclude that

‖ dIMf(x)− df(x)‖2 ≤‖dPM(f̃(x))− dPM(f(x))‖2 ‖ df̃(x)‖2
+ ‖dPM(f(x))‖2 ‖ df̃(x)− df(x)‖2 .

Since f(x) ∈M and ‖f(x)− f̃(x)‖2 < ε we have by Theorem 2.10

‖dPM(f̃(x))− dPM(f(x))‖ ≤
(

2

τ
+

1

τ − ε

)
‖f(x)− f̃(x)‖2 .

Together with the fact that ‖dPMf(x)‖2 = 1 we obtain

‖ d(IMf)(x)− df(x)‖2 ≤‖f(x)− f̃(x)‖2
(

2

τ
+

1

τ − ε

)
‖ df̃(x)‖2

+ ‖ df̃(x)− df(x)‖2 .

This implies the assertion by triangle inequality.
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Asymptotically, as ‖f(x)− f̃(x)‖2 → 0 we have C → 3
τ
‖ df(x)‖2. Since for most

approximation methods the decay of the differential ‖ df(x)− df̃(x)‖2 is one order
slower than the decay of ‖f(x)− f̃(x)‖2, we conclude that the right hand bound in
(3.2) is dominated by the first summand and, hence, the approximation error of the
differential dIMf of the manifold-valued approximant coincides asymptotically with the
approximation error of the vector-valued approximant, as it was already reported in [7].
However, the pre-asymptotic behavior depends strongly on the reach of the embedding
of the manifold M.

3.2. Fourier Interpolation

In this section we want to illustrate Theorem 3.2 using Fourier-Interpolation as the
approximation operator IRd . More precisely, we define for a function f ∈ C(T,Rd) on
the torus T the Fourier partial sum

IRdf(t) = Snf(t) =
n∑

k=−n

ck(f)e2πikt

with the vector-valued Fourier coefficients

ck(f) =

∫ 1

0

f(x)e−2πikx dx.

The Fourier-Interpolation satisfies the following well known approximation inequali-
ties, cf. [26].

Theorem 3.3. Let r ∈ N with r ≥ 2 and f ∈ Cr(T,Rd). Then

‖f(x)− Snf(x)‖2 ≤
√

2d

(2π)r

√
n

nr
‖f (r)‖L2(T),2 ,

‖ df(x)− d(Snf)(x)‖2 ≤
√

2d

(2π)r−1

√
n

nr−1
‖f (r)‖L2(T),2 ,

with the norm ‖f‖2L2(T),2 =
∫
T ‖f(x)‖22 dx.

Proof. The first bound can be found in [4, Theorem 4.3]. The second bound follows
from d(Snf) = Sn( df) and the fact that the regularity of df is one less than the
regularity of f . The factor

√
d comes from the fact that the function f maps in the

d-dimensional space.

In [26, Theorem 1.39] a similar bound for the L∞(T)-norm can be found. Using the
Fourier partial sum operator as the approximation operator IRd Theorem 3.2 becomes
the following.
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Theorem 3.4. Let M ⊂ Rd be a submanifold with reach τ > 0 and f ∈ Cr(T,M) an
r ≥ 2 times differentiable function with values in M. Let, furthermore, ε < τ be an
auxiliary constant and the bandwidth n of the Fourier partial sum Snf at least such that
‖f(x)− Snf(x)‖2 ≤ ε for all x ∈ T, i.e.,

nr−
1
2 ≥

C1 ‖f (r)‖L2(T),2

ε
with C1 =

√
2d

(2π)r
. (3.3)

Then the projection PM ◦ Snf of the Fourier partial sum satisfies for all x ∈ T,

‖PM ◦ Snf(x)− f(x)‖2 ≤ 2C1 n
1
2
−r ‖f (r)‖L2(T),2 , (3.4)

whereas for its differential d(PM ◦ Snf) we obtain

‖ d(PM ◦ Snf)(x)− df(x)‖2 ≤ 2π C1 n
3
2
−r ‖f (r)‖L2(T),2

+ C2 n
1
2
−r ‖f (r)‖2L2(T),2 ,

(3.5)

with the constant

C2 = C1 ( 2
τ

+ 1
τ−ε) (1 + 2π C2

1 n
3
2
−r).

Proof. Together with Theorem 3.3 condition (3.3) ensures that

‖f(x)− Snf(x)‖2 ≤ ε < τ, x ∈ T

and, hence, Snf(x) has distance less than the reach to M for all x ∈ T. This allows us
to apply Theorem 3.1 in conjunction with Theorem 3.3 to conclude (3.4).

For the approximation error of the derivative we have by Theorem 3.2

‖ d(PM ◦ Snf)(x)− df(x)‖2 ≤ ‖ d(Snf)(x)− df(x)‖2 + C ‖Snf(x)− f(x)‖2
with

C =
(
τ
2

+ 1
τ−ε

)
(‖ d(Snf)(x)− df(x)‖2 + ‖ df(x)‖2) .

Together with Theorem 3.3 this yields

‖ d(PM ◦ Snf)(x)− df(x)‖2 ≤ 2π C1 n
3
2
−r ‖f (r)‖L2(T),2 + C C1 n

1
2
−r ‖f (r)‖L2(T),2

and

C ≤ ( τ
2

+ 1
τ−ε) (2π C1 n

3
2
−r ‖f (r)‖L2(T),2 + ‖ df(x)‖2)

≤ ( τ
2

+ 1
τ−ε) (2π C1 n

3
2
−r + 1) ‖f (r)‖L2(T),2 ,

where we have used the fact that ‖ df(x)‖2 ≤ ‖f (r)‖L2(T),2 for periodic functions. Setting

C2 = C1(
τ
2

+ 1
τ−ε)(1 + 2π C1 n

3
2
−r)

yields the assertion.
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Since for n → ∞ we have C2 → C1(
2
τ

+ 1
τ−ε). Theorem 3.4 states that the approx-

imation order of the differential of the manifold-valued Fourier partial sum operator
coincides with the approximation order of the vector-valued operator. In the preasymp-
totic setting, however, also the second summand with the faster rate n

1
2
−r is relevant.

The constant of this second summand becomes large if the point-wise approximation
error is close to the reach τ of the embedding.

4. Examples

In this section we apply our findings to two real world examples of manifold-valued
approximation. Both examples are related to the analysis of crystalline materials. In
the first example we consider functions that relate propagation directions of waves to
polarization directions and in the second example we consider functions that relate points
within crystalline specimen to the local orientation of its crystal lattice. Both examples
have been realized using Matlab Toolbox MTEX 5.8, cf. [5]. The corresponding scripts
and data files can be found at https://github.com/mtex-toolbox/mtex-paper/tree/
master/manifoldValuedApproximation.

4.1. Wave Velocities

In crystalline materials the propagation velocity and polarization direction of waves is
often isotropic, i.e., it depends on the propagation direction relative to the crystal lattice.
This posses an important issue in seismology where one analyzes the distribution of
earthquake waves in order to get a deeper understanding of the core of the earth, cf.
[18]. Each earthquake wave decomposes into a p-wave and two perpendicular shear-wave
components. The polarization vectors of p-wave components as well as of the two s-wave
components depend on the propagation direction of the wave relative to the crystal, cf.
[24, 5]. Mathematically, the directional dependency of the polarization directions from
the propagation direction is modeled as function

f : S2 → RP 2

from the two-sphere S2 into the two–dimensional projective space RP 2. Our goal is to
approximate this function from finite measurements yn = f(xn) ∈ RP 2, n = 1, . . . , N .

To this end, we identify the two dimensional projective space RP 2 with the quotient
S2/∼ with respect to the equivalence relation x ∼ −x and consider the embedding
E : S2/∼ → R3×3, E(x) = xx>. The reach of this embedding is τ = 1√

2
as we show in

the following lemma.

Lemma 4.1. The two dimensional projective space RP 2 embedded into the space of
symmetric 3× 3 matrices E(S2/∼) ⊂ R3×3 has the reach τ = 1√

2
.

Proof. Following [1, Thm. 2.2], we can estimate the reach by the following infimum

τ = inf
x6=y∈S2/∼

‖E(x)− E(y)‖22
2 d(E(x)− E(y), TyS2/∼)

. (4.1)
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Since in our setting in both spaces, S2/∼ and R3×3 the metric is invariant with respect
to the action of SO(3), it suffices to take the infimum for y = e1 = (1, 0, 0)>. We define
the other canonical basis vectors in R3 as e2 = (0, 1, 0)> and e3 = (0, 0, 1)> The tangent
vector space in e1 is then given by these tangent vectors:

T(1,0,0)>S2/∼ = span

{
1√
2

(e2e
>
1 + e1e

>
2 ),

1√
2

(e3e
>
1 + e1e

>
3 )

}
.

Hence, we write v = E(x) − E(e1) = xx> − e1e>1 and therefore we can calculate the
reach by

τ = inf
x6=e1∈S2/∼

‖v‖22
2 ‖v − 〈v, 1√

2
e2e

>
2 〉 − 〈v, 1√

2
e3e

>
3 〉‖2

= inf
x6=e1∈S2/∼

2− 2x21

2
√

2− 2x21 − 2x21x
2
2 − 2x21x

2
3

= inf
x6=e1∈S2/∼

1− x21√
2
√

(1− x21)2
=

1√
2
,

which finishes the proof.

The calculation of the reach gives us the constants in Theorem 3.1 and 3.2 for this
specific manifold.

Let E ◦ f : S2 → R3×3 be the embedded function. A common method, cf. [19], of ap-
proximating the spherical function E ◦f is by linear combinations of spherical harmonics
Y`,k, ` = 0, . . . , L, k = −`, . . . , ` up to a fixed bandwidth L,

SL(E ◦ f)(x) =
L∑
`=0

∑̀
k=−`

c`,kY`,k(x),

where the coefficients c`,k ∈ R3×3, k = −`, . . . , `, ` = 0, . . . , L are elements of the em-
bedding space. This expansion in spherical harmonics coincides with the linear Fourier
operator in Section 3.2 defined for functions over the sphere. In our little example we
simply assume that the measurement points xn together with some weights ωn form
a spherical quadrature rule up to degree 2L which allows us to determine the Fourier
coefficients c`,k, by

ck,` =
N∑
n=1

ωnE(yn)Y`,k(xn).

Fig. 1a displays the theoretical polarization directions of an Olivine crystal in depen-
dency of the propagation direction. We observe the points of singularity, marked by the
black squares. In order to approximate this non-smooth function we fixed the bandwidth
L = 8 and used 144 Chebyshev quadrature nodes x1, . . . ,x144 ∈ S2 as sampling points,
cf. [8]. These quadrature nodes are approximately equispaced and are displayed as red
lines in Fig. 1a.
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(a) f : S2 → RP 2 (b) PRP 2 ◦ S8(E ◦ f)
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1.4

(c) ‖f − PRP 2 ◦ S8(E ◦ f)‖2.

0.2

0.4

0.6

0.8

(d) ‖f − S8(E ◦ f)‖2.

Figure 1.: Polarization directions of the fastest shear wave with respect to the propaga-
tion direction x ∈ S2 plotted as vector fields on the upper hemisphere. The
left upper image (a) displays the true polarization directions f(x) ∈ RP 2.
The right upper image (b) is the harmonic approximation PRP 2 ◦S8(E ◦ f)(x)
using the sampling points marked red in (a). The lower left image (c) displays
the norm of the point-wise residual. The lower right image (d) displays the
error of the linear approximation, i.e. exactly half of the upper bound from
Theorem 3.1. We marked red the regions where this residual is bigger than
the reach of the manifold.

The approximated function PRP 2 ◦ S8(E ◦ f) is depicted in Fig. 1b and shows good
approximation with the original function away from the singularity points. This is sup-
ported by a plot of the point-wise error ‖f(x)− PRP 2 ◦ S8(E ◦ f)(x)‖2 in Fig. 1c. Note
that we measure the error in the Euclidean norm of the 9-dimensional embedding space
R9, which is for x,y ∈ RP 2 equal to the Frobenius norm ‖xx> − yy>‖F . Compared
to this, Figure 1d shows the error of the linear approximation ‖f(x)− S8(E ◦ f)(x)‖,
which is half of the error bound from 3.1. Additionally, we marked the areas where the
residual is bigger than the reach blue. In this regions our Theorems are not applicable,
since there the assumption IRdf is within the reach is not met.

We determined the derivatives of f numerically by choosing a basis t1, t2 in the tangent
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(a) ‖df(x)‖2 (b) ‖df(x)− dPRP 2 ◦ f̃‖2 (c) Bound from Thm. 3.2.

Figure 2.: The left image (a) shows the point-wise norm of the differential df . The
middle image (b) depicts the approximation error between the differential
of the original function f and the differential of its harmonic approximation
PRP 2 ◦ f̃ = PRP 2 ◦ S64(E ◦ f). The right images (c) gives the upper bound for
(b) from Theorem 3.2.

space TxS2 and approximating the columns vi ∈ R9, i = 1, 2 of df(x) ∈ R9×2 by the
difference quotients

vi =
1

h

(
f
(

x+h ti
‖x+h ti‖2

)
− f(x)

)
,

with h = 10−6. The norm of the derivative is depicted in Fig. 2a and clearly shows the
position of the singularities. In Fig. 2b the error between df(x) and the differential of
harmonic approximation d(PRP 2 ◦ S64)(E ◦ f)(x) is plotted as a function of the propa-
gation direction x ∈ S2. Since the differential df(x) is a matrix in R9×2, we consider
here the spectral norm of the error matrix. In order to illustrate our theoretical result
of Theorem 3.2 we plotted our theoretical upper bound on that approximation error
of the derivative in Fig. 2c. It should be noted that for the differential we needed to
increased the polynomial degree to L = 64 with 21000 sample points in order to obtain
a reasonable approximation at some distance to the singularities.

4.2. Electron Back Scatter Diffraction

The subject of crystallographic texture analysis is the microstructure of polycrystalline
materials. Locally the microstructure is described by the orientation of the atom lattice
with respect to some specimen fixed reference frame. More specifically, one describes
the local orientation of the atom lattice by a coset [R]S ∈ SO(3)/S of the rotation group
SO(3) modulo the finite subgroup S ⊂ SO(3), called point group. The point group of a
crystal consists of all symmetries of its atom lattice and is either one of the cyclic groups
C1, C2, C3, C4, C6, the dihedral groups D2, D3, D4, D6, the tetragonal group T or the
octahedral group O. Assuming a monophase material, i.e., a material consisting only of
a single type of crystals, the variation of the local orientation of the atom lattice at the
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(a) full map with a global color key (b) single grain with a local color key

Figure 3.: The raw EBSD data. Each of the 410 x 547 pixels corresponds to a single ori-
entation measurement at the surface of the specimen. The color is computed
by the procedure described in [23]. The 5% white pixels in Fig. (a) correspond
to corrupted measurements with no data. The data has been segmented into
92 grains as outlined by the black boundaries.

surface Ω ⊂ R2 of the specimen is modeled by the map

f : Ω→ SO(3)/S.

The gradient of the function f , also called lattice curvature tensor κ(x), is closely
related to elastic and plastic deformations the specimen has been exposed to. More
specifically, it is related via the Nye equation to the dislocation density tensor α(x),
[25, 15] that describes how many lattice dislocations are geometrically necessary in order
to preserve the compatibility of the lattice for a given deformation. Hence, estimating
f and its derivatives from experimental data is a central problem in material science.

Electron back scatter diffraction (EBSD) is an experimental technique [2, 16] for
determining the local lattice orientations f(x`) ∈ SO(3)/S at discrete sampling points
xi,j ∈ Ω. An example of such EBSD data is the SO(3)/S - valued image displayed in
Fig. 3. It describes the variation of lattice orientation at the surface of an Aluminum
alloy of size 200µm × 150µm at an resolution of 0.4µm. The symmetry group in this
case is the octahedral group O.

The data is displayed with respect to two different color keys. In Fig. 3a the colors are
assigned globally to the cosets f(x) ∈ SO(3)/O as described in [23]. Regions of similar
lattice orientation form so-called grains as outlined by the black boundaries. In Fig. 3b
only the single grain outlined by the red boundary in Fig. 3a is displayed. For this grain
we computed an average lattice orientation [M ] ∈ SO(3)/O and selected for each coset
f(x) ∈ SO(3)/O the rotation R(x) ∈ [M−1f(x)] with the smallest rotational angle.
Next we associated a color to R(x) according to a spherical color representation where
the rotational angle of R(x) determines the saturation and the rotational axis hue and
value. More details on this orientation coloring can be found in [31].

Estimating the derivative from such a noisy map of lattice orientations is usually not
a good idea as we will see later. Reducing the noise by means of local approximation
methods has been discussed in [14, 28]. In order to demonstrate our embedding based
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(a) full map of the approximated data (b) single grain with a local color key

Figure 4.: EBSD map from Fig. 3 after the embedding based approximation approach.

approximation approach we make use of the locally isometric embedding EO : SO(3)/O →
R9 described in [13] and proceed as follows

i) Compute an R9-valued image ui,j = EO(f(xi,j)).

ii) Approximate the R9-valued image using a cosine series ũ : Ω → R9 computed by
robust, penalized least squares [6].

iii) Evaluate the function ũ at the grid points xi,j to obtain a noise reduced R9-valued
image ũi,j.

iv) Compute the projection of ũi,j onto the embedding EO(SO(3)/O) of the quotient
and apply the inverse map E−1O to end up with a noise reduced SO(3)/O-valued
image f̃(xi,j).

The resulting image is depicted in Figure 4. We observe that all no data pixels have been
inpainted and that the magnified part 4b is much less noisy in comparison to Fig. 3b.

For the computation of the lattice curvature tensor κ we use the skew symmetric
matrices

s(1) =

0 0 0
0 0 −1
0 1 0

 , s(2) =

0 0 −1
0 0 0
1 0 0

 , s(3) =

0 −1 0
1 0 0
0 0 0

 ,

to fix the basis Rs(1),Rs(2),Rs(3) in the tangential space TRSO(3)/O at some rotation
R ∈ SO(3). With respect to this basis the differential DE(R) : TRSO(3)/O → R9

of the embedding E : SO(3)/O → R9 can be represented as a full rank 3 × 9 matrix.
Furthermore, we obtain for the differential Dũ : R2 → R9 of the embedded image ũ =
E ◦ f̃ : Ω → R9 at some point x ∈ Ω the matrix product Dũ(x) = DE(f̃(x))Df(x).
Hence, the lattice curvature tensor κ̃ of the noise reduced EBSD map evaluates to

κ̃(x) = Df̃(x) =
(
DE(f̃(x))DE(f̃(x))>

)−1
DE(ũf(x))>Dũ(x).
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The map of the first component κ̃1,1 of the lattice curvature tensor obtained from the
approximating function ũ is depicted in Fig. 5b. For comparison we plotted in Fig. 5a a
finite difference approximation

κ(xi,j)1,1 =
logf(xi,j)

(f(xi+1,j))

[xi+1,j − xi,j]1
,

derived from the discrete data f(xi,j). Here, we denoted by logR : SO(3)/O → TRSO(3)/O
the logarithmic mapping with respect to the base point R ∈ SO(3)/O. As expected,
we observe that the lattice curvature tensor κ̃ derived from the approximated map ũ is
much less noisy.

(a) κ1,1 of noisy map. (b) κ1,1 of noise reduced map.

Figure 5.: First coefficient κ̃1,1(x) of the lattice curvature tensor of the SO(3)/O-valued
map depicted in Fig. 3 (left) and Fig. 4 (right).
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Conclusion and further directions

We proposed a method for approximating a manifold-valued function using an embed-
ding approach and a generic approximation operator IRd into the Euclidean space. Our
main result are the Theorems 3.1 and 3.2 which give upper bounds on the approximation
error for the function values as well as for the derivatives. The central requirement of the
Theorems is that generic approximation IRdf(x) has distance less than τ to the manifold
M. For the approximation error of the function values it is only important that IRdf(x)
is within the reach of the manifoldM and has no impact on the convergence rate or the
constants. However, for the approximation error of the derivatives the constant of the
upper bound becomes arbitrary large for IRdf(x) close to the reach. This stresses the
importance of finding embeddings with a large reach.

The basis of our approximation approach is to find a suitable embedding of the man-
ifold M into Rd. For an arbitrary manifold this can be a difficult challenge. However,
for many important manifolds low dimensional embeddings are well known. A further
challenge is the numerical realization of the projection operator PM on the manifold
needed for our embedding based approximation method. This leads to a problem of
manifold optimization.

So far we did not deal with noisy data. The main challenge here is to guaranty that
IRdf(x) is sufficiently close to the manifold even for noisy data. Up to this point it is not
clear how strongly noise that keeps the data on the manifold can increase the distance
of IRdf(x) to the manifold.
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A. Bound for the commutator

To bound the term ‖ dPM(m)− dPM(z)‖2 in section 2.4 we need a lemma, which is
based on linear algebra.

Lemma A.1. Let T be a projection matrix and R be a rotation matrix. Then there
holds for the commutator

‖TR−RT ‖2 ≤ ‖I −R‖2 ,

where again ‖·‖2 denotes the spectral norm.
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Proof. Since the spectral norm doesn’t change under change of basis, we choose a
matrix representation where the projection matrix has the form

T =

(
I 0
0 0

)
,

where I is the identity matrix of dimension D. Then we also write the rotation matrix
R in these blocks:

R =

(
R11 R12

R21 R22

)
.

Simple matrix multiplication yields because of the orthogonality of R

(TR−RT )>(TR−RT ) = R>TR−R>TRT − TR>TR+ T

=

(
I −R>11R11 0

0 R>12R12

)
=

(
R>21R21 0

0 R>12R12

)
On the other hand there holds, again with help of the orthogonality of R,

(I −R)>(I −R) = 2I −R−R> =

(
2I −R11 −R>11 −R12 −R>21
−R21 −R>12 2I −R22 −R>22

)
=

(
(I −R>11)(I −R11) + I −R>11R11 −R12 −R>21

−R21 −R>12 (I −R>22)(I −R22) + I −R>22R22

)
=

(
(I −R>11)(I −R11) +R>21R21 −R12 −R>21

−R21 −R>12 (I −R>22)(I −R22) +R>12R12

)
.

The spectral norm of a matrix A, i.e., the largest absolute value of the eigenvalues can
be written as

‖A‖22 = max
‖x‖2=1

‖x>A>Ax‖2 .

For that reason we choose the vector x as the eigenvector of the matrix (TR−RT )>(TR−
RT ). Since the eigenvalues and eigenvectors of a block-diagonal matrix are the union of

the eigenvalues and eigenvectors, i.e., there holds x =
(
x1 0

)>
or x =

(
0 x2

)>
. We

assume the first case, the other one is analog. Hence, there holds

‖TR−RT ‖22 = x>
(
R>21R21 0

0 R>12R12

)
x = x>1R

>
21R21x1.

If we look at the norm of the matrix I −R, we get

‖I −R‖22 ≥ x
> (I −R)>(I −R)x = x>1

(
(I −R>11)(I −R11) +R>21R21

)
x1

≥ x>1R>21R21x1,

since the eigenvalues of (I−R>11)(I−R11) are positive. Putting this together and taking
the square root, yields the assertion.
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