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A B S T R A C T

Text representations ar one of the main inputs to various Natural Language Processing (NLP) methods. Given the
fast developmental pace of new sentence embedding methods, we argue that there is a need for a unified
methodology to assess these different techniques in the biomedical domain. This work introduces a compre-
hensive evaluation of novel methods across ten medical classification tasks. The tasks cover a variety of BioNLP
problems such as semantic similarity, question answering, citation sentiment analysis and others with binary and
multi-class datasets. Our goal is to assess the transferability of different sentence representation schemes to the
medical and clinical domain. Our analysis shows that embeddings based on Language Models which account for
the context-dependent nature of words, usually outperform others in terms of performance. Nonetheless, there is
no single embedding model that perfectly represents biomedical and clinical texts with consistent performance
across all tasks. This illustrates the need for a more suitable bio-encoder. Our MedSentEval source code, pre-
trained embeddings and examples have been made available on GitHub.

1. Introduction

In the past few years, neural network-based distributional re-
presentations of text such as word embeddings have been shown highly
effective in solving multiple NLP problems. There are many different
types of word embeddings [1]. However, they all have the same pur-
pose: to generate low-dimensional vector representations of words.
They can encode important syntactic properties of words efficiently,
and are able to capture semantic similarity among words as mathe-
matical similarities between their vectors. Similarly, sentence embed-
dings are numerical representations of sentences, which are often de-
rived from word embeddings. Nonetheless, the last two years witnessed
a rise of different supervised and unsupervised approaches towards
learning representations of sequences of words, such as sentences or
paragraphs. They can identify the order of words within a sentence and
hence capture more context. The developed sentence representations
extend the success of earlier word vector-based approaches with in-
teresting results and increasing potential across different tasks.

The progress in machine learning has given scientists the un-
precedented opportunity to extract valuable information from biome-
dical data. With the increasing availability of unstructured textual data
in the biomedical domain in forms of clinical trials, research articles,
electronic health records, and patient-authored texts, the use of text

mining techniques is becoming increasingly more important. The im-
portance of word embeddings in Biomedical Natural Language
Processing (BioNLP) becomes evident by looking at the number of re-
cent researches in the field. These embeddings have been commonly
leveraged as feature input for several BioNLP tasks. Word-level em-
beddings have been studied extensively in the biomedical domain
[2–4]. On the other hand, the analysis of sentence-level representations
has been much more limited to a few scattered works [5,6] and there is
a lack of a full analysis of embedding techniques on common grounds.

Motivated by [7,8], in their efforts to evaluate sentence re-
presentations in a fair and structured approach, this paper aims at re-
plicating their evaluations in domain-specific settings. More specifi-
cally, we assess the ability of existing sentence representation
techniques to capture the rich and complex semantics of clinical sen-
tences. We focus on what are arguably the state-of-art techniques in
embedding sentences known for achieving high performance in general
NLP tasks. Throughout our analysis, we test and compare several sen-
tence embedding methods trained on general, medical and clinical data.
Our evaluations include multiple classification problems related to the
clinical and biomedical domain spanning different linguistic tasks. We
discuss the strengths and weaknesses of the different techniques in
encoding domain-specific aspects of clinical sentences. To our knowl-
edge, no similar evaluation exists for the biomedical domain. This paper
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is organized as follows: In Section 2, we give a background of word and
sentence embeddings. In Section 3, we provide details of all ten tasks
included in our evaluations. We also describe the experimental settings
of the sentence embedding models implemented. In Sections 4 to 6, we
illustrate the results obtained and draw corresponding conclusions ac-
cordingly.

2. Background

Words representations are inspired by the concept of distributional
semantic models that hypothesize that word meanings could be inferred
by the company they keep [9]. While the concept is old, its recent
popularity could be traced back to the work of Bengio et al. on natural
language modeling through a neural probabilistic model [10]. Among
the first approaches to embed words based on neural networks is the
Word2vec algorithm proposed by Mikolov et al. [11]. The model is a
shallow, three-layered neural network that uses unsupervised learning
to determine the semantic and syntactic meanings of a word based on
adjacent words denoted as context. It offers two variations: Continuous
Bag of Words (CBOW) and Skip-gram. The first learns the representa-
tions by predicting the target word based on its context words while
skip-gram inverts contexts and targets, and tries to predict each context
word from its target word, rather than predicting the target word itself.
Global Vector word representations (GloVe) [12] is another prominent
method that enabled efficient unsupervised training of dense word re-
presentations and straightforward integration into NLP tasks. GloVe is a
count-based model, as opposed to Word2Vec that is considered a pre-
dictive model. Count-based models utilize the word distribution sta-
tistics of the corpus effectively. It constructs a global word-word co-
occurrence matrix and applies matrix factorization to learn lower di-
mension embeddings, where each row is some vector representation for
each word. FastText is a recent addition to prediction-based models,
proposed by Facebook, for learning word embeddings over large da-
tasets. Its architecture is similar to the skip-gram model, but it includes
a significant improvement that accounts for the morphological prop-
erties of words through the learning process [13]. Embeddings are
produced by combining the n-gram embeddings for all the n-grams
characters in a word. The main advantage over prior techniques is its
ability to predict out-of-vocabulary (OOV) words as a result of its sub-
word representations. The above models are static, context independent
and do not account for polysemy. In other words, the model outputs
only one vector for each word regardless of the word position in the
sentence, or the context in which it appears [14].

On the other hand, embeddings based on Language Models (LM)
dynamically change so they can discriminate among different meanings
of a word. Language modeling serves as an unsupervised pre-training
stage, where learning is independent of the main task, on a large un-
labeled or differently-labeled text corpus. It can generate the next word
in a sentence with knowledge of previous words. These resulting em-
beddings are the internal states of deep neural networks in a mono-
lingual or a bilingual language modeling setting. Among the first at-
tempts to generate context-sensitive representations is Context2vec
[15]. The model represents the context of a target word by extracting
the output embedding of a multi-layer perceptron built on top of a bi-
directional Long short-term memory (LSTM) language model. Other
examples include Embeddings from Language Models (ELMo) [16],
Bidirectional Encoder Representations from Transformers (BERT) [17],
Universal Language Model Fine-tuning (ULMFiT) [18] and the Pooled
Contextualized Embeddings from Flair toolkit [19].

ELMo Vectors are also computed on top of two-layer bidirectional
Language Models (biLMs) with character convolution. Using CNNs,
each vector is built upon the characters that compose the underlying
words. BERT is different from ELMo primarily because it targets a dif-
ferent training objective; it uses masked language modeling instead of
traditional LM. It overcomes ELMo limitations by including left and
right contexts simultaneously when representing words. BERT replaces

words in a sentence randomly and inserts a “masked” token. The
transformer generates predictions for the masked words based on left
and right unmasked neighbors. FLAIR contextualized embeddings are
word-level embeddings that were shown effective in the sequence la-
beling task. Input sentences are modeled as distributions over se-
quences of characters to a bidirectional character-level language model.
The neural model is pre-trained on large unlabeled corpora, and in-
ternal character states are used to compute the output word embed-
dings.

To obtain sentence embeddings on top of word embeddings, a
simple Bag-of-Words (BoW) inspired method could be applied by
computing the mean of the vector embeddings for the words in a sen-
tence. Alternatively, more advanced and sophisticated methods such as
Sent2Vec and Smooth Inverse Frequency (SIF) could be employed. In
the Sent2Vec paradigm, a sentence embedding is defined as the average
of the source word embeddings of its constituent words [20]. The
method is furthermore augmented by learning source embeddings for
unigrams and n-grams of words present in each sentence, and averaging
the n-gram embeddings along with the words. In contrast, SIF adds a
weighting function to word embeddings, which down-weights common
words [21].

However, despite the improved performance achieved using so-
phisticated methods, the main limitation of conventional embeddings at
the word-level is the negligence of the overall sentence structure.
Nevertheless, some scholars argue that regardless of the potential in-
formation loss, word embeddings are still able to represent sentence
meanings efficiently [21,23].

Alternatively, there have been efforts to generate dedicated sen-
tence embeddings through unsupervised training. The Skip-Thought
model extends the original skip-gram algorithm from words to sen-
tences [24]. It predicts neighbour sentences or phrases for a given
sentence using a recurrent neural network. It follows an encoder-de-
coder model where first a sentence is encoded into a vector through a
Gated Recurrent Units (GRU) or LSTM architecture, and that re-
presentation is decoded into surrounding text. It adopts a vocabulary
expansion scheme that makes use of pre-trained embeddings to learn
embeddings of new non-encountered words.

In contrast, Facebook introduces inferSent [25], a supervised
learning methodology for sentence encoding. Their work provides so-
lutions to two critical concerns: the best training task and network ar-
chitecture to obtain a universal sentence representation model. Their
findings indicate that detecting natural language inference is the most
suitable for transfer learning to other NLP tasks. This is attributed to the
semantic nature of the task and the availability of a very large corpus
such as the Stanford Natural Language Inference (SNLI) that consists of
570k humanly generated English sentence pairs, manually labeled.
Moreover, they experiment with seven different architectures including
standard recurrent encoders with either LSTM or GRU, concatenation of
last hidden states of forward and backward GRU, Bi-directional LSTMs
(BiLSTM) with either mean or max pooling, self-attentive networks, and
hierarchical convolutional networks. They conclude that the BiLSTM
with the max-pooling operation performs best on both SNLI and
transfer tasks. Google also published a sentence encoder known as
Universal Sentence Embeddings (USE) [26]. It is referred to as “uni-
versal” since, in theory, it is supposed to encode general properties of
sentences given the large size of datasets it is trained on. The multi-task
learning encoder uses several annotated and unannotated datasets for
training. It has two variants of the encoding architectures. The Trans-
former model is designed for higher accuracy, but the encoding requires
more memory and computational time. The Deep Averaging Network
(DAN) model, on the other hand, is designed for speed and efficiency,
and some accuracy is compromised. When integrated with any down-
stream task, USE should be able to represent sentences efficiently
without the need for any domain-specific knowledge. This is a great
advantage when limited training resources are available for specific
tasks.
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We include GloVe, FastText, ELMo, BERT, Flair, Infersent, and USE
embeddings in our evaluations as we believe that they successfully
represent all different techniques previously discussed.

3. Methods

In this paper, we propose MedSentEval,1 an embedding evaluation
toolkit designed for the medical domain. It can compute, evaluate, and
classify pre-trained sentence embeddings for several BioNLP tasks. The
proposed toolkit heavily makes use of SentEval.2 a general evaluation
protocols toolkit. This section describes the included tasks and gives
further details on the pre-trained models supported in our toolkit and
the evaluation procedures for each task.

3.1. Evaluation tasks

One of the main challenges in the biomedical NLP domain is the
availability of benchmark corpora for evaluation. The creation of a
dataset faces many barriers such as privacy issues for patient data
protection due to the sensitive nature of data, the inefficacy of using
crowd-sourcing platforms to annotate data and the need to rely on
domain experts which endures more costs. Despite the limitations
mentioned above, there have been efforts in creating datasets.
However, they are relatively small in size and mostly focus on in-
formation extraction. In this paper, we gathered BioNLP datasets that
are suitable for classification problems and cover a variety of NLP tasks,
including binary and multi-class classification. Below, we provide a
brief description of each dataset grouped by types of tasks. Table 1
summarizes the details of each of the datasets used in our experiments
and provide examples.

Textual Entailment (TE). TE is an important task in the NLP domain.
Given two snippets of text, Text (T) and Hypothesis (H), the TE re-
cognition determines if the meaning of H can be inferred from that of T
[27].

The medical natural language inference benchmark dataset MedNLI
is a source of biomedical TE data derived from clinical notes [28,29]. Its
creation process is similar to the creation of the gold-standard SNLI
dataset with adaptation to the clinical domain.

Expert annotators were presented with 4638 premises extracted
from the MIMIC-III database [30] and were asked to write three hy-
potheses with true, false, and neutral descriptions of each premise. The
final dataset comprises 14,049 sentence pairs divided into 11,232,
1,395 and 1,422 for training, development and testing, respectively.

Recognizing Question Entailment RQE, tackles the problem of
finding duplicate questions by labeling questions based on their simi-
larity [31,32]. Extending the former textual entailment definition, the
authors define question entailment as “Question A entails Question B if
every answer to B is also a correct answer to A exactly or partially.” The
RQE dataset is specifically designed to find the most similar frequently
asked question (FAQ) to a given question. The training set was con-
structed from the questions provided by family doctors on the National
Library of Medicine (NLM) platform resulting in 8,588 question pairs
where 54.2% are positive pairs. For the test set, two sources of ques-
tions were used: validated questions from the NLM collections and
FAQs retrieved from the National Institutes of Health (NIH) website.
The test set corpus includes 302 pairs of questions, with 42.7% pairs
positively labeled.

Sentence classification. In recent years, there has been a substantial
increase in the number of scientific publications in the biomedical do-
main with valuable evidence-based medicine guidelines. Consequently,
many NLP methods were deployed to automate or semi-automate the
analysis of large medical literature databases such as PubMed. Both

datasets included in this category use randomized controlled trials
(RCT) as a source of data. The PICO dataset is curated from abstracts of
RCTs available in the PubMed repository [33]. It maps each abstract
sentence into the known Participants, Intervention, Comparison, and
Outcome (PICO) elements [34,35]. Moreover, the authors extended the
original PICO framework and added three additional categories: aim,
method, and results. The annotated data include 24,668 abstracts; each
sentence was assigned to a category according to a predefined keyword
list compiled manually. The final dataset contains approximately 257 K,
31 K, and 30 K sentences for training, testing, and validation. The
PUBMED20K corpus is designed for sequential sentence classification of
RCTs textual data. Abstracts’ sentences are labeled according to their
role in the abstract into background, objective, method, result, or
conclusion [36,37]. The data collection process was limited to rando-
mized controlled trial abstracts with a structured format. The dataset is
large in size with around 180 K sentences for training, 30 K sentences
for validation, and another 30 K sentences for testing with a total of
20,000 abstracts.

Sentiment analysis. Reproducibility is very common in biomedical
research where many studies try to replicate earlier work. Scientists
express their opinions in many different ways, specifically when citing
other studies. The citation sentiment analysis corpus CitationSA [38,39]
is the first of its kind in the biomedical domain. It includes the dis-
cussion section of 285 randomly selected clinical trial abstracts. The
annotation scheme did not consider the correctness of the published
claims and polarity was assigned on the citation level according to
context and not at the sentence level. Two medical annotators labeled
sentences according to the former scheme, and a third annotator was
involved in case of disagreement. The total number of citation sen-
tences included in the dataset is 4,182 citations. It is also important to
include a dataset that represents patient opinions on health-related
topics. Patient authored texts usually mix medical terminologies with
informal language. VaccineSA is a collection of English tweets that in-
cludes HPV vaccination keywords [40,41]. The tweets were classified
according to their content and polarity into positive, negative, neutral,
and unrelated. The negative category is further divided based on the
negative concern such as safety, efficacy, cost, resistant, or other. The
dataset originally contained 3984 tweets, however, when we re-
collected the tweets, only 1853 were available.

Question answering. This task is a longstanding problem extensively
studied in the past years and is currently gaining interest in the bio-
medical domain. The BioASQ challenge [42,43] targets different stages
of the question answering process, ranging from the retrieval of re-
levant concepts and articles to the generation of natural language an-
swers. For the classification task, our interest is in the second phase of
task B where BioASQ released questions from benchmark datasets
created by a group of biomedical experts. The questions are accom-
panied by text snippets extracted from relevant PubMed and PMC ar-
ticles. Four question types are included in the challenge: yes/no, fac-
toid, list, and summary questions, we experiment with the yes/no
category only. The BioASQ 6b-task dataset includes 612 question-an-
swer pairs for training and 130 pairs for testing.

We also add the Bio-Contradiction BioC dataset to the evaluation.
Although it was originally built to detect contradictions among pub-
lished findings, the dataset structure is also suitable for the question
answering task [44,45]. It is organized into 24 PICO questions related
to cardiovascular disease generated from systematic reviews. Two an-
notators were asked separately to curate all research abstracts of studies
referenced in the systematic review and extract one sentence per ab-
stract that answers the question. Sentences are labeled YES if they po-
sitively answer the question and NO otherwise. The corpus has a total of
259 question-answer pairs, out of which 180 are labeled YES and 79
labeled NO.

Semantic Text Similarity (STS). Different than the former classifica-
tion tasks, the goal of this task is to measure the relatedness of two
sentences and compare it with a human-labeled similarity score.

1 https://github.com/nstawfik/MedSentEval.
2 https://github.com/facebookresearch/SentEval.

N.S. Tawfik and M.R. Spruit Journal of Biomedical Informatics 104 (2020) 103396

3

https://github.com/nstawfik/MedSentEval
https://github.com/facebookresearch/SentEval


Clinical Semantic Textual Similarity ClinicalSTS was published as part
of the shared task at the 2018 BioCreative/OHNLP challenge [46,47].
This challenge was organized to investigate the STS problem in the
clinical domain following the lead of the original SemEval STS shared
tasks. The dataset is a randomly annotated subset of the MedSTS dataset
that consists of a total of 174,629 sentences. The dataset was collected
from patients records at the Mayo Clinic’s clinical data warehouse.
Three surface lexical similarities were employed to find candidate pairs:
Ratcliff/Obershelp pattern matching algorithm, cosine similarity, and
Levenshtein distance. More details on the original MedSTS dataset
construction could be found in [48]. For ClinicalSTS, the sentence pairs
were annotated independently by two clinical experts who scored each
pair based on their semantic equivalence. Scores ranged from 0 to 5,
where 0 denotes complete dissimilarity between sentences. The final
similarity value was set to the average of both annotators’ scores. The
dataset includes 1,068 sentence pairs with 70% (750 sentence pairs)
and 30% (318 sentence pairs) for training and testing, respectively. All
included sentences are de-identified sentences as all protected health
information (PHI) was removed through a frequency filtering approach
followed by a manual check. The second corpus, the biomedical sen-
tence similarity estimation BIOSSES corpus [49,50] comprises 100
sentence pairs. All sentences are extracted from the biomedical sum-
marization track of the Text Analysis Conference (TAC). The subset
includes sentences from biomedical articles with a citation mention to a
reference article. Similar to ClinicalSTS, the dataset creators followed
the SemEval guidelines for annotations with five experts giving 0 to 4
score values to sentence pairs to indicate no relation (0) or equivalent
(4).

3.2. Embedding methods

GloVe We use the pre-trained embeddings consisting of 2.2 million
vocabulary words available at https://nlp.stanford.edu/projects/glove/
which were trained on the Common Crawl (840B tokens) dataset. The
authors in [51] trained GloVe on the 2016 PubMed baseline and made
them publicly available at https://slate.cse.ohio-state.edu/BMASS/.

FastText General embeddings were obtained from https://fasttext.
cc/docs/en/english-vectors.html also trained on the Common Crawl
corpus resulting in 2 million word vectors. For the domain-specific pre-
trained model, we used the embeddings provided at https://github.
com/lucylw/pubmed_central_fasttext_pretrained.

ELMo We use the original 5.5B configuration, as recommended by
the authors, trained on Wikipedia and news crawl data. To further

investigate the embedding size effect on performance, we added the
small model trained on the 1 Billion Word Benchmark. Moreover, we
download their biomedical domain contributed model trained on
PubMed. ELMo embeddings are computed after concatenating all three
layers of the ELMo. All models were downloaded from https://allennlp.
org/ELMo and implemented through the AllenNLP python toolkit [52].

BERT We evaluated both base and large base models provided at
https://github.com/google-research/bert. We also take advantage of
two newly released BERT models: BioBERT [53] trained on the PubMed
abstracts with a vocabulary size of 4.5B words and SciBERT [54]
trained on scientific articles from the biomedical and computer sciences
domains with 2.5B and 0.6B word count, respectively. The pre-trained
weights of the BioBERT model (version 1.0/ PubMed 200 K) are
available at https://github.com/naver/biobert-pretrained and for the
SciBERT model at https://github.com/allenai/scibert. We use the ori-
ginal Google BERT GitHub repository to encode sentences; it originally
provides fine-tuning scripts for the pre-trained model in an end-to-end
fashion. It additionally describes how to obtain fixed contextual em-
beddings of each input token generated from the hidden layers of the
pre-trained model. Following the steps to obtain the embeddings, we
only use the final hidden layer of the transformer (layer value set to
−1). The maximum sequence length was set to 128 with a batch size of
32 as per the authors’ recommendation.

Flair The authors recommend using both forward and backward
Flair embeddings. We chose the mixed model as it is trained over a
diverse corpus including web, Wikipedia, and Subtitles for the English
language. They also provide pre-trained embeddings over 5% of
PubMed abstracts until 2015. All models are downloaded from and
implemented through the official Flair repository https://github.com/
zalandoresearch/flair.

InferSent The authors provide two versions of the model, one based
on GloVe embeddings and another based on FastText embeddings. We
experiment with both available at https://github.com/
facebookresearch/InferSent. InferSent is based on supervised learning
from natural inference data. For this model, we train our own models
using the Medical natural language inference (MedNLI) dataset using
the biomedical Glove and FastText embeddings mentioned earlier.

USE In our evaluation, we use the transformer-based architecture of
the USE encoder as it was proven to yield better results. Training data
consisted of supervised and unsupervised sources such as Wikipedia
articles, news, discussion forums, dialogues and question/answer pairs.
USE was implemented through its TF hub module available at https://
tfhub.dev/google/universal-sentence-encoder-large/3.

Table 1
Evaluation datasets description and examples.

Dataset Task Source Example Label

MedNLI Textual
Entailment

Patient
records

H1:During hospitalization, patient became progressively more dyspnic requiring BiPAP and then a NRB
P2:The patient is on room air

Contradiction

RQE Question
Entailment

Doctor
questions

Q1: What should I do with this patient whose biopsy report shows carcinoma in situ of the vulva?
Q2: What to do with this patient, biopsy shows carcinoma in situ of the vulva?

True

PUBMED20K Sentence
Classification

Medical
articles

Text:Transient intraocular pressure elevation and cataract progression occurred. Background

PICO Sentence
Classification

Medical
articles

Text: Classes included CRC survivors and people with CVD. Intervention

PatientSA Sentiment
Analysis

Patient
tweets

Text: Don’t forget to also vaccinate your sons. It is potentially even more important. #HPV #vaccineswork Positive

CitationSA Sentiment
Analysis

Medical
articles

Text: Patrek et al. [C] examined 13 factors influencing fluid drainage. Neutral

BioASQ Question
Answering

Medical
articles

Q:Is osteocrin expressed exclusively in the bone?
A:Evolution of Osteocrin as an activity-regulated factor in the primate brain.

No

BioC Question
Answering

Medical Q:In women with pre-eclampsia, is mutation in renin-angiotensin gene associated with pre-eclampsia?
A:The variants(A–>C) of 1166 polymorphism site of AT1RG predisposes increased risk of PIH.

Yes

C-STS Semantic
Similarity

Patient
records

S1: Use information was down loaded from the patient’s PAP device and reviewed with the patient.
S2:I discussed the indications, contraindications and side effects of doxycycline with the patient.

0.5

BIOSSES Semantic
Similarity

Medical
articles

S1: The oncogenic activity of mutant Kras appears dependent on functional Craf.
S2: Oncogenic KRAS mutations are common in cancer.

1
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3.3. Experimental setup

A fundamental dilemma is how to compare different models that
vary between vanilla embeddings, contextualized embeddings, or
dedicated sentence encoders. The performance differences between
models could be attributed to many reasons such as better pre-trained
word embeddings, the different architecture, the different objective, or
the normalization layer [55]. SentEval was created to overcome the
limitation of the non-standard evaluation of embedding methods across
research, especially when a considerable number of embeddings tech-
niques have surfaced in the last years. SentEval’s evaluation strategy
relied on simple classification models. The choice behind the basic
classifiers was to assess how these representations fare without the use
of complex models like recurrent neural networks (RNNs). As in the
original SentEval tooklit, we opted for the same models as it allows us
to observe the benefits of different embedding models in representing
and predicting linguistic medical information of the input text. Our
choice was also supported by several studies following the SentEval
methodology in evaluating new models [8,55–57]. We follow the same
guidelines in our experimental settings. For tasks that require classifi-
cation, we experiment with both logistic regression and multi-layer
perceptron (MLP) on top of the generated sentence representations. The
MLP consists of a single hidden layer of 50 neurons using Adam opti-
mizer and a batch size of 64 with a Sigmoid non-linearity function.
Extracting word embeddings from vanilla models such as GloVe and
FastText is a straightforward process. On the other hand, the con-
textualized models offer two paradigms to deploy their pre-trained
models to adapt to the target task: feature extraction and fine-tuning.
The former is similar to feature-based models where pre-trained
weights are kept frozen whereas, in the latter, the weights are trained
further on the new task. In a recent paper, Peters et al. compare the
effectiveness of both adaptation methods. Their results show that BERT
generally performed better in the feature-extraction mode while the
opposite is exact for ELMo. Their evaluation also proves that the per-
formance depends on the similarity of the pre-training and target tasks.
The feature-extraction mode aligns with our strategy to standardize the
comparison criteria across all evaluation experiments. Not only because
the use of embeddings as features is the only possible method for other
models but also because the fine-tuning process differs from BERT to
ELMo. In MedSentEval, ELMo features are calculated for each token by
concatenating all three layers weights of the model. For BERT features,
we take the hidden states of the final hidden layer of the transformer
model. To generate sentence vectors from word embeddings, we apply
the Mean of Word Embeddings (MOWE) technique [58] on both static
and contextualized embeddings. In tasks with dual inputs as in textual
entailment tasks, their combined embedding vector is built as
u v u v u v( , , | |, ), which is a concatenation of the premise and hy-
pothesis vectors and their respective absolute difference and Hadamard
product. Tasks evaluation criteria are consistent across tasks with minor
variations as their input/output formats, and types are different. For
example, for semantic similarity tasks, we only need to calculate the
cosine similarity between the input’s embedding and compare it to the
expert-labeled score through Pearson and Spearman correlations. All
experiments were carried out using a single GPU with 12 GB RAM.
However the toolkit also provides optional support of CPU only ma-
chines through scikit-learn for the logistic regression. Since this might
trigger memory issues with some datasets such as PICO and Pub-
Med20K, we only recommend this for small sized datasets. Table 2
highlights the experimental settings for each task and the performance
metrics used for evaluation. Our analysis do not include the time factor
when conducting the comparison since both the feature extraction and
classification phases do not exceed 2 h for all tasks with the exception of
BERT and ELMo models when run over big datasets namely PICO and
PubMed20K. We note that this does not include the time needed to
generate the pre-trained weights as it may cost more time to train some
embedding models, such as InferSent, Bert or ELMo. (see Fig. 1).

4. Results

In Table 3, shows results obtained from the included embedding
schemes across all 10 tasks included in MedSentEval. The reported re-
sults are based on the logistic regression classifier as it consistently
achieved better results than MLP on most transfer tasks and specifically
on small size datasets. ELMo takes the lead with the original 5.5B model
excelling in 5 out of 10 tasks in the general embeddings category. The
PubMed version is also dominating with 4 tasks in the embeddings
acquired from biomedical training data. The BERT algorithm comes
next with the best performance of 2 and 3 tasks for base and BioBert
models respectively. Moreover, BERT embeddings are often the second
best performing on many tasks with minimal accuracy difference from
ELMo which did not exceed 1%. Fig. 2 and 3 illustrate a comparison
between each method with general and domain-specific training. Ad-
ditionally, we investigate whether there is any correlation between
independent model factors and perceived performance. Driven by sev-
eral research questions, we analyzed the results of the conducted eva-
luation.

Static versus Context embeddings Comparing the representation
models within each category separately, we find that context-depen-
dent models capture more information than regular static embeddings.
The only exception to that rule was the BioASQ dataset, where Glove
and FastText achieve better results than ELMo, BERT and Flair in the
biomedical domain and BERT and ELMo only in the general domain.
This exception is not indicative as we additionally observe that tasks in
the question-answering category, in general, are the least influenced by
the different techniques since the classifier tends to overfit to the ma-
jority class in most models.

General versus Domain embeddings Apart from GloVe, FastText, and
Flair, comparing each general embedding model to its biomedical peer,
the latter always outperforms the former. In the case of Flair, the
medical embeddings are worst in performance or do not provide a
significant gain over the general model. As mentioned, ELMo and BERT
are the best-suited models in both the general and biomedical cate-
gories to represent medical text.

Word-based versus Sentence-encoders embeddings Under the assump-
tion that sentence-level encodings better capture the content of medical
text since it takes into account the word order within the sentence, we
observed that the best results are generally obtained through averaging
word embeddings. The reason for this result may be related to the fact
that much of the word order information is captured in general natural
language word order statistics [23]. This observation is true for all tasks
except for the language inference task. However, we believe that this is
due to the similarity of the task’s data and the training data of the
sentence encoders. The inferSent supervised model is trained on the
SNLI and MedNLI datasets for the general and biomedical embeddings
categories, respectively. While the Universal Sentence Encoder has
multi-type data including questions and entailment pairs, among
others.

Embedding Dimension versus Embedding model As we employ the
averaging scheme to calculate the sentence embedding, the size of the
embedding vector is equal to the original word vector size. While FLAIR
and InferSent have the biggest embedding dimension of 4096, their
performance is inferior to other models with a much smaller embedding
vector. On the other hand, in models like ELMo and BERT, where we
experiment with different versions of the same model with different
embedding dimensions, we notice that increasing the embedding vector
size is related to a performance gain. This finding is expected as the
more dimensions a word vector has, the more semantic information can
be preserved in the resulting sentence representation. This also might
explain the poor performance of GloVe and FastText biomedical em-
beddings as opposed to their corresponding general models. The em-
bedding size of the pre-trained biomedical model are 200 and 100 for
GloVe, and FastText respectively, while the general embedding di-
mension is 300.
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4.1. Qualitative analysis

Besides the quantitative results mentioned above, we also test the
effectiveness of the different biomedical models on several simple, but
non-trivial, examples beyond the extrinsic tasks. In this section, we shed
light on intrinsic characteristics that may explain some of the perfor-
mance variances. Building on our previous findings that domain-based
embeddings are better suited for the medical and clinical NLP tasks, we
limit the qualitative analysis to the biomedical embedding models.

The diagnostic data used throughout this analysis have been
manually selected to fit the test purpose. However, they do not re-
present the language distribution as a whole. Our main goal was to
provide insight into what models are capturing, what are their strengths
and weaknesses through adversarial examples.

General Knowledge We first attempt to investigate the robustness of
the generated numerical representations to reflect common sense [59].
The test consists of removing non-important tokens, such as stop words,
and calculate the similarity between the original and the shortened
sentences. For this test, we collect ten sentences, one from each dataset,
while varying the number of stop words per chosen sentences. Table 4
shows an example of the sentences before and after removal, and the
corresponding cosine distances computed by the six biomedical models.
The models are ranked according to the descending order of the simi-
larity values. The higher the value, the better the ability of the model to
assign similar embeddings for both sentences. Consider the example in
Table 4, most models still retains a similarity of 0.93 or above, except
for GloVe, even after removing 13 stop words from a single sentence.
More examples are available in Appendix A. The results demonstrate
that the InferSent model is the most insensitive regarding the removal
of non-important words and, surprisingly, ELMo’s performance is not
consistent. In many cases, the similarity decreases by 10%, ranking
below FastText in all 10 examples. The same applies to Flair embed-
dings; this suggests that preprocessing the text before embedding with
these models could give higher priority to informative words and might

yields better results in downstream tasks.
Concept Identity The second test measures to what extent the sen-

tence representation encodes the identities of entities within it. In the
medical and clinical language, referring to concepts using their ab-
breviations is a common practice and frequently found in sentences
extracted from both patient records and scientific articles. Retaining the
concept identity, whether it is referred to in full or in abbreviated form,
is crucial and demonstrates the models’ capacities pertinent to language
understanding. We collected five examples with abbreviated concepts
in the premises from the MedNLI dataset. We compared the NLI pre-
dicted labels given the original premise and after expanding the ab-
breviations. It is clear from observing the examples in Table 4 and
Appendix A that BERT is able to relate the premise to the hypothesis
more often when using the full-form leading to the correct inference.
On the other hand, ELMo has zero gain after the expansion process.
While the number of cases is relatively small to generalize the results,
based on this intuition, we suggest expanding and normalizing ab-
breviations and acronyms in the dataset before using BERT.

Domain Knowledge The third test assesses the model’s ability to
capture significant semantic meanings of the input text. In the context
of our domain-based evaluation, the semantic significance mainly refers
to the medical information within the sentence [60]. For this test, we
consider 6 records that hold indirect information relating independent
medical concepts. In the example shown in Table 4, most models fail to
relate chest pain to Angina. Consequently they interpret these to be two
unrelated entities and labels the instance pair as neutral. This pattern is
consistent in most models across different relation categories such as
Disease-Symptom, Drug-Disease, Drug-Drug classes. While empirical re-
sults show that all the representations encode certain amount of in-
formation, our finding advocates for integrating external knowledge to
compensate for the lack of medical background of the models. This
could be achieved by adding external knowledge sources such as the
Unified Medical Language System (UMLS) to include semantic types
and relationships.

Table 2
Experimental settings for each evaluation task.

Task Classes Classification Validation Performance Metrics

MedNLI 3 LR/MLP Standard validation Accuracy
RQE 2 LR/MLP Standard validation Accuracy
PUBMED20K 5 LR/MLP Standard validation Accuracy
PICO 8 LR/MLP Standard validation Accuracy
PatientSA 8 LR/MLP Nested cross-validation Accuracy
CitationSA 3 LR/MLP Nested cross-validation Accuracy
BioASQ 2 LR/MLP Cross-validation Accuracy/F1
BioC 2 LR/MLP Nested cross-validation Accuracy/F1
C-STS [0–5] – Cosine similarity Pearson/Spearman correlation
BIOSSES [0–4] – Cosine similarity Pearson/Spearman correlation

Fig. 1. Classification of different embedding models.
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Table 3
Logistic regression performance on all tasks included inMedSentEval. For all tasks we report accuracies except for the BioC/BioASQ we additionally report F1. And for
BIOSSES and ClincalSTS, we report Pearson/Spearman correlations between the cosine distance of both sentences and the similarity score given by the domain
expert. Underlined values indicate the best overall result, while values in bold indicate best performing over each category.

Tasks Emb. size MedNLI RQE PubMed20K PICO Vac.SA Cit.SA BioC BioASQ C-STS BIOSSES

General Embeddings

GloVE B840 300 65.05 60.93 73.95 73.95 60.20 78.97 69.89/82.20 69.23/81.82 0.27/0.48 0.25/0.39
FastTextcrawl 300 63.08 62.25 76.23 75.09 61.67 79.39 69.51/82.01 69.23/81.82 0.54/0.56 0.43/0.50
ELMosmall 768 62.03 58.28 80.26 78.68 62.22 81.73 74.12/83.48 66.15/78.35 0.54/0.50 0.33/0.35
ELMoOrg B5.5 3072 66.10 57.92 83.51 81.89 68.82 83.60 81.44/87.81 67.02/78.80 0.57/0.49 0.29/0.32
BertbaseCased 768 63.99 65.56 81.91 80.73 64.54 83.18 74.89/84.66 66.92/79.62 0.69/0.57 0.48/0.50
BertlargeUncased 1024 65.54 68.21 83.04 81.08 66.07 82.80 74.51/84.09 69.23/81.30 0.66/0.51 0.56/0.58
Flairnews 4096 61.12 56.62 81.58 80.15 67.21 82.79 72.20/83.30 66.92/79.62 0.54/0.47 0.31/0.30
Flairmix 4096 64.42 58.94 81.26 79.60 65.62 81.54 70.28/82.39 70.00/82.03 0.52/0.53 0.40/0.50
InferSent1 4096 67.16 58.22 74.70 61.42 66.91 81.86 79.94/97.18 70.00/81.86 0.57/0.54 0.32/0.42
InferSent2 4096 63.99 62.25 78.24 78.24 64.28 80.55 69.51/82.01 68.46/81.28 0.54/0.57 0.43/0.48
USE 512 60.76 73.84 75.50 73.26 62.46 78.76 69.50/82.01 69.23/81.82 0.64/0.56 0.45/0.48

Biomedical embeddings
GlovePubMed 200 56.96 56.29 66.61 65.26 45.08 78.71 69.50/82.01 69.23/81.82 0.08/0.42 0.05/0.17
FastTextPubMed 100 61.39 63.25 75.47 74.16 55.67 78.92 69.50/82.01 69.23/81.82 0.28/0.56 0.56/0.60
ELMoPubMed 3072 71.18 62.91 85.71 83.76 68.79 84.73 83.00/88.34 66.92/80.00 0.61/0.54 0.74/0.70
BioBERT 768 66.95 63.91 85.35 83.69 65.50 83.91 74.51/84.21 68.46/81.28 0.69/0.54 0.64/0.62
SciBERT 768 66.24 63.91 85.44 83.77 65.86 84.93 82.25/88.41 67.69/80.00 0.67/0.59 0.56/0.60
FlairPubMed 2300 61.60 57.95 82.73 81.08 57.61 81.81 72.61/83.47 66.92/79.81 0.40/0.48 0.35/0.47
InferSent MedNLI1 4096 71.52 66.23 79.54 78.86 63.47 79.80 71.05/82.69 68.85/81.55 0.54/0.53 0.35/0.41

Fig. 2. Accuracy values for the logistic regression classifier across tasks included in MedSentEval.
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5. Discussion

This paper inspects sentence representations for biomedical text by
analyzing seven popular embedding schemes. It is important to recall
that the primary purpose of this study is not to outperform existing
state-of-the-art methods for the reported BioNLP tasks. We are seeking
to evaluate and validate different embedding techniques that will en-
able further in-depth investigations and improvement of text re-
presentations for the biomedical domain. When comparing with base-
line performance introduced in datasets’ original papers, if applicable,
the results obtained is close to or outperforms baseline values. This is
mainly due to the use of simple classification algorithms like the MLP or
LR classifiers. Therefore, the performance achieved through the toolkit
still has room for improvement by fine tuning the hyperparameters of
the classification models or deploying other classifiers. It was reported
that employing complex models such as Convolutional Neural Networks
(CNNs) is more effective for text classification tasks [61]. Similarly,
using the end-to-end BERT model could lead to a non-trivial accuracy
gain for several tasks such as MedNLI [49,63]. However, the effect of
classification algorithms on the performance and the analysis of dif-
ferent approaches to adapt the pre-trained representations [64] are out
of the scope of this paper.

The benchmark gives insights on the sentence embedding quality
through downstream tasks with four extrinsic tasks (Textual
Entailment, Sentence classification, Sentiment analysis, and Question
answering). Additionally, we follow a case-based reasoning approach to
provide a qualitative analysis of the learned representations.

We found relatively modest correlations between the quantitative
and qualitative results. In the case of ELMo, for example, the intrinsic
evaluation results fail extrinsic performance. This also matches

previous evaluations outside the medical domain [65]. Finally, both
evaluation types could benefit from domain experts’ perspectives. It is
hard to draw conclusions or rank models from best to worst as there is
no single sentence embedding scheme that consistently performs well
on all of the ten tasks. As with all classification problems, specific ap-
proaches are better suited to some datasets than others, this is also
consistent with the “no free lunch theorem” [66]. However, our ex-
perimental results unveil a number of important observations:

• Sentence embeddings computed as the mean of word embeddings
are still effective in capturing the sentence semantics and yield
competitive results to dedicated sentence encoders.
• There is no correlation between the embedding dimension and the
performance across different models.
• In almost all cases, neural embeddings generated from hidden states
of a deep learning model are able to capture more semantics than
word embeddings computed from count or prediction based models.
• Contextualized word embeddings with a language model objective,
i.e. ELMo and BERT, usually outperform other encoding schemes.
• While InferSent is better suited for textual entailment, given the type
of data it is trained on, its good performance does not generalize
over other tasks.
• A proper balance and variation in the training resources, when
compared to training solely on domain data, can lead to more effi-
cient results such as the case of BioBert and SciBERT.

The results show that most models still need to resume training on
domain-related and task-specific data. And that, to date, producing a
single universal embedding model that generalizes well to other tasks
requires more investigations and evaluations. Given the superiority of

Fig. 3. Results for the Semantic Text Similarity tasks. Values shown are the Pearson correlation coefficients for the test sets.

Table 4
Qualitative Analysis.

Test Objective Example Predicted Expected

General Knowledge Original: Our findings suggest an association between the DD genotype of the ACE gene and early-onset but not later-onset pre-
eclampsia which may give a partial explanation for the higher recurrence risk with early- onset pre-eclampsia.
Modified: Our findings suggest association DD genot-ype ACE gene early-onset later-onset pre-eclampsia may give partial
explanation higher recurrence risk early- onset pre-eclampsia.

FastText
InferSent
BERT
ElMo
Flair
Glove

0.97
0.97
0.96
0.87
0.84
0.8

~1

Concept Identity Premise: Reports lack of appetite but no n/v.

Expanded premise: Reports lack of appetite
but no nausea and vomiting.

Hypothesis: the patient denies nausea and vomiting.

Pre Post E
GloVe
FastText
ElMo
BERT
Flair
InferSent

N
N
C
C
N
C

C
E
C
E
C
E

Medical Knowledge Premise: No chestpain or fevers.

Hypothesis: Patient has no angina

GloVe
FastText
ElMo
BERT
Flair
InferSent

C
E
N
N
C
E

E
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ELMo and BERT over other models, we particularly recommend in-
tegrating language models with neural embeddings as a promising di-
rection of research. Incorporating medical knowledge in the learning
process of the models is also expected to enhance their performance.
Another alternative for improving the results is to combine two or more
embedding techniques in a single classification model. Adopting such a
method could offer specific domain background, when adding concept
embeddings for example, to acquire the best of each technique.

6. Conclusion

In this paper, we presented MedSentEval, a new toolkit for evalu-
ating state-of-the-art sentence embedding methods for NLP classifica-
tion problems. Through our evaluations, we assessed the transferability
of these embeddings to biomedical domain tasks. Our research aimed to
build on the work done by Conneau et al. [7] and adapt it to fit medical
and clinical text corpora. We also integrated extra embedding techni-
ques not available in the original toolkit such as ELMo and BERT. We
hope that our in-depth evaluations, along with the toolkit, will benefit
the BioNLP community in selecting suitable embeddings for different
application tasks. While only downstream tasks are used to evaluate the
overall quality of sentence representation models, we also note the need
to incorporate probing tasks as in SentEval. A future extension of our
current work will include support for more embeddings schemes
trained on different domain data types such as patient records, nurse
notes and full-text articles PubMed central combined. Moreover, adding
more tasks for each category, when available, could further improve
our understanding and generalization of the findings.
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